JP4666139B2 - Purification method of glycidyl methacrylate - Google Patents

Purification method of glycidyl methacrylate Download PDF

Info

Publication number
JP4666139B2
JP4666139B2 JP2005005155A JP2005005155A JP4666139B2 JP 4666139 B2 JP4666139 B2 JP 4666139B2 JP 2005005155 A JP2005005155 A JP 2005005155A JP 2005005155 A JP2005005155 A JP 2005005155A JP 4666139 B2 JP4666139 B2 JP 4666139B2
Authority
JP
Japan
Prior art keywords
glycidyl methacrylate
gma
distillation
epch
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005005155A
Other languages
Japanese (ja)
Other versions
JP2006193449A (en
Inventor
淳 岩本
啓応 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005005155A priority Critical patent/JP4666139B2/en
Publication of JP2006193449A publication Critical patent/JP2006193449A/en
Application granted granted Critical
Publication of JP4666139B2 publication Critical patent/JP4666139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Compounds (AREA)

Description

本発明は、エピクロロヒドリン(以下、EpCHと記す)とメタクリル酸(以下、MAAと記す)を原料としてメタクリル酸グリシジル(以下、GMAと記す)を製造するに際し、反応生成物中に不純物として含まれる1,3−ジクロロ−2−プロパノール(以下、1,3−DCPと記す)を効率的に低減するための、GMAの精製方法に関する。GMAは耐候性塗料、粉体塗料、接着剤等の原料として様々な分野で使用されている。   In the present invention, when producing glycidyl methacrylate (hereinafter referred to as GMA) using epichlorohydrin (hereinafter referred to as EpCH) and methacrylic acid (hereinafter referred to as MAA) as raw materials, The present invention relates to a GMA purification method for efficiently reducing 1,3-dichloro-2-propanol (hereinafter referred to as 1,3-DCP) contained therein. GMA is used in various fields as a raw material for weather-resistant paints, powder paints, adhesives and the like.

EpCHとMAAを原料するGMAの工業的製法は以下のような方法が知られている。
1)MAAとEpCHから3−クロロ−2−ヒドロキシプロピルメタクリレート(以下、MACEと記す)を得、これをアルカリにより脱塩化水素させる(例えば、特許文献1参照)。
2)MAAとアルカリからMAAのアルカリ金属塩を得、これとEpCHから脱塩化アルカリさせる(例えば、特許文献1および2参照)。
The following method is known as an industrial method for producing GMA using EpCH and MAA as raw materials.
1) 3-Chloro-2-hydroxypropyl methacrylate (hereinafter referred to as MACE) is obtained from MAA and EpCH, and this is dehydrochlorinated with an alkali (for example, see Patent Document 1).
2) An alkali metal salt of MAA is obtained from MAA and alkali, and dechlorinated alkali from this and EpCH (see, for example, Patent Documents 1 and 2).

上記いずれの方法においてもEpCHを原料として使用するため、反応液には副反応生成物として1,3−DCPが含まれる。1,3−DCPは一分子内に塩素原子を2個含み、GMAの純度低下をもたらすのみならず、樹脂や塗料等の用途に使用した場合に性能を低下させる原因物質にもなり得ることから極力除去されることが好ましい。しかしながら、1,3−DCPの沸点がGMAと非常に近似しているため、蒸留による分離は相当な労力を要する。そこで、1,3−DCPを低減または除去する方法がいくつか提案されてきた。   In any of the above methods, since EpCH is used as a raw material, 1,3-DCP is contained in the reaction solution as a side reaction product. Since 1,3-DCP contains two chlorine atoms in one molecule, it not only causes a decrease in the purity of GMA, but can also be a causative substance that degrades performance when used in applications such as resins and paints. It is preferable to remove as much as possible. However, since the boiling point of 1,3-DCP is very close to that of GMA, separation by distillation requires considerable labor. Thus, several methods for reducing or removing 1,3-DCP have been proposed.

1,3−DCP等を含む粗GMAを第4級アンモニウム塩の存在下、酸素ガスと不活性ガスの混合ガスを吹き込みながらストリッピング処理する方法が開示されている(例えば、特許文献3参照)。しかしながら、この方法は純度の低い製品を長時間加熱し、精製された製品を収率70%で得るというように非常に効率が悪く、工業化には不向きであった。   A method of stripping crude GMA containing 1,3-DCP or the like in the presence of a quaternary ammonium salt while blowing a mixed gas of oxygen gas and inert gas is disclosed (for example, see Patent Document 3). . However, this method is very inefficient, such as heating a low-purity product for a long time and obtaining a purified product with a yield of 70%, and is not suitable for industrialization.

また、1,3−DCP等の塩素化合物を含む粗GMAを第4級アンモニウム塩及びアルカリ金属物質の存在下に加熱処理する方法が開示されている(例えば、特許文献4参照)。第4級アンモニウム塩によって1,3−DCPはEpCHと塩化水素に分解され、生成した塩化水素をアルカリ金属物質によって中和するとの記載がなされているが、本発明者らの追試では塩化水素の発生は確認されず、逆に粗GMAに水酸化ナトリウム等のアルカリ金属物質を添加すると、GMAの加水分解反応によるGMA収率の著しい低下が起こることが分かった。   Also disclosed is a method of heat-treating crude GMA containing a chlorine compound such as 1,3-DCP in the presence of a quaternary ammonium salt and an alkali metal substance (see, for example, Patent Document 4). It has been described that 1,3-DCP is decomposed into EpCH and hydrogen chloride by the quaternary ammonium salt, and the produced hydrogen chloride is neutralized with an alkali metal substance. Generation | occurrence | production was not confirmed, but when alkali metal substances, such as sodium hydroxide, were added to crude GMA conversely, it turned out that the remarkable fall of the GMA yield by the hydrolysis reaction of GMA occurs.

他の方法として、粗GMAを塩基性陰イオン交換樹脂(Cl型)に接触させる方法も知られている(例えば、特許文献5、非特許文献1参照)。これは塩基性陰イオン交換樹脂(Cl型)の触媒作用によって、式1に示されるように1,3−DCPとGMAからEpCHとMACEを生成する方法である。しかし、イオン交換樹脂は非常に高価であるため経済的に不利であり、また、後述するようにこの反応は平衡反応であることから、1,3−DCPを十分低減させるためにはEpCH及びMACEが十分少ない粗GMAにしか適用できない、という問題があった。   As another method, a method of contacting crude GMA with a basic anion exchange resin (Cl type) is also known (see, for example, Patent Document 5 and Non-Patent Document 1). This is a method of generating EpCH and MACE from 1,3-DCP and GMA as shown in Formula 1 by the catalytic action of a basic anion exchange resin (Cl type). However, since the ion exchange resin is very expensive, it is economically disadvantageous, and since this reaction is an equilibrium reaction as will be described later, EpCH and MACE are required to sufficiently reduce 1,3-DCP. There is a problem that it can be applied only to coarse GMA with a sufficiently small amount.

(式1) 1,3−DCP + GMA → EpCH + MACE
特開平7−118251号公報 特公平1−20152号公報 特許第3018483号 特開平7−309854号公報 特開2000−212177号公報 GB Industrial Opportunities Ltd.,Havant,NO.385,pages 283−284,May 1,1996
(Formula 1) 1,3-DCP + GMA-> EpCH + MACE
Japanese Patent Laid-Open No. 7-118251 Japanese Patent Publication No. 1-20152 Patent No. 3018483 JP 7-309854 A JP 2000-212177 A GB Industrial Opportunities Ltd. , Havant, NO. 385, pages 283-284, May 1, 1996

本発明は、従来技術における上記したような課題を解決し、粗GMAから1,3−DCPを効率的に低減し、実質的に1,3−DCPを含まないGMAを得るための精製方法を提供することを目的とする。   The present invention solves the above-mentioned problems in the prior art, and provides a purification method for efficiently reducing 1,3-DCP from crude GMA and obtaining GMA substantially free of 1,3-DCP. The purpose is to provide.

本発明者らは、上記課題を解決するため鋭意検討した結果、1,3−DCPを含む粗GMAに第4級アンモニウム塩を添加すると強塩基性陰イオン交換樹脂(Cl型)と同様の触媒効果を示すこと、すなわち、1,3−DCPとGMAからEpCHとMACEが生成することを見出した(式1参照)。また、この反応を詳細に検討したところ、平衡反応であることが判明した(70℃における平衡定数K=2.6)。よって、この反応が反応蒸留によってEpCHを系外に留去しながら行なわれるならば、1,3−DCPとGMAとの反応が有利に進行し、さらに分縮操作を行なえばEpCHを効率よく留去できる結果、1,3−DCPを効率的かつ十分に低減できること、さらに、該反応蒸留を行なったのちアルキルベンゼンスルホン酸塩を添加してから蒸留によってメタクリル酸グリシジルを回収することにより重合その他好ましくない副反応が抑制され、高い収率で精製されたメタクリル酸グリシジルが回収できることを見出し、本発明を完成させた。すなわち、本発明は以下のとおりである。
(1) エピクロロヒドリンとメタクリル酸を原料として得られるメタクリル酸グリシジルの精製方法であって、不純物として1,3−ジクロロ−2−プロパノールを含む粗メタクリル酸グリシジルを、分縮器および全縮器を備えた反応器にて第4 級アンモニウム塩の存在下、減圧下において反応蒸留を行ないながら、該反応蒸留で発生するエピクロロヒドリンとメタクリル酸グリシジルを分縮器にて分離するにあたり、分縮器の出口ガス温度が該減圧におけるエピクロロヒドリンの沸点以上かつメタクリル酸グリシジルの沸点未満に調整され分縮器に凝縮したメタクリル酸グリシジルを主成分とする液を反応器にリサイクルし、分縮器で凝縮されなかったエピクロロヒドリンを含むガスを全縮器凝縮し系外に排出することにより該不純物を低減したのち、蒸留によりメタクリル酸グリシジルを回収することを特徴とする粗メタクリル酸グリシジルの精製方法。
(2) 前記反応蒸留を行なった後、さらにアルキルベンゼンスルホン酸塩を添加する上記(1)記載の粗メタクリル酸グリシジルの精製方法。
(3) アルキルベンゼンスルホン酸塩が、p−トルエンスルホン酸ナトリウムである上記(2)記載の粗メタクリル酸グリシジルの精製方法。
As a result of intensive studies to solve the above problems, the present inventors have found that when a quaternary ammonium salt is added to crude GMA containing 1,3-DCP, the same catalyst as a strongly basic anion exchange resin (Cl type) It has been found that EpCH and MACE are generated from 1,3-DCP and GMA (see Formula 1). Further, when this reaction was examined in detail, it was found to be an equilibrium reaction (equilibrium constant K = 2.6 at 70 ° C.). Therefore, if this reaction is carried out by distilling EpCH out of the system by reactive distillation, the reaction between 1,3-DCP and GMA proceeds advantageously, and further, if fractional operation is performed, EpCH can be efficiently retained. As a result, 1,3-DCP can be efficiently and sufficiently reduced. Further, after the reactive distillation, the alkylbenzene sulfonate is added, and then glycidyl methacrylate is recovered by distillation. It was found that side reactions were suppressed and glycidyl methacrylate purified with a high yield could be recovered, and the present invention was completed. That is, the present invention is as follows.
(1) A method for purifying glycidyl methacrylate obtained from epichlorohydrin and methacrylic acid as raw materials, wherein crude glycidyl methacrylate containing 1,3-dichloro-2-propanol as an impurity is separated from a partial condenser and In the presence of a quaternary ammonium salt in a reactor equipped with a vessel, while performing reactive distillation under reduced pressure, epichlorohydrin and glycidyl methacrylate generated in the reactive distillation are separated with a partial condenser. The outlet gas temperature of the partial condenser is adjusted to be equal to or higher than the boiling point of epichlorohydrin at the reduced pressure and lower than the boiling point of glycidyl methacrylate, and a liquid mainly composed of glycidyl methacrylate condensed in the partial condenser is recycled to the reactor. , said non by condensed gas containing epichlorohydrin which has not been condensed in the partial condenser at Zenchijimiki discharged out of the system After reducing the object method for purifying a crude glycidyl methacrylate, which comprises recovering glycidyl methacrylate by distillation.
(2) The method for purifying crude glycidyl methacrylate according to (1) above, wherein alkylbenzene sulfonate is further added after the reactive distillation.
(3) The method for purifying crude glycidyl methacrylate according to (2) above, wherein the alkylbenzenesulfonate is sodium p-toluenesulfonate.

本発明によれば、反応で副生した1,3−DCPを効率的かつ十分に低減したGMAを高い収率で製造できる。   According to the present invention, GMA in which 1,3-DCP by-produced in the reaction is efficiently and sufficiently reduced can be produced in a high yield.

以下、本発明を詳細に説明する。GMAは一般にEpCHとMAAを原料として合成されるが、その工業的製法としては以下の2つが知られている。一つは、第4級アンモニウム塩の存在下、EpCHとMAAを付加反応させてMACEを合成し、次いで塩基性化合物を用いて脱塩化水素反応によりMACEを閉環させてGMAを製造する方法である。もう一つはMAAとアルカリ金属物質からMAAのアルカリ金属塩を得、第4級アンモニウム塩の存在下、これをEpCHと反応させて脱塩化アルカリによりGMAを製造する方法である。   Hereinafter, the present invention will be described in detail. GMA is generally synthesized using EpCH and MAA as raw materials, and the following two are known as industrial production methods. One is a method for producing GMA by synthesizing MACE by addition reaction of EpCH and MAA in the presence of a quaternary ammonium salt, and then cyclizing MACE by dehydrochlorination using a basic compound. . The other is a method in which an alkali metal salt of MAA is obtained from MAA and an alkali metal substance, and this is reacted with EpCH in the presence of a quaternary ammonium salt to produce GMA by dechlorinated alkali.

これらの製造方法において使用される第4級アンモニウム塩としては公知の物質が使用できるが、例えば、テトラメチルアンモニウムクロライド、トリメチルエチルアンモニウムクロライド、ジメチルジエチルアンモニウムクロライド、メチルトリエチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等が例示される。   As the quaternary ammonium salt used in these production methods, known substances can be used. For example, tetramethylammonium chloride, trimethylethylammonium chloride, dimethyldiethylammonium chloride, methyltriethylammonium chloride, tetraethylammonium chloride, trimethyl Examples thereof include benzylammonium chloride and triethylbenzylammonium chloride.

いずれの製造方法においても合成液中には触媒である第4級アンモニウム塩の他、生成したGMAとほぼ等モルの塩化アルカリなど多量の固形物が含まれており、また、収率向上を目的として合成反応はEpCH過剰で行なわれる。そこで、通常は合成終了後、濾過や水洗といった方法で合成液から固形物を除去した後、未反応の余剰のEpCHを蒸留によって回収し、次いでGMAを蒸留によって回収するのが一般的である。蒸留によって回収されたEpCHは合成原料としてリサイクルされる。以下、合成液から固形物を除去するまでを合成工程といい、合成液から固形物を除去した液を母液、固形物を除去してからの工程を蒸留工程という。   In any of the production methods, in addition to the quaternary ammonium salt which is a catalyst, the synthesis solution contains a large amount of solids such as almost the same molar amount of alkali chloride as the produced GMA, and the purpose is to improve the yield. The synthesis reaction is carried out with an excess of EpCH. Therefore, usually, after the synthesis is completed, solids are removed from the synthesis solution by a method such as filtration or washing, and then unreacted excess EpCH is recovered by distillation, and then GMA is recovered by distillation. EpCH recovered by distillation is recycled as a synthetic raw material. Hereinafter, the process until the solid is removed from the synthesis liquid is referred to as a synthesis process, the liquid from which the solid is removed from the synthesis liquid is referred to as a mother liquor, and the process after the solid is removed is referred to as a distillation process.

蒸留工程は回分式でも連続式でも良く、単蒸留、精留、薄膜蒸留などを適宜組み合わせて行なうことができる。なお、合成工程は適当な重合禁止剤の存在下で行なうことが好ましく、フェノール類、フェノチアジン、N−オキシル化合物など公知のものが使用でき、これらを蒸留工程にも使用することが好ましい。また、必要に応じて分子状酸素を供給することにより、より一層重合を防止することができる。   The distillation step may be a batch type or a continuous type, and simple distillation, rectification, thin film distillation and the like can be appropriately combined. The synthesis step is preferably carried out in the presence of a suitable polymerization inhibitor, and known compounds such as phenols, phenothiazines and N-oxyl compounds can be used, and these are also preferably used in the distillation step. Further, the polymerization can be further prevented by supplying molecular oxygen as required.

上記いずれの方法においてもEpCHを原料として使用するため、得られたGMA中には不純物として1,3−DCPが含まれる。1,3−DCPはその沸点がGMAと非常に近似しているため、蒸留による分離は非現実的である。つまり、上述のように蒸留工程においてEpCHを回収した後、GMAを回収した場合、合成工程で生成した1,3−DCPはほとんど全量がGMAと共に回収されてしまう。つぎに、これを低減するための精製方法について詳述する。   In any of the above methods, since EpCH is used as a raw material, 1,3-DCP is contained as an impurity in the obtained GMA. Since 1,3-DCP has a boiling point very close to that of GMA, separation by distillation is impractical. That is, when EpMA is recovered in the distillation step as described above, and GMA is recovered, almost all of 1,3-DCP generated in the synthesis step is recovered together with GMA. Next, a purification method for reducing this will be described in detail.

1,3−DCPを含む粗GMAに第4級アンモニウム塩を添加すると、上記式1に示す平衡反応が進行し、EpCHとMACEが生成する。生成したEpCHはGMAに対して低沸点成分であり、MACEはGMAに対して十分沸点が高い。   When a quaternary ammonium salt is added to crude GMA containing 1,3-DCP, the equilibrium reaction shown in the above formula 1 proceeds, and EpCH and MACE are generated. The produced EpCH is a low boiling point component with respect to GMA, and MACE has a sufficiently high boiling point with respect to GMA.

精製工程において添加する第4級アンモニウム塩としては、テトラメチルアンモニウムクロライド、トリメチルエチルアンモニウムクロライド、ジメチルジエチルアンモニウムクロライド、メチルトリエチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等が例示される。添加する第4級アンモニウム塩は1種のみを使用しても良いし、2種以上を併用しても良い。また、添加する第4級アンモニウム塩は合成で使用したものと同一でも良いし異なっていても良い。第4級アンモニウム塩の使用量は粗GMAに対して0.001〜1%、好ましくは0.01〜0.5%、より好ましくは0.02〜0.4%である。これより少ないと反応が遅くなってしまい、多いと経済的に不利である。   Examples of the quaternary ammonium salt added in the purification step include tetramethylammonium chloride, trimethylethylammonium chloride, dimethyldiethylammonium chloride, methyltriethylammonium chloride, tetraethylammonium chloride, trimethylbenzylammonium chloride, and triethylbenzylammonium chloride. The The quaternary ammonium salt to be added may be used alone or in combination of two or more. Further, the quaternary ammonium salt to be added may be the same as or different from that used in the synthesis. The amount of quaternary ammonium salt used is 0.001 to 1%, preferably 0.01 to 0.5%, more preferably 0.02 to 0.4% based on the crude GMA. If it is less than this, the reaction will be slow, and if it is more, it is economically disadvantageous.

精製工程で使用する第4級アンモニウム塩の形状については特に限定されない。粉状または粒状の固体状態でも良いし、水溶液またはGMA中にスラリーとして分散された状態でも良い。通常は粒状または粉状のものが使用される。   The shape of the quaternary ammonium salt used in the purification process is not particularly limited. It may be in a powdered or granular solid state, or may be dispersed as a slurry in an aqueous solution or GMA. Usually, granular or powdery materials are used.

第4級アンモニウム塩の添加方法についても特に限定されない。固体の場合はホッパー等により反応器に投入しても良いし、粗GMA等で押し流して添加しても良い。何度かに分けて分割投入しても良いが、通常は一度に添加される。   The method for adding the quaternary ammonium salt is not particularly limited. In the case of a solid, it may be charged into the reactor by a hopper or the like, or may be added by being pushed away with a crude GMA or the like. Although it may be divided into several times, it is usually added all at once.

第4級アンモニウム塩は、蒸留工程の途中において、粗GMAに添加されるのが好ましい。蒸留工程前では母液中のEpCH濃度が高いため上記式1の平衡反応がほとんど進行しないだけではなく、第4級アンモニウム塩による好ましくない副反応が進行してしまい、GMAが消費されてグリセロールジメタクリレート(以下、GDMAと記す)やグリセロールトリメタクリレート(以下、GTMAと記す)等が生成するからである。添加するタイミングについては上述した平衡反応を有利に進めるため、粗GMA中のEpCH濃度が10%以下、好ましくは3%以下、より好ましくは1%以下となるまで母液からEpCHを留去した時点、とするのが良い。EpCHの留去方法については前述の通り、回分式でも連続式でも良く、単蒸留でも精留でも良い。   The quaternary ammonium salt is preferably added to the crude GMA during the distillation process. Before the distillation step, the concentration of EpCH in the mother liquor is high, so not only the equilibrium reaction of the above formula 1 does not proceed, but also an undesirable side reaction due to the quaternary ammonium salt proceeds, and GMA is consumed and glycerol dimethacrylate is consumed. (Hereinafter referred to as GDMA), glycerol trimethacrylate (hereinafter referred to as GTMA) and the like are produced. Regarding the timing of addition, in order to favorably promote the above-described equilibrium reaction, when EpCH is distilled off from the mother liquor until the EpCH concentration in the crude GMA is 10% or less, preferably 3% or less, more preferably 1% or less, It is good to do. As described above, the method for distilling EpCH may be batch or continuous, simple distillation or rectification.

本発明では、粗GMAに第4級アンモニウム塩を添加して、減圧下で反応蒸留を行なう。この際、EpCHを反応系外に留去しながら反応を行なうが、このEpCHには反応で生成したEpCHの他に、母液から回収しきれなかった、粗GMA中に残存するEpCHも含まれる。EpCHを留去しながら反応蒸留を行なう理由は、目的とする反応(式1参照)が平衡反応であるため、正反応を有利に進めるためである。   In the present invention, a quaternary ammonium salt is added to crude GMA, and reactive distillation is performed under reduced pressure. At this time, the reaction is carried out while distilling EpCH out of the reaction system. This EpCH includes EpCH remaining in the crude GMA that could not be recovered from the mother liquor in addition to EpCH produced by the reaction. The reason why reactive distillation is carried out while distilling off EpCH is that the intended reaction (see Formula 1) is an equilibrium reaction, and thus the positive reaction is advantageously advanced.

本発明で該反応蒸留に使用する反応器は分縮器及び全縮器を備えていなければならないが、反応釜そのものの形状は特に限定されない。例えば、攪拌機を備えたジャケット加熱式反応器や外部熱交換器を有する反応器などが例示される。また、合成釜を兼ねていても良いし、該反応蒸留の前工程でEpCHを回分式蒸留で回収する際の蒸留釜や、該反応蒸留の後工程でGMAを回分式蒸留で回収する際の蒸留釜を兼ねていても良い。もちろん、該反応蒸留専用の反応釜であっても良い。分縮器及び全縮器の型式や形状についても特に限定はされず、多管円筒式、二重管式、渦巻式、プレート式、空冷式などの一般に使用されている熱交換器が使用される。ただ、後述するように、本発明では分縮器出口ガス温度を制御するため、分縮器には多管円筒式等の温度を制御しやすい熱交換器を使用する必要がある。   The reactor used for the reactive distillation in the present invention must be equipped with a partial condenser and a total condenser, but the shape of the reaction kettle itself is not particularly limited. For example, a jacket heating reactor equipped with a stirrer, a reactor having an external heat exchanger, and the like are exemplified. Further, it may also serve as a synthesis kettle, a distillation kettle when EpCH is recovered by batch distillation in the previous step of the reactive distillation, or a GMA is recovered by batch distillation in the subsequent step of the reactive distillation. It may also serve as a distillation kettle. Of course, a reaction kettle dedicated to the reactive distillation may be used. There is no particular limitation on the type and shape of the partial and full pressure reducers, and commonly used heat exchangers such as a multi-tube cylindrical type, a double-pipe type, a spiral type, a plate type, and an air-cooled type are used. The However, as will be described later, in the present invention, in order to control the temperature at the outlet of the condenser, it is necessary to use a heat exchanger such as a multi-tube cylindrical type that can easily control the temperature.

反応蒸留条件については、反応温度が50〜150℃、好ましくは60〜120℃、より好ましくは70〜100℃となるように、反応釜内の圧力を設定する。釜液組成によって多少の増減はあるが、通常は0.3〜3kPa、好ましくは0.5〜2kPa、より好ましくは0.7〜1.5kPaである。圧力が低すぎると反応温度も低くなって反応が遅くなり、圧力が高すぎると反応温度が高くなって重合の危険が増す。処理時間は反応温度や第4級アンモニウム塩の添加量、粗GMAの組成などに左右されるが、通常0.5〜3時間、好ましくは0.8〜2時間、より好ましくは1〜1.5時間である。   About reaction distillation conditions, the pressure in a reaction kettle is set so that reaction temperature may be 50-150 degreeC, Preferably it is 60-120 degreeC, More preferably, it is 70-100 degreeC. Although there are some fluctuations depending on the composition of the pot liquid, it is usually 0.3 to 3 kPa, preferably 0.5 to 2 kPa, more preferably 0.7 to 1.5 kPa. If the pressure is too low, the reaction temperature will be low and the reaction will be slow. If the pressure is too high, the reaction temperature will be high and the risk of polymerization will increase. The treatment time depends on the reaction temperature, the amount of quaternary ammonium salt added, the composition of the crude GMA, etc., but is usually 0.5-3 hours, preferably 0.8-2 hours, more preferably 1-1. 5 hours.

該反応蒸留で発生した蒸気にはEpCHと共にGMAが含まれるため、これらを分縮器にて分離する必要がある。そのため、分縮器の出口ガス温度が該反応蒸留を行なう圧力におけるEpCHの沸点以上かつGMAの沸点未満になるよう調節しなければならない。その調節方法としては特に限定されないが、例えば分縮器にシェルアンドチューブ型熱交換器を使用する場合、シェル側に水や温水、減圧スチーム等の冷媒を流し、熱交換器出口ガス温度を測定することでその冷媒の温度および/または量を制御すれば良い。このように分縮器出口ガス温度を調節した場合、分縮器にて凝縮された液(以下、分縮液と記す)の主成分はGMAであり、ほとんどEpCHを含まないため反応器へリサイクルする。一方、分縮器で凝縮されなかったガスには多量のEpCHが含まれるため全縮器で凝縮した後(以下、全縮液と記す)、系外へ排出する。系外に排出した全縮液は廃棄しても構わないが、合成原料であるEpCHを含むため、合成工程や蒸留工程にリサイクルすることにより、合成原料として使用する、またはEpCHとして蒸留回収する方が経済的にも環境負荷低減の観点からも好ましい。   Since the vapor generated by the reactive distillation contains GMA together with EpCH, it is necessary to separate them with a partial condenser. Therefore, the outlet gas temperature of the partial condenser must be adjusted to be not less than the boiling point of EpCH and less than the boiling point of GMA at the pressure at which the reactive distillation is performed. The adjustment method is not particularly limited. For example, when a shell-and-tube heat exchanger is used for the condenser, water, hot water, reduced pressure steam, or other refrigerant is flowed to the shell side, and the heat exchanger outlet gas temperature is measured. Thus, the temperature and / or amount of the refrigerant may be controlled. In this way, when the temperature at the outlet of the condenser is adjusted, the main component of the liquid condensed in the partial condenser (hereinafter referred to as the fractionated liquid) is GMA, and since it hardly contains EpCH, it is recycled to the reactor. To do. On the other hand, since the gas that has not been condensed by the partial condenser contains a large amount of EpCH, it is condensed by the full condenser (hereinafter referred to as total condensed liquid) and then discharged out of the system. Although all the condensed liquid discharged out of the system may be discarded, it contains EpCH, which is a synthetic raw material, so it can be used as a synthetic raw material or recycled as EpCH by recycling it to the synthesis process or distillation process. However, it is preferable from the viewpoint of economical and environmental load reduction.

反応器から分縮器まで、また分縮器から全縮器までは充填材や棚段等を設置して精留効果を持たせても良いが、空塔でも良い。重合の危険が少ないのは空塔であり、また反応蒸留時の減圧度である0.3〜3kPaにおいてもEpCHとGMAの沸点差は大きく分離が容易なことからも空塔が好ましい。   From the reactor to the partial condenser, and from the partial condenser to the full condenser, fillers, shelves and the like may be installed to give a rectifying effect, but an empty tower may be used. It is the empty column that has little risk of polymerization, and the empty column is preferable because the boiling point difference between EpCH and GMA is large and separation is easy even at a reduced pressure of 0.3 to 3 kPa during reactive distillation.

粗GMA中の1,3−DCPが200ppm以下、好ましくは100ppm以下、より好ましくは50ppm以下に減少した後、第4級アンモニウム塩の不活性化剤としてアルキルベンゼンスルホン酸塩を添加する。反応蒸留後、該不活性化剤を添加しないままGMAを蒸留回収した場合、釜液中で第4級アンモニウム塩による好ましくない副反応が起こり、GMAが減少してGDMAやGTMA等が生成するからである。本発明で使用するアルキルベンゼンスルホン酸塩としては特に限定されないが、例えば、o−トルエンスルホン酸ナトリウム、p−トルエンスルホン酸ナトリウム、p−トルエンスルホン酸カリウムなどが例示される。アルキルベンゼンスルホン酸塩の添加量は第4級アンモニウム塩の1〜3当量、好ましくは1.1〜2当量、より好ましくは1.2〜1.5当量である。   After 1,3-DCP in the crude GMA is reduced to 200 ppm or less, preferably 100 ppm or less, more preferably 50 ppm or less, alkylbenzene sulfonate is added as a quaternary ammonium salt deactivator. When GMA is recovered by distillation without reactive deactivator after reactive distillation, an undesirable side reaction due to the quaternary ammonium salt occurs in the liquor, and GMA is reduced to produce GDMA, GTMA and the like. It is. The alkylbenzene sulfonate used in the present invention is not particularly limited, and examples thereof include sodium o-toluenesulfonate, sodium p-toluenesulfonate, and potassium p-toluenesulfonate. The addition amount of the alkylbenzene sulfonate is 1 to 3 equivalents, preferably 1.1 to 2 equivalents, more preferably 1.2 to 1.5 equivalents of the quaternary ammonium salt.

アルキルベンゼンスルホン酸塩による第4級アンモニウム塩の不活性化は非常に速やかに進行する。そのため、アルキルベンゼンスルホン酸塩添加後、釜液を攪拌しながら該反応蒸留終了時の温度にて5〜120分、好ましくは10〜60分、より好ましくは15〜30分保持すればよい。攪拌は攪拌機を用いても良いし、ポンプ等で釜液を循環させるだけでも良い。なお、一般に第4級アンモニウム塩はGMAにほとんど溶解せず、アルキルベンゼンスルホン酸塩を添加して不活性化してもやはりGMAにはほとんど溶解しない。   Inactivation of quaternary ammonium salts by alkylbenzene sulfonate proceeds very rapidly. Therefore, after addition of the alkyl benzene sulfonate, it may be held for 5 to 120 minutes, preferably 10 to 60 minutes, more preferably 15 to 30 minutes at the temperature at the end of the reactive distillation while stirring the kettle. For stirring, a stirrer may be used, or the pot liquid may be circulated with a pump or the like. In general, quaternary ammonium salts hardly dissolve in GMA, and even when alkylbenzenesulfonate is added to inactivate it, it hardly dissolves in GMA.

アルキルベンゼンスルホン酸塩で第4級アンモニウム塩を不活性化させた後、GMAを蒸留回収し製品とする。この蒸留方法については本発明では特に制限されないが、例えば、不活性化後そのままスラリーを含んだ釜液を回分式で蒸留する、あるいはろ過等の方法によりスラリーを分離後、精留塔で蒸留することが可能である。さらに前者の方法においては、該反応蒸留器にて蒸留することができ、分縮器出口ガス温度を反応蒸留時と同様、GMAの沸点未満となるように制御すれば、GMAは分縮液として得られる。   After inactivating the quaternary ammonium salt with an alkylbenzene sulfonate, GMA is recovered by distillation to obtain a product. The distillation method is not particularly limited in the present invention. For example, the pot solution containing the slurry is distilled as it is after the inactivation, or the slurry is separated by a method such as filtration and then distilled in a rectifying column. It is possible. In the former method, GMA can be distilled in the reactive distiller. If the gas temperature at the outlet of the partial condenser is controlled to be lower than the boiling point of GMA as in the case of reactive distillation, can get.

本発明の方法によって得られる精製GMAは耐候性塗料、粉体塗料、接着剤等の原料として有用である。   The purified GMA obtained by the method of the present invention is useful as a raw material for weather-resistant paints, powder paints, adhesives and the like.

以下、本発明を実施例および比較例に基づいて説明するが、本発明はこれらの例に限定されるものではない。すなわち、実施例にて説明したGMAの製造条件、製造方法は例示であり、本発明の範囲内において適宜変更することができるし、使用した各種の装置も例示であり、適宜変更することができる。なお、分析にはガスクロマトグラフ(GC−1700、水素炎イオン化検出器(FID)、島津製作所製)を使用した。EpCHおよび1,3−DCPの検出限界は10ppmであった。   Hereinafter, although the present invention is explained based on an example and a comparative example, the present invention is not limited to these examples. That is, the manufacturing conditions and manufacturing methods of GMA described in the examples are examples, and can be changed as appropriate within the scope of the present invention. Various devices used are also examples and can be changed as appropriate. . For the analysis, a gas chromatograph (GC-1700, flame ionization detector (FID), manufactured by Shimadzu Corporation) was used. The detection limit for EpCH and 1,3-DCP was 10 ppm.

参考例1(GMA合成液の調製)
攪拌機と油水分離用のデカンターを有する冷却器を備えたガラス製フラスコに、EpCH(純度>99.9%)1470g、炭酸ナトリウム116g、重合禁止剤2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)2gを入れ、30kPaに減圧してEpCHが沸騰する82℃まで昇温した。留出液をデカンターで水相とEpCH相に分離し、下層のEpCH相をフラスコに還流しながらMAA172gを約1時間かけて滴下した。滴下終了後さらに30分間還流を続けた後、常圧に戻しEpCHが沸騰する120℃まで昇温した。
次に触媒であるテトラメチルアンモニウムクロライド0.6gを添加し、1時間反応させた後、室温まで冷却し水480gを用いて塩化ナトリウムからなるスラリーを除去した。このようにして得られたGMA合成液量は1400gで、組成は表1に示した。
Reference Example 1 (Preparation of GMA synthesis solution)
In a glass flask equipped with a stirrer and a cooler having a decanter for oil-water separation, 1470 g of EpCH (purity> 99.9%), 116 g of sodium carbonate, polymerization inhibitor 2,2′-methylenebis (6-t-butyl- 4-methylphenol) 2 g was added, the pressure was reduced to 30 kPa, and the temperature was raised to 82 ° C. at which EpCH was boiled. The distillate was separated into an aqueous phase and an EpCH phase with a decanter, and 172 g of MAA was added dropwise over about 1 hour while refluxing the lower EpCH phase to the flask. After completion of the dropwise addition, the mixture was further refluxed for 30 minutes, then returned to normal pressure and heated to 120 ° C. at which EpCH was boiled.
Next, 0.6 g of tetramethylammonium chloride as a catalyst was added and reacted for 1 hour, and then cooled to room temperature, and a slurry of sodium chloride was removed using 480 g of water. The amount of the GMA synthesis solution thus obtained was 1400 g, and the composition was shown in Table 1.

参考例2(EpCHの回収)
ガラス製単蒸留塔(内径20mm)を備えたガラス製フラスコに参考例1で得られたGMA合成液1400gとフェノチアジン1.4gを仕込み、加熱しながら徐々に減圧してEpCHを回収した。EpCH回収終了時の釜液量180g、釜圧力は1.5kPa、釜液温度は83℃、組成は表1に示した。なお、EpCH回収終了時の釜液を粗GMAとした。
Reference Example 2 (EpCH recovery)
1400 g of the GMA synthesis solution obtained in Reference Example 1 and 1.4 g of phenothiazine were charged in a glass flask equipped with a glass single distillation column (inner diameter 20 mm), and EpCH was recovered by gradually reducing the pressure while heating. At the end of EpCH recovery, the amount of the pot liquid was 180 g, the pot pressure was 1.5 kPa, the pot liquid temperature was 83 ° C., and the composition was shown in Table 1. The kettle liquid at the end of EpCH recovery was crude GMA.

実施例1
ジャケット付き分縮器および全縮器を備えたガラス製フラスコに参考例2で得られた粗GMA180g及びテトラメチルアンモニウムクロライド0.2gを仕込み、1.5kPaで1時間反応蒸留を行なった。フラスコと分縮器、および分縮器と全縮器の間はガラス製単管(内径20mm)とし、分縮器のジャケットには68℃の温水を、全縮器のジャケットには−10℃のブラインを流した。分縮液は全て釜にリサイクルし、全縮液はナスフラスコに受けて釜に戻らないようにした。反応蒸留終了後の釜液温度は85℃、釜液組成を表1に示した。なお、分縮器出口ガス温度は61〜64℃、全縮液量は15gであった。
反応蒸留終了後、p−トルエンスルホン酸ナトリウム0.4gを添加し、分縮器、全縮器、減圧度は反応蒸留と同条件のまま、製品を分縮液として回収した結果、全縮液1g、分縮液120g、釜残45gを得た。製品回収終了時の釜温度は94℃であった。分縮液および釜残の組成を表1に示した。製品中に1,3−DCPは検出されなかった。製品回収前後のGMA収支は99.5%以上であった。
Example 1
180 g of the crude GMA obtained in Reference Example 2 and 0.2 g of tetramethylammonium chloride were charged into a glass flask equipped with a jacketed condenser and a full condenser, and subjected to reactive distillation at 1.5 kPa for 1 hour. A single glass tube (inner diameter 20 mm) is used between the flask and the partial condenser, and between the partial condenser and the full condenser. Hot water of 68 ° C. is used for the jacket of the partial condenser, and −10 ° C. is used for the jacket of the full condenser. Of brine. All the condensed liquid was recycled to the kettle, and all the condensed liquid was received in the eggplant flask so as not to return to the kettle. The kettle liquid temperature after the reaction distillation was 85 ° C., and the kettle liquid composition was shown in Table 1. The gas outlet gas temperature was 61 to 64 ° C., and the total amount of the condensed liquid was 15 g.
After the reaction distillation was completed, 0.4 g of sodium p-toluenesulfonate was added, and as a result of collecting the product as a condensed solution while maintaining the same conditions as in the reactive distillation, the partial condenser, the total condenser, and the degree of vacuum were reduced. 1 g, 120 g of a condensed solution, and 45 g of the residue were obtained. The pot temperature at the end of product recovery was 94 ° C. The composition of the fractionated solution and the residue in the kettle is shown in Table 1. 1,3-DCP was not detected in the product. The GMA balance before and after product recovery was over 99.5%.

実施例2
p−トルエンスルホン酸ナトリウムを添加しなかった以外は、実施例1と同様に反応蒸留および製品回収を行なった結果、反応蒸留時の全縮液15g、製品回収時の全縮液1g、分縮液120g、釜残45gを得た。組成を表1に示した。製品中に1,3−DCPは検出されなかった。製品回収前後のGMA収支は97%であった。
Example 2
Except for not adding sodium p-toluenesulfonate, reactive distillation and product recovery were performed in the same manner as in Example 1. As a result, 15 g of total condensed solution during reactive distillation, 1 g of total condensed solution during product recovery, partial condensation 120 g of liquid and 45 g of residue were obtained. The composition is shown in Table 1. 1,3-DCP was not detected in the product. The GMA balance before and after product recovery was 97%.

比較例1
ジャケット付き全縮器のみを備えたガラス製フラスコに参考例2で得られた粗GMA180gおよびテトラメチルアンモニウムクロライド0.2gを仕込み、1.5kPaで1時間反応蒸留を行なった。フラスコと全縮器の間はガラス製単管(内径20mm)とし、全縮器のジャケットには−10℃のブラインを流した。全縮液は全て釜にリサイクルした。加熱処理終了後の釜液温度は85℃、釜液組成を表1に示した。実施例と比較して反応が遅く、反応蒸留後も1,3−DCPは釜液中に0.05%残存していた。
反応蒸留終了後、フラスコと全縮器の間にジャケット付き分縮器を設置し、p−トルエンスルホン酸ナトリウム0.4gを添加して実施例1と同条件で製品を回収した結果、全縮液15g、分縮液120g、釜残45gを得た。分縮液及び釜残の組成を表1に示した。反応蒸留による1,3−DCPの低減が不十分であったため、製品中にも1,3−DCPが0.05%混入していた。製品回収前後のGMA収支は99.5%以上であった。
Comparative Example 1
180 g of crude GMA obtained in Reference Example 2 and 0.2 g of tetramethylammonium chloride were charged into a glass flask equipped with only a jacketed full condenser, and reactive distillation was performed at 1.5 kPa for 1 hour. A single glass tube (inner diameter: 20 mm) was used between the flask and the entire condenser, and -10 ° C brine was allowed to flow through the jacket of the entire condenser. All the condensed liquid was recycled to the kettle. The temperature of the pot liquid after the heat treatment was 85 ° C., and the pot liquid composition was shown in Table 1. The reaction was slower than in the Examples, and 0.05% of 1,3-DCP remained in the kettle after the reactive distillation.
After the reaction distillation, a jacketed condenser was installed between the flask and the total condenser, and 0.4 g of sodium p-toluenesulfonate was added and the product was recovered under the same conditions as in Example 1. 15 g of a liquid, 120 g of a condensed liquid, and 45 g of the residue were obtained. The composition of the fractionated solution and the residue in the kettle is shown in Table 1. Since the reduction of 1,3-DCP by reactive distillation was insufficient, 0.05% of 1,3-DCP was also mixed in the product. The GMA balance before and after product recovery was over 99.5%.

比較例2
テトラメチルアンモニウムクロライドおよびp−トルエンスルホン酸ナトリウムを添加しなかった以外は、実施例1と同様に蒸留および製品回収を行なった結果、蒸留時の全縮液15g、製品回収時の全縮液1g、分縮液120g、釜残45gを得た。組成を表1に示した。触媒のテトラメチルアンモニウムクロライドを添加しなかったため、1,3−DCPはほとんど低減されず、製品中に1,3−DCPが0.5%混入していた。製品回収前後のGMA収支は99.5%以上であった。
Comparative Example 2
Except that tetramethylammonium chloride and sodium p-toluenesulfonate were not added, distillation and product recovery were carried out in the same manner as in Example 1. As a result, 15 g of the total condensed solution during distillation and 1 g of the total condensed solution during product recovery were obtained. , 120 g of the condensed solution and 45 g of the residue were obtained. The composition is shown in Table 1. Since the catalyst tetramethylammonium chloride was not added, 1,3-DCP was hardly reduced, and 0.5% of 1,3-DCP was mixed in the product. The GMA balance before and after product recovery was over 99.5%.

Figure 0004666139
ndは検出限界以下
Figure 0004666139
nd is below detection limit

Claims (3)

エピクロロヒドリンとメタクリル酸を原料として得られるメタクリル酸グリシジルの精製方法であって、不純物として1,3−ジクロロ−2−プロパノールを含む粗メタクリル酸グリシジルを、分縮器および全縮器を備えた反応器にて第4 級アンモニウム塩の存在下、減圧下において反応蒸留を行ないながら、該反応蒸留で発生するエピクロロヒドリンとメタクリル酸グリシジルを分縮器にて分離するにあたり、分縮器の出口ガス温度が該減圧におけるエピクロロヒドリンの沸点以上かつメタクリル酸グリシジルの沸点未満に調整され分縮器に凝縮したメタクリル酸グリシジルを主成分とする液を反応器にリサイクルし、分縮器で凝縮されなかったエピクロロヒドリンを含むガスを全縮器凝縮し系外に排出することにより該不純物を低減したのち、蒸留によりメタクリル酸グリシジルを回収することを特徴とする粗メタクリル酸グリシジルの精製方法。 A method for purifying glycidyl methacrylate obtained from epichlorohydrin and methacrylic acid as raw materials, comprising crude glycidyl methacrylate containing 1,3-dichloro-2-propanol as an impurity, equipped with a partial condenser and a full condenser In separating the epichlorohydrin and glycidyl methacrylate generated by the reactive distillation in the presence of a quaternary ammonium salt in a reactor under reduced pressure, is adjusted to less than the outlet gas temperature of epichlorohydrin above the boiling point and glycidyl methacrylate in the vacuum boiling, the liquid mainly composed of glycidyl methacrylate condensed in the partial condenser is recycled to the reactor, partial condensation low the impurity by discharging a gas containing epichlorohydrin which has not been condensed out of the system condense Zenchijimiki in vessel A method for purifying crude glycidyl methacrylate, comprising reducing glycidyl methacrylate by distillation after reduction. 前記反応蒸留を行なった後、さらにアルキルベンゼンスルホン酸塩を添加する請求項1記載の粗メタクリル酸グリシジルの精製方法。   The method for purifying crude glycidyl methacrylate according to claim 1, further comprising adding an alkylbenzene sulfonate after the reactive distillation. アルキルベンゼンスルホン酸塩が、p−トルエンスルホン酸ナトリウムである請求項2記載の粗メタクリル酸グリシジルの精製方法。   The method for purifying crude glycidyl methacrylate according to claim 2, wherein the alkylbenzene sulfonate is sodium p-toluenesulfonate.
JP2005005155A 2005-01-12 2005-01-12 Purification method of glycidyl methacrylate Active JP4666139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005005155A JP4666139B2 (en) 2005-01-12 2005-01-12 Purification method of glycidyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005005155A JP4666139B2 (en) 2005-01-12 2005-01-12 Purification method of glycidyl methacrylate

Publications (2)

Publication Number Publication Date
JP2006193449A JP2006193449A (en) 2006-07-27
JP4666139B2 true JP4666139B2 (en) 2011-04-06

Family

ID=36799802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005005155A Active JP4666139B2 (en) 2005-01-12 2005-01-12 Purification method of glycidyl methacrylate

Country Status (1)

Country Link
JP (1) JP4666139B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632152A (en) * 2016-09-30 2017-05-10 中昊(大连)化工研究设计院有限公司 Method for inhibiting impurities in process of preparing glycidyl methacrylate
JPWO2022158463A1 (en) * 2021-01-20 2022-07-28

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309854A (en) * 1994-05-20 1995-11-28 Mitsubishi Gas Chem Co Inc Method for purifying glycidyl acrylate or glycidyl methacrylate
JPH08239372A (en) * 1995-03-03 1996-09-17 Mitsubishi Gas Chem Co Inc Production of glycidyl methacrylate or glycidyl acrylate
JPH09249657A (en) * 1996-03-13 1997-09-22 Nof Corp Purification of glycidyl (meth)acrilate
JP2000212177A (en) * 1999-01-20 2000-08-02 Mitsubishi Gas Chem Co Inc Purification of glycidyl (meth)acrylate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309854A (en) * 1994-05-20 1995-11-28 Mitsubishi Gas Chem Co Inc Method for purifying glycidyl acrylate or glycidyl methacrylate
JPH08239372A (en) * 1995-03-03 1996-09-17 Mitsubishi Gas Chem Co Inc Production of glycidyl methacrylate or glycidyl acrylate
JPH09249657A (en) * 1996-03-13 1997-09-22 Nof Corp Purification of glycidyl (meth)acrilate
JP2000212177A (en) * 1999-01-20 2000-08-02 Mitsubishi Gas Chem Co Inc Purification of glycidyl (meth)acrylate

Also Published As

Publication number Publication date
JP2006193449A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
KR100800210B1 (en) Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel
KR101009858B1 (en) Process for producing an organic compound
ZA200604071B (en) Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel
JP5668319B2 (en) Method for producing 2,2-bis (4-hydroxyphenyl) hexafluoropropane
US9963436B2 (en) Process for the manufacture of epoxy-monomers and epoxides
TWI362377B (en) Acetic anhydride and acetate ester co-production
JP4666139B2 (en) Purification method of glycidyl methacrylate
US5380884A (en) Method for producing glycidyl methacrylate
JP4662026B2 (en) Method for producing glycidyl methacrylate
JPS6212211B2 (en)
JP3775438B2 (en) Method for producing glycidyl methacrylate or glycidyl acrylate
JP2000212177A (en) Purification of glycidyl (meth)acrylate
JP6546609B2 (en) Process for producing (S) -2-acetyloxypropionic acid and derivatives thereof
JP4247582B2 (en) Purification method and production method of glycidyl (meth) acrylate
JP2009137882A (en) Method for producing glycidyl (meth)acrylate
JP4656294B2 (en) Method for producing glycidyl methacrylate
WO2022158462A1 (en) Glycidyl (meth)acrylate composition
JP2006104096A (en) Purification method of ethylene carbonate
JP6890604B2 (en) Method for producing lactonitrile-containing liquid and lactonitrile-containing liquid
WO2022158463A1 (en) Glycidyl (meth)acrylate composition
JP5249287B2 (en) Production method of (meth) acrylic acid ester
JPH09323964A (en) Production of n-(1-alkoxyethyl)carboxylic acid amide
WO2017090948A1 (en) Method for preparing (meth)acrylic acid
US20160130242A1 (en) Process and apparatus for producing divinylarene dioxide
JPWO2016047277A1 (en) Method for producing 3-chloro-2-hydroxypropyl (meth) acrylate and glycidyl (meth) acrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4666139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3