JP4665779B2 - Fence vibration sensor device - Google Patents

Fence vibration sensor device

Info

Publication number
JP4665779B2
JP4665779B2 JP2006019466A JP2006019466A JP4665779B2 JP 4665779 B2 JP4665779 B2 JP 4665779B2 JP 2006019466 A JP2006019466 A JP 2006019466A JP 2006019466 A JP2006019466 A JP 2006019466A JP 4665779 B2 JP4665779 B2 JP 4665779B2
Authority
JP
Japan
Prior art keywords
interference intensity
intensity signal
distance
fence
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006019466A
Other languages
Japanese (ja)
Other versions
JP2007198973A (en
Inventor
史尚 福江
雅吾 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006019466A priority Critical patent/JP4665779B2/en
Publication of JP2007198973A publication Critical patent/JP2007198973A/en
Application granted granted Critical
Publication of JP4665779B2 publication Critical patent/JP4665779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、光ファイバリング干渉型振動センサを用いたフェンス振動センサ装置に関するものである。   The present invention relates to a fence vibration sensor device using an optical fiber ring interference type vibration sensor.

広大な警戒対象域を囲むように設置されるフェンスに取り付け、不法侵入を検知するセンサとしては、光ファイバリング干渉型のセンサが従来提供されている(例えば特許文献1)。   An optical fiber ring interference type sensor has been conventionally provided as a sensor for detecting illegal intrusion by attaching to a fence installed so as to surround a vast area to be warned (for example, Patent Document 1).

この特許文献1に開示されているセンサ構成は、一つの光ファイバループを異なる波長の光を用いる光ファイバリング干渉型のセンサで共用し、同時に二つの干渉光強度を観測することで加振位置や光路長変動量を算出するものである。   The sensor configuration disclosed in Patent Document 1 uses a single optical fiber loop shared by optical fiber ring interference type sensors that use light of different wavelengths, and simultaneously observes the intensity of two interfering light beams to obtain an excitation position. And the optical path length variation amount is calculated.

このような光ファイバリング干渉型のセンサのループ状の光路を、例えば広大な警戒域を囲むように配設されたフェンスに取り付け、フェンスの振動から不法侵入を検出するフェンス振動センサ装置を構成する場合、侵入位置を特定できるため、不法侵入者を速やかに補足することが可能となるという利点がある。
特開2002−365058公報(段落0027〜0032)
A loop-shaped optical path of such an optical fiber ring interference type sensor is attached to, for example, a fence arranged so as to surround a vast warning area, and a fence vibration sensor device that detects illegal intrusion from the vibration of the fence is configured. In this case, since an intrusion position can be specified, there is an advantage that an illegal intruder can be quickly captured.
JP 2002-365058 A (paragraphs 0027 to 0032)

上述のように特許文献1に開示されている光ファイバリング干渉型のセンサをフェンス振動センサ装置に用いれば、侵入位置を特定できる利点があるものの、次のような未解決の課題もある。つまり雨や、風などによってフェンスが振動した場合、その振動位置を侵入位置として誤って検出する恐れがあった。そのため感度を低めて誤検出を少なくしようとすると、実際の不法侵入を見逃して失報につながるという課題があった。   As described above, if the optical fiber ring interference type sensor disclosed in Patent Document 1 is used for the fence vibration sensor device, there is an advantage that the intrusion position can be specified, but there are also the following unsolved problems. That is, when the fence vibrates due to rain, wind, or the like, the vibration position may be erroneously detected as the entry position. Therefore, when trying to reduce the sensitivity by reducing the sensitivity, there is a problem that the actual illegal intrusion is overlooked and leads to a false alarm.

また張り巡らしたフェンスの一部に門(ゲート)がある場合、この門の位置では、光ファイバを地中に埋設することで対処するようになっているが、埋設位置の上を車が通過したときに生じる振動を検出する場合もあった。このような振動を検出しないように門の位置の両側において夫々別個のフェンス振動センサ装置を設置するなどの対策を施すことも可能であるが、設置コストが高くなってしまうという新たな課題が生じる。   In addition, when there is a gate (gate) in a part of the stretched fence, it is designed to embed the optical fiber in the ground at this gate position, but the car passes over the buried position. In some cases, vibrations that occur when this occurs are detected. Although it is possible to take measures such as installing separate fence vibration sensor devices on both sides of the gate position so as not to detect such vibrations, there is a new problem that the installation cost becomes high .

本発明は、上述の課題に鑑みて為されたもので、その目的とするところは、誤報を低減して、高い信頼性が得られるフェンス振動センサ装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a fence vibration sensor device that can reduce false alarms and obtain high reliability.

上述の目的を達成するために、請求項1の発明では、警戒域を囲むように設けられるフェンスの周方向に沿うように該フェンスに取り付けてループ状の光路を形成する光ファイバと、この光ファイバの適所から伝搬方向が異なるように光信号を前記光路内に入射させる光源部と、前記光路内を異なる方向で伝搬し前記適所で出射する前記光信号の合波により得られる干渉光を受光して干渉強度を示す干渉強度信号を出力する受光部と、受光部から出力される前記干渉強度信号に基づいて加振点から受光点までの距離を求める距離算出手段と、前記干渉強度信号のレベル変化をモニタしながら前記干渉強度信号のレベルが所定の閾値を越え且つ所定の条件が成立したときに、前記距離算出手段が求めた距離を加振点から受光点までの距離として確定して確定結果を出力する判定手段とを備え、前記条件は、前記閾値を前記干渉強度信号のレベルが連続して越えている時間又は前記閾値を前記干渉強度信号のピークレベルが一定時間内に越える回数であり、前記フェンスを周方向に複数の警戒区画に分割して夫々の警戒区画毎に、前記判定手段で用いる前記閾値や前記条件からなる感度を設定することを特徴とする。 In order to achieve the above object, in the invention of claim 1, an optical fiber which is attached to the fence so as to follow the circumferential direction of the fence provided so as to surround the warning area and forms a loop-shaped optical path, and this light A light source unit that makes an optical signal enter the optical path so that the propagation direction is different from an appropriate position of the fiber, and interference light obtained by combining the optical signals that propagate in the optical path in different directions and are emitted at the appropriate position are received. A light receiving unit that outputs an interference intensity signal indicating the interference intensity, a distance calculating unit that obtains a distance from the excitation point to the light receiving point based on the interference intensity signal output from the light receiving unit, and When the level of the interference intensity signal exceeds a predetermined threshold and a predetermined condition is satisfied while monitoring the level change, the distance obtained by the distance calculating means is the distance from the excitation point to the light receiving point. And a judging means for outputting a constant to determine a result, the condition, the peak level of the threshold value the interference intensity time signal level exceeds sequentially or the threshold the interference intensity signal is within a predetermined time And the fence is divided into a plurality of warning zones in the circumferential direction, and the threshold value and the sensitivity used by the determination means are set for each of the warning zones .

請求項1の発明によれば、侵入行為によってフェンスに加えられる振動を、一過性の振動と区別して、侵入行為による加振点の距離を正確に測定することができ、そのため広大な警戒域を囲む長距離のフェンスを一つの警報システムで監視するような場合にあっても侵入行為があった場所を高精度に把握することが可能となり、その結果高い信頼性が得られ、しかも光ファイバをフェンスに沿って取り付けるだけで、長距離の監視が可能となるため、当該フェンス振動センサ装置を用いる警報システムの設置コストを低減することもできる。また、距離確定の閾値や条件をフェンスの設置場所等の状態に対応して設定することができ、信頼性の向上が図れる。さらに、環境条件が異なるフェンスの部位毎に感度を設定することができるとともに、侵入不可の部位を検知対象から除去することもでき、そのため誤報要因の低減が図れて信頼性を向上させることができ、その上単発的な振動が発生しても、警戒区画毎での発生の場合には警戒区画毎の判断となるため、誤報の発生を低減することができる。 According to the invention of claim 1, the vibration applied to the fence by the intrusion act can be distinguished from the transient vibration, and the distance of the excitation point by the intrusion act can be accurately measured. Even when a long-distance fence that surrounds is monitored with a single alarm system, it is possible to accurately grasp the location where the intrusion occurred, and as a result, high reliability can be obtained, and optical fiber is used. Since it is possible to monitor over a long distance simply by attaching to the fence along the fence, it is possible to reduce the installation cost of the alarm system using the fence vibration sensor device. Further, the threshold value and conditions for determining the distance can be set in accordance with the state of the fence installation location and the like, and the reliability can be improved. In addition, the sensitivity can be set for each part of the fence with different environmental conditions, and the part that cannot be infiltrated can be removed from the detection target, thus reducing the cause of false alarms and improving the reliability. In addition, even if a single vibration occurs, the occurrence of false alarms can be reduced because the determination is made for each warning zone in the case of occurrence for each warning zone.

請求項2の発明では、警戒域を囲むように設けられるフェンスの周方向に沿うように該フェンスに取り付けてループ状の光路を形成する光ファイバと、この光ファイバの適所から伝搬方向が異なるように光信号を前記光路内に入射させる光源部と、前記光路内を異なる方向で伝搬し前記適所で出射する前記光信号の合波により得られる干渉光を受光して干渉強度を示す干渉強度信号を出力する受光部と、受光部から出力される前記干渉強度信号に基づいて加振点から受光点までの距離を求める距離算出手段と、前記干渉強度信号のレベル変化をモニタしながら前記干渉強度信号のレベルが所定の閾値を越え且つ所定の条件が成立したときに、前記距離算出手段が求めた距離を加振点から受光点までの距離として確定して確定結果を出力する判定手段とを備え、前記条件は、前記閾値を前記干渉強度信号のレベルが連続して越えている時間又は前記閾値を前記干渉強度信号のピークレベルが一定時間内に越える回数であり、前記判定手段は、モニタする干渉強度信号のピークレベルが前記閾値より低いレベルで一定時間内に所定回数検出されたときに前記閾値を一定レベル高くすることを特徴とする。 In the invention of claim 2, an optical fiber attached to the fence to form a loop-like optical path along the circumferential direction of the fence provided so as to surround the warning area, and the propagation direction from the appropriate position of the optical fiber are different. A light source unit that causes an optical signal to enter the optical path, and an interference intensity signal that indicates interference intensity by receiving interference light obtained by combining the optical signals that propagate in the optical path in different directions and exit at the appropriate position , A distance calculating means for obtaining a distance from the excitation point to the light receiving point based on the interference intensity signal output from the light receiving unit, and the interference intensity while monitoring the level change of the interference intensity signal When the signal level exceeds a predetermined threshold value and a predetermined condition is satisfied, the distance obtained by the distance calculation means is determined as the distance from the excitation point to the light receiving point, and a determination result is output. And means, said condition Ri number der the time or the threshold the threshold level of the interference intensity signal exceeds continuously the peak level of the interference intensity signal exceeds within a predetermined time, the determination The means is characterized in that when the peak level of the interference intensity signal to be monitored is detected a predetermined number of times within a predetermined time at a level lower than the threshold, the threshold is increased by a predetermined level .

請求項2の発明によれば、侵入行為によってフェンスに加えられる振動を、一過性の振動と区別して、侵入行為による加振点の距離を正確に測定することができ、そのため広大な警戒域を囲む長距離のフェンスを一つの警報システムで監視するような場合にあっても侵入行為があった場所を高精度に把握することが可能となり、その結果高い信頼性が得られ、しかも光ファイバをフェンスに沿って取り付けるだけで、長距離の監視が可能となるため、当該フェンス振動センサ装置を用いる警報システムの設置コストを低減することもできる。また、距離確定の閾値や条件をフェンスの設置場所等の状態に対応して設定することができ、信頼性の向上が図れる。さらに、風等継続的にフェンスに振動を与える事象に対して誤報発生の要因とならないようにすることができ、信頼性の更なる向上が図れる。 According to the invention of claim 2, the vibration applied to the fence due to the intrusion act can be distinguished from the transient vibration, and the distance of the excitation point due to the intrusion act can be accurately measured. Even when a long-distance fence that surrounds is monitored with a single alarm system, it is possible to accurately grasp the location where the intrusion occurred, and as a result, high reliability can be obtained, and optical fiber is used. Since it is possible to monitor over a long distance simply by attaching to the fence along the fence, it is possible to reduce the installation cost of the alarm system using the fence vibration sensor device. Further, the threshold value and conditions for determining the distance can be set in accordance with the state of the fence installation location and the like, and the reliability can be improved. Furthermore, it is possible to prevent the occurrence of false alarms for events such as wind that continuously vibrate the fence, thereby further improving reliability.

請求項3の発明では、請求項1又は2の発明において、前記判定手段は、前記干渉強度信号のレベルの経時的な変化波形に基づいて前記フェンスで生じる振動事象を判断する機能を備えるとともに、予め想定される前記振動事象毎に前記閾値を設定し、判断された振動事象に対応している前記閾値と前記干渉強度信号のレベルとの比較を行うことを特徴とする。   In the invention of claim 3, in the invention of claim 1 or 2, the determination means has a function of determining a vibration event occurring in the fence based on a temporal change waveform of the level of the interference intensity signal, The threshold value is set for each vibration event assumed in advance, and the threshold value corresponding to the determined vibration event is compared with the level of the interference intensity signal.

請求項3の発明によれば、フェンスに振動を生じさせる様々な事象に対応した閾値を設定することで、異なる振動事象に対する距離確定に高い信頼性を持たせることはできる。   According to the invention of claim 3, by setting thresholds corresponding to various events that cause the fence to vibrate, it is possible to give high reliability to the distance determination for different vibration events.

請求項の発明では、請求項1乃至の何れかの発明において、前記判定手段は、前記干渉強度信号のレベルの経時的な変化波形と、前記干渉強度信号に基づいて前記距離算出手段が求める距離値の経時的な変化波形と、前記干渉強度信号のレベルと前記閾値との比較及び前記条件で確定する距離のデータとから加振点が1箇所か2箇所かを判断し、2箇所の場合に警報判断結果を出力する機能を備えていることを特徴とする。 According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the determination means includes the distance calculation means based on a temporal change waveform of the level of the interference intensity signal and the interference intensity signal. It is determined whether there are one or two excitation points from the waveform of the change in the distance value over time, the level of the interference intensity signal and the threshold value, and the distance data determined by the conditions. In this case, it has a function of outputting an alarm judgment result.

請求項の発明によれば、2箇所で同時にフェンスに振動が発生して加振点の距離確定が行えないような場合にあっても、警報発報を行うことができ、そのため警報システムの信頼性を高めることができる。 According to the invention of claim 4 , even when the fence is vibrated simultaneously at two locations and the distance of the excitation point cannot be determined, the alarm can be issued. Reliability can be increased.

本発明は、侵入行為によってフェンスに加えられる振動を、一過性の振動と区別して、侵入行為による加振点の距離を正確に測定することができ、そのため広大な警戒域を囲む長距離のフェンスを一つの警報システムで監視するような場合にあっても侵入行為があった場所を高精度に把握することが可能となり、警報システムの信頼性を高めることができ、しかも光ファイバをフェンスに沿って取り付けるだけで、長距離の監視が可能となるため、使用する警報システムの設置コストを低減することもできるという効果がある。   The present invention distinguishes the vibration applied to the fence due to the intrusion action from the transient vibration, and can accurately measure the distance of the excitation point due to the intrusion action. Even when the fence is monitored by a single alarm system, it is possible to accurately determine the location where the intrusion occurred, and the reliability of the alarm system can be improved. It is possible to reduce the installation cost of the alarm system to be used because it is possible to monitor over a long distance simply by mounting along the side.

(実施形態1)
図1は、本実施形態のフェンス振動センサ装置を用いた警報システムの概略構成を示しており、フェンス振動センサ装置(I)は、上述の特許文献1に開示されている光ファイバリング干渉型のセンサ部(II)を振動位置検知のための基本構成として用いるとともに、この基本構成に侵入行為によってフェンス2に加えられる振動を、一過性の振動と区別して、侵入行為による加振点の距離を正確に測定するための判定器(判定手段)を備えた点に特徴がある。
(Embodiment 1)
FIG. 1 shows a schematic configuration of an alarm system using the fence vibration sensor device of the present embodiment. The fence vibration sensor device (I) is an optical fiber ring interference type disclosed in Patent Document 1 described above. The sensor unit (II) is used as a basic configuration for detecting the vibration position, and the vibration applied to the fence 2 by the intrusion act in this basic configuration is distinguished from the transient vibration, and the distance of the excitation point by the intrusion act It is characterized in that it includes a determiner (determination means) for accurately measuring.

そして警報システムとしてはフェンス振動センサ装置(I)と、フェンス振動センサ装置(I)の判定器4で確定した距離データに基づいて加振点までの距離を表示するとともに警報を発する警報・表示器5とで構成される。   As an alarm system, the fence vibration sensor device (I) and an alarm / display device that displays the distance to the excitation point based on the distance data determined by the determination device 4 of the fence vibration sensor device (I) and issues an alarm. And 5.

基本構成の光ファイバリング干渉型のセンサ部(II)は、図1に示すように警戒域Xを囲繞するように配設されたフェンス1の周方向に沿って配設されるループ状光路と、距離算出器3とで構成される。 Optical fiber ring interferometer type sensor unit of the basic structure (II), the loop shape is disposed along the circumferential direction of the fence 1 is disposed Minor X to enclose Nyo be so that as shown in FIG. 1 It comprises an optical path and a distance calculator 3.

ループ状光路は、フェンス1に取り付けられ夫々の両端を近接配置した2本の検出用の光ファイバ2a、2bと、両光ファイバ2a、2bの適所たる各端部に夫々の入出力側ポートを接続した四つの波長分割分岐用カプラ(以下WDM<Wavelength Division Multiplexing>カプラという)101〜104と、光ファイバ2a,2bの一端側に接続しているWDMカプラ101、102の分岐用ポートの一方同士を接続する光ファイバ2cと、光ファイバ2a,2bの他端側のWDMカプラ103、104の分岐用ポートの一方同士を夫々接続する光ファイバ2c2とで構成され、各波長分岐用カプラ101〜104の分岐用ポートの他方を距離算出器3内の対応する光分岐結合部71,72(図2参照)に光ファイバ2d1〜2d4を夫々介して接続している。 The loop-shaped optical path includes two optical fibers 2a and 2b for detection, which are attached to the fence 1 and arranged close to each other at both ends, and respective input / output ports at appropriate ends of both optical fibers 2a and 2b. Four wavelength division branching couplers (hereinafter referred to as WDM <Wavelength Division Multiplexing> couplers) 101 to 104 and one of branching ports of the WDM couplers 101 and 102 connected to one end side of the optical fibers 2a and 2b. connecting the optical fiber 2c 1, optical fibers 2a, is composed of one each other branch port at the other end of the WDM coupler 103 and 104 2b in the optical fiber 2c2 to each connection, couplers 101 to for each wavelength branch The other of the 104 branching ports is connected to the corresponding optical branching couplers 71 and 72 (see FIG. 2) in the distance calculator 3 via optical fibers 2d1 to 2d4, respectively. It is.

距離算出器3は、光分岐結合器71に対応して、レーザダイオードからなる光源部61とフォトダイオードからなる受光部81と光源部61を駆動して波長λの光を発光させる駆動部301とを備え、また光分岐結合器72に対応してレーザダイオードからなる光源部62とフォトダイオードからなる受光部82と光源部62を駆動して波長λ2の光を発光させる駆動部302とを備え、光源部61,62の光は光ファイバ2e1,2e2を介して光分岐結合器71,72へ入射され、光分岐結合器71,72から出射される光は光ファイバ2f1,2f2を介して受光部81,82に入射される。 Distance calculator 3, corresponding to the optical branching coupler 71, the light source unit 61 and the light receiving portion 81 and the driving unit 301 to the light source unit 61 is driven to emit light having a wavelength lambda 1 to a photodiode consisting of a laser diode And a light source unit 62 made of a laser diode, a light receiving unit 82 made of a photodiode, and a drive unit 302 for driving the light source unit 62 to emit light of wavelength λ2. The light from the light source sections 61 and 62 is incident on the optical branch couplers 71 and 72 via the optical fibers 2e1 and 2e2, and the light emitted from the optical branch couplers 71 and 72 is received via the optical fibers 2f1 and 2f2. Incident on the portions 81 and 82.

各受光部81,82で電気信号に変換された受光信号は増幅部311,312で増幅され、更にA/D変換部321,322でA/D変換された後演算処理部33に取り込まれるようになっている。   The received light signals converted into electric signals by the light receiving units 81 and 82 are amplified by the amplification units 311 and 312 and further A / D converted by the A / D conversion units 321 and 322 so as to be taken into the arithmetic processing unit 33. It has become.

図3はセンサ部位の接続構成を示しており、ここで光ファイバ2aの光路長をLa、光ファイバ2bの光路長をLb、光ファイバ2c1の光路長をLd,光ファイバ2c2の光路長をLg、光ファイバ2d1の光路長をLc,光ファイバ2d2の光路長をLe,光ファイバ2d3の光路長をLf,光ファイバ2d4の光路長をLh,光ファイバ2e1の光路長をLi,光ファイバ2e2の光路長をLk,光ファイバ2f1の光路長をLj、光ファイバ2f2の光路長をLlとする。   FIG. 3 shows the connection configuration of the sensor parts, where the optical path length of the optical fiber 2a is La, the optical path length of the optical fiber 2b is Lb, the optical path length of the optical fiber 2c1 is Ld, and the optical path length of the optical fiber 2c2 is Lg. The optical path length of the optical fiber 2d1 is Lc, the optical path length of the optical fiber 2d2 is Le, the optical path length of the optical fiber 2d3 is Lf, the optical path length of the optical fiber 2d4 is Lh, the optical path length of the optical fiber 2e1 is Li, and the optical fiber 2e2 The optical path length is Lk, the optical path length of the optical fiber 2f1 is Lj, and the optical path length of the optical fiber 2f2 is L1.

而して、図3において、一方の光源部61の波長λ1の光は光ファイバe1を介して光分岐結合部71に入射して分岐され、WDMカプラ101、102を介して長さLc+La+Lg+Lb+Leの光路を時計回りと、反時計回りに伝搬し、またこれらの伝搬光はWDMカプラ101、102を介して光分岐結合部71で結合され、更に光ファイバ2f1を介して受光部81で受光される。 And Thus, in FIG. 3, the light of the wavelength λ1 of one of the light source unit 61 is branched through the optical fiber 2 e1 enters the light branching and coupling portion 71, the length Lc + La + Lg + Lb + Le via the WDM coupler 101, 102 The light propagates in the clockwise and counterclockwise directions, and these propagating lights are coupled by the optical branching and coupling unit 71 through the WDM couplers 101 and 102, and further received by the light receiving unit 81 through the optical fiber 2f1. .

他方の光源部62の波長λ2の光は光ファイバe2を介して光分岐結合部72に入射して分岐され、WDMカプラ103、104を介して長さLf+Lb+Ld+La+Lhの光路を時計回りと、反時計回りに伝搬し、またこれらの伝搬光はWDMカプラ103、104を介して光分岐結合部72で結合され、更に光ファイバ2f2を介して受光部82で受光される。このようにして時計回りと反時計回りにループ状の光路を伝搬することでファイバリング干渉型のセンサ部位が構成されることになる。 Light of the wavelength λ2 of the other light source unit 62 is branched through the optical fiber 2 e2 incident on the light branching and coupling part 72, the clockwise optical path length Lf + Lb + Ld + La + Lh through the WDM coupler 103 and 104, counterclockwise These propagating lights are coupled by the optical branching and coupling unit 72 through the WDM couplers 103 and 104, and further received by the light receiving unit 82 through the optical fiber 2f2. In this way, a fiber ring interference type sensor part is configured by propagating through the looped optical path clockwise and counterclockwise.

ここでこの光路に振動が加わった場合、その加振点Pまでの距離Lpを求める原理は上述の特許文献1に開示されているが、その点について改めて簡単に説明しておく。   Here, when vibration is applied to the optical path, the principle of obtaining the distance Lp to the excitation point P is disclosed in the above-mentioned Patent Document 1, but this point will be briefly described again.

まず受光部71で観測される波長λの時計回り光と反時計回り光との位相差θ1は、 θ(t)=φ(t−(Lp+Lc+Lj)・n/c)
−φ(t−(La−Lp+Lg+Lb+Le+Lj)・n /c)+θ
…(式1)で表される。
但し、
n :使用した光ファイバのコア屈折率
c :光速
θ:静的な状態での初期値
また受光部72で観測される波長λの時計回り光と反時計回り光との位相差θ2も、 θ(t)=φ(t−(Lp+Ld+Lb+Lf+Ll)・n/c)
−φ(t−(La−Lp+Lh+Ll)・n/c)+θ
…(式2)
で表される。
First, the phase difference θ1 between the clockwise light and the counterclockwise light having the wavelength λ 1 observed by the light receiving unit 71 is θ 1 (t) = φ 1 (t− (Lp + Lc + Lj) · n / c).
−φ 1 (t− (La−Lp + Lg + Lb + Le + Lj) · n / c) + θ 0
(Expression 1)
However,
n: Core refractive index of the optical fiber used c: Speed of light θ 0 : Initial value in a static state In addition, the phase difference θ2 between the clockwise light and the counterclockwise light of wavelength λ 2 observed by the light receiving unit 72 is also , Θ 2 (t) = φ 2 (t− (Lp + Ld + Lb + Lf + Ll) · n / c)
−φ 2 (t− (La−Lp + Lh + Ll) · n / c) + θ 0
... (Formula 2)
It is represented by

ここでLpは加振点PからDMカプラ101までの距離を、またφとφは、それぞれ加振点Pにおける波長λの光と波長λの光の位相変動量を示す。 Here Lp is W DM coupler the distance to 101, also phi 1 and phi 2 is the excitation point P, respectively showing the phase variation amount of the wavelength lambda 1 of light and the wavelength lambda 2 of light in the excitation point P.

また、位相変動量φとφは同一の光路長変動によって起こるため、
λφ=λφ …(式3)
となる。
Further, since the phase fluctuation amounts φ 1 and φ 2 are caused by the same optical path length variation,
λ 1 φ 1 = λ 2 φ 2 (Formula 3)
It becomes.

(式1)(式2)(式3)の中で、未知数はLp,φ,φだけであり、測定系が定まれば他の数は既知である。従って、この連立方程式を解くことで、Lp,φ,φを得ることができる。 In (Equation 1), (Equation 2), and (Equation 3), the only unknowns are Lp, φ 1 , and φ 2 , and other numbers are known if the measurement system is determined. Therefore, Lp, φ 1 and φ 2 can be obtained by solving the simultaneous equations.

ここで光がセンサ部位を通過する時間内では、φ(φ)の時間微分値がほとんど変動しないとすると、
即ち加振周波数をfとすると、
f<<c/{n・(La+Lb+Lc+Le+Lg+Li+Lj)}且つf<<c/{n・(La+Lb+Ld+Lf+Lh+Lk+Ll)}であるとすると、Lp,φ,φは次式のように表すことができる。
If the time differential value of φ 12 ) hardly fluctuates within the time when light passes through the sensor part,
That is, if the excitation frequency is f,
If f << c / {n · (La + Lb + Lc + Le + Lg + Li + Lj)} and f << c / {n · (La + Lb + Ld + Lf + Lh + Lk + Ll)}, then Lp, φ 1 , and φ 2 can be expressed as follows.

Figure 0004665779
Figure 0004665779

尚θ(t),θ(t)は下式より、センサの測定系が定まればPi,Pcが既知となるので、受光部71,72で検出される光強度Ppdから求めることができる。 Note that θ 1 (t) and θ 2 (t) can be obtained from the light intensity Ppd detected by the light receiving portions 71 and 72, since Pi and Pc are known if the sensor measurement system is determined. it can.

Ppd=Pi+(Pc(1+cosθ))/2
但しPcは受光部71,72で検出される光の干渉成分、Piは非干渉成分を示す。
Ppd = Pi + (Pc (1 + cos θ)) / 2
However, Pc represents an interference component of light detected by the light receiving units 71 and 72, and Pi represents a non-interference component.

以上の演算処理は各受光部71,72によって電気信号として得られる干渉強度信号を増幅部311,312で夫々増幅した後、A/D変換部32,3でA/D変換し、このA/D変換した干渉強度信号を用いて演算部33で行われ、その演算部33で求めた距離Lpのデータ、つまり距離データαは判定器4へ出力される。   In the above arithmetic processing, after the interference intensity signals obtained as electric signals by the light receiving units 71 and 72 are amplified by the amplification units 311 and 312, A / D conversion is performed by the A / D conversion units 32 and 3, respectively. The calculation unit 33 uses the D-converted interference intensity signal, and the distance Lp data obtained by the calculation unit 33, that is, the distance data α is output to the determiner 4.

ところで上述のように加振点Pの距離Lpを求めるだけでは、誤検出につながるため、判定器4では距離算出器3から出力される距離データαを経時的に記憶部40に記憶させながら、距離算出器3から時間応答データ、つまり干渉強度信号の経時的なレベル変化を示すデータβを比較判断部41でモニタし、そのレベル変化のピークレベル(極大値)と感度設定器9で設定される閾値LAとの比較を行い、図4(a)に示すようにピークレベルが閾値LAを越えると、比較判断部41は距離確定の所定条件が成立したとして図4(b)に示す記憶部40で記憶している経時的な距離データαからピークレベルが越えた時点の距離値を抽出し、該距離値を加振点Pに対応する距離Lp’と確定し、この確定結果を警報・表示器5に出力する。警報・表示器5では制御部50の制御の下で確定結果に基づいて加振点Pの距離Lp’を表示部51で表示するとともに、警報出力γを発する処理を行う。   Incidentally, as described above, merely obtaining the distance Lp of the excitation point P leads to erroneous detection. Therefore, the determination unit 4 stores the distance data α output from the distance calculator 3 in the storage unit 40 over time. The time response data from the distance calculator 3, that is, the data β indicating the change in level of the interference intensity signal with time is monitored by the comparison determination unit 41, and the peak level (maximum value) of the level change and the sensitivity setting unit 9 set. When the peak level exceeds the threshold LA as shown in FIG. 4A, the comparison determination unit 41 determines that the predetermined condition for determining the distance is satisfied, and the storage unit shown in FIG. 40, the distance value at the time when the peak level exceeds is extracted from the time-dependent distance data α stored in 40, and the distance value is determined as the distance Lp ′ corresponding to the excitation point P. Output to the display 5. The alarm / display 5 displays the distance Lp ′ of the excitation point P on the display unit 51 based on the determination result under the control of the control unit 50 and performs a process of generating an alarm output γ.

従って警報システムのオペレータは警報・表示器5表示され距離Lp’と警報出力γにより不審者がフェンス1を破って或いは昇って侵入しようとすることを知ることができるとともに、加振点Pに警備員を急行させたり、監視カメラの撮影方向を加振点Pの方向に設定する等の処置が迅速にとれることになる。 Thus with the operator of the alarm system can know that the suspicious person by the alarm output γ and the distance Lp 'displayed on the alarm and display unit 5 tries to penetrate ascended or beating fence 1, a vibration point P Thus, it is possible to quickly take measures such as urging the security guard or setting the shooting direction of the surveillance camera in the direction of the excitation point P.

ここでフェンス1を周方向に複数の警戒区画A1〜A8(尚区画数は8区画に限定されるものではない)に分割しておけば、確定した距離から対応する警戒区画を検出し、その警戒区画名で表示させることもできる。図4(c)は例えば警戒区画A1と判断した場合を示す。   Here, if the fence 1 is divided into a plurality of warning sections A1 to A8 in the circumferential direction (the number of sections is not limited to eight sections), the corresponding warning section is detected from the determined distance, It can also be displayed with the name of the alert section. FIG. 4 (c) shows a case where it is determined to be, for example, a warning zone A1.

上述の距離確定の判断条件は干渉強度信号のピークレベルが閾値LAを越えたときとしているが、干渉強度信号のピークレベルが一定時間の間に閾値LAを越える回数が所定回数となったときに距離確定を判断したり、或いは干渉強度信号のレベルが所定時間連続して閾値LAを越えたときに距離確定を判断するようにしても良い。単に閾値LAを越えるだけでなく判断条件を厳しくことで、誤報を低減して信頼性が向上させることができる。   The determination condition for determining the distance is that the peak level of the interference intensity signal exceeds the threshold LA, but the number of times that the peak level of the interference intensity signal exceeds the threshold LA for a predetermined time is a predetermined number of times. The distance confirmation may be determined, or the distance confirmation may be determined when the level of the interference intensity signal exceeds the threshold LA continuously for a predetermined time. Not only exceeding the threshold LA but also stricter judgment conditions can reduce false alarms and improve reliability.

また風にってフェンス1が振動するような場合の誤報を防ぐために、干渉強度信号のピークレベルが閾値LAを越えないものの、一定時間の間に所定のレベルを超える回数が所定回数に達するような場合には、風によってフェンス1が振動していると判断して閾値LAを通常時のレベルよりも一定レベル高くなるように感度設定器9を比較判断部41の下で制御するようにしても良い。これにより感度が低下し、風によってフェンス1が連続的振動するような事象に対する誤報を避けることができる。 In order to prevent false alarm, such as a fence 1 I by the wind to vibrate, although the peak level of the interference intensity signal does not exceed the threshold value LA, the number of times exceeding a predetermined level during a predetermined time reaches a predetermined number of times In such a case, it is determined that the fence 1 is vibrating due to the wind, and the sensitivity setting unit 9 is controlled under the comparison determination unit 41 so that the threshold value LA becomes a certain level higher than the normal level. May be. This reduces sensitivity and avoids false alarms for events that cause the fence 1 to continuously vibrate due to wind.

更に上述のように警戒区画A1〜A8を複数設定する場合、各警戒区画A1〜A8毎に距離確定を行うための閾値LAや判断の条件からなる感度を感度設定器9で設定できるようにしても良い。つまり各警戒区画A1〜A8の環境条件、例えばフェンス1近傍に木立があって、風が吹いたときに枝などがフェンス1に接触する場所や、或いは道路に面し、道路を走行する車両の影響で振動する場所というように夫々の環境に応じた感度を設定することで、各警戒区画A1〜A8に適した感度を用いて距離確定の判断処理が行え、更に信頼性を向上させる高めることができる。尚感度設定器9は図示例では判定器5の外に設けているが判定器5に内蔵させても良い。   Further, when a plurality of warning zones A1 to A8 are set as described above, the sensitivity setter 9 can set the sensitivity including the threshold LA for determining the distance and the judgment condition for each warning zone A1 to A8. Also good. In other words, environmental conditions of each of the warning sections A1 to A8, for example, there is a tree in the vicinity of the fence 1, and the place where the branch or the like touches the fence 1 when the wind blows, or the vehicle traveling on the road facing the road By setting the sensitivity according to each environment such as a place that vibrates due to the influence, it is possible to perform the determination process of the distance determination using the sensitivity suitable for each of the warning sections A1 to A8, and further improve the reliability. Can do. Although the sensitivity setting device 9 is provided outside the determination device 5 in the illustrated example, it may be incorporated in the determination device 5.

また各警戒区画A1〜A8の感度で距離確定を行うため、ボールが当たって発生するような単発の振動で、その場所が異なる警戒区画A1〜A8で生じるような場合には夫々の警戒区画A1〜A8において距離確定を行う判断を設定感度に基づいて行うため、誤報の発生を低減することができる。   In addition, since the distance is determined with the sensitivity of each of the warning zones A1 to A8, when a single vibration such as that generated by a ball hitting occurs in different warning zones A1 to A8, each warning zone A1. Since the determination to determine the distance in .about.A8 is performed based on the set sensitivity, the occurrence of false alarms can be reduced.

また警戒区画A1〜A8毎に感度を設定することで、夫々の警戒区画A1〜A8毎に設定された感度で距離確定が可能となり、例えば2箇所で順次振動が発生するような場合にも夫々の警戒区画A1〜A8で距離確定が行え、互いに一定距離離れている2つの警戒区画で距離確定が行えた場合には、2箇所での不法侵入行為があったと判断してそれに対応する表示と警報を警報・表示器5で行わせることができる。
(実施形態2)
上記実施形態1では干渉強度信号のレベル変化をモニタし、そのレベルのピークレベルが閾値LAを越えるという条件において距離を確定するようにしているが、警戒域X内に侵入する方法としては、フェンス1をよじ登る方法や、フェンス1を切断して孔を空け、その孔から侵入する方法等があり、その方法によってフェンス1の振動によって現れる事象が異なる。例えばフェンス1をよじ登る場合には、一定時間連続して閾値を越えるような干渉強度信号のレベル変化の波形が現れる一方、フェンス1を切断するような場合には、フェンス材を切断する度にピークレベルを持つレベル変化の波形が現れる。
Further, by setting the sensitivity for each of the warning sections A1 to A8, it becomes possible to determine the distance with the sensitivity set for each of the warning sections A1 to A8. For example, in the case where vibration is sequentially generated in two places, respectively. If the distances can be confirmed in the two warning areas A1 to A8, and the distances can be determined in two warning areas that are separated from each other by a certain distance, it is determined that there has been an illegal intrusion in two places, and the corresponding display An alarm can be issued by the alarm / display 5.
(Embodiment 2)
In the first embodiment, the change in the level of the interference intensity signal is monitored, and the distance is determined under the condition that the peak level of the level exceeds the threshold LA. There are a method of climbing 1, a method of cutting the fence 1 to make a hole, and a method of entering from the hole, and the phenomenon that appears due to the vibration of the fence 1 varies depending on the method. For example, when climbing the fence 1, a waveform of an interference intensity signal level change that exceeds the threshold value continuously for a certain time appears, whereas when the fence 1 is cut, it peaks every time the fence material is cut. A level change waveform with a level appears.

そこで、本実施形態においては、比較判断部41がモニタする干渉強度信号のレベル変化の波形をモニタし、図5(a)に示すように干渉強度信号のレベル変化の波形が、予め「よじ登り」に対応して設定している閾値LB1を一定時間T1以上連続して越えるような波形の場合には、「よじ登り」と判断し、その判断時点で算出された距離を距離データαから抽出して距離確定を行い、その確定結果を発報表示部5へ出力する。尚その一定期間T1中の距離データαの平均値を確定距離として出力するようにしても良い。   Therefore, in this embodiment, the waveform of the level change of the interference intensity signal monitored by the comparison determination unit 41 is monitored, and the waveform of the level change of the interference intensity signal is “climbing” in advance as shown in FIG. In the case of a waveform that continuously exceeds the threshold value LB1 set corresponding to the predetermined time T1 or more, it is determined as “climbing”, and the distance calculated at the time of determination is extracted from the distance data α. The distance is determined, and the determination result is output to the notification display unit 5. The average value of the distance data α during the certain period T1 may be output as the fixed distance.

一方干渉強度信号のピークレベルが予めフェンス1の切断に対応して設定している閾値LB2を一定時間T2内に所定回数(所定条件)、例えば4回越えた場合には、フェンス1の切断と判断し、その判断時点である4回目のピークレベルを越えた時点で算出された距離値を距離データαから抽出して発報表示部5へ出力する。勿論閾値LB2を干渉強度信号のピークレベルが越える各時点での距離値の平均値を確定距離として出力するようにしても良い。また所定回数は4回に限定されるものではない。尚図5(b)は距離算出器3が算出する加振点Pまでの距離LPの値の経時的な変化を示す。   On the other hand, when the peak level of the interference intensity signal exceeds the threshold value LB2 set in advance corresponding to the cutting of the fence 1 for a predetermined number of times (predetermined conditions), for example, four times within a predetermined time T2, The distance value calculated at the time of exceeding the fourth peak level, which is the determination time point, is extracted from the distance data α and output to the notification display unit 5. Of course, the average value of the distance values at each time point when the peak level of the interference intensity signal exceeds the threshold LB2 may be output as the determined distance. Further, the predetermined number of times is not limited to four. FIG. 5B shows a change with time of the value of the distance LP to the excitation point P calculated by the distance calculator 3.

而して本実施形態では、振動事象を判断して、その振動事象に対応した閾値を設定するため、上述したようにフェンス1が切断される場合のように干渉強度信号のピークレベルが低い場合にあっても、この切断による加振点Pの距離を確定し、干渉強度信号のレベルが低いフェンス1の切断をも見逃すことなく、表示発報することができる。勿論振動事象としては、フェンス1にはしごを掛けるような場合の事象をも判断して閾値を設定すれば、
異なる不法侵入方法に対して対処することができ、誤報は勿論のこと失報を無くすことができる。
Thus, in this embodiment, when the vibration event is judged and the threshold value corresponding to the vibration event is set, the peak level of the interference intensity signal is low as in the case where the fence 1 is cut as described above. Even in this case, it is possible to determine the distance of the excitation point P by this cutting, and display and issue a notification without overlooking the cutting of the fence 1 having a low interference intensity signal level. Of course, as a vibration event, if the threshold value is set by judging the event when the fence is applied to the ladder,
It is possible to deal with different illegal intrusion methods and to eliminate false alarms as well as false alarms.

尚上述の動作以外のシステム構成及び回路のハードウェア構成は実施形態1と同じであるので、図示及び説明は省略する。
(実施形態3)
ところで、実施形態1,2では距離算出器3が算出する加振点までの距離を、判定器4により干渉強度信号のレベル変化をモニタしながら所定の閾値及び判断条件を用いて確定しているが、同時に2箇所で加振があった場合には、各加振点を判別できない。そこで本実施形態では、距離算出器3が算出する加振点までの距離データの時系列的な変化が加振点が1箇所の場合と、2箇所の場合とで相違することに着目し、加振点が1箇所か2箇所かを判断する判断機能を判断器の比較判断部41に持たせたことに特徴がある。
Since the system configuration and the circuit hardware configuration other than the above-described operation are the same as those in the first embodiment, illustration and description are omitted.
(Embodiment 3)
By the way, in the first and second embodiments, the distance to the excitation point calculated by the distance calculator 3 is determined using a predetermined threshold and determination conditions while monitoring the level change of the interference intensity signal by the determiner 4. However, if there is excitation at two locations at the same time, each excitation point cannot be determined. Therefore, in the present embodiment, focusing on the fact that the time-series change of the distance data to the excitation point calculated by the distance calculator 3 is different between the case where the excitation point is one place and the case where there are two places. It is characterized in that the comparison / determination unit 41 of the determination device has a determination function for determining whether the excitation point is one or two.

つまり加振が1箇所のみの場合には図5(a)のように干渉強度信号のレベルの経時的な変化波形と、図5(b)のように距離算出器3が算出する距離値の経時的な変化波形とは類似しているが、加振が同時に2箇所あった場合(例えば図5(a)に示すようにフェンス1の「よじ登り」が同時に2箇所であった場合)や、フェンス1の切断が同時に2箇所であった場合には、図6(a)の干渉強度信号のレベルの経時的な変化を示す波形と、図6(b)で示す距離算出器3が算出する距離値の経時的な変化波形との間には相違がある。つまり例えばフェンス1の「よじ登り」による干渉強度信号のレベルは一定時間以上閾値LB1を越えているのに対して、経時的な距離値の変化は上下に大きく変動し、両者には相違がある。またフェンス1の切断では干渉強度信号のピークレベルが一定時間内に閾値LB2を越える回数が4回あるのに対して、経時的な距離値の変化は、上向き<正方向>のピークPKと下向き<負方向>のピークPK’の2種類のピークが図6(b)に示すように夫々2回あって、両者には相違がある。   That is, when the vibration is applied at only one location, the time-dependent change waveform of the interference intensity signal level as shown in FIG. 5A and the distance value calculated by the distance calculator 3 as shown in FIG. Similar to the change waveform over time, but when there are two vibrations at the same time (for example, when “climbing” of the fence 1 is two at the same time as shown in FIG. 5A), When the fence 1 is cut at two locations at the same time, the waveform indicating the change over time in the level of the interference intensity signal in FIG. 6A and the distance calculator 3 shown in FIG. 6B are calculated. There is a difference between the change over time of the distance value. That is, for example, the level of the interference intensity signal due to “climbing” of the fence 1 exceeds the threshold LB1 for a certain time or more, while the change in distance value over time varies greatly up and down, and there is a difference between the two. Further, when the fence 1 is cut, the peak level of the interference intensity signal exceeds the threshold value LB2 within a certain period of time, whereas the change in the distance value over time changes from the peak PK of the upward <positive direction> to the downward direction. There are two types of peaks of <negative direction> peak PK 'as shown in FIG. 6B, and there is a difference between them.

そこで本実施形態は、比較判断部41において干渉強度信号のレベルの経時的な変化波形と、距離算出器3が算出する距離値の経時的な変化波形と、閾値と判断条件を基に確定する距離値とを比較し、上述の相違の有無と、閾値と判断条件とで確定する距離から2箇所発生か1箇所発生かを判断し、2箇所同時に加振があった場合にはこの判断結果を警報・表示器5へ出力する。これの判断結果を受けた警報・表示器5は2箇所侵入の表示と警報出力を発生させる。つまり、加振点までの距離確定は行えないものの、2箇所侵入の表示と警報を発生させることで、不法侵入に対する対処が図れる。   Therefore, in the present embodiment, the comparison determination unit 41 determines the time-dependent change waveform of the interference intensity signal level, the time-dependent change waveform of the distance value calculated by the distance calculator 3, the threshold value, and the determination condition. Compared with the distance value, it is determined whether there is two occurrences or one occurrence from the distance determined by the above-mentioned difference and the threshold and the determination condition. Is output to the alarm / display 5. Upon receiving this determination result, the alarm / display unit 5 generates an intrusion display and an alarm output. That is, although the distance to the excitation point cannot be determined, it is possible to cope with illegal intrusion by generating a two-part intrusion display and an alarm.

尚上述の動作以外のシステム構成及び回路のハードウェア構成は実施形態1と同じであるので、図示及び説明は省略する。また加振点が1箇所の場合の距離確定は実施形態3と同様に行うため、ここでは説明を省略する。   Since the system configuration and the circuit hardware configuration other than the above-described operation are the same as those in the first embodiment, illustration and description are omitted. In addition, since the determination of the distance when there is only one excitation point is performed in the same manner as in the third embodiment, the description is omitted here.

実施形態1を用いた警報システムの構成図である。1 is a configuration diagram of an alarm system using Embodiment 1. FIG. 実施形態1の用いた警報システムの回路ブロック図である。1 is a circuit block diagram of an alarm system used in Embodiment 1. FIG. 実施形態1のセンサ部の概要構成図である。FIG. 2 is a schematic configuration diagram of a sensor unit according to the first embodiment. 実施形態1の動作説明用波形図である。FIG. 4 is a waveform diagram for explaining operation of the first embodiment. 実施形態2の動作説明用波形図である。FIG. 6 is a waveform diagram for explaining operation of the second embodiment. 実施形態3の動作説明用波形図である。FIG. 10 is a waveform diagram for explaining operation of the third embodiment.

符号の説明Explanation of symbols

(I)フェンス振動センサ装置
(II) センサ部
X 警戒域
1 フェンス
2 光ファイバ
3 距離算出器
4 判定器
5 警報・表示器
9 感度設定器
(I) Fence vibration sensor device
(II) Sensor part
X Warning area 1 Fence 2 Optical fiber 3 Distance calculator 4 Judger 5 Alarm / display 9 Sensitivity setter

Claims (4)

警戒域を囲むように設けられるフェンスの周方向に沿うように該フェンスに取り付けてループ状の光路を形成する光ファイバと、
この光ファイバの適所から伝搬方向が異なるように光信号を前記光路内に入射させる光源部と、
前記光路内を異なる方向で伝搬し前記適所で出射する前記光信号の合波により得られる干渉光を受光して干渉強度を示す干渉強度信号を出力する受光部と、
受光部から出力される前記干渉強度信号に基づいて加振点から受光点までの距離を求める距離算出手段と、
前記干渉強度信号のレベル変化をモニタしながら前記干渉強度信号のレベルが所定の閾値を越え且つ所定の条件が成立したときに、前記距離算出手段が求めた距離を加振点から受光点までの距離として確定して確定結果を出力する判定手段とを備え
前記条件は、前記閾値を前記干渉強度信号のレベルが連続して越えている時間又は前記閾値を前記干渉強度信号のピークレベルが一定時間内に越える回数であり、
前記フェンスを周方向に複数の警戒区画に分割して夫々の警戒区画毎に、前記判定手段で用いる前記閾値や前記条件からなる感度を設定することを特徴とするフェンス振動センサ装置。
An optical fiber attached to the fence to form a loop-shaped optical path along the circumferential direction of the fence provided so as to surround the warning area;
A light source unit that makes an optical signal enter the optical path so that the propagation direction is different from a proper position of the optical fiber;
A light receiving unit that receives interference light obtained by combining the optical signals propagating in different directions in the optical path and exiting at the appropriate position, and outputs an interference intensity signal indicating interference intensity;
Distance calculating means for obtaining a distance from the excitation point to the light receiving point based on the interference intensity signal output from the light receiving unit;
When the level of the interference intensity signal exceeds a predetermined threshold and a predetermined condition is satisfied while monitoring the level change of the interference intensity signal, the distance obtained by the distance calculation means is calculated from the excitation point to the light receiving point. Determination means for confirming the distance and outputting the confirmation result ;
The condition is a time when the level of the interference intensity signal continuously exceeds the threshold or the number of times that the peak level of the interference intensity signal exceeds the threshold within a certain time.
The fence vibration sensor device, wherein the fence is divided into a plurality of warning sections in the circumferential direction, and the sensitivity including the threshold value and the condition used in the determination unit is set for each of the warning sections .
警戒域を囲むように設けられるフェンスの周方向に沿うように該フェンスに取り付けてループ状の光路を形成する光ファイバと、
この光ファイバの適所から伝搬方向が異なるように光信号を前記光路内に入射させる光源部と、
前記光路内を異なる方向で伝搬し前記適所で出射する前記光信号の合波により得られる干渉光を受光して干渉強度を示す干渉強度信号を出力する受光部と、
受光部から出力される前記干渉強度信号に基づいて加振点から受光点までの距離を求める距離算出手段と、
前記干渉強度信号のレベル変化をモニタしながら前記干渉強度信号のレベルが所定の閾値を越え且つ所定の条件が成立したときに、前記距離算出手段が求めた距離を加振点から受光点までの距離として確定して確定結果を出力する判定手段とを備え、
前記条件は、前記閾値を前記干渉強度信号のレベルが連続して越えている時間又は前記閾値を前記干渉強度信号のピークレベルが一定時間内に越える回数であり、
前記判定手段は、モニタする干渉強度信号のピークレベルが前記閾値より低いレベルで一定時間内に所定回数検出されたときに前記閾値を一定レベル高くすることを特徴とするフェンス振動センサ装置。
An optical fiber attached to the fence to form a loop-shaped optical path along the circumferential direction of the fence provided so as to surround the warning area;
A light source unit that makes an optical signal enter the optical path so that the propagation direction is different from a proper position of the optical fiber;
A light receiving unit that receives interference light obtained by combining the optical signals propagating in different directions in the optical path and exiting at the appropriate position, and outputs an interference intensity signal indicating interference intensity;
Distance calculating means for obtaining a distance from the excitation point to the light receiving point based on the interference intensity signal output from the light receiving unit;
When the level of the interference intensity signal exceeds a predetermined threshold and a predetermined condition is satisfied while monitoring the level change of the interference intensity signal, the distance obtained by the distance calculation means is calculated from the excitation point to the light receiving point. Determination means for confirming the distance and outputting the confirmation result;
The conditions, Ri number der the time or the threshold the threshold level of the interference intensity signal exceeds continuously the peak level of the interference intensity signal exceeds within a predetermined time,
It said determination means, a certain level that you wherein a higher fence vibration sensor device the threshold when the peak level of the monitor interference intensity signal is a predetermined number of times detected within a predetermined time, lower than the threshold level.
前記判定手段は、前記干渉強度信号のレベルの経時的な変化波形に基づいて前記フェンスで生じる振動事象を判断する機能を備えるとともに、予め想定される前記振動事象毎に前記閾値を設定し、判断された振動事象に対応している前記閾値と前記干渉強度信号のレベルとの比較を行うことを特徴とする請求項1又は2記載のフェンス振動センサ装置。   The determination means has a function of determining a vibration event occurring in the fence based on a temporal change waveform of the level of the interference intensity signal, and sets and determines the threshold value for each vibration event assumed in advance. The fence vibration sensor device according to claim 1, wherein the threshold value corresponding to the vibration event is compared with a level of the interference intensity signal. 前記判定手段は、前記干渉強度信号のレベルの経時的な変化波形と、前記干渉強度信号に基づいて前記距離算出手段が求める距離値の経時的な変化波形と、前記干渉強度信号のレベルと前記閾値との比較及び前記条件で確定する距離のデータとから加振点が1箇所か2箇所かを判断し、2箇所の場合に警報判断結果を出力する機能を備えていることを特徴とする請求項1乃至3の何れか記載のフェンス振動センサ装置 The determination means includes a temporal change waveform of the level of the interference intensity signal, a temporal change waveform of a distance value obtained by the distance calculation means based on the interference intensity signal, a level of the interference intensity signal, and the level of the interference intensity signal. It has a function of judging whether there are one or two excitation points from comparison with a threshold value and distance data determined under the above conditions, and outputting an alarm judgment result in the case of two places. The fence vibration sensor device according to any one of claims 1 to 3 .
JP2006019466A 2006-01-27 2006-01-27 Fence vibration sensor device Expired - Fee Related JP4665779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019466A JP4665779B2 (en) 2006-01-27 2006-01-27 Fence vibration sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019466A JP4665779B2 (en) 2006-01-27 2006-01-27 Fence vibration sensor device

Publications (2)

Publication Number Publication Date
JP2007198973A JP2007198973A (en) 2007-08-09
JP4665779B2 true JP4665779B2 (en) 2011-04-06

Family

ID=38453715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019466A Expired - Fee Related JP4665779B2 (en) 2006-01-27 2006-01-27 Fence vibration sensor device

Country Status (1)

Country Link
JP (1) JP4665779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021072508A1 (en) * 2019-10-17 2021-04-22 Hawk Measurement Systems Pty. Ltd. A mounting structure for a vibration sensing system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5606096B2 (en) * 2010-02-25 2014-10-15 パナソニック株式会社 Fence vibration detection device and threshold adjustment method
CN105682125B (en) * 2016-03-02 2023-05-05 中国农业科学院农业信息研究所 Data transmission method and electronic fence system
US11131578B2 (en) * 2018-06-28 2021-09-28 Nec Corporation Two stage detection method for distributed vibration detection
CN109612568B (en) * 2018-11-22 2021-06-29 北京航天易联科技发展有限公司 Vibration source moving interference source identification method
JP7311023B2 (en) * 2020-03-06 2023-07-19 日本電気株式会社 Optical fiber sensing system, optical fiber sensing method, and optical fiber sensing device
CN112562237B (en) * 2020-12-11 2022-05-17 无锡科晟光子科技有限公司 Optical fiber vibration system positioning accuracy optimization method applied to fence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221684A (en) * 2000-02-08 2001-08-17 Fujikura Ltd Method and apparatus for detection and judgment of vibration using optical fiber cable, and as system for detection and judgment of vibration
JP2002365058A (en) * 2001-06-11 2002-12-18 Fujikura Ltd Optical fiber ring interference type sensor
JP2004205309A (en) * 2002-12-25 2004-07-22 Ohbayashi Corp Rock fall detecting system
JP2005345137A (en) * 2004-05-31 2005-12-15 Fujikura Ltd Intruder detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221684A (en) * 2000-02-08 2001-08-17 Fujikura Ltd Method and apparatus for detection and judgment of vibration using optical fiber cable, and as system for detection and judgment of vibration
JP2002365058A (en) * 2001-06-11 2002-12-18 Fujikura Ltd Optical fiber ring interference type sensor
JP2004205309A (en) * 2002-12-25 2004-07-22 Ohbayashi Corp Rock fall detecting system
JP2005345137A (en) * 2004-05-31 2005-12-15 Fujikura Ltd Intruder detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021072508A1 (en) * 2019-10-17 2021-04-22 Hawk Measurement Systems Pty. Ltd. A mounting structure for a vibration sensing system

Also Published As

Publication number Publication date
JP2007198973A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4665779B2 (en) Fence vibration sensor device
JP5226006B2 (en) Fault-tolerant distributed optical fiber intrusion detection
JP6895542B2 (en) Alarm device to prevent accidental excavation of buried power cables
KR101297268B1 (en) Apparatus for fiber optic perturbation sensing and method of the same
WO2012152575A1 (en) A method for railway monitoring based on fiber optics
JP2007232515A (en) Optical fiber vibration detection system
JP2006215649A (en) Method for detecting bragg grating sensor, and method and apparatus for detecting amount of distortion thereof
US11410517B2 (en) Fire detection system and fire detection method
JP2010237083A (en) Intruder detection device and intruder detection method
CN111024283B (en) Multi-parameter optical fiber sensing detection method and system for down-leading optical cable
JP2006209575A (en) Fence with intruder detection function
JP2005345137A (en) Intruder detection device
JP2000048269A (en) Intrusion position detection device
JP2004212325A (en) Otdr measuring device and otdr measuring method
JP2007232439A (en) Optical fiber ring interference type sensor
JP7173276B2 (en) SENSOR SIGNAL PROCESSING DEVICE, OPTICAL FIBER SENSOR DEVICE AND SENSOR SIGNAL PROCESSING METHOD
JP2007225397A (en) Method and structure for laying optical cable for vibration sensor use in optical fiber invasion monitoring system
JP4144736B2 (en) Falling rock detection system
JP4789565B2 (en) Optical fiber ring interference sensor
CN107505042B (en) Differential detection method based on distributed optical fiber, application and protection system thereof
KR20200090463A (en) System for monitoring state of train and railway using optical cable and method thereof
JP2005043087A (en) Optical fiber ring interference type sensor
JP2004037358A (en) Submerged spot detection method and device for optical fiber cable
JP4839847B2 (en) Optical fiber sensor inspection method and optical fiber sensor inspection apparatus
KR102162459B1 (en) Monitoring system based on optical signals and buried type of perimeter intrusion detection system using thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees