JP4665693B2 - Method and apparatus for treating organic waste - Google Patents

Method and apparatus for treating organic waste Download PDF

Info

Publication number
JP4665693B2
JP4665693B2 JP2005289047A JP2005289047A JP4665693B2 JP 4665693 B2 JP4665693 B2 JP 4665693B2 JP 2005289047 A JP2005289047 A JP 2005289047A JP 2005289047 A JP2005289047 A JP 2005289047A JP 4665693 B2 JP4665693 B2 JP 4665693B2
Authority
JP
Japan
Prior art keywords
organic waste
aerobic
fermentation
methane
methane fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005289047A
Other languages
Japanese (ja)
Other versions
JP2007098229A (en
Inventor
宝鋼 劉
岳郎 三崎
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005289047A priority Critical patent/JP4665693B2/en
Publication of JP2007098229A publication Critical patent/JP2007098229A/en
Application granted granted Critical
Publication of JP4665693B2 publication Critical patent/JP4665693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、有機性廃棄物をメタン発酵させる有機性廃棄物の処理方法および処理装置に関し、特に、C/N比が20以下で固形物濃度が30質量%以上である固形状の有機性廃棄物の処理方法および処理装置に関する。   The present invention relates to an organic waste processing method and an apparatus for methane fermentation of organic waste, and in particular, solid organic waste having a C / N ratio of 20 or less and a solid concentration of 30% by mass or more. The present invention relates to an object processing method and an apparatus.

従来、有機性廃棄物をエネルギー源として利用する方法として、メタン発酵が知られている。近年ではメタンガスが新たなエネルギー源として注目されており、剪定枝、稲藁、および籾殻等の植物残渣、生ごみ、食品加工物残渣、並びに家畜糞尿等の固形状の有機性廃棄物からメタンガスを取り出す技術が注目されている。   Conventionally, methane fermentation is known as a method of using organic waste as an energy source. In recent years, methane gas has attracted attention as a new energy source. Methane gas is obtained from solid organic waste such as plant residues such as pruned branches, rice straw, and rice husks, food waste, food processing residue, and livestock manure. The technology to extract is drawing attention.

ここで、メタン発酵は、原料の有機性廃棄物の全固形物(TS)濃度により湿式メタン発酵と乾式メタン発酵とに大別される。湿式メタン発酵では、メタン細菌を含むメタン汚泥が液体中に浮遊した状態、または粒状に集積した状態で発酵槽内に保持され、有機性廃棄物は、TS濃度が4〜10質量%程度の液状またはスラリ状で発酵槽に導入される。このように、湿式メタン発酵では液状化した有機性廃棄物を処理対象とするため、生ごみのような固形物濃度が高い有機性廃棄物を処理する場合、メタン発酵に先立ち、有機性廃棄物を可溶化する処理を行い、メタン発酵を促進する方法が提案されている(例えば、特許文献1および特許文献2)。   Here, methane fermentation is roughly classified into wet methane fermentation and dry methane fermentation according to the total solid (TS) concentration of the raw organic waste. In wet methane fermentation, methane sludge containing methane bacteria is retained in a fermenter in a state where it is suspended in a liquid or in a state of being accumulated in a granular form, and organic waste is a liquid having a TS concentration of about 4 to 10% by mass. Or it is introduced into the fermenter in a slurry state. In this way, wet methane fermentation targets liquefied organic waste, so when processing organic waste with a high solids concentration, such as garbage, organic waste prior to methane fermentation. A method for promoting solubilization of methane fermentation has been proposed (for example, Patent Document 1 and Patent Document 2).

一方、乾式メタン発酵では、有機性廃棄物は、TS濃度が25〜60重量%程度というほぼ固体に近い状態で発酵槽に導入され、発酵槽内には、TS濃度が15〜40質量%程度の固形状のメタン汚泥(乾式メタン汚泥)が保持される。このように、乾式メタン発酵によれば固形状の有機性廃棄物をメタン発酵させることができるため、固形状有機性廃棄物を原料としてメタンガスを発生させる技術として、近年、乾式メタン発酵に注目が集まっている。   On the other hand, in the dry methane fermentation, the organic waste is introduced into the fermenter in a nearly solid state with a TS concentration of about 25 to 60% by weight, and the TS concentration is about 15 to 40% by mass in the fermenter. Solid methane sludge (dry methane sludge) is retained. As described above, according to dry methane fermentation, solid organic waste can be methane-fermented. Therefore, in recent years, dry methane fermentation has attracted attention as a technology for generating methane gas from solid organic waste as a raw material. Gathered.

ところで、固形状有機性廃棄物の中でも、生ごみ、食品加工物残渣、および家畜糞尿は蛋白質、すなわち有機態窒素を多く含み、C/N比(炭素/窒素の質量比)が20以下と低い。このようにC/N比が低い有機性廃棄物(以下、「低C/N有機性廃棄物」)をメタン発酵すると、有機物が分解されてメタンガスが生成されると同時に、有機態窒素が分解されてアンモニア態窒素も生成される。   By the way, among solid organic waste, food waste, processed food residue, and livestock manure contain a large amount of protein, that is, organic nitrogen, and the C / N ratio (carbon / nitrogen mass ratio) is as low as 20 or less. . When organic waste with a low C / N ratio (hereinafter referred to as “low C / N organic waste”) is subjected to methane fermentation, organic matter is decomposed to produce methane gas, and organic nitrogen is decomposed at the same time. As a result, ammonia nitrogen is also produced.

メタン細菌の活性は、高濃度の遊離性のアンモニア態窒素により阻害され、メタン汚泥中のアンモニウム(NH )濃度が2,500mg/kg以上になると、メタン発酵活性が著しく阻害され、メタン発酵が停止することが知られている。このため、有機性廃棄物のメタン発酵処理においては、遊離性のアンモニア態窒素によるメタン発酵活性の阻害(以下、「アンモニア阻害」と略する)の防止は重要な技術課題であり、従来、アンモニア阻害を防止するための様々な方法が提案されている。 The activity of methane bacteria is inhibited by a high concentration of free ammonia nitrogen, and when the ammonium (NH 4 + ) concentration in methane sludge exceeds 2,500 mg / kg, the methane fermentation activity is significantly inhibited, and methane fermentation Is known to stop. Therefore, in the methane fermentation treatment of organic waste, prevention of inhibition of methane fermentation activity by free ammonia nitrogen (hereinafter abbreviated as “ammonia inhibition”) is an important technical issue. Various methods have been proposed to prevent inhibition.

アンモニア阻害を防止する方法としては、有機性廃棄物を水で希釈する方法、酸素およびアンモニアを実質的に含まない気体を発酵槽内の混合物に通気することでアンモニアを気相に揮散させる方法、およびリン酸マグネシウムアンモニウム(以下、「MAP」)を生成させてアンモニアを不溶化させる方法等が提案されている。また、複数種類の有機性廃棄物を混合するといった方法で、有機性廃棄物の物理化学的性状を変化させる方法も提案されている。例えば、特許文献3にはメタン発酵に先立ち、C/N比が比較的高い籾殻のような植物残渣、およびC/N比が比較的低い豆腐粕等を混合し、得られた混合物を好気的に発酵させる方法が提案されている。
特開2001−327998号公報 特開2003−39096号公報 特開2002−154887号公報
As a method for preventing ammonia inhibition, a method of diluting organic waste with water, a method of volatilizing ammonia into the gas phase by passing a gas substantially free of oxygen and ammonia through a mixture in the fermenter, In addition, a method of insolubilizing ammonia by generating magnesium ammonium phosphate (hereinafter, “MAP”) has been proposed. There has also been proposed a method of changing the physicochemical properties of organic waste by mixing a plurality of types of organic waste. For example, in Patent Document 3, prior to methane fermentation, plant residues such as rice husk having a relatively high C / N ratio and tofu cake having a relatively low C / N ratio are mixed, and the resulting mixture is aerobic. A method of fermenting automatically has been proposed.
JP 2001-327998 A JP 2003-39096 A Japanese Patent Laid-Open No. 2002-154887

上記アンモニア阻害の問題は、乾式、湿式を問わずメタン発酵を行う場合に共通する課題であるが、乾式メタン発酵では湿式メタン発酵に比してアンモニア阻害が生じやすい。すなわち、湿式メタン発酵では発酵槽に対する有機物負荷は2〜8kg−VS/m/日程度であるのに対し、乾式メタン発酵では発酵槽に対する有機物負荷は8〜18kg−VS/m/日程度に達するため、そもそも乾式メタン発酵では湿式メタン発酵に比べて多くのアンモニア態窒素が生成される。 The problem of ammonia inhibition is a common problem when performing methane fermentation regardless of whether it is dry or wet, but ammonia inhibition is more likely to occur in dry methane fermentation than in wet methane fermentation. That is, in the wet methane fermentation, the organic load on the fermenter is about 2 to 8 kg-VS / m 3 / day, whereas in the dry methane fermentation, the organic load on the fermenter is about 8 to 18 kg-VS / m 3 / day. Therefore, in the first place, dry-type methane fermentation produces more ammonia nitrogen than wet-type methane fermentation.

例えば、蛋白質等の有機態窒素濃度が10,000mg/kg(湿重)の有機性廃棄物を有機物分解率50%でメタン発酵させると、5,000mg/kg(湿重)のアンモニア態窒素が発生する。発生したアンモニア態窒素のうち一部は微生物により消費されるが、4,000mg/kg程度ものアンモニア態窒素がメタン発酵中の汚泥に存在することになる。   For example, when organic waste such as protein having an organic nitrogen concentration of 10,000 mg / kg (wet weight) is subjected to methane fermentation at an organic matter decomposition rate of 50%, 5,000 mg / kg (wet weight) of ammonia nitrogen is produced. appear. Part of the generated ammonia nitrogen is consumed by microorganisms, but as much as 4,000 mg / kg of ammonia nitrogen is present in the sludge during methane fermentation.

さらに、湿式メタン発酵では、メタン発酵が液系で行われるため、メタン発酵過程で生成されるアンモニア態窒素は多くの液体で希釈される。一方、乾式メタン発酵では、原料有機物のTS濃度が高いため、メタン発酵の過程で生成されたアンモニア態窒素は少量の水に溶解して濃縮された状態になると考えられる。このため、乾式メタン発酵では湿式メタン発酵に比してアンモニア阻害が生じやすく、中でもC/N比が20以下の有機性廃棄物を被処理物とする場合はアンモニア阻害の問題が生じやすい。   Furthermore, in wet methane fermentation, since methane fermentation is performed in a liquid system, ammonia nitrogen produced in the methane fermentation process is diluted with many liquids. On the other hand, in dry methane fermentation, since the TS concentration of the raw material organic matter is high, it is considered that ammonia nitrogen produced in the process of methane fermentation is dissolved and concentrated in a small amount of water. For this reason, in dry methane fermentation, ammonia inhibition is more likely to occur than in wet methane fermentation, and in particular, when organic waste having a C / N ratio of 20 or less is used as an object to be treated, the problem of ammonia inhibition is likely to occur.

しかし、湿式メタン発酵において有効なアンモニア阻害防止法であっても、乾式メタン発酵に適用できない場合も多い。例えば、有機性廃棄物を水で希釈すると発酵槽内のTS濃度が低下して乾式メタン発酵ができなくなるおそれがある。また、発酵槽に投入する有機性廃棄物の含水率が高くなると、発酵槽から排出される発酵残渣に含まれる水分が多くなり、発酵残渣の処理および排水処理のコスト上昇を招く。   However, even ammonia prevention methods effective in wet methane fermentation are often not applicable to dry methane fermentation. For example, when organic waste is diluted with water, the TS concentration in the fermenter may be reduced and dry methane fermentation may not be possible. Moreover, when the moisture content of the organic waste put into a fermenter becomes high, the water | moisture content contained in the fermentation residue discharged | emitted from a fermenter will increase, and the cost of processing of a fermentation residue and wastewater treatment will be caused.

さらに、乾式メタン発酵は、ほぼ固形状の乾式メタン汚泥と有機性廃棄物とを固相でメタン発酵させる方法であり、メタン発酵により生成されたアンモニア態窒素の多くは固形物中に包含される少量の水分に溶解した状態となる。このため、乾式メタン発酵では、アンモニアを除去したガスの吹込みによりアンモニアを揮散させることは容易ではなく、メタン発酵させる有機性廃棄物の窒素、リン、およびマグネシウムの濃度のバランスをMAP生成に適した範囲に維持してMAPを生成させることも困難である。   Furthermore, dry methane fermentation is a method in which almost solid dry methane sludge and organic waste are subjected to methane fermentation in a solid phase, and most of the ammonia nitrogen produced by methane fermentation is included in the solid matter. It is in a state dissolved in a small amount of water. For this reason, in dry methane fermentation, it is not easy to volatilize ammonia by injecting gas from which ammonia has been removed, and the balance of nitrogen, phosphorus, and magnesium concentrations in organic waste to be methane-fermented is suitable for MAP production. It is also difficult to generate the MAP while maintaining the above range.

本発明は上記課題に鑑みてなされ、固形状の低C/N有機性廃棄物を乾式メタン発酵する際のアンモニア阻害を防止することを目的とする。また、本発明はスチーム吹込み等により有機性廃棄物を加温することなく45〜60℃での高温乾式メタン発酵を行うことを可能とし、発酵残渣の処理コストの上昇を抑制できる有機性廃棄物の処理方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at preventing ammonia inhibition at the time of dry-type methane fermentation of a solid low C / N organic waste. In addition, the present invention makes it possible to perform high-temperature dry methane fermentation at 45 to 60 ° C. without heating the organic waste by steam blowing or the like, and can suppress an increase in the processing cost of the fermentation residue. It aims at providing the processing method of a thing.

本発明者らは、乾式メタン発酵を行うメタン発酵工程に先立ち、有機性廃棄物を好気的条件で好気発酵させ、有機性廃棄物に含まれる有機態窒素を好気性細菌の菌体中に固定することでアンモニア阻害を防止できることを見出し、本発明を完成させた。具体的には、本発明は、以下を提供する。   Prior to the methane fermentation process in which dry methane fermentation is performed, the present inventors aerobically ferment organic waste under aerobic conditions, and organic nitrogen contained in organic waste is contained in the cells of aerobic bacteria. The present inventors have found that ammonia inhibition can be prevented by fixing to the present invention, thereby completing the present invention. Specifically, the present invention provides the following.

(1)C/N比が20以下で全固形物濃度が30質量%以上の有機性廃棄物を好気的条件で好気発酵させることにより、前記有機性廃棄物の一部を好気性微生物に転換させた好気発酵中間物を得る好気処理工程と、前記好気発酵中間物と、全固形物濃度15質量%以上の乾式メタン汚泥と、を混合して乾式メタン発酵させるメタン発酵工程と、を有する有機性廃棄物の処理方法。 (1) A part of the organic waste is subjected to aerobic microorganisms by subjecting the organic waste having a C / N ratio of 20 or less and a total solid concentration of 30% by mass or more to aerobic fermentation under aerobic conditions. An aerobic treatment step for obtaining an aerobic fermentation intermediate converted to methane, and a methane fermentation step for mixing the aerobic fermentation intermediate and dry methane sludge having a total solid concentration of 15% by mass or more to dry dry methane fermentation And a method for treating organic waste.

(2) 前記好気処理工程において、前記有機性廃棄物に含まれる有機物が70質量%以上、90質量%以下になるまで該有機性廃棄物を好気的条件で分解させる(1)に記載の有機性廃棄物の処理方法。   (2) In the aerobic treatment step, the organic waste is decomposed under aerobic conditions until the organic matter contained in the organic waste becomes 70% by mass or more and 90% by mass or less. Of organic waste.

(3) 前記好気処理工程において、前記好気発酵中間物の乾燥重量あたりの微生物濃度が10個/g以上10個/g以下の範囲となるまで前記有機性廃棄物を好気発酵させる(1)または(2)に記載の有機性廃棄物の処理方法。 (3) In the aerobic treatment step, the organic waste is aerobically fermented until the microorganism concentration per dry weight of the aerobic fermentation intermediate is in the range of 10 5 / g to 10 9 / g. The processing method of the organic waste as described in (1) or (2).

(4)前記メタン発酵工程において、45〜60℃で高温乾式メタン発酵を行う(1)から(3)のいずれかに記載の有機性廃棄物の処理方法。 (4) The organic waste treatment method according to any one of (1) to (3), wherein high-temperature dry methane fermentation is performed at 45 to 60 ° C. in the methane fermentation step.

(5)C/N比が20以下で全固形物濃度30質量%以上の固形状の有機性廃棄物が導入され、前記有機性廃棄物を好気的条件で好気発酵させる、酸素含有ガス供給手段を備える好気発酵槽と、前記好気発酵槽から取り出された好気発酵中間物が導入され、該好気発酵中間物と全固形物濃度15質量%以上の乾式メタン汚泥とが混合された状態で乾式メタン発酵が行われるメタン発酵槽と、を有し、前記好気発酵槽は、前記有機性廃棄物に含まれる有機物が70質量%以上、90質量%以下になるまで該有機性廃棄物を分解させる容量とされている有機性廃棄物の処理装置。 (5) An oxygen-containing gas in which solid organic waste having a C / N ratio of 20 or less and a total solid concentration of 30% by mass or more is introduced, and the organic waste is subjected to aerobic fermentation under aerobic conditions. An aerobic fermentation tank having a supply means and an aerobic fermentation intermediate taken out from the aerobic fermentation tank are introduced, and the aerobic fermentation intermediate and dry methane sludge having a total solid concentration of 15% by mass or more are mixed. A methane fermenter in which dry methane fermentation is performed in a state where the organic waste is contained in the organic aerobic fermenter until the organic matter contained in the organic waste becomes 70% by mass or more and 90% by mass or less. Organic waste processing equipment that has the capacity to decompose organic waste.

本発明は、全固形物濃度が30%以上、特に35〜55質量%程度の固体または泥状(これらを「固形状」と総称する)の有機性廃棄物を処理対象とする方法である。本発明は、固形状有機性廃棄物の中でも、炭素(C)/窒素(N)の質量比が20以下、好ましくは18以下で、特に好ましくは特に3〜12程度であって窒素含有量が多い固形状有機性廃棄物(固形状低C/N有機性廃棄物)を好適な処理対象とする。固形状低C/N有機性廃棄物の具体例としては、一般家庭およびレストラン等の事業所から排出される生ごみ、家畜糞尿、および食品加工産業に伴って排出される食品加工物残渣(以下、単に「食品残渣」と称する)が挙げられる。また、下水および屎尿処理等に伴って発生する有機性汚泥の脱水物(以下、「脱水ケーキ」)も本発明の処理対象としてよい。   The present invention is a method for treating a solid or mud-like organic waste having a total solid concentration of 30% or more, particularly about 35 to 55% by mass (collectively referred to as “solid”). In the present invention, among solid organic wastes, the mass ratio of carbon (C) / nitrogen (N) is 20 or less, preferably 18 or less, particularly preferably about 3 to 12, and the nitrogen content is A large amount of solid organic waste (solid low C / N organic waste) is a suitable treatment target. Specific examples of solid low C / N organic waste include garbage, livestock manure, and food processing residue (hereinafter referred to as “food processing residue”) discharged from establishments such as households and restaurants. Simply referred to as “food residue”). Further, organic sludge dehydrated matter (hereinafter referred to as “dehydrated cake”) generated in connection with sewage and sewage treatment or the like may be the subject of the present invention.

有機性廃棄物は、有機物以外に1〜30質量%程度の無機物を含んでよい。なお、本明細書において、「有機物」とは600℃での強熱減量可能な炭素化合物を指し、以下、「VS」と省略する場合がある。   Organic waste may contain about 1-30 mass% inorganic substance other than organic substance. In this specification, “organic matter” refers to a carbon compound that can be reduced in ignition at 600 ° C., and may be abbreviated as “VS” hereinafter.

有機性廃棄物は、好気性微生物、特に好熱性好気性細菌を含む好気発酵汚泥と混合し、好気発酵槽において空気等の酸素含有気体を供給しながら、好気的に生物処理する。本発明では、有機性廃棄物を好気的に発酵させる好気処理工程において、有機性廃棄物の一部を好気発酵汚泥により分解させた状態で好気処理を終了し、好気発酵途中の前記有機性廃棄物(好気発酵中間物)をメタン発酵工程に送る。   Organic waste is mixed with aerobic fermentation sludge containing aerobic microorganisms, particularly thermophilic aerobic bacteria, and aerobically biotreated while supplying oxygen-containing gas such as air in an aerobic fermenter. In the present invention, in the aerobic treatment step of aerobically fermenting organic waste, the aerobic treatment is terminated in a state where a part of the organic waste is decomposed by the aerobic fermentation sludge, and during the aerobic fermentation The organic waste (aerobic fermentation intermediate) is sent to the methane fermentation process.

好気処理工程では、好気発酵槽に対して空気等の酸素含有ガスを供給することにより、槽外に排出される気体の酸素濃度が10体積%以上となるように維持することが好ましい。また、好気発酵槽への酸素含有ガスの供給量を調整するなどして、好気発酵槽の槽内温度を60〜80℃、特に65℃〜70℃程度に維持した状態で行うことが好ましい。   In the aerobic treatment step, it is preferable to maintain the oxygen concentration of the gas discharged outside the tank to be 10% by volume or more by supplying an oxygen-containing gas such as air to the aerobic fermentation tank. Moreover, by adjusting the supply amount of the oxygen-containing gas to the aerobic fermenter, the temperature in the aerobic fermenter is maintained at 60 to 80 ° C., particularly about 65 to 70 ° C. preferable.

好気処理を終了するタイミングは、好気発酵槽に導入された有機性廃棄物の重量、菌体濃度、有機性廃棄物の好気処理により発生するアンモニアの発生量のいずれか1以上を指標として決定できる。また、所定量の有機物が分解されるまでに必要な有機性廃棄物の処理時間、すなわち好気発酵槽での滞留時間を予備実験等により求め、所定の滞留時間が経過した時点で好気処理を終了するようにしてもよい。このように処理することで全固形物濃度30質量%以上の好気発酵中間物を得ることができる。   The timing to end the aerobic treatment is an index of any one or more of the weight of organic waste introduced into the aerobic fermenter, the concentration of bacterial cells, and the amount of ammonia generated by the aerobic treatment of organic waste. Can be determined as In addition, the processing time of organic waste necessary until the predetermined amount of organic matter is decomposed, that is, the residence time in the aerobic fermentation tank is obtained by preliminary experiments, and the aerobic treatment is performed when the predetermined residence time has elapsed. May be terminated. By treating in this way, an aerobic fermentation intermediate having a total solid concentration of 30% by mass or more can be obtained.

好気処理を継続する時間が長すぎると、有機性廃棄物の好気発酵が過度に進行し、後段のメタン発酵工程でメタン発酵される有機物量が不足してメタンガスの収量が低下する。一方、好気処理を継続する時間が短すぎると、好気発酵される有機性廃棄物の量が少なすぎることにより、メタン発酵工程でアンモニア阻害が生じるおそれがある。すなわち、好気処理工程では、アンモニア阻害を防止できる量の有機性廃棄物を好気発酵させ、所定量、例えば有機性廃棄物の少なくとも半分以上は分解されずに好気発酵槽から取り出されるようにする。   If the time for continuing the aerobic treatment is too long, the aerobic fermentation of the organic waste proceeds excessively, and the amount of organic matter to be methane-fermented in the subsequent methane fermentation process is insufficient, resulting in a decrease in the yield of methane gas. On the other hand, if the time for continuing the aerobic treatment is too short, there is a possibility that ammonia inhibition may occur in the methane fermentation process because the amount of organic waste subjected to aerobic fermentation is too small. That is, in the aerobic treatment step, an amount of organic waste that can prevent ammonia inhibition is subjected to aerobic fermentation, and a predetermined amount, for example, at least half of the organic waste is removed from the aerobic fermentation tank without being decomposed. To.

具体的には、(2)に記載のように、好気発酵槽に導入された有機性廃棄物に含まれる有機物が、好気処理前の70〜90質量%となるまで分解された時点で好気処理工程を終了する。また、(3)に記載のように、好気発酵槽から排出された好気発酵中間物の菌体濃度が10個/g以上10個/g以下となった時点で好気処理工程を終了してもよい。あるいは、好気処理工程で発生するアンモニアガスの発生量が、有機性廃棄物に含まれる有機態窒素の1/3〜2/3程度が分解されることにより生じるアンモニアガスの発生量となった時点で好気処理工程を終了するようにしてもよい。 Specifically, as described in (2), when the organic matter contained in the organic waste introduced into the aerobic fermenter is decomposed to 70 to 90% by mass before the aerobic treatment. The aerobic treatment process is terminated. Further, (3) as described in, aerobic fermentation cell concentration of the discharged aerobic fermentation intermediate from tank 10 5 / g or more 10 9 / g they become less aerobic treatment step May be terminated. Alternatively, the amount of ammonia gas generated in the aerobic treatment step is the amount of ammonia gas generated by decomposition of about 1/3 to 2/3 of the organic nitrogen contained in the organic waste. You may make it complete | finish an aerobic treatment process at the time.

このように本発明では、好気発酵の途中にある有機性廃棄物(好気発酵中間物)がメタン発酵槽に送られる。メタン発酵槽では、TS濃度が15〜40質量%程度で土塊状の乾式メタン汚泥と好気発酵中間物とを混合してメタン発酵させるメタン発酵工程を行う。乾式メタン汚泥には、メタン細菌がコロニー形成菌数(CFU)として107〜9N/g(乾重)程度含まれており、TS濃度が4〜10質量%程度の湿式メタン汚泥に比して高い有機物負荷でメタン発酵を行うことができる。 Thus, in this invention, the organic waste (aerobic intermediate) in the middle of aerobic fermentation is sent to a methane fermentation tank. In the methane fermentation tank, a methane fermentation process is performed in which the TS concentration is about 15 to 40% by mass, and a dry methane sludge in the form of a mass and an aerobic fermentation intermediate are mixed to perform methane fermentation. Dry methane sludge contains about 10 7-9 N / g (dry weight) of methane bacteria as colony forming bacteria count (CFU), compared with wet methane sludge with a TS concentration of about 4-10 mass%. And methane fermentation with high organic load.

メタン発酵工程での処理条件は特に限定されず、例えば有機物負荷8〜18kg−VS/m/日程度、温度20〜60℃、メタン発酵槽内の槽内物のpHを7〜9、滞留時間8〜15日程度とすればよい。好気発酵中間物は、メタン発酵槽の内部で乾式メタン汚泥と混合してもよいが、メタン発酵槽から引き抜かれ返送汚泥としてメタン発酵槽に返送される発酵残渣を、メタン発酵槽の外部で好気発酵中間物に混合することが好ましい。 The treatment conditions in the methane fermentation process are not particularly limited, and for example, an organic load of 8 to 18 kg-VS / m 3 / day, a temperature of 20 to 60 ° C., a pH of 7 to 9 in the tank in the methane fermentation tank, and residence The time may be about 8 to 15 days. The aerobic fermentation intermediate may be mixed with dry methane sludge inside the methane fermentation tank, but the fermentation residue that is extracted from the methane fermentation tank and returned to the methane fermentation tank as return sludge is removed outside the methane fermentation tank. It is preferable to mix with an aerobic fermentation intermediate.

本発明では好気処理工程で有機性廃棄物が好気発酵されることにより、好気発酵槽から取り出される好気発酵中間物は60〜80℃程度となっている。このため、本発明ではメタン発酵原料を加温することなく、メタン発酵槽の槽内を45〜60℃に維持して(4)記載のように高温メタン発酵を行うことができる。高温メタン発酵を行う場合、メタン発酵槽から引き抜かれる発酵残渣は50℃程度であることから、好気発酵中間物と発酵残渣とを質量比で1:2〜20で混合してメタン発酵を行うことが好ましい。   In the present invention, the organic waste is aerobically fermented in the aerobic treatment step, so that the aerobic fermentation intermediate taken out from the aerobic fermentation tank is about 60 to 80 ° C. For this reason, in this invention, the inside of the tank of a methane fermentation tank can be maintained at 45-60 degreeC, without heating a methane fermentation raw material, and high temperature methane fermentation can be performed as described in (4). When performing high temperature methane fermentation, since the fermentation residue withdrawn from the methane fermentation tank is about 50 ° C., the aerobic fermentation intermediate and the fermentation residue are mixed at a mass ratio of 1: 2 to 20 to perform methane fermentation. It is preferable.

本発明に係る有機性廃棄物の処理方法は、酸素含有ガス供給手段を備える好気発酵槽と、嫌気的条件を維持できるメタン発酵槽とを備える有機性廃棄物の処理装置を用いて実施できる。本発明においては、特に、好気発酵槽は分解可能な有機性廃棄物の全量が好気発酵される前に槽外に取り出されるよう、構成する。   The organic waste processing method according to the present invention can be carried out using an organic waste processing apparatus including an aerobic fermentation tank provided with oxygen-containing gas supply means and a methane fermentation tank capable of maintaining anaerobic conditions. . In the present invention, in particular, the aerobic fermenter is configured so that the entire amount of decomposable organic waste is taken out of the tank before being aerobically fermented.

すなわち、好気発酵槽における有機性廃棄物の滞留日数(発酵日数)は、好気発酵槽容積、および有機性廃棄物の種類等に応じて3〜40日程度であるが、本発明では有機性廃棄物の一部のみを好気的に分解させるため、有機性廃棄物のほぼ全量を好気的に分解させる場合に比して短い。このため好気発酵槽は、(5)に記載のように有機性廃棄物の一部のみが好気的に分解され、残部、例えば有機性廃棄物の半分以上は分解されない状態で排出される容量となるよう設計することが好ましい。   That is, the organic waste stay days (fermentation days) in the aerobic fermenter is about 3 to 40 days depending on the aerobic fermenter volume, the type of organic waste, and the like. Since only a part of the organic waste is decomposed aerobically, it is shorter than the case where almost all the organic waste is decomposed aerobically. Therefore, in the aerobic fermenter, only a part of the organic waste is aerobically decomposed as described in (5), and the remaining part, for example, more than half of the organic waste is discharged without being decomposed. It is preferable to design to have a capacity.

本発明では、有機性廃棄物をメタン発酵させる前に、有機性廃棄物の一部を好気的に分解させることにより、メタン発酵工程におけるアンモニア阻害を防止する。この作用機序の詳細は明らかではないが、有機性廃棄物の一部のみを好気分解させることで、有機性廃棄物に含まれる有機態窒素の一部が好気性微生物に取り込まれ、好気性微生物に固定されることにより、メタン発酵時のアンモニア阻害が防止できると推察される。   In this invention, before carrying out methane fermentation of organic waste, the ammonia inhibition in a methane fermentation process is prevented by aerobically decomposing a part of organic waste. The details of this mechanism of action are not clear, but by aerobically decomposing only a portion of the organic waste, a portion of the organic nitrogen contained in the organic waste is taken up by the aerobic microorganism. It is presumed that ammonia inhibition during methane fermentation can be prevented by fixing to aerobic microorganisms.

すなわち、好気処理工程では、好気発酵槽に導入された有機性廃棄物の一部が好気性微生物の代謝活動により無機化されて二酸化炭素、水、およびアンモニアガス等が生成されるとともに好気性微生物が増殖する。好気性微生物はC/N比が4〜5程度で窒素含有比が高く、特に好熱性細菌の細胞質内にはグルタミン酸脱水素酵素(GDH)が多量に含まれる。かかる微生物は、キチン質等の生物分解が困難な細胞壁を有するため、微生物体に取り込まれた窒素はメタン発酵工程で分解されにくい。このため、好気処理工程で有機性廃棄物の一部、例えば30質量%程度のみを好気分解させることで有機性廃棄物に含まれる有機態窒素の一部が菌体に保持され、メタン発酵工程でのアンモニアの生成量を減少させると考えられる。   That is, in the aerobic treatment process, a part of the organic waste introduced into the aerobic fermenter is mineralized by the metabolic activity of aerobic microorganisms to generate carbon dioxide, water, ammonia gas, and the like. Aerobic microorganisms grow. Aerobic microorganisms have a C / N ratio of about 4 to 5 and a high nitrogen content ratio. Particularly, a large amount of glutamate dehydrogenase (GDH) is contained in the cytoplasm of thermophilic bacteria. Since such microorganisms have cell walls that are difficult to biodegrade, such as chitin, nitrogen incorporated in the microorganisms is difficult to be decomposed in the methane fermentation process. For this reason, a part of the organic waste, for example, about 30% by mass is aerobically decomposed in the aerobic treatment process, so that a part of the organic nitrogen contained in the organic waste is retained in the microbial cells, and methane This is thought to reduce the amount of ammonia produced in the fermentation process.

このように本発明によれば、有機性廃棄物の一部を好気発酵により菌体に転換することで、メタン発酵工程におけるアンモニア阻害を抑制できる。また、好気処理工程で有機性廃棄物を好気発酵させることで有機性廃棄物の温度が上昇するため、メタン発酵槽に投入する発酵原料にスチームを吹き込んで加温することなく、高温メタン発酵することができる。このため、発酵原料を加温するための設備および運転コストを削減できる。さらに、従来であれば、加温用のスチーム吹込みにより発酵原料の含水率が10質量%程度増大するため、メタン発酵槽内の固形物濃度の低下、および発酵残渣の含水率が増大する問題があったが、本発明によればかかる問題を回避できる。加えて、本発明によれば、固形状低C/N有機性廃棄物をC/N比の高い他の有機性廃棄物と混合することなくメタン発酵させることができるため、処理装置の大型化を回避できる。   Thus, according to this invention, ammonia inhibition in a methane fermentation process can be suppressed by converting a part of organic waste into a microbial cell by aerobic fermentation. In addition, since the temperature of organic waste rises by aerobic fermentation of organic waste in the aerobic treatment process, high-temperature methane is not heated by blowing steam into the fermentation raw material to be put into the methane fermentation tank. Can be fermented. For this reason, the equipment for heating a fermentation raw material and an operating cost can be reduced. Furthermore, conventionally, since the moisture content of the fermentation raw material is increased by about 10% by blowing steam for heating, there is a problem in that the solid content in the methane fermentation tank is decreased and the moisture content of the fermentation residue is increased. However, according to the present invention, such a problem can be avoided. In addition, according to the present invention, solid low C / N organic waste can be fermented with methane without being mixed with other organic waste having a high C / N ratio. Can be avoided.

以下、本発明について図面を用いて詳細に説明する。図1は、本発明の一実施形態に係る有機性廃棄物の処理装置11の模式図である。処理装置11は、好気発酵槽21、混合装置23、およびメタン発酵槽25を備える。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of an organic waste processing apparatus 11 according to an embodiment of the present invention. The processing apparatus 11 includes an aerobic fermentation tank 21, a mixing apparatus 23, and a methane fermentation tank 25.

好気発酵槽21は、酸素含有ガスとしての空気を吹き込む酸素含有ガス供給手段である通気ファン22と、アンモニアを含む排気ガスを処理する脱臭装置24と、を備える。好気発酵槽21は、移送路31を介して混合装置23と接続されている。混合装置23は、導入路33および汚泥返送路36を介してメタン発酵槽25と接続されており、メタン発酵槽25から排出される発酵残渣の一部は、乾式メタン汚泥を含む返送汚泥として混合装置23に送られる。混合装置23では、移送路31を介して好気発酵槽21から送られた好気発酵中間物と、汚泥返送路36を介してメタン発酵槽25から返送された返送汚泥とが混合され、混合物が導入路33を介してメタン発酵槽25に導入される。   The aerobic fermenter 21 includes an aeration fan 22 that is an oxygen-containing gas supply unit that blows in air as an oxygen-containing gas, and a deodorizing device 24 that processes exhaust gas containing ammonia. The aerobic fermentation tank 21 is connected to the mixing device 23 via the transfer path 31. The mixing device 23 is connected to the methane fermentation tank 25 via the introduction path 33 and the sludge return path 36, and a part of the fermentation residue discharged from the methane fermentation tank 25 is mixed as return sludge containing dry methane sludge. Sent to the device 23. In the mixing device 23, the aerobic fermentation intermediate sent from the aerobic fermentation tank 21 via the transfer path 31 and the return sludge returned from the methane fermentation tank 25 via the sludge return path 36 are mixed, and the mixture is mixed. Is introduced into the methane fermentation tank 25 via the introduction path 33.

このように、メタン発酵槽25外で乾式メタン汚泥と有機性廃棄物とを混合する構成にすれば、TS濃度が30〜70質量%程度の固形物であっても、希釈水を加えることなく乾式メタン汚泥と混合できる。また、メタン発酵槽25内を攪拌する必要がないため、メタン発酵槽25内を嫌気的条件に維持することも容易となる。ただし、本発明は、メタン発酵槽25の内部に攪拌手段を設けることにより、メタン発酵槽25内部で乾式メタン汚泥を発酵原料と混合する方法を排除しない。また、汚泥返送路36の一端縁は、混合装置23とメタン発酵槽25との間に接続してもよい。   Thus, if it is set as the structure which mixes dry-type methane sludge and organic waste outside the methane fermentation tank 25, even if it is a solid substance whose TS density | concentration is about 30-70 mass%, without adding dilution water. Can be mixed with dry methane sludge. Moreover, since it is not necessary to stir the inside of the methane fermentation tank 25, it becomes easy to maintain the inside of the methane fermentation tank 25 under anaerobic conditions. However, the present invention does not exclude a method of mixing dry methane sludge with fermentation raw materials inside the methane fermentation tank 25 by providing a stirring means inside the methane fermentation tank 25. Also, one end edge of the sludge return path 36 may be connected between the mixing device 23 and the methane fermentation tank 25.

メタン発酵槽25には、排泥路35とガス路37とがさらに接続されており、メタン発酵槽25内でメタン発酵された槽内物(乾式メタン汚泥と好気発酵中間物のメタン発酵物)は、発酵残渣として排泥路35から取り出される。排泥路35の途中には、汚泥返送路36が接続されており、発酵残渣の一部が返送汚泥として返送される。返送汚泥として利用されない発酵残渣は、堆肥および炭化物等を製造する原料として利用してもよく、かかる場合は、排泥路35を堆肥化装置、炭化装置のいずれか一方または両方と接続すればよい。   The methane fermentation tank 25 is further connected to a waste mud passage 35 and a gas passage 37, and the contents in the tank subjected to methane fermentation in the methane fermentation tank 25 (a methane fermentation product of dry methane sludge and an aerobic fermentation intermediate) ) Is taken out from the mud passage 35 as a fermentation residue. A sludge return path 36 is connected in the middle of the waste mud path 35, and a part of the fermentation residue is returned as return sludge. The fermentation residue that is not used as return sludge may be used as a raw material for producing compost, carbide, etc. In such a case, the waste mud passage 35 may be connected to one or both of a composting device and a carbonizing device. .

ガス路37は、メタンガスを精製するガス精製装置27と接続されている。ガス精製装置27はガスタンクGと接続されており、精製されたメタンガスがガスタンクGに貯留される。   The gas path 37 is connected to a gas purification device 27 that purifies methane gas. The gas purifier 27 is connected to the gas tank G, and the purified methane gas is stored in the gas tank G.

なお、処理装置11は45〜60℃の高温メタン発酵を行う装置として構成されているが、混合装置23は加温手段を備えていない。本発明では、好気発酵槽21で好気発酵され、60〜80℃程度に昇温した好気発酵中間物をメタン発酵槽25の発酵原料とするため、メタン発酵槽25への導入物に対する加温は不要となるためである。   In addition, although the processing apparatus 11 is comprised as an apparatus which performs 45-60 degreeC high temperature methane fermentation, the mixing apparatus 23 is not provided with the heating means. In the present invention, since the aerobic fermentation intermediate that has been aerobically fermented in the aerobic fermenter 21 and heated to about 60 to 80 ° C. is used as a fermentation raw material of the methane fermenter 25, This is because heating is unnecessary.

すなわち、従来であれば加温のためにメタン発酵槽25へ導入する有機性廃棄物に対して10質量%程度のスチームが吹き込まれ、TS濃度の低下を招くが、本発明ではスチームの吹き込みによる加温が不要であるため、メタン発酵槽25槽内物のTS濃度の低下を防止してメタンガスの収率を向上させることができる。また、メタン発酵槽25から排出される発酵残渣の含水率を低下させることができるため、発酵残渣の発生量を低減し、発酵残渣を堆肥等の原料として使用する場合に発酵残渣の水分を蒸発させるために必要なエネルギー量も低減できる。   That is, conventionally, about 10% by mass of steam is blown into the organic waste introduced into the methane fermentation tank 25 for heating, which causes a decrease in the TS concentration. Since heating is not required, it is possible to improve the yield of methane gas by preventing a decrease in TS concentration in the 25 methane fermentation tanks. Moreover, since the moisture content of the fermentation residue discharged | emitted from the methane fermenter 25 can be reduced, the generation amount of a fermentation residue is reduced and the moisture of a fermentation residue is evaporated when using a fermentation residue as raw materials, such as compost. It is also possible to reduce the amount of energy required to make it happen.

次に、上記処理装置11を用いた有機性廃棄物の処理方法について説明する。本発明では、C/N比が20以下、TS濃度が30質量%以上の固形状低C/N有機性廃棄物を原料とする。   Next, the organic waste processing method using the processing apparatus 11 will be described. In the present invention, a solid low C / N organic waste having a C / N ratio of 20 or less and a TS concentration of 30% by mass or more is used as a raw material.

まず、メタン発酵工程に先立ち、有機性廃棄物を好気発酵槽21に導入して好気処理工程で処理する。好気処理工程では、好気発酵槽21に通気ファン22から空気を供給しながら有機性廃棄物の一部が好気分解されるまで、例えば有機性廃棄物の質量が10〜30質量%(乾重)減少するまで好気的条件下での生物分解を行う。空気の吹き込みに伴い好気発酵槽21から排出される排ガスは、好ましくは本実施形態のように脱臭装置24により処理する。また、好気発酵槽21内には必要に応じて攪拌機(図示せず)等を設け、好気発酵槽21内全体を好気的条件とすることが好ましい。   First, prior to the methane fermentation process, organic waste is introduced into the aerobic fermentation tank 21 and processed in the aerobic treatment process. In the aerobic treatment process, for example, the mass of the organic waste is 10 to 30% by mass until the part of the organic waste is aerobically decomposed while supplying air from the ventilation fan 22 to the aerobic fermenter 21. Biodegradation under aerobic conditions until dry weight decreases. The exhaust gas discharged from the aerobic fermentation tank 21 as air is blown is preferably processed by the deodorizing device 24 as in the present embodiment. Moreover, it is preferable to provide a stirrer (not shown) or the like in the aerobic fermentation tank 21 as necessary, and to make the entire aerobic fermentation tank 21 an aerobic condition.

好気発酵槽21内は、60〜80℃に維持することが好ましく、通気ファン22からの通気量を必要に応じて調整して温度低下を防止することが好ましい。また、好気処理工程の後段に設けたメタン発酵工程で発生させるメタンガスの収量低下を防止するため、好気処理工程では有機性廃棄物が過度に好気分解される前に好気発酵槽21の槽内物を取り出し、移送路31から混合装置23へ供給する。   The inside of the aerobic fermentation tank 21 is preferably maintained at 60 to 80 ° C., and it is preferable to adjust the amount of ventilation from the ventilation fan 22 as necessary to prevent a temperature drop. Moreover, in order to prevent the yield reduction of the methane gas generated in the methane fermentation process provided in the latter stage of the aerobic treatment process, the aerobic fermentation tank 21 before the organic waste is excessively aerobically decomposed in the aerobic treatment process. The product in the tank is taken out and supplied from the transfer path 31 to the mixing device 23.

混合装置23では、メタン発酵槽25から返送された50℃程度の返送汚泥と、好気発酵槽21から供給された好気発酵中間物とを混合し、この混合物をメタン発酵原料として、メタン発酵槽25に供給する。   In the mixing apparatus 23, the returned sludge of about 50 ° C. returned from the methane fermentation tank 25 and the aerobic fermentation intermediate supplied from the aerobic fermentation tank 21 are mixed, and this mixture is used as a methane fermentation raw material to produce methane fermentation. Supply to tank 25.

メタン発酵槽25には、予め立ち上げ工程等を経て既存装置のメタン汚泥を種汚泥として馴養して得られた乾式メタンが保持されており、嫌気的条件として混合物をメタン発酵させる。本発明では、好気処理工程における好気発酵の過程で昇温された好気発酵中間物がメタン発酵原料として用いられることから、混合装置23に加温手段を設けることなくメタン発酵槽25において槽内温度45〜60℃程度の高温メタン発酵を行うことができる。メタン発酵槽25に導入された混合物は、乾式メタン汚泥の作用により分解されながら、新たな混合物の投入に伴いメタン発酵槽25下部に移動し、発酵残渣として排泥路35から取り出される。   The methane fermentation tank 25 holds dry methane obtained by acclimatizing methane sludge of an existing apparatus as seed sludge through a startup process or the like in advance, and the mixture is subjected to methane fermentation as anaerobic conditions. In the present invention, since the aerobic fermentation intermediate heated in the process of aerobic fermentation in the aerobic treatment step is used as a methane fermentation raw material, in the methane fermentation tank 25 without providing the mixing device 23 with a heating means. High-temperature methane fermentation can be performed at a tank temperature of about 45-60 ° C. The mixture introduced into the methane fermentation tank 25 is moved to the lower part of the methane fermentation tank 25 with the introduction of a new mixture while being decomposed by the action of the dry methane sludge, and is taken out from the mud passage 35 as a fermentation residue.

メタン発酵槽25からの発酵残渣の一日あたりの引き抜き量は、槽内物の0.1〜1倍、特に0.2〜0.5倍とすることが好ましい。また、引き抜いた発酵残渣は、一部を循環比が1〜6回/週となるように汚泥返送路36を介してメタン発酵槽25へ循環させることが好ましい。なお、返送汚泥は発酵原料と混合することなく、直接、メタン発酵槽25へ循環させてもよい。しかし、返送汚泥と発酵原料とをメタン発酵槽25外で混合することにより、TS濃度が高い発酵原料中にメタン細菌を容易に分散させることができ、またメタン発酵槽25内のメタン発酵条件の撹乱が防止できるため、返送汚泥は混合装置23に返送することが好ましい。   The extraction amount of the fermentation residue from the methane fermentation tank 25 per day is preferably 0.1 to 1 times, particularly 0.2 to 0.5 times that in the tank. Moreover, it is preferable to circulate a part of the extracted fermentation residue to the methane fermentation tank 25 via the sludge return path 36 so that the circulation ratio is 1 to 6 times / week. The returned sludge may be directly circulated to the methane fermentation tank 25 without being mixed with the fermentation raw material. However, by mixing the returned sludge and the fermentation raw material outside the methane fermentation tank 25, methane bacteria can be easily dispersed in the fermentation raw material having a high TS concentration, and the methane fermentation conditions in the methane fermentation tank 25 can be reduced. Since disturbance can be prevented, the returned sludge is preferably returned to the mixing device 23.

メタン発酵槽25から取り出された発酵残渣のうち、返送汚泥を除いた余剰分は、排泥路35から堆肥化装置等に供給され、堆肥等の原料とすることができる。また、メタン発酵槽25内で有機性廃棄物がメタン発酵されることにより発生するメタンガスは、ガス路37からメタン発酵槽25外へ取り出し、エネルギー源として利用できる。   Of the fermentation residue taken out from the methane fermenter 25, the surplus excluding the return sludge is supplied from the mud passage 35 to a composting device or the like, and can be used as a raw material for compost or the like. Further, methane gas generated by methane fermentation of organic waste in the methane fermentation tank 25 can be taken out from the gas passage 37 to the outside of the methane fermentation tank 25 and used as an energy source.

[実施例1]
実施例1として、図1に示す処理装置11を用い、固形状低C/N有機性廃棄物として鶏糞を処理した。鶏糞は含水率が70質量%、有機物濃度78質量%(乾重)、全窒素(T−N)濃度28,000mg/kg(湿重)、アンモニア濃度4,000mg/kg(湿重)、C/N比4.2であった。
[Example 1]
As Example 1, chicken manure was treated as a solid low C / N organic waste using the treatment apparatus 11 shown in FIG. Chicken manure has a moisture content of 70% by weight, organic matter concentration of 78% by weight (dry weight), total nitrogen (TN) concentration of 28,000 mg / kg (wet weight), ammonia concentration of 4,000 mg / kg (wet weight), C The / N ratio was 4.2.

鶏糞は、好気発酵槽21で好気処理し、得られた好気発酵中間物を好気発酵槽21から取り出した。好気発酵槽21における好気処理の条件は以下のとおりであり、かかる好気処理工程で13,607kg/日(湿重)の好気発酵中間物が得られ、84.15kg/日のアンモニアが気相に揮散した。   The chicken manure was subjected to aerobic treatment in the aerobic fermentation tank 21, and the obtained aerobic fermentation intermediate was taken out from the aerobic fermentation tank 21. The conditions of the aerobic treatment in the aerobic fermenter 21 are as follows, and 13,607 kg / day (wet weight) of the aerobic fermentation intermediate is obtained in this aerobic treatment step, and 84.15 kg / day of ammonia. Volatilized into the gas phase.

[好気処理条件]
槽容積 ;312m
好気処理日数 ;10日
有機物(VS)分解率 ;24質量%
有機性廃棄物投入量 ;25,000kg/日
[Aerobic treatment conditions]
Tank volume; 312m 3
Aerobic treatment days: 10-day organic matter (VS) decomposition rate: 24% by mass
Organic waste input amount: 25,000 kg / day

上述した好気処理工程で得られた好気発酵中間物は、含水率51.8質量%、有機物濃度62.1質量%(乾重)、T−N濃度22,000mg/kg(湿重)、アンモニア濃度1,500mg/kg(湿重)、C/N比68、温度65℃であった。   The aerobic fermentation intermediate obtained in the aerobic treatment step described above has a water content of 51.8% by mass, an organic substance concentration of 62.1% by mass (dry weight), and a TN concentration of 22,000 mg / kg (wet weight). The ammonia concentration was 1,500 mg / kg (wet weight), the C / N ratio was 68, and the temperature was 65 ° C.

好気発酵中間物は、移送路31を介して全量を混合装置23に送り、混合装置23でメタン発酵槽25から返送された返送汚泥(乾式メタン汚泥)と混合した後、メタン発酵槽25に供給してメタン発酵させた。メタン発酵槽25におけるメタン発酵の条件を以下に示す。   The aerobic fermentation intermediate is sent to the mixing device 23 through the transfer path 31 and mixed with the return sludge (dry methane sludge) returned from the methane fermentation tank 25 by the mixing apparatus 23 and then into the methane fermentation tank 25. Feed and ferment methane. The conditions of methane fermentation in the methane fermentation tank 25 are shown below.

[メタン発酵条件]
槽容積 ;462m
メタン発酵日数 ;34日
有機物(VS)分解率 ;45質量%
好気発酵中間物投入量 ;13,607kg/日
返送汚泥量 ;130,000kg/日
槽内温度 ;50〜55℃
[Methane fermentation conditions]
Tank volume; 462 m 3
Methane fermentation days: 34 days organic matter (VS) decomposition rate: 45% by mass
Aerobic fermentation intermediate input amount; 13,607 kg / day return sludge amount; 130,000 kg / day temperature in tank; 50-55 ° C.

上記条件でのメタン発酵により得られたメタンガス量は1,780Nmであり、11,800kg/日の発酵残渣がメタン発酵槽25から取り出された。発酵残渣は含水率60質量%、アンモニウム(NH )濃度2,000mg/kg(湿重)、温度52℃で、処理装置11を用いた処理での固形状低C/N有機施廃棄物全体の減量率は52.8質量%となった。また、実施例1では、メタン発酵槽25へ投入するメタン発酵原料へのスチームの吹き込み、およびメタン発酵槽25から取り出される発酵残渣の乾燥は不要であったため、メタン発酵槽25から取り出されたメタンガスの全量がガスタンクGに貯留された。なお、実施例1では90日間の処理期間中、アンモニア阻害は発生しなかった。 The amount of methane gas obtained by methane fermentation under the above conditions was 1,780 Nm 3 , and 11,800 kg / day of fermentation residue was taken out from the methane fermentation tank 25. Fermentation residue is 60% by mass water content, ammonium (NH 4 + ) concentration of 2,000 mg / kg (wet weight), temperature of 52 ° C., solid low C / N organic waste in treatment using treatment device 11 The overall weight loss rate was 52.8% by mass. Moreover, in Example 1, since the blowing of the steam to the methane fermentation raw material thrown into the methane fermentation tank 25 and the drying of the fermentation residue taken out from the methane fermentation tank 25 were unnecessary, the methane gas taken out from the methane fermentation tank 25 Was stored in the gas tank G. In Example 1, ammonia inhibition did not occur during the treatment period of 90 days.

[比較例1]
比較例1として、図2に示す従来フローに係る処理装置12を用いた実験を行った。処理装置12は以下の点で処理装置11と異なる。まず、処理装置12は、好気発酵槽を備えておらず、メタン発酵槽25に蒸気発生器26が接続されることで混合装置23にスチームが吹き込まれるように構成されている。また、処理装置12には、メタン発酵槽25から排出される発酵残渣の含水率を低下させる乾燥手段28、および発酵残渣を好気発酵させて堆肥化する堆肥化装置29Aが設けられている。以下、処理装置12による固形状低C/N有機性廃棄物(鶏糞)の処理工程について説明する。
[Comparative Example 1]
As Comparative Example 1, an experiment using the processing apparatus 12 according to the conventional flow shown in FIG. The processing device 12 is different from the processing device 11 in the following points. First, the processing apparatus 12 does not include an aerobic fermentation tank, and is configured such that steam is blown into the mixing apparatus 23 by connecting a steam generator 26 to the methane fermentation tank 25. Further, the processing device 12 is provided with a drying means 28 for reducing the moisture content of the fermentation residue discharged from the methane fermentation tank 25, and a composting device 29A for fermenting the fermentation residue aerobically and composting. Hereinafter, the process of the solid low C / N organic waste (chicken manure) by the processing apparatus 12 will be described.

処理装置12では、鶏糞はこれを一時的に貯留する貯留槽20から混合装置23に送られる。混合装置23には、蒸気発生器26からスチームが供給され、スチームの吹込みにより加温された鶏糞が固形状低C/N有機性廃棄物としてメタン発酵槽25に送られる。メタン発酵槽25には、混合装置23に供給するスチームを発生させるため、メタン発酵槽25から取り出されたメタンガスをエネルギー源として蒸気を発生させる蒸気発生器26が接続されている。さらに、メタンガスをエネルギー源として温風を発生させ、この温風を発酵残渣に吹き込む乾燥手段28が堆肥化装置29Aに接続されている。   In the processing device 12, the chicken manure is sent to the mixing device 23 from the storage tank 20 that temporarily stores it. Steam is supplied from the steam generator 26 to the mixing device 23, and the chicken manure heated by the blowing of steam is sent to the methane fermentation tank 25 as a solid low C / N organic waste. In order to generate steam to be supplied to the mixing device 23, a steam generator 26 is connected to the methane fermentation tank 25. The steam generator 26 generates steam using methane gas extracted from the methane fermentation tank 25 as an energy source. Furthermore, drying means 28 for generating warm air using methane gas as an energy source and blowing this warm air into the fermentation residue is connected to the composting device 29A.

かかる処理装置12を用いて、実施例1に用いたものと同じ性状の鶏糞を処理した。メタン発酵槽25の処理条件は以下とした。   Using this processing apparatus 12, chicken feces having the same properties as those used in Example 1 were processed. The processing conditions of the methane fermentation tank 25 were as follows.

[メタン発酵条件]
槽容積 ;593m
メタン発酵日数 ;24日
有機物(VS)分解率 ;45質量%
有機性廃棄物物投入量 ;25,000kg/日
返送汚泥量 ;250,000kg/日
槽内温度 ;52℃
[Methane fermentation conditions]
Tank volume; 593m 3
Methane fermentation days: 24 days organic matter (VS) decomposition rate: 45% by mass
Organic waste input amount; 25,000 kg / day return sludge amount; 250,000 kg / day temperature in tank; 52 ° C.

上記条件でのメタン発酵により得られたメタンガス量は2,300Nmであり、25,100kg/日の発酵残渣がメタン発酵槽25から取り出された。発酵残渣は含水率79.4質量%、アンモニウム(NH )濃度は処理開始後20日で2,500mg/kg(湿重)を超え、アンモニア阻害により処理の継続が不可能になった。 The amount of methane gas obtained by methane fermentation under the above conditions was 2,300 Nm 3 , and 25,100 kg / day of fermentation residue was taken out from the methane fermentation tank 25. The fermentation residue had a moisture content of 79.4% by mass, and the ammonium (NH 4 + ) concentration exceeded 2,500 mg / kg (wet weight) 20 days after the start of the treatment, and the treatment could not be continued due to ammonia inhibition.

処理を停止するまでの実験期間中、発酵残渣は返送汚泥として混合装置23へ返送される分を除いて、堆肥化装置29Aを用いて好気発酵させて堆肥化した。堆肥化の処理条件を以下に示す。   During the experiment period until the treatment was stopped, the fermentation residue was composted by aerobic fermentation using the composting device 29A except for the portion returned to the mixing device 23 as return sludge. The processing conditions for composting are shown below.

[堆肥化処理条件]
槽容積 ;542m
好気処理日数 ;14日
有機物(VS)分解率 ;10質量%
発酵残渣投入量 ;25,100kg/日
温度 ;60℃
[Composting conditions]
Tank volume; 542 m 3
Aerobic treatment days: 14 days organic matter (VS) decomposition rate: 10% by mass
Fermentation residue input; 25,100 kg / day temperature; 60 ° C

上記条件での堆肥化処理により得られた堆肥は含水率が60質量%で、得られた堆肥の量は14,164kg/日となり、処理装置12を用いた処理での固形状低C/N有機施廃棄物全体の減量率は43.3質量%となった。また、メタン発酵槽25から取り出されたメタンガスの収量は2,300Nmであったが、このうち、460Nmが蒸気発生器26でのスチーム発生に使用され、1,172Nmが発酵残渣を乾燥させるための温風発生に使用された。この結果、ガスタンクGに貯留されたメタンガス量は668Nmとなった。 The compost obtained by the composting treatment under the above conditions has a moisture content of 60% by mass, and the amount of compost obtained is 14,164 kg / day, which is a solid low C / N in the treatment using the treatment device 12 The weight loss rate of the whole organic waste was 43.3% by mass. Further, yield of methane gas that is removed from the methane fermentation tank 25 was the 2,300Nm 3, these, 460 nm 3 is used for steam generation in the steam generator 26, 1,172Nm 3 is dried fermentation residue It was used to generate warm air for As a result, the amount of methane gas stored in the gas tank G was 668 Nm 3 .

[比較例2]
比較例2として、図2の処理装置12を用い、実施例1で用いた鶏糞に、紙を混合した混合物を処理した。紙は含水率が15質量%、有機物濃度25.2質量%(乾重)、T−N濃度1,900mg/kg(湿重)、アンモニア濃度0mg/kg(湿重)であった。鶏糞は25,000kg/日、紙は50,000kg/日の処理量で処理されるように混合し、さらに60,000kg/日の希釈水で紙と鶏糞との混合物を希釈した。
[Comparative Example 2]
As the comparative example 2, the processing apparatus 12 of FIG. 2 was used, and the mixture which mixed the paper with the chicken manure used in Example 1 was processed. The paper had a water content of 15% by mass, an organic substance concentration of 25.2% by mass (dry weight), a TN concentration of 1,900 mg / kg (wet weight), and an ammonia concentration of 0 mg / kg (wet weight). Chicken manure was mixed so as to be treated at a throughput of 25,000 kg / day and paper was treated at a throughput of 50,000 kg / day, and the mixture of paper and chicken manure was further diluted with 60,000 kg / day of diluted water.

混合装置23からメタン発酵槽25に供給された鶏糞と紙との混合物の希釈物(メタン発酵原料)はスチームの吹込みによる加温処理後の含水率が66質量%、有機物濃度86質量%(乾重)、T−N濃度6,800mg/kg(湿重)、アンモニウム(NH )濃度700mg/kg(湿重)、C/N比26、および温度55℃あった。以下に比較例2におけるメタン発酵処理条件を示す。 Dilution of the mixture of chicken manure and paper (methane fermentation raw material) supplied from the mixing device 23 to the methane fermentation tank 25 has a moisture content of 66 mass% after heating by steam blowing, and an organic matter concentration of 86 mass% ( Dry weight), TN concentration 6,800 mg / kg (wet weight), ammonium (NH 4 + ) concentration 700 mg / kg (wet weight), C / N ratio 26, and temperature 55 ° C. The methane fermentation treatment conditions in Comparative Example 2 are shown below.

[メタン発酵条件]
槽容積 ;4,958m
メタン発酵日数 ;36日
有機物(VS)分解率 ;48質量%
有機性廃棄物物投入量 ;135,000kg/日
返送汚泥量 ;810,000kg/日
槽内温度 ;52℃
[Methane fermentation conditions]
Tank volume; 4,958m 3
Methane fermentation days: 36 days organic matter (VS) decomposition rate: 48% by mass
Input amount of organic waste; 135,000 kg / day return sludge amount; 810,000 kg / day temperature in tank; 52 ° C.

上記条件でのメタン発酵により得られたメタンガス量は19,300Nmであり、128,000kg/日の発酵残渣がメタン発酵槽25から取り出された。発酵残渣は含水率76.2質量%、アンモニウム(NH )濃度は2,000mg/kgで、14日間の処理期間中、アンモニア阻害は生じなかった。 The amount of methane gas obtained by methane fermentation under the above conditions was 19,300 Nm 3 , and 128,000 kg / day of fermentation residue was taken out from the methane fermentation tank 25. The fermentation residue had a moisture content of 76.2% by mass, an ammonium (NH 4 + ) concentration of 2,000 mg / kg, and no ammonia inhibition occurred during the 14-day treatment period.

実験期間中、発酵残渣は返送汚泥として混合装置23へ返送される分を除いて、堆肥化装置29Aを用いて好気発酵させて堆肥化した。堆肥化の処理条件を以下に示す。   During the experiment period, the fermentation residue was composted by aerobic fermentation using the composting device 29A except for the portion returned to the mixing device 23 as return sludge. The processing conditions for composting are shown below.

[堆肥化処理条件]
槽容積 ;2,286m
好気処理日数 ;14日
有機物(VS)分解率 ;10質量%
発酵残渣投入量 ;810,000kg/日
槽内温度 ;60℃
[Composting conditions]
Tank volume; 2,286 m 3
Aerobic treatment days: 14 days organic matter (VS) decomposition rate: 10% by mass
Fermentation residue input amount: 810,000 kg / day temperature in the tank; 60 ° C

上記条件での堆肥化処理により得られた堆肥は含水率が60質量%で、得られた堆肥の量は124,811kg/日となった。比較例2では、固形状低C/N有機性廃棄物である鶏糞にC/N比が高い紙を加えて処理したため、発酵残渣を堆肥化して減量してもなお、処理装置12に投入した鶏糞の量を上回る量の堆肥が発生した。この結果、固形状低C/N有機性廃棄物のみの減量率は−66.4質量%となった。また、メタン発酵槽25から取り出されたメタンガスの収量は19,300Nmであったが、このうち、2,390Nmが蒸気発生器26でのスチーム発生に使用され、5,443Nmが発酵残渣を乾燥させるための温風発生に使用された。この結果、ガスタンクGに貯留されたメタンガス量は11,467Nmとなった。 The compost obtained by the composting treatment under the above conditions had a moisture content of 60% by mass, and the amount of compost obtained was 124,811 kg / day. In Comparative Example 2, since the paper with a high C / N ratio was added to the chicken dung, which is a solid low C / N organic waste, and processed, the fermentation residue was composted and reduced in weight, but was still put into the processing device 12. The amount of compost exceeded the amount of chicken manure. As a result, the weight loss rate of only the solid low C / N organic waste was -66.4% by mass. The yield of methane gas taken out from the methane fermentation tank 25 was 19,300 Nm 3 , of which 2,390 Nm 3 was used for steam generation in the steam generator 26 and 5,443 Nm 3 was fermentation residue. It was used to generate hot air to dry the water. As a result, the amount of methane gas stored in the gas tank G was 11,467 Nm 3 .

表1に、実施例1、比較例1および比較例2について、メタン発酵槽25から取り出されたメタンガス量、ガスタンクGに貯留されたメタンガス量、固形状低C/N有機性廃棄物の減量率(湿重)、および処理装置全体の処理槽の合計容積を示す。   In Table 1, with respect to Example 1, Comparative Example 1 and Comparative Example 2, the amount of methane gas taken out from the methane fermentation tank 25, the amount of methane gas stored in the gas tank G, and the weight loss rate of solid low C / N organic waste (Wet weight) and the total volume of the processing tank of the entire processing apparatus are shown.

Figure 0004665693
Figure 0004665693

固形状低C/N有機性廃棄物を処理対象とした比較例1では、メタン発酵に先立ち好気発酵を行わなかった結果、アンモニア阻害が生じた。比較例2では、固形状低C/N有機性廃棄物にC/N比が高い紙を混合し、さらに希釈水を加えたため、アンモニア阻害は防止できたが、メタン発酵槽25に供給する発酵原料のTS濃度が低下し、発酵残渣の含水率が上昇した。また、比較例2では、固形状低C/N有機性廃棄物に加える紙等の他の有機性廃棄物を必要とし、処理装置の大型化を招いた。   In Comparative Example 1 in which solid low C / N organic waste was treated, ammonia inhibition occurred as a result of not performing aerobic fermentation prior to methane fermentation. In Comparative Example 2, the solid low C / N organic waste was mixed with paper having a high C / N ratio, and further diluted water was added, so that ammonia inhibition could be prevented, but the fermentation supplied to the methane fermentation tank 25. The TS concentration of the raw material decreased, and the moisture content of the fermentation residue increased. Moreover, in the comparative example 2, other organic wastes, such as paper added to a solid low C / N organic waste, are required, and the enlargement of the processing apparatus was caused.

一方、比較例1と同様に固形状低C/N有機性廃棄物を単独で処理した実施例1ではメタン発酵に先立ち、分解率24質量%で好気発酵を行うことにより、アンモニア阻害を防止できた。また、メタン発酵槽への供給するメタン発酵原料を加温するスチーム、および発酵残渣を乾燥させる温風が不要であることから、省エネルギーでの運転が可能となる。さらに、固形状低C/N有機性廃棄物に紙等を混合する必要がないため、C/N比調整用の有機性廃棄物を確保する必要がなく、処理装置を小型化できる。   On the other hand, in Example 1 in which solid low C / N organic waste was treated alone as in Comparative Example 1, ammonia inhibition was prevented by performing aerobic fermentation at a decomposition rate of 24% by mass prior to methane fermentation. did it. Further, since steam for heating the methane fermentation raw material supplied to the methane fermentation tank and hot air for drying the fermentation residue are unnecessary, it is possible to operate with energy saving. Furthermore, since it is not necessary to mix paper or the like with solid low C / N organic waste, it is not necessary to secure organic waste for adjusting the C / N ratio, and the processing apparatus can be downsized.

本発明は有機性廃棄物を原料としてメタンガスを生成するために用いることができる。   The present invention can be used to produce methane gas using organic waste as a raw material.

本発明の一実施形態に係る有機性廃棄物の処理装置を示す模式図である。It is a schematic diagram which shows the processing apparatus of the organic waste which concerns on one Embodiment of this invention. 従来技術に係る有機性廃棄物の処理装置を示す模式図である。It is a schematic diagram which shows the processing apparatus of the organic waste which concerns on a prior art.

符号の説明Explanation of symbols

11、12 処理装置
21 好気発酵槽
22 通気ファン(酸素含有ガス供給手段)
23 混合装置
24 脱臭装置
25 メタン発酵槽
27 ガス精製装置
31 移送路
33 導入路
35 排泥路
36 汚泥返送路
G ガスタンク
11, 12 Treatment device 21 Aerobic fermenter 22 Ventilation fan (oxygen-containing gas supply means)
23 Mixing device 24 Deodorizing device 25 Methane fermentation tank 27 Gas purification device 31 Transfer path 33 Introduction path 35 Drainage path 36 Sludge return path G Gas tank

Claims (5)

C/N比が20以下で全固形物濃度が30質量%以上の有機性廃棄物を好気的条件で好気発酵させることにより、前記有機性廃棄物の一部を好気性微生物に転換させた好気発酵中間物を得る好気処理工程と、
前記好気発酵中間物と、全固形物濃度15質量%以上の乾式メタン汚泥と、を混合して乾式メタン発酵させるメタン発酵工程と、を有する有機性廃棄物の処理方法。
By aerobically fermenting organic waste with a C / N ratio of 20 or less and a total solid concentration of 30% by mass or more under aerobic conditions, a part of the organic waste is converted into aerobic microorganisms. An aerobic treatment step for obtaining an aerobic fermentation intermediate;
A method for treating organic waste, comprising: a methane fermentation step in which the aerobic fermentation intermediate and dry methane sludge having a total solid concentration of 15% by mass or more are mixed and subjected to dry methane fermentation.
前記好気処理工程において、前記有機性廃棄物に含まれる有機物が70質量%以上、90質量%以下になるまで該有機性廃棄物を好気的条件で分解させる請求項1に記載の有機性廃棄物の処理方法。 The organic matter according to claim 1, wherein in the aerobic treatment step, the organic waste is decomposed under aerobic conditions until the organic matter contained in the organic waste becomes 70 mass% or more and 90 mass% or less. Waste disposal method. 前記好気処理工程において、前記好気発酵中間物の乾燥重量あたりの微生物濃度が105個/g以上109個/g以下の範囲となるまで前記有機性廃棄物を好気発酵させる請求項1または2に記載の有機性廃棄物の処理方法。 In the aerobic treatment step, the organic waste is subjected to aerobic fermentation until the microorganism concentration per dry weight of the aerobic fermentation intermediate is in the range of 105 / g to 109 / g. 2. The method for treating organic waste according to 2. 前記メタン発酵工程において、45〜60℃で高温乾式メタン発酵を行う請求項1から3のいずれかに記載の有機性廃棄物の処理方法。 The processing method of the organic waste in any one of Claim 1 to 3 which performs high temperature dry methane fermentation at 45-60 degreeC in the said methane fermentation process. C/N比が20以下で全固形物濃度30質量%以上の固形状の有機性廃棄物が導入され、前記有機性廃棄物を好気的条件で好気発酵させる、酸素含有ガス供給手段を備える好気発酵槽と、
前記好気発酵槽から取り出された好気発酵中間物が導入され、該好気発酵中間物と全固形物濃度15質量%以上の乾式メタン汚泥とが混合された状態で乾式メタン発酵が行われるメタン発酵槽と、を有し、
前記好気発酵槽は、前記有機性廃棄物に含まれる有機物が70質量%以上、90質量%以下になるまで該有機性廃棄物を分解させる容量とされている有機性廃棄物の処理装置。
An oxygen-containing gas supply means for introducing a solid organic waste having a C / N ratio of 20 or less and a total solids concentration of 30% by mass or more and aerobically fermenting the organic waste under aerobic conditions An aerobic fermenter, and
The aerobic fermentation intermediate taken out from the aerobic fermentation tank is introduced, and dry methane fermentation is performed in a state where the aerobic fermentation intermediate and dry methane sludge having a total solid concentration of 15% by mass or more are mixed. A methane fermentation tank,
The aerobic fermenter is an organic waste processing apparatus having a capacity for decomposing the organic waste until the organic waste contained in the organic waste reaches 70% by mass or more and 90% by mass or less.
JP2005289047A 2005-09-30 2005-09-30 Method and apparatus for treating organic waste Expired - Fee Related JP4665693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289047A JP4665693B2 (en) 2005-09-30 2005-09-30 Method and apparatus for treating organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289047A JP4665693B2 (en) 2005-09-30 2005-09-30 Method and apparatus for treating organic waste

Publications (2)

Publication Number Publication Date
JP2007098229A JP2007098229A (en) 2007-04-19
JP4665693B2 true JP4665693B2 (en) 2011-04-06

Family

ID=38025695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289047A Expired - Fee Related JP4665693B2 (en) 2005-09-30 2005-09-30 Method and apparatus for treating organic waste

Country Status (1)

Country Link
JP (1) JP4665693B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354504B2 (en) * 2007-08-28 2009-10-28 株式会社 ユーリカ エンジニアリング Fermenter for batch type dry methane fermentation and fermentation method
JP5006424B2 (en) * 2010-03-29 2012-08-22 メタウォーター株式会社 Methane fermentation treatment method
AT520801B1 (en) * 2017-11-17 2021-01-15 Georg Stimpfl Process for the utilization of biomass

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464848A (en) * 1977-10-13 1979-05-25 Union Carbide Corp Method of digesting aerobic and anaerobic combination sludge
JPH11309493A (en) * 1998-04-30 1999-11-09 Kubota Corp Dry methane fermentation method
JP2001327998A (en) * 2000-05-24 2001-11-27 Kurita Water Ind Ltd Organic sludge digesting method
JP2001347247A (en) * 2000-06-07 2001-12-18 Kurita Water Ind Ltd Dry methane fermentation method for organic waste
JP2002154887A (en) * 2000-11-09 2002-05-28 Yaichi Obara Treatment of raw material to be supplied to gaseous methane generator and compost manufacturing method
JP2002320949A (en) * 2001-04-27 2002-11-05 Kurita Water Ind Ltd Dry methane fermentation process of organic waste
JP2003039096A (en) * 2001-07-27 2003-02-12 Ebara Corp Method and apparatus for treating organic waste
JP2003053309A (en) * 2001-08-22 2003-02-25 National Institute Of Advanced Industrial & Technology Method of treating organic solid waste
JP2003094021A (en) * 2001-09-27 2003-04-02 Shimizu Corp Denitrification and methane fermentation system
JP2003164840A (en) * 2001-11-30 2003-06-10 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic matter
JP2004017024A (en) * 2002-06-20 2004-01-22 Kurita Water Ind Ltd Dry type methane fermentation method and dry type methane fermentation apparatus
JP2004024929A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Methane fermentation method and system for the same
JP2004188392A (en) * 2002-12-13 2004-07-08 Taisei Corp Pretreatment method of organic waste for dry methane fermentation
JP2007038057A (en) * 2005-08-01 2007-02-15 Shinzo Ito Dry type methane fermentation method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464848A (en) * 1977-10-13 1979-05-25 Union Carbide Corp Method of digesting aerobic and anaerobic combination sludge
JPH11309493A (en) * 1998-04-30 1999-11-09 Kubota Corp Dry methane fermentation method
JP2001327998A (en) * 2000-05-24 2001-11-27 Kurita Water Ind Ltd Organic sludge digesting method
JP2001347247A (en) * 2000-06-07 2001-12-18 Kurita Water Ind Ltd Dry methane fermentation method for organic waste
JP2002154887A (en) * 2000-11-09 2002-05-28 Yaichi Obara Treatment of raw material to be supplied to gaseous methane generator and compost manufacturing method
JP2002320949A (en) * 2001-04-27 2002-11-05 Kurita Water Ind Ltd Dry methane fermentation process of organic waste
JP2003039096A (en) * 2001-07-27 2003-02-12 Ebara Corp Method and apparatus for treating organic waste
JP2003053309A (en) * 2001-08-22 2003-02-25 National Institute Of Advanced Industrial & Technology Method of treating organic solid waste
JP2003094021A (en) * 2001-09-27 2003-04-02 Shimizu Corp Denitrification and methane fermentation system
JP2003164840A (en) * 2001-11-30 2003-06-10 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic matter
JP2004017024A (en) * 2002-06-20 2004-01-22 Kurita Water Ind Ltd Dry type methane fermentation method and dry type methane fermentation apparatus
JP2004024929A (en) * 2002-06-21 2004-01-29 Mitsubishi Heavy Ind Ltd Methane fermentation method and system for the same
JP2004188392A (en) * 2002-12-13 2004-07-08 Taisei Corp Pretreatment method of organic waste for dry methane fermentation
JP2007038057A (en) * 2005-08-01 2007-02-15 Shinzo Ito Dry type methane fermentation method

Also Published As

Publication number Publication date
JP2007098229A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
KR101793236B1 (en) Recycling system of organic waste
KR101626752B1 (en) Recycling System for anaerobic digestive fluid
JP6306818B2 (en) Improved digestion of biosolids in wastewater
Nie et al. Effects of lactic acid on modulating the ammonia emissions in co-composts of poultry litter with slaughter sludge
KR101565503B1 (en) Method for Liquid Fertilizer of livestock excretions using the Selective aeration
US6224646B1 (en) Waste treatment system
Wang et al. Thermophilic semi-continuous composting of kitchen waste: Performance evaluation and microbial community characteristics
JP4907123B2 (en) Organic waste processing method and processing system
JP4665693B2 (en) Method and apparatus for treating organic waste
JP3484634B2 (en) Sterilization / fermentation processing system
JP3417314B2 (en) Organic waste treatment method
JP4852954B2 (en) Method and apparatus for treating organic waste
JP3719938B2 (en) Effective use system for manure and business fresh products
KR101426440B1 (en) Apparatus for recycling and reducing of organic wastewater and sewage sludge by autothermal thermophilic aerobic digestion method and treatment method using it
JPH1177095A (en) Livestock excretion treatment system
HUT50878A (en) Process for treating and neutralizing mixture of solid matters and liquids
JP2004167382A (en) Methane fermentation method and methane fermentation apparatus of organic material
Nasr Treatment and reuse of sewage sludge
JP2536810B2 (en) High-concentration organic wastewater treatment method
JP2003047928A (en) Method and apparatus for treating organic waste
CN206244677U (en) A kind of organic solid waste is dried, Composting device
KR20020095487A (en) Recycling system and operation methods of using anaerobic digester and aerobic composting system all at once on organic concentrated swine slurry
JP2005193122A (en) Anaerobic hydrogen fermentation treatment system
JP2003053394A (en) Method and equipment for treatment of organic waste
JP2000237731A (en) High-speed mineralization apparatus for organic waste or sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees