JP4664781B2 - Hot press molding die, hot press molding apparatus, and hot press molding method - Google Patents

Hot press molding die, hot press molding apparatus, and hot press molding method Download PDF

Info

Publication number
JP4664781B2
JP4664781B2 JP2005264026A JP2005264026A JP4664781B2 JP 4664781 B2 JP4664781 B2 JP 4664781B2 JP 2005264026 A JP2005264026 A JP 2005264026A JP 2005264026 A JP2005264026 A JP 2005264026A JP 4664781 B2 JP4664781 B2 JP 4664781B2
Authority
JP
Japan
Prior art keywords
hot press
recess
refrigerant
press molding
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005264026A
Other languages
Japanese (ja)
Other versions
JP2007075834A (en
Inventor
裕一 石森
哲男 嶋
弘 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005264026A priority Critical patent/JP4664781B2/en
Publication of JP2007075834A publication Critical patent/JP2007075834A/en
Application granted granted Critical
Publication of JP4664781B2 publication Critical patent/JP4664781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die, an apparatus, and a method for hot press forming, by which die, apparatus, and method, a press formed product to be controlled in its strength can be obtained so as to have a strength stepwise changing at the boundaries of respective portions of the product. <P>SOLUTION: The die 2 forms a hot metallic plate material 1 by hot press forming, and controls the strength of the respective portions of the formed product by means of a cooling means and a heat insulating means provided in the die. The cooling means is composed of a plurality of refrigerant discharging ports 12 formed on the forming surface of the die, and refrigerant supply pipes 13 which are communicated with the refrigerant discharging ports 12 and are formed inside the die having a valve mechanism. The heat insulating means has first recessed portions 19 formed on the forming surface of the die. In addition, the refrigerant discharging ports 12 and the first recessed portions 19 are formed in close proximity such that the strength of the formed product to be controlled in the strength changes stepwise at the boundaries of the respective portions. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

この発明は、加熱した金属板材をプレス成形するとともに所定の手段により成形品各部の強度を制御する熱間プレス成形用金型、熱間プレス成形装置および熱間プレス成形方法に関するものであり、特に、強度を制御する成形品各部の境界において、強度がステップ状に変化するプレス製品を得ることのできる熱間プレス成形用金型、熱間プレス成形装置および熱間プレス成形方法に関する。   The present invention relates to a hot press molding die, a hot press molding apparatus, and a hot press molding method for press-molding a heated metal plate material and controlling the strength of each part of a molded product by a predetermined means. The present invention relates to a hot press molding die, a hot press molding apparatus, and a hot press molding method capable of obtaining a press product whose strength changes stepwise at the boundary of each part of the molded product for controlling the strength.

金属板材のプレス成形は、生産性が高く、寸法精度に優れ、また、プレス製品間の強度ばらつきが少なく品質が安定していることから、自動車、機械、電気機器、輸送用機器等の製造に広く用いられている最も一般的な加工方法である。
しかし、近年におけるプレス製品、特に自動車部品には軽量化等の観点から高強度化が求められており、これにより成形性の低下、特にスプリングバック等の発生による形状凍結性の低下を招来し、複雑な形状をしたプレス製品を製造することが困難となっている。
Metal sheet press molding is highly productive, excellent in dimensional accuracy, and stable in quality with little variation in strength between pressed products, making it suitable for manufacturing automobiles, machinery, electrical equipment, transportation equipment, etc. It is the most common processing method widely used.
However, press products in recent years, especially automobile parts, are required to have high strength from the viewpoint of weight reduction, etc., and this leads to a decrease in formability, particularly a decrease in shape freezing due to the occurrence of a springback, It has become difficult to manufacture a press product having a complicated shape.

このため、金属板材のプレス業界においては、加熱した金属板材を金型を用いて成形する熱間プレス成形技術が注目されている。熱間プレス成形は、金属板材を高温に加熱した状態でプレス成形するため、材料強度の低下した金属板材は、金型の成形面に沿って素直に変形し、複雑な形状であっても優れた寸法精度で成形することができる。また、成形後は金型抜熱効果により急冷するためスプリングバックが発生せず、形状凍結性に優れ、プレス製品の寸法精度を向上させることができる。さらに、金属板材が鋼の場合、その鋼板をオーステナイト域にまで加熱し、所定の冷却プロセスにより、例えば金型内で保持して金型接触抜熱効果で急冷することによりマルテンサイト変態による高強度化を達成することができる。   For this reason, in the press industry of a metal plate material, hot press forming technology for forming a heated metal plate material using a mold is attracting attention. Hot press molding is press-molded with the metal plate heated to a high temperature, so the metal plate with reduced material strength deforms straight along the molding surface of the mold and is excellent even in complex shapes. Can be molded with high dimensional accuracy. In addition, since the mold is rapidly cooled by the heat removal effect of the mold, no springback is generated, the shape has a good freezing property, and the dimensional accuracy of the pressed product can be improved. Furthermore, when the metal plate material is steel, the steel plate is heated to an austenite region, and is held in a mold, for example, held in a mold and rapidly cooled by a mold contact heat removal effect, resulting in high strength due to martensitic transformation. Can be achieved.

しかし、自動車部品等に要求される特性は、軽量化や高強度化のみではない。例えば、近年における自動車のボディには、商品力あるデザイン性や衝突安全性などがより厳しく要求されるようになっているため、ボディ各部においては当該性能を実現するために板厚や強度を詳細に設定する必要が生じ、ボディを構成する部品の数は数百にも及ぶようになっている。
このため、近年における自動車部品等には、板厚や強度の異なる複数の金属板材を溶接により結合して一体化したプレス素材、すなわち、テーラードブランクが広く用いられている。テーラードブランクは、1つの金属板材の特性を目的に合わせて部分的に変更することができるという優れた特徴を有し、例えば、強度が必要な部位にのみ高強度鋼板を適用することで成形品としての必要な強度を保ちつつ、強度が不要な部分の軽量化を図ることができる。また、目的に合う板厚や強度を有する金属板材を選択し、これを溶接結合して一体化するので、プレス成形品各部の強度を目的に合わせて正確かつ任意に設定することが可能である。
However, the characteristics required for automobile parts and the like are not limited to light weight and high strength. For example, in recent years, the body of automobiles has become more demanding of product design and collision safety, so the thickness and strength of each part of the body are detailed in order to achieve the performance. The number of parts constituting the body has reached several hundred.
For this reason, press materials, that is, tailored blanks in which a plurality of metal plate materials having different plate thicknesses and strengths are joined and integrated, are widely used in recent automobile parts and the like. Tailored blanks have an excellent feature that the characteristics of one metal plate can be partially changed according to the purpose. For example, a high-strength steel plate is applied only to parts where strength is required. While maintaining the necessary strength, it is possible to reduce the weight of the portion that does not require strength. In addition, since a metal plate material having a thickness and strength suitable for the purpose is selected and joined together by welding, it is possible to accurately and arbitrarily set the strength of each part of the press-formed product according to the purpose. .

すなわち、前記したように熱間プレス成形技術は、従来の冷間プレス成形では実現できなかった高強度化と優れた寸法精度を両立できるプレス成形技術であるといえるが、自動車部品に代表されるプレス製品のさらなる高強度化や形状の複雑化、さらには製品各部の強度調整(改質)の要求が増大している今日においては、テーラードブランクのようにプレス製品各部の強度を目的に合わせて正確かつ任意に設定することのできる熱間プレス成形技術の開発が、産業界において強く望まれているのである。
このため、従来の熱間プレス成形においても、成形部位毎に冷却速度を異ならせて冷却することにより、穴加工(ピアス)や切断加工(トリム)等の後加工が必要な部位の焼入れ硬さを低下させ、当該部位における後加工を容易にする技術が開示されている(例えば、特許文献1参照)。そして、当該文献においては、金型に窪みを設けて金型の成形品形状部位と加熱鋼板との単位面積当たりの接触面積を変化させたり、金型に加熱手段を設けて金型の成形品形状部位毎に金型温度を変化させたり、あるいは、金型の成形品形状部位毎に熱伝導率の異なる型材を使用することによって、成形部位毎の冷却速度を異ならせるとしている。
特開2003−328031号公報
That is, as described above, the hot press forming technology can be said to be a press forming technology that can achieve both high strength and excellent dimensional accuracy that could not be realized by the conventional cold press forming, but is represented by automobile parts. Today, there is an increasing demand for press products with higher strength, more complicated shapes, and strength adjustment (modification) of each part of the product. The strength of each part of the press product is tailored to the purpose, such as tailored blanks. Development of hot press molding technology that can be set accurately and arbitrarily is strongly desired in the industry.
For this reason, even in the conventional hot press molding, by quenching at different cooling rates for each molding site, quenching hardness of the site that requires post-processing such as drilling (piercing) or cutting (trim) Has been disclosed, and a technique for facilitating post-processing at the site is disclosed (for example, see Patent Document 1). In this document, a depression is provided in the mold to change the contact area per unit area between the molded product shape part of the mold and the heated steel sheet, or a heating means is provided in the mold to provide a molded product of the mold. The cooling rate for each molding site is made different by changing the mold temperature for each shape site, or using a mold material having a different thermal conductivity for each molded product shape site of the mold.
JP 2003-328031 A

しかしながら、上記文献に記載の技術は、ピアスやトリム等の後加工が必要な部位等の強度を局部的に変更できるものに過ぎず、テーラードブランクのように1つのプレス製品全体にわたって製品各部の強度調整(改質)を実現できるものではなかった。
特に、テーラードブランクの場合には、目的に合う板厚や強度を有する金属板材を選択し、これらを溶接により一体化して1つのプレス素材とするため、当該素材をプレス成形した場合には、図1(b)に示すように溶接部を境界に強度がステップ状に変化する強度分布を造り込むことができるが、上記文献に記載の技術においては、図1(a)に示すような強度分布を有するプレス製品を得ようとしても、図1(c)に示すように高強度領域と低強度領域との間には不可避的に中強度領域ができてしまい、メリハリのある強度分布、すなわち、強度を制御する成形品各部の境界において強度がステップ状に変化する強度分布を造り込むことができなかった。
また、強度が必要な領域内に後加工が必要な領域、すなわち強度が不要な領域を造り込もうとする場合、高強度領域と低強度領域との間には不可避的に中強度領域ができることから、図1(c)のB点に示すように、強度が必要な領域の強度を維持することができなかった。したがって、強度が必要なある一定の領域内に後加工が必要な領域を複数造り込もうとする場合、造り込める低強度領域の数には限界があった。すなわち、強度の造り込み精度には限界があった。
However, the technique described in the above document is only a technique that can locally change the strength of parts such as piercing and trim that require post-processing, and the strength of each part of the product over a single press product like a tailored blank. Adjustment (reformation) could not be realized.
In particular, in the case of tailored blanks, a metal plate material having a thickness and strength suitable for the purpose is selected, and these are integrated by welding to form a single press material. As shown in FIG. 1 (b), it is possible to create a strength distribution in which the strength changes stepwise with the weld as a boundary. In the technique described in the above document, the strength distribution as shown in FIG. Even if it is going to obtain the press product which has these, as shown in FIG.1 (c), a middle strength region is inevitably made between the high strength region and the low strength region, and a sharp strength distribution, that is, It was not possible to build up a strength distribution in which the strength changed stepwise at the boundary of each part of the molded product that controlled the strength.
In addition, when trying to build an area that requires post-processing within an area that requires strength, i.e., an area that does not require strength, an intermediate strength area is inevitably formed between the high-strength area and the low-strength area. Thus, as indicated by point B in FIG. 1 (c), the strength of the region requiring strength could not be maintained. Therefore, when a plurality of areas requiring post-processing are to be built in a certain area requiring strength, the number of low-strength areas that can be built is limited. In other words, there was a limit to the strength building accuracy.

本発明は上記課題を鑑みてなされたものであり、本発明の解決すべき課題は、強度を制御する成形品各部の境界において強度がステップ状に変化するプレス製品を得ることのできる熱間プレス成形用金型、熱間プレス成形装置および熱間プレス成形方法を提供することである。   The present invention has been made in view of the above problems, and the problem to be solved by the present invention is a hot press capable of obtaining a pressed product in which the strength changes stepwise at the boundary of each part of the molded product for controlling the strength. It is to provide a molding die, a hot press molding apparatus, and a hot press molding method.

本発明者は、従来技術によってはステップ状に変化する強度分布を作り込むことができない原因について詳細に検討した結果、以下の技術的知見を得た。
(A)まず検討の前提として、特許文献1に記載のように成形部位毎の冷却速度を異ならせることにより、プレス成形品各部の強度を任意に制御することは可能であるから、これについて説明する。
図2は、金属板材が鋼板である場合に、鋼板の冷却開始温度と冷却速度を制御することにより、鋼板の組織を制御できることを示す炭素鋼のCCT曲線の一例である。例えば、冷却開始温度T1から鋼板を冷却する場合、冷却カーブ1に従って冷却するとノーズ(変態の境界線)の外側を通るため、鋼材中のほとんどがマルテンサイトになり高強度の組織が得られる。一方、冷却カーブ2に従って冷却するとノーズの内側を通るためにフェライトとセメンタイトを析出するため、冷却後に得られる鋼材中のマルテンサイトの割合が減少し、比較的低強度の組織が得られる。また、冷却開始温度をT1より低いT2として、冷却カーブ2と同じ冷却速度である冷却カーブ3に従って冷却すると、冷却カーブ2の場合よりも少ない割合でフェライトとセメンタイトを析出するため、冷却後に得られる鋼材中のマルテンサイトの割合が冷却カーブ2の場合よりは多く冷却カーブ1の場合よりは少なくなって中程度の強度の組織が得られる。すなわち、特許文献1に記載されているように成形部位毎の冷却速度を異ならせることにより、プレス成形品各部の強度を任意に制御することは可能である。
The present inventor obtained the following technical knowledge as a result of examining in detail the reason why the intensity distribution that changes stepwise depending on the prior art cannot be created.
(A) As a premise of the study, it is possible to arbitrarily control the strength of each part of the press-molded product by varying the cooling rate for each molding part as described in Patent Document 1, and this will be described. To do.
FIG. 2 is an example of a CCT curve of carbon steel indicating that the structure of the steel sheet can be controlled by controlling the cooling start temperature and the cooling rate of the steel sheet when the metal plate material is a steel sheet. For example, when the steel sheet is cooled from the cooling start temperature T1, if it is cooled according to the cooling curve 1, it passes through the outside of the nose (borderline of transformation), so that most of the steel material becomes martensite and a high strength structure is obtained. On the other hand, when cooled according to the cooling curve 2, ferrite and cementite are precipitated to pass through the inside of the nose, so that the martensite ratio in the steel material obtained after cooling is reduced, and a relatively low strength structure is obtained. Further, when cooling is performed in accordance with the cooling curve 3 having the same cooling rate as the cooling curve 2 with the cooling start temperature T2 lower than T1, ferrite and cementite are precipitated at a lower rate than in the cooling curve 2, and thus obtained after cooling. The ratio of martensite in the steel material is larger than that in the case of the cooling curve 2 and smaller than that in the case of the cooling curve 1, and a medium strength structure is obtained. That is, as described in Patent Document 1, it is possible to arbitrarily control the strength of each part of the press-molded product by varying the cooling rate for each molding site.

(B)しかし、単に金型に窪みを設けて金型の成形品形状部位と加熱鋼板との単位面積当たりの接触面積を変化させたり、金型に加熱手段を設けて金型の成形品形状部位毎の型温度を変化させたり、あるいは、金型の成形品形状部位毎に熱伝導率の異なる型材を用いて成形部位毎の冷却速度を異ならせる方法によっては、成形品形状部位の境界において強度がステップ状に変化する強度分布を作り込むことはできない。
これは、当該方法によっては高強度とすべき領域の冷却速度を十分に確保することができず、低強度とすべき領域の冷却速度と高強度とすべき領域の冷却速度に差を生じさせることが困難であり、どうしてもその間には中強度領域ができてしまうためであり、これは図2に示した炭素鋼のCCT曲線からも説明できるところである。
(B) However, simply forming a recess in the mold to change the contact area per unit area between the molded product shape part of the mold and the heated steel sheet, or providing a heating means in the mold to mold the molded product shape Depending on the method of changing the mold temperature for each part, or using a mold material with different thermal conductivity for each part shape part of the mold to vary the cooling rate for each part, An intensity distribution in which the intensity changes stepwise cannot be created.
This makes it impossible to secure a sufficient cooling rate for the region that should be high strength depending on the method, and causes a difference between the cooling rate for the region that should be low strength and the cooling rate for the region that should be high strength. This is because a medium-strength region is inevitably formed between them, which can be explained from the CCT curve of the carbon steel shown in FIG.

(C)すなわち、ステップ状に変化する強度分布を造り込むには、如何に低強度とすべき領域の鋼板温度を断熱して高温のまま保持することができるか、また、高強度とすべき領域の鋼板温度を如何に急速に冷却することができるか、そしてこれによって如何に低強度とすべき領域の冷却速度と高強度とすべき領域の冷却速度に差を生じさせることができるかにかかっているところ、特許文献1に記載の方法では高強度とすべき領域の冷却速度が遅く、換言すると熱伝達係数が低いので、ステップ状に変化する強度分布を作り込むことができないのである。 (C) That is, in order to build a strength distribution that changes stepwise, it is necessary to insulate the steel plate temperature in a region where the strength should be low and keep it high, or to be high strength. How quickly the steel plate temperature in the region can be cooled, and how this can make a difference between the cooling rate of the region that should be low strength and the cooling rate of the region that should be high strength However, in the method described in Patent Document 1, the cooling rate of the region that should be high strength is slow, in other words, the heat transfer coefficient is low, so that it is not possible to create an intensity distribution that changes stepwise.

そこで、本発明者は、高強度とすべき領域の鋼板温度を急速に冷却する手段(以降、冷却手段と称する)、ならびに低強度とすべき領域の鋼板温度を断熱して高温のまま保持する手段(以降、断熱手段と称する)について、数多くの理論検討および実験検討を行った結果、以下の知見を得た。
(D)前記したように高強度とすべき領域の鋼板温度を急速に冷却することができる冷却手段が必要とされるところ、得られる熱伝達係数の大きさおよび制御性の観点から検討すると、金型の成形面に複数の冷媒吐出口を形成し、金型の内部に当該冷媒吐出口に連通する管であり所定の弁機構を備える冷媒供給管を形成し、当該複数の冷媒吐出口からプレス成形される金属板材に対し冷媒吐出を行って冷却することが望ましいこと。
(E)また、低強度とすべき領域の鋼板温度を断熱して高温のまま保持することができる断熱手段が必要とされるところ、同じく得られる熱伝達係数の大きさおよび制御性の観点から検討すると、プレス製品の低強度領域に対応するように、金型の成形面に1または2以上の第1の凹部を形成し、これを断熱手段とすることが望ましいこと。
(F)そして、低強度とすべき領域の冷却速度と高強度とすべき領域の冷却速度に差を生じさせることが必要とされるところ、前記冷媒吐出口と第1の凹部とを近接して形成することにより、高強度とすべき領域と低強度とすべき領域との温度勾配が急峻となり、強度を制御する成形品各部の境界において強度がステップ状に変化するプレス製品を得ることができること。
In view of this, the inventor insulates the steel sheet temperature in the region that should be high strength (hereinafter referred to as cooling means) and heats the steel plate temperature in the region that should be low strength and keeps it high. As a result of conducting numerous theoretical and experimental studies on the means (hereinafter referred to as heat insulation means), the following knowledge was obtained.
(D) As described above, when a cooling means capable of rapidly cooling the steel sheet temperature in the region to be high strength is required, from the viewpoint of the size and controllability of the obtained heat transfer coefficient, A plurality of refrigerant discharge ports are formed on the molding surface of the mold, and a refrigerant supply pipe having a predetermined valve mechanism is formed inside the mold and communicates with the refrigerant discharge port. It is desirable to cool the pressed metal sheet by discharging the refrigerant.
(E) In addition, where a heat insulating means that can insulate and keep the steel sheet temperature in a region that should be low in strength is required, from the viewpoint of the size and controllability of the heat transfer coefficient that is also obtained. In consideration, it is desirable to form one or more first recesses on the molding surface of the mold so as to correspond to the low strength region of the pressed product, and use this as a heat insulating means.
(F) Then, it is necessary to make a difference between the cooling rate of the region to be low strength and the cooling rate of the region to be high strength. Forming a high-strength region and a low-strength region, the temperature gradient becomes steep, and it is possible to obtain a pressed product in which the strength changes stepwise at the boundary of each part of the molded product that controls strength. What you can do.

上記の知見に基づき、本発明者は、強度を制御する成形品各部の境界において強度がステップ状に変化するプレス製品を得ることのできる熱間プレス成形用金型、熱間プレス成形装置および熱間プレス成形方法に想到した。その要旨とするところは以下の通りである。   Based on the above knowledge, the inventor has obtained a hot press molding die, a hot press molding apparatus, and a heat press capable of obtaining a press product in which the strength changes stepwise at the boundary of each part of the molded product that controls the strength. I came up with a hot press forming method. The gist is as follows.

(1)加熱した金属板材をプレス成形するとともに具備する冷却手段および断熱手段により成形品各部の強度を制御する熱間プレス成形用金型であって、前記冷却手段は、金型の成形面に形成する複数の冷媒吐出口と、当該冷媒吐出口に連通する管であり弁機構を備える金型の内部に形成する冷媒供給管とから構成され、前記断熱手段は、金型の成形面に形成する第1の凹部を有し、かつ、強度を制御する成形品各部の境界において強度がステップ状に変化するように、前記冷媒吐出口と第1の凹部とを近接して形成したことを特徴とする熱間プレス成形用金型。 (1) A hot press mold for pressurizing a heated metal plate material and controlling the strength of each part of the molded product by a cooling means and a heat insulation means, and the cooling means is provided on the molding surface of the mold. A plurality of refrigerant discharge ports to be formed, and a refrigerant supply pipe formed in a mold provided with a valve mechanism that is a pipe communicating with the refrigerant discharge port, and the heat insulating means is formed on a molding surface of the mold The coolant discharge port and the first recess are formed close to each other so that the strength changes stepwise at the boundary of each part of the molded product whose strength is controlled. Die for hot press forming.

(2)前記第1の凹部に断熱材を配置したことを特徴とする前記(1)に記載の熱間プレス成形用金型。 (2) The hot press molding die according to (1) above, wherein a heat insulating material is disposed in the first recess.

(3)前記第1の凹部に熱源を配置したことを特徴とする前記(1)に記載の熱間プレス成形用金型。
(4)前記熱源が、電気ヒータ、誘導加熱コイル、バーナーのいずれかであることを特徴とする前記(3)に記載の熱間プレス成形用金型。
(3) The hot press molding die according to (1) above, wherein a heat source is arranged in the first recess.
(4) The hot press molding die as described in (3) above, wherein the heat source is any one of an electric heater, an induction heating coil, and a burner.

(5)金型の成形面に複数の冷媒回収口を備え、金型内部に各冷媒回収口と連通する冷媒回収管を配したことを特徴とする前記(1)〜(4)のいずれか1項に記載の熱間プレス成形用金型。 (5) Any of the above (1) to (4), wherein a plurality of refrigerant recovery ports are provided on the molding surface of the mold, and a refrigerant recovery pipe communicating with each of the refrigerant recovery ports is arranged inside the mold. 2. A hot press molding die according to item 1.

(6)強度を制御する成形品各部の境界において強度がステップ状に変化するように、金型の成形面に前記第1の凹部と近接させて第2の凹部を形成し、各第2の凹部の底面に冷媒吐出口を形成したことを特徴とする前記(1)〜(5)のいずれか1項に記載の熱間プレス成形用金型。
(7)金型の成形面に第2の凹部を形成し、各第2の凹部の底面に冷媒回収口を形成したことを特徴とする前記(6)に記載の熱間プレス成形用金型。
(6) A second recess is formed on the molding surface of the mold so as to be close to the first recess so that the strength changes stepwise at the boundary of each part of the molded product for controlling the strength . The hot press molding die according to any one of (1) to (5), wherein a coolant discharge port is formed on a bottom surface of the recess.
(7) The hot press molding die according to (6) above, wherein a second recess is formed on the molding surface of the die, and a refrigerant recovery port is formed on the bottom surface of each second recess. .

(8)さらに、前記第1の凹部の底面に冷媒吐出口を、金型内部に当該冷媒吐出口と連通する管であり、弁機構を備える冷媒供給管を形成したことを特徴とする前記(1)〜(7)のいずれか1項に記載の熱間プレス成形用金型。
(9)さらに、前記第1の凹部の底面に冷媒回収口を、金型内部に当該冷媒回収口と連通する冷媒回収管を形成したことを特徴とする前記(1)〜(8)のいずれか1項に記載の熱間プレス成形用金型。
(8) Further, the refrigerant discharge port is formed on the bottom surface of the first recess, and the refrigerant supply tube including the valve mechanism is formed in the mold, the pipe being in communication with the refrigerant discharge port. The hot press molding die according to any one of 1) to (7).
(9) Further, any one of (1) to (8), wherein a refrigerant recovery port is formed on the bottom surface of the first recess, and a refrigerant recovery pipe communicating with the refrigerant recovery port is formed inside the mold. 2. A hot press molding die according to item 1.

(10)前記第1の凹部の底面に、面積率が1〜90%、直径又は外接円の直径が10μm〜5mm、高さが前記第1の凹部の深さと同一である板面支持突起を1または2以上形成したことを特徴とする前記(1)〜(9)のいずれか1項に記載の熱間プレス成形用金型。
(11)前記第2の凹部の底面に、面積率が1〜90%、直径又は外接円の直径が10μm〜5mm、高さが前記第2の凹部の深さと同一である板面支持突起を1または2以上形成したことを特徴とする前記(6)または(7)に記載の熱間プレス成形用金型。
(10) A plate surface supporting protrusion having an area ratio of 1 to 90%, a diameter or a circumscribed circle diameter of 10 μm to 5 mm, and a height equal to the depth of the first recess is formed on the bottom surface of the first recess. The hot press molding die according to any one of (1) to (9), wherein one or two or more are formed.
(11) A plate surface supporting protrusion having an area ratio of 1 to 90%, a diameter or a circumscribed circle diameter of 10 μm to 5 mm, and a height equal to the depth of the second recess is formed on the bottom surface of the second recess. The hot press molding die according to (6) or (7) , wherein one or more are formed.

(12)加熱した金属板材をプレス成形するとともに具備する冷却手段および断熱手段により成形品各部の強度を制御する熱間プレス成形装置であって、前記(1)〜(11)のいずれか1項に記載の熱間プレス成形用金型と、前記熱間プレス成形用金型が備える冷媒供給管の弁機構を制御して各冷媒吐出口からの冷媒吐出を制御する制御装置を有することを特徴とする熱間プレス成形装置。 (12) A hot press molding apparatus for controlling the strength of each part of a molded product by means of a cooling means and a heat insulating means, which are formed by press-molding a heated metal plate material, and any one of (1) to (11) above And a control device for controlling refrigerant discharge from each refrigerant discharge port by controlling a valve mechanism of a refrigerant supply pipe provided in the hot press molding die. Hot press molding equipment.

(13)強度を制御する成形品各部の境界において強度がステップ状に変化するように、金型の成形面に第1の凹部と第2の凹部を近接させて形成し、各第1及び2の凹部の底面に冷媒供給管と連通した冷媒吐出口を形成した金型と、それぞれの凹部の冷媒吐出を制御する弁機構とを用いて、断熱手段としてから冷却手段としておよび/または冷却手段としてから断熱手段として機能を切り替えることを特徴とする熱間プレス成形方法。 (13) The first concave portion and the second concave portion are formed close to the molding surface of the mold so that the strength changes stepwise at the boundary of each part of the molded product whose strength is controlled. As a cooling means and / or as a cooling means, using a mold in which a refrigerant discharge port communicating with a refrigerant supply pipe is formed on the bottom surface of the concave portion and a valve mechanism for controlling the refrigerant discharge in each concave portion A hot press molding method characterized in that the function is switched as a heat insulating means.

(14)前記金型が前記第1の凹部および/または前記第2の凹部に冷媒回収口を設けていることを特徴とする前記(13)に記載の熱間プレス成形方法。
(15)前記金型の前記第1の凹部および/または前記第2の凹部に面積率が1〜90%、
直径又は外接円の直径が10μm〜5mm、高さが凹部の深さと同一である板面支持突起を1または2以上形成したことを特徴とする前記(13)または(14)に記載の熱間プレス成形方法。
(14) The hot press molding method according to (13), wherein the mold is provided with a refrigerant recovery port in the first recess and / or the second recess.
(15) The area ratio is 1 to 90% in the first recess and / or the second recess of the mold,
The hot surface according to (13) or (14) above, wherein one or two or more plate surface supporting protrusions having a diameter or circumscribed circle diameter of 10 μm to 5 mm and a height equal to the depth of the recess are formed. Press molding method.

(A)本発明に係る熱間プレス成形用金型によれば、強度を制御する成形品各部の境界において強度がステップ状に変化するプレス成形品を得ることができる。具体的には、従来の熱間プレス成形用金型を用いて高強度領域と低強度領域とが近接する強度分布を作り込もうとする場合、高強度領域と低強度領域の間には不可避的に中強度領域ができて、その境界において強度がステップ状に変化するプレス製品を得ることができないが、本発明に係る熱間プレス成形用金型は、金型の成形面には複数の冷媒吐出口を、金型内部には当該冷媒吐出口と連通する管であり所定の弁機構を備える冷媒供給管を具備するとともに、同じく成形面には断熱手段である第1の凹部を形成しているので、低強度とすべき鋼板領域については、当該領域の鋼板温度を断熱して高温のまま保持することができるとともに、高強度とすべき鋼板領域については、冷媒吐出によって急速に冷却することができ、しかも冷媒吐出口と第1の凹部とを近接させて形成しているので、低強度とすべき鋼板領域と高強度とすべき鋼板領域との境界において強度がステップ状に変化する非常にメリハリのあるプレス製品を得ることができる。 (A) According to the hot press-molding die according to the present invention, it is possible to obtain a press-molded product in which the strength changes stepwise at the boundary of each part of the molded product whose strength is controlled. Specifically, when trying to create a strength distribution in which the high-strength region and the low-strength region are close to each other using a conventional hot press molding die, it is inevitable between the high-strength region and the low-strength region. In general, a press product in which the intermediate strength region is formed and the strength changes stepwise at the boundary cannot be obtained, but the hot press molding die according to the present invention has a plurality of molding surfaces on the molding surface. The coolant discharge port is a pipe communicating with the coolant discharge port inside the mold, and includes a coolant supply tube having a predetermined valve mechanism, and a first recess as heat insulation means is formed on the molding surface. Therefore, the steel plate region that should be low strength can be kept at a high temperature by insulating the steel plate temperature in the region, and the steel plate region that should be high strength is rapidly cooled by refrigerant discharge. Can also discharge refrigerant And the first recess are formed close to each other, so that a very sharp press product in which the strength changes stepwise at the boundary between the steel plate region to be low strength and the steel plate region to be high strength. Obtainable.

(B)また、従来の熱間プレス成形用金型を用いて強度が必要なある一定の領域内に低強度領域を複数造り込もうとする場合、高強度領域と低強度領域の間には不可避的に中強度領域ができることから、強度が必要な領域の強度を維持できなくなり、作り込める低強度領域が制限されるという問題があったが、本発明に係る熱間プレス成形用金型によれば、中強度領域の発生を抑制できるので面積の小さな低強度領域を作成でき、その結果として高強度領域と低強度領域とが複雑に入り込んだプレス製品を得ることができる。 (B) When trying to build a plurality of low-strength regions in a certain region that requires strength using a conventional hot press mold, there is a gap between the high-strength region and the low-strength region. Since the medium strength region is inevitably formed, the strength of the region requiring strength cannot be maintained, and there is a problem that the low strength region that can be created is limited. According to this, since the generation of the medium strength region can be suppressed, a low strength region having a small area can be created, and as a result, a press product in which the high strength region and the low strength region are complicatedly obtained can be obtained.

(C)さらには、本発明に係る熱間プレス成形用金型は、金型の成形面に形成した冷媒吐出口からの冷媒吐出によって十分な冷却速度を確保することができるので、金型内保持時間の短縮による生産性の向上をも図ることができる。 (C) Furthermore, the hot press molding die according to the present invention can secure a sufficient cooling rate by the refrigerant discharge from the refrigerant discharge port formed on the molding surface of the die. Productivity can be improved by shortening the holding time.

(D)すなわち、本発明に係る熱間プレス成形用金型によれば、テーラードブランクのように板厚や強度の異なる複数の金属板材を溶接により結合することなく、プレス成形品各部の強度を目的に合わせて正確かつ任意に設定することができる。なお、冷媒吐出による冷却を行うので、形状凍結性に優れ、良好な寸法精度を有するプレス製品を製造できることはいうまでもない。 (D) That is, according to the hot press-molding mold according to the present invention, the strength of each part of the press-formed product can be obtained without joining a plurality of metal plate materials having different thicknesses and strengths as in the tailored blank by welding. It can be set accurately and arbitrarily according to the purpose. Needless to say, since the cooling by discharging the refrigerant is performed, it is possible to manufacture a press product having excellent shape freezing property and good dimensional accuracy.

(E)また、本発明に係る熱間プレス成形装置は、前記熱間プレス成形用金型が備える冷媒供給管の弁機構を制御して各冷媒吐出口からの冷媒吐出を制御する制御装置を有するので、各冷媒吐出口からの冷媒吐出による熱伝達係数を任意に制御することが可能であり、成形部位毎の冷却速度を自在に異ならせることができる。その結果として、低強度とすべき鋼板領域と高強度とすべき鋼板領域との境界において強度がステップ状に変化する非常にメリハリのあるプレス製品や高強度領域と低強度領域とが複雑に入り込んだプレス製品を得ることができるのみならず、プレス製品各部の強度についても詳細に設定することができる。
(F)さらに、弁機構を用いて第1の凹部と第2の凹部とを切り替えることによって、すなわち、所望するプレス製品の強度分布に応じて、熱間プレス成形用金型が備える冷却手段と断熱手段とを当該プレス製品ごとに切り替えることによって、同一組の金型で複数通りの強度分布のプレス製品を目的に合わせて製造することができる。
(E) Moreover, the hot press molding apparatus which concerns on this invention is a control apparatus which controls the valve mechanism of the refrigerant | coolant supply pipe with which the said hot press molding die is equipped, and controls the refrigerant | coolant discharge from each refrigerant | coolant discharge port. Since it has, it is possible to control arbitrarily the heat transfer coefficient by the refrigerant discharge from each refrigerant discharge port, and the cooling rate for every forming part can be varied freely. As a result, a very sharp press product in which the strength changes stepwise at the boundary between the steel plate region that should be low strength and the steel plate region that should be high strength, and the high strength region and the low strength region are complicated. Not only can the press product be obtained, but also the strength of each part of the press product can be set in detail.
(F) Further, by switching between the first concave portion and the second concave portion using the valve mechanism, that is, depending on the strength distribution of the desired press product, the cooling means provided in the hot press molding die, By switching the heat insulating means for each press product, press products having a plurality of different strength distributions can be manufactured according to the purpose using the same set of dies.

以下、図3〜図18を参照して、本発明を実施するための最良の形態を説明する。
まず、本発明で用いる被成形材および熱間プレス成形用金型2にセットする前の被成形材の加熱方法と加熱温度について説明する。
本発明で用いる被成形材は金属板材1であり、Alめっき鋼板、Znめっき鋼板、高強度鋼板、普通鋼等のいずれの鋼板にも適用することができる。
また、マルテンサイト変態またはベイナイト変態をする鋼板であれば、冷媒吐出による焼入れにより高強度化を図ることができるので、マルテンサイト変態またはベイナイト変態をする鋼板が望ましい。なお、冷媒吐出時に必ずしも変態する必要はなく、成形後に変態してもかまわない。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
First, a heating method and a heating temperature of the molding material used in the present invention and the molding material before being set in the hot press molding die 2 will be described.
The molding material used in the present invention is a metal plate 1 and can be applied to any steel plate such as an Al-plated steel plate, a Zn-plated steel plate, a high-strength steel plate, and ordinary steel.
Further, a steel sheet that undergoes martensitic transformation or bainite transformation can be increased in strength by quenching by refrigerant discharge, and therefore, a steel plate that undergoes martensitic transformation or bainite transformation is desirable. It is not always necessary to transform the refrigerant when it is discharged, and it may be transformed after molding.

金属板材1を加熱する方法としては、特に限定されるものではなく、金属板材1をA1変態点以上に加熱できる方法であれば、電気炉、ガス炉での加熱や火炎加熱、通電加熱、高周波加熱、誘導加熱等のいずれの方法でもよい。
なお、ピアスやトリム等の後加工が必要な部位については、あらかじめ加熱炉等の中でマスキングを施して冷却開始温度を下げておいてもよい。あるいは、加熱炉等の加熱装置から金型に加熱した金属板材1を搬送する段階において、搬送装置との接触抜熱によって冷却開始温度を下げておいてもよい。
The method of heating the metal plate 1 is not particularly limited, and any method that can heat the metal plate 1 to the A1 transformation point or higher, heating in an electric furnace, gas furnace, flame heating, current heating, high frequency Any method such as heating or induction heating may be used.
In addition, about the site | part which needs post-processes, such as a piercing and a trim, you may mask in a heating furnace etc. previously, and you may lower the cooling start temperature. Or in the step which conveys the metal plate material 1 heated to the metal mold | die from heating apparatuses, such as a heating furnace, you may lower cooling start temperature by contact heat removal with a conveying apparatus.

次に、本発明に係る熱間プレス成形用金型2について説明する。本発明に係る熱間プレス成形用金型2は、図3(a)に示すように、ダイス3、パッド5、ダイスホルダー9およびダイベース7を備えた上型と、パンチ4、板押さえ6、パンチホルダー10およびダイベース8を備えた下型とから構成される。ダイスホルダー9はパッドホルダーを、パンチホルダー10は板押さえホルダーをそれぞれ兼ねており、以降は、これら一式をダイセット11と称する。なお、図3(b)は、本発明に係る熱間プレス成形用金型2の構成を明確にするために、ダイスホルダー9とパンチホルダー10を省略して記載した図である。   Next, the hot press molding die 2 according to the present invention will be described. As shown in FIG. 3A, a hot press molding die 2 according to the present invention includes an upper die provided with a die 3, a pad 5, a die holder 9, and a die base 7, a punch 4, a plate presser 6, It is comprised from the lower mold | type provided with the punch holder 10 and the die base 8. FIG. The die holder 9 also serves as a pad holder, and the punch holder 10 serves as a plate holding holder. Hereinafter, these sets are referred to as a die set 11. Note that FIG. 3B is a diagram in which the die holder 9 and the punch holder 10 are omitted in order to clarify the configuration of the hot press molding die 2 according to the present invention.

本発明に係る熱間プレス成形用金型2は、図4に示すように被成形材たる金属板材1に冷媒を吐出するための複数の冷媒吐出口12を金型の成形面に備え、金型内部には前記冷媒吐出口12と連通し、かつ、開閉弁14、流量調整弁15および圧力調整弁16の少なくとも1つを備えた冷媒供給管13を配している。
また、同じく金型の成形面には前記冷媒吐出口12と近接するように、断熱手段である第1の凹部19を形成している。金型の成形面に1または2以上の第1の凹部19を形成することにより、金属板材1が金型表面と接触して抜熱されるのを回避でき、これにより低強度とすべき領域の鋼板温度を断熱して高温のまま保持する手段、すなわち断熱手段として機能する。したがって、第1の凹部19は、プレス製品の低強度領域に対応するように形成することが望ましい。
なお、図4はパンチ4の頂部に冷媒吐出口12を、そして冷媒吐出口と近接して第1の凹部19を形成した例であるが、これらは側壁部に設けてもよいし、縦壁部と頂部の両方に設けてもよい。これは、板押さえ6に冷媒吐出口12および第1の凹部19を形成する場合についても同様である。一方、上型であるダイス3やパッド5に冷媒吐出口12および第1の凹部19を形成する場合には、底部に設けてもよいし、縦壁部と底部の両方に設けてもよい。また、図4はパンチ4に冷却手段および断熱手段を具備した場合の断面図であるが、ダイス3、パッド5、パンチ4、板押さえ6の少なくとも1つに当該冷却手段および断熱手段を持たせることが望ましい。ただし、このとき、冷媒吐出口12から吐出された冷媒が第1の凹部19に流れ込まないよう何らかの対策をとることが望ましい。
すなわち、本発明に係る熱間プレス成形用金型2は、金型の成形面には複数の冷媒吐出口12を、金型内部には各冷媒吐出口と連通する管であり所定の弁機構を備える冷媒供給管13を具備するとともに、同じく金型の成形面には断熱手段である第1の凹部19を形成しているので、低強度とすべき鋼板領域については、当該領域の鋼板温度を断熱して高温のまま保持することができるとともに、高強度とすべき鋼板領域については、冷媒吐出によって急速に冷却することができ、しかも冷却手段である冷媒吐出口12と断熱手段である第1の凹部19とを近接させて形成しているので、高強度とすべき領域と低強度とすべき領域との温度勾配が急峻となり、低強度とすべき鋼板領域と高強度とすべき鋼板領域との境界において、強度がステップ状に変化する非常にメリハリのあるプレス製品を得ることができる。加えて、本発明に係る熱間プレス成形用金型2によれば、中強度領域の発生を抑制できるので面積の小さな低強度領域を作成でき、その結果として高強度領域と低強度領域とが複雑に入り込んだプレス製品を得ることができる。
As shown in FIG. 4, a hot press molding die 2 according to the present invention includes a plurality of coolant discharge ports 12 for discharging a coolant to a metal plate 1 as a molding material on the molding surface of the mold. A coolant supply pipe 13 that communicates with the coolant discharge port 12 and includes at least one of an on-off valve 14, a flow rate adjusting valve 15, and a pressure adjusting valve 16 is disposed inside the mold.
Similarly, a first recess 19 that is a heat insulating means is formed on the molding surface of the mold so as to be close to the coolant discharge port 12. By forming one or two or more first recesses 19 on the molding surface of the mold, it is possible to avoid the metal plate material 1 coming into contact with the mold surface and removing heat, thereby reducing the area where the strength should be low. It functions as a means for insulating the steel sheet temperature and keeping it at a high temperature, that is, a heat insulating means. Therefore, it is desirable to form the first recess 19 so as to correspond to the low strength region of the press product.
FIG. 4 shows an example in which the coolant discharge port 12 is formed at the top of the punch 4 and the first recess 19 is formed in the vicinity of the coolant discharge port. It may be provided on both the top and the top. The same applies to the case where the refrigerant outlet 12 and the first recess 19 are formed in the plate holder 6. On the other hand, when the coolant discharge port 12 and the first recess 19 are formed in the upper die 3 or the pad 5, it may be provided at the bottom or at both the vertical wall and the bottom. 4 is a cross-sectional view when the punch 4 is provided with a cooling means and a heat insulating means. At least one of the die 3, the pad 5, the punch 4, and the plate presser 6 is provided with the cooling means and the heat insulating means. It is desirable. However, at this time, it is desirable to take some measures so that the refrigerant discharged from the refrigerant discharge port 12 does not flow into the first recess 19.
That is, the hot press molding die 2 according to the present invention includes a plurality of refrigerant discharge ports 12 on the molding surface of the mold and pipes communicating with the respective refrigerant discharge ports inside the die, and a predetermined valve mechanism. In addition, since the first concave portion 19 that is a heat insulating means is formed on the molding surface of the mold, the steel plate region that should be low strength has a steel plate temperature in the region. The steel plate region that should be high strength can be rapidly cooled by refrigerant discharge, and the refrigerant discharge port 12 that is a cooling means and the first heat insulation means. 1 is formed so as to be close to each other, the temperature gradient between the region that should be high strength and the region that should be low strength becomes steep, and the steel plate region that should be low strength and the steel plate that should be high strength At the boundary with the region, the intensity A very sharp varying the looped can be obtained pressed products. In addition, according to the hot press molding die 2 according to the present invention, the generation of the medium strength region can be suppressed, so that a low strength region with a small area can be created. As a result, a high strength region and a low strength region are formed. A complicated press product can be obtained.

冷媒吐出口12およびこれに連通する冷媒供給管13ならびに第1の凹部19は、ドリルによる機械的な穿孔や放電加工による穿孔によって形成することができる。なお、この場合の熱間プレス成形用金型2の材質としては、熱間強度の観点から熱間加工用のダイス鋼が望ましい。
また、冷媒供給管13は冷媒吐出口12と連通していれば冷媒吐出機能を果たすため、冷媒吐出口12や冷媒供給管13を金型に穿孔する代わりに、金型内部から外表面に貫通する気孔を有する多孔質金属に冷媒供給管13を接続してもよい。なお、この場合には、肉厚方向に貫通する直径100μm〜1mm、ピッチ100μm〜10mmの孔を複数有する多孔質金属を使用することが望ましい。また、第1の凹部19にあたる部分は冷媒が吐出されないように気孔の目を詰めておくことが望ましい。例えば、図5に示す構成のパンチにおいて、中子20をダイス鋼とし、パンチ4を多孔質金属とすれば、微細でピッチの小さな冷媒吐出口12および冷媒供給管13を形成することができる。なお、このような多孔質金属は、粉末を成形後に焼結するか、金属を溶融させた後、温度制御により凝固組織の方向を一定にする一方向凝固によって製造することができる。
なお、このような熱間プレス成形用金型2で冷媒吐出をさせてプレス成形加工を行うが、冷媒を使用するほど急冷を必要とせず、加工が厳しくなく、金型2との接触による抜熱で充分な冷却速度が取れる場合、冷媒吐出をせずにプレス成形加工を行っても良い。すなわち、本発明に係る熱間プレス成形用金型2によれば、冷媒吐出制御によって、低強度とすべき鋼板領域と高強度とすべき鋼板領域との境界において強度がステップ状に変化する非常にメリハリのあるプレス製品を得ることができるし、そうでないプレス製品を得ることもできる。
The coolant discharge port 12, the coolant supply pipe 13 communicating with the coolant discharge port 12, and the first recess 19 can be formed by mechanical drilling by a drill or drilling by electric discharge machining. In addition, as a material of the hot press molding die 2 in this case, hot working die steel is desirable from the viewpoint of hot strength.
In addition, since the refrigerant supply pipe 13 fulfills the refrigerant discharge function as long as it communicates with the refrigerant discharge port 12, it penetrates from the inside of the mold to the outer surface instead of drilling the refrigerant discharge port 12 and the refrigerant supply pipe 13 in the mold. The refrigerant supply pipe 13 may be connected to a porous metal having pores. In this case, it is desirable to use a porous metal having a plurality of holes having a diameter of 100 μm to 1 mm and a pitch of 100 μm to 10 mm penetrating in the thickness direction. Further, it is desirable that the portion corresponding to the first concave portion 19 is closed with pores so that the refrigerant is not discharged. For example, in the punch having the configuration shown in FIG. 5, if the core 20 is made of die steel and the punch 4 is made of a porous metal, the coolant discharge ports 12 and the coolant supply pipe 13 having a small pitch can be formed. Such a porous metal can be produced by unidirectional solidification in which the direction of the solidified structure is made constant by temperature control after sintering the powder after molding or by melting the metal.
The hot press molding die 2 performs the press molding process by discharging the refrigerant, but does not require rapid cooling as the refrigerant is used, and the process is not severe. When a sufficient cooling rate can be obtained with heat, press molding may be performed without discharging the refrigerant. That is, according to the hot press molding die 2 according to the present invention, the strength changes stepwise at the boundary between the steel plate region to be made low and the steel plate region to be made high by the refrigerant discharge control. It is possible to obtain a pressed product with sharpness, and it is possible to obtain a pressed product that does not.

図6は金型の成形面に形成した第1の凹部19に断熱材23を配置した金型2の一例を示す模式図である。前記したように金型の成形面に1または2以上の第1の凹部19を形成することにより、加熱した金属板材1が金型表面と接触して抜熱されるのを回避でき、これにより低強度とすべき領域の鋼板温度を断熱して高温のまま保持することができるが、当該第1の凹部19に断熱材23を配置することにより、当該断熱効果をより発揮することができる。すなわち、これにより高強度とすべき領域と低強度とすべき領域との温度勾配がより急峻となり、低強度とすべき鋼板領域と高強度とすべき鋼板領域との境界において、強度がよりステップ状に変化する非常にメリハリのあるプレス製品を得ることができる。なお、断熱材23としては、定型耐火物、不定形耐火物、繊維状高温材料若しくはセラミックスのうちのいずれか1種またはこれらを組み合わせたものを用いることができる。   FIG. 6 is a schematic diagram showing an example of a mold 2 in which a heat insulating material 23 is arranged in a first recess 19 formed on the molding surface of the mold. As described above, by forming one or more first recesses 19 on the molding surface of the mold, it is possible to prevent the heated metal plate 1 from coming into contact with the mold surface and removing heat, thereby reducing the temperature. Although the steel sheet temperature in the region to be strengthened can be insulated and kept at a high temperature, the heat insulation effect can be further exhibited by arranging the heat insulating material 23 in the first recess 19. That is, the temperature gradient between the region to be high strength and the region to be low strength becomes steeper, and the strength is further stepped at the boundary between the steel plate region to be low strength and the steel plate region to be high strength. It is possible to obtain a very sharp press product that changes in shape. In addition, as the heat insulating material 23, any one of a regular refractory, an irregular refractory, a fibrous high-temperature material, ceramics, or a combination thereof can be used.

また、図示しないが金型2の成形面に形成した第1の凹部19に熱源を配置することによっても、断熱効果をより発揮することができる。熱源としては、電気ヒータ、誘導加熱コイル、バーナーのいずれかを用いることができ、この場合には、熱間プレス成形用金型2と熱源との絶縁を図るべく、第1の凹部19と熱源との間には絶縁材を配置することが望ましい。   Although not shown, the heat insulating effect can be further exhibited by arranging a heat source in the first recess 19 formed on the molding surface of the mold 2. As the heat source, any one of an electric heater, an induction heating coil, and a burner can be used. In this case, in order to insulate the hot press molding die 2 from the heat source, the first recess 19 and the heat source are used. It is desirable to arrange an insulating material between them.

また、図7および図8に示すように、金型2の成形面に複数の冷媒回収口17を形成し、かつ、金型内部に当該冷媒回収口17と連通する冷媒回収管18を配することにより、金属板材1に吐出した冷媒を効率よく回収することができる。
さらには、冷媒回収管18から真空発生装置等の吸引手段により冷媒を回収することにより、冷却効率および熱伝達係数αの制御を向上させることができる。気化しきれなかった冷媒は、金型の成形面に沿って、例えば、後述する小突起26の底部に付着するか溜まって当該付着部等における冷却に寄与するが、付着したあるいは溜まったままの状態であると、新たに冷媒を吐出したときに当該付着部等における熱伝達係数αが冷媒が残存していないときと比較すると低下してしまう。このため、冷媒吐出後においては、真空発生装置等の吸引手段により気化しきれなかった冷媒を回収することが望ましく、これにより冷却効率および熱伝達係数αの制御を向上させることができる。
なお、冷媒回収口17および冷媒回収管18は、前記した冷媒吐出口12や冷媒供給管13の形成方法と同様の方法により形成することができる。また、冷媒回収口17はパンチ4の頂部に設けてもよいし、縦壁部と頂部の両方に設けてもよい。これは、板押さえ6に冷媒回収口17を設ける場合についても同様である。一方、上型であるダイス3やパッド5に冷媒回収口17を設ける場合には、底部に設けてもよいし、縦壁部と底部の両方に設けてもよいが、縦壁部に設けた方が被成形材に吐出した冷媒を効率よく回収することができる。
7 and 8, a plurality of refrigerant recovery ports 17 are formed on the molding surface of the mold 2, and a refrigerant recovery pipe 18 communicating with the refrigerant recovery ports 17 is disposed inside the mold. Thereby, the refrigerant | coolant discharged to the metal plate material 1 can be collect | recovered efficiently.
Furthermore, the cooling efficiency and the control of the heat transfer coefficient α can be improved by recovering the refrigerant from the refrigerant recovery pipe 18 by suction means such as a vacuum generator. The refrigerant that has not been vaporized adheres to or accumulates along the molding surface of the mold, for example, at the bottom of the small protrusions 26, which will be described later, and contributes to cooling at the adhering portion. If it is in the state, when the refrigerant is newly discharged, the heat transfer coefficient α at the adhering portion or the like is lower than when the refrigerant does not remain. For this reason, after the refrigerant is discharged, it is desirable to collect the refrigerant that has not been vaporized by a suction means such as a vacuum generator, thereby improving the control of the cooling efficiency and the heat transfer coefficient α.
The refrigerant recovery port 17 and the refrigerant recovery tube 18 can be formed by a method similar to the method of forming the refrigerant discharge port 12 and the refrigerant supply tube 13 described above. Moreover, the refrigerant | coolant collection | recovery port 17 may be provided in the top part of the punch 4, and may be provided in both a vertical wall part and a top part. The same applies to the case where the refrigerant recovery port 17 is provided in the plate holder 6. On the other hand, when the coolant recovery port 17 is provided in the upper die 3 or the pad 5, it may be provided at the bottom or at both the vertical wall and the bottom, but is provided at the vertical wall. Thus, the refrigerant discharged to the molding material can be efficiently recovered.

以上説明した熱間プレス成形用金型2は、金型2の成形面に冷媒吐出口12を形成した金型であるが、図9および図10に示すように、金型2の成形面に1または2以上の第2の凹部27を形成し、各第2の凹部27の底面に1または2以上の冷媒吐出口12を形成してもよい。これにより第1の凹部19と第2の凹部27の間には、いわゆる堰が形成されることから、第2の凹部27の底面から吐出された冷媒が断熱手段である第1の凹部19側に侵入することを回避でき、冷媒侵入による断熱作用の低減を阻止することができる。これについては、第1の凹部19に断熱材23を配置する場合についても同様の効果がある。また、第1の凹部19に熱源を配置する場合には、断熱作用の低減阻止効果のみならず、冷媒侵入による熱源の破壊を防止することができる。
また、上記のように金型2の成形面に1または2以上の第2の凹部27を形成し、各第2の凹部27の底面に1または2以上の冷媒吐出口12を形成する場合には、図9および図10に示すように、各第2の凹部27の底面に1または2以上の冷媒回収口17を形成するのが望ましい。これにより、第2の凹部27の底面から吐出された冷媒を効率よく回収することができる。
The hot press-molding mold 2 described above is a mold in which the coolant discharge port 12 is formed on the molding surface of the mold 2. However, as shown in FIGS. 9 and 10, One or two or more second recesses 27 may be formed, and one or more refrigerant discharge ports 12 may be formed on the bottom surface of each second recess 27. As a result, a so-called weir is formed between the first concave portion 19 and the second concave portion 27, so that the refrigerant discharged from the bottom surface of the second concave portion 27 is the first concave portion 19 side which is a heat insulating means. It is possible to avoid intruding into the water, and it is possible to prevent the heat insulation effect from being reduced due to the refrigerant intrusion. This also has the same effect when the heat insulating material 23 is disposed in the first recess 19. Further, when a heat source is disposed in the first recess 19, not only the heat insulation action reduction prevention effect but also the destruction of the heat source due to refrigerant intrusion can be prevented.
Further, when one or more second concave portions 27 are formed on the molding surface of the mold 2 as described above, and one or two or more refrigerant discharge ports 12 are formed on the bottom surface of each second concave portion 27. As shown in FIGS. 9 and 10, it is desirable to form one or more refrigerant recovery ports 17 on the bottom surface of each second recess 27. Thereby, the refrigerant discharged from the bottom surface of the second recess 27 can be efficiently recovered.

以上説明した熱間プレス成形用金型2は、金型2の成形面あるいは当該成形面に形成した第2の凹部27の底面に、冷却手段である冷媒吐出口12を形成した金型であるが、図11および図12に示すように、さらに、断熱手段である第1の凹部19の底面に冷媒吐出口12を、金型内部に冷媒供給管13を形成してもよい。
同様に、断熱手段である第1の凹部19の底面に冷媒回収口17を、金型内部に冷媒回収管18を形成してもよい。
The hot press molding die 2 described above is a die in which the coolant discharge port 12 as a cooling means is formed on the molding surface of the mold 2 or the bottom surface of the second recess 27 formed on the molding surface. However, as shown in FIG. 11 and FIG. 12, the refrigerant discharge port 12 may be formed on the bottom surface of the first recess 19 which is a heat insulating means, and the refrigerant supply pipe 13 may be formed inside the mold.
Similarly, the refrigerant recovery port 17 may be formed on the bottom surface of the first recess 19 which is a heat insulating means, and the refrigerant recovery pipe 18 may be formed inside the mold.

すなわち、当該金型2は、図11および図12に示すように、金型2の成形面あるいは当該成形面に形成した第2の凹部27の底面のみならず、断熱手段である第1の凹部19の底面にも冷却手段である冷媒吐出口12や冷媒回収口17を形成した金型であるが、このような構成にすることにより、様々な強度分布を有するプレス製品を得ることができる。すなわち、ある特定の強度分布を有するプレス成形品を得るためには、当該強度分布に適合する断熱領域および冷却領域を備える必要があるため、例えば、断熱手段である第1の凹部19については、プレス製品の低強度領域に対応するような金型位置に形成する必要が生じ、また、冷却手段である冷媒吐出口12についても、プレス製品の高強度領域に対応するような金型位置に形成する必要が生じる。しかし、断熱手段である第1の凹部19の底面にも冷却手段である冷媒吐出口12や冷媒回収口17を形成しておくことにより、図13および図14に示すように、断熱手段である第1の凹部19を冷却手段として、また、冷却手段である第2の凹部27を断熱手段として切り替えて機能させることができる。   That is, as shown in FIGS. 11 and 12, the mold 2 includes not only the molding surface of the mold 2 or the bottom surface of the second recess 27 formed on the molding surface, but also the first recess that is a heat insulating means. Although the die is provided with the refrigerant discharge port 12 and the refrigerant recovery port 17 which are cooling means also on the bottom surface of 19, press products having various strength distributions can be obtained by such a configuration. That is, in order to obtain a press-formed product having a specific strength distribution, it is necessary to have a heat insulating region and a cooling region that match the strength distribution. For example, for the first recess 19 that is a heat insulating means, It is necessary to form the mold position corresponding to the low strength region of the press product, and the coolant discharge port 12 as the cooling means is also formed at the mold position corresponding to the high strength region of the press product. Need to be done. However, by forming the refrigerant discharge port 12 and the refrigerant recovery port 17 as the cooling means on the bottom surface of the first recess 19 as the heat insulating means, the heat insulating means is used as shown in FIGS. The first recess 19 can be switched to function as a cooling unit, and the second recess 27 as a cooling unit can be switched as a heat insulating unit.

具体的には、金型2の成形面、第1の凹部19の底面および第2の凹部27の底面に形成した冷媒吐出口12のいずれの冷媒吐出口12からの冷媒吐出を行うかを選択することにより、また、第1の凹部19と第2の凹部27のいずれかを断熱手段として機能させるかを選択することにより、あるいは、第1の凹部19と第2の凹部27のいずれかに断熱材23または熱源を配置するかを選択することにより、様々な強度分布を有するプレス製品を得ることができる。   Specifically, it is selected which of the coolant discharge ports 12 of the coolant discharge ports 12 formed on the molding surface of the mold 2, the bottom surface of the first recess 19 and the bottom surface of the second recess 27 is to be discharged. By selecting one of the first concave portion 19 and the second concave portion 27 to function as a heat insulating means, or in either the first concave portion 19 or the second concave portion 27 By selecting whether to arrange the heat insulating material 23 or the heat source, press products having various strength distributions can be obtained.

例えば、(1)前記冷却手段を、熱間プレス成形用金型2の成形面に形成した冷媒吐出口12からの冷媒吐出、または、熱間プレス成形用金型2の成形面に形成した冷媒吐出口12からの冷媒吐出と冷媒回収口17からの冷媒回収とし、前記断熱手段を、熱間プレス成形用金型2の成形面に形成した第1の凹部19、または、前記第1の凹部に配置した断熱材36若しくは熱源とすることができる。
また、(2)前記冷却手段を、熱間プレス成形用金型2の成形面に形成した第2の凹部27の底面に形成した冷媒吐出口12からの冷媒吐出、または、熱間プレス成形用金型の成形面に形成した第2の凹部27の底面に形成した冷媒吐出口12からの冷媒吐出と冷媒回収口17からの冷媒回収とし、前記断熱手段を、前記第1の凹部19、または、前記第1の凹部19に配置した断熱材23若しくは熱源とすることができる。
あるいは、(3)前記冷却手段を、熱間プレス成形用金型2の成形面に形成した第1の凹部19の底面に形成した冷媒吐出口12からの冷媒吐出、または、熱間プレス成形用金型2の成形面に形成した第1の凹部19の底面に形成した冷媒吐出口12からの冷媒吐出と冷媒回収口17からの冷媒回収とし、前記断熱手段を、前記第2の凹部27、または、前記第2の凹部27に配置した断熱材23若しくは熱源とすることもできる。
したがって、第2の凹部27は、強度を制御する成形品各部の境界において強度がステップ状に変化するように第1の凹部19と近接させて形成することが望ましい。これにより、弁機構を用いて第1の凹部19と第2の凹部27の機能を切り替えることによって、すなわち、所望するプレス製品の強度分布に応じて、熱間プレス成形用金型が備える冷却手段と断熱手段とを当該プレス製品ごとに切り替えることによって、同一組の金型で複数通りの強度分布を、特に強度を制御する成形品各部の境界において強度がステップ状に変化するプレス製品を目的に合わせて製造することができる。
For example, (1) the cooling means is a refrigerant discharge from the refrigerant discharge port 12 formed on the molding surface of the hot press molding die 2 or a refrigerant formed on the molding surface of the hot press molding die 2 The refrigerant is discharged from the discharge port 12 and the refrigerant is recovered from the refrigerant recovery port 17, and the heat insulating means is formed in the first concave portion 19 formed on the molding surface of the hot press molding die 2 or the first concave portion. It can be used as the heat insulating material 36 or the heat source.
(2) The cooling means is used for refrigerant discharge from the refrigerant discharge port 12 formed on the bottom surface of the second recess 27 formed on the molding surface of the hot press molding die 2 or for hot press molding. The refrigerant discharge from the refrigerant discharge port 12 and the refrigerant recovery from the refrigerant recovery port 17 formed on the bottom surface of the second concave portion 27 formed on the molding surface of the mold are performed, and the heat insulating means is the first concave portion 19 or The heat insulating material 23 disposed in the first recess 19 or a heat source can be used.
Alternatively, (3) the cooling means is used for refrigerant discharge from the refrigerant discharge port 12 formed on the bottom surface of the first recess 19 formed on the molding surface of the hot press molding die 2 or for hot press molding. The refrigerant discharge from the refrigerant discharge port 12 formed on the bottom surface of the first concave portion 19 formed on the molding surface of the mold 2 and the refrigerant recovery from the refrigerant recovery port 17, and the heat insulating means as the second concave portion 27, Alternatively, the heat insulating material 23 arranged in the second recess 27 or a heat source can be used.
Therefore, it is desirable that the second concave portion 27 is formed close to the first concave portion 19 so that the strength changes stepwise at the boundary between the respective portions of the molded product for controlling the strength. Thus, the cooling means provided in the hot press-molding die by switching the functions of the first concave portion 19 and the second concave portion 27 using the valve mechanism, that is, according to the strength distribution of the desired press product. By switching the heat insulation means for each press product, multiple strength distributions with the same set of dies, especially for press products whose strength changes stepwise at the boundary of each part of the molded product that controls strength Can be manufactured together.

さらに、図15に示すように、熱間プレス成形用金型2の成形面に複数の小突起26を形成することにより、断熱部として、金型と金属板材1との接触面積が減少し、プレス成形中の金型抜熱による被成形材たる金属板材1の過冷却を抑制することができる。逆に冷却部として、被成形材と冷媒との接触面積を増やすことにより、急冷させたい部分に多くの冷媒を接触させ、冷却速度を要求される通りに上げることができる。さらには、成形完了後、下死点で冷媒を吐出した際には、小突起26と金属板材1との間隙に冷媒を循環させることが容易になり、金型と金属板材1との冷却効率を高めることができる。また、これだけでなく、金型2の熱歪を減少させ、加工精度を上げることができる。
なお、図15に例示した小突起26は、金型の成形面に所定の間隔で設けた円柱状の形状であるが、水平断面の形状は、円状、多角形状、星型形状のいずれかであることが望ましく、垂直断面の形状は、長方形又は台形であることが望ましく、半球状でもよい。
Further, as shown in FIG. 15, by forming a plurality of small protrusions 26 on the molding surface of the hot press molding die 2, as a heat insulating portion, the contact area between the die and the metal plate 1 is reduced, It is possible to suppress overcooling of the metal plate 1 that is a material to be molded due to heat removal from the mold during press molding. Conversely, by increasing the contact area between the material to be molded and the refrigerant as the cooling section, a large amount of refrigerant can be brought into contact with the portion to be rapidly cooled, and the cooling rate can be increased as required. Furthermore, when the coolant is discharged at the bottom dead center after the completion of molding, it becomes easy to circulate the coolant through the gap between the small protrusion 26 and the metal plate 1, and the cooling efficiency between the mold and the metal plate 1 is improved. Can be increased. Moreover, not only this but the thermal distortion of the metal mold | die 2 can be reduced and a processing precision can be raised.
The small protrusions 26 illustrated in FIG. 15 have a columnar shape provided at a predetermined interval on the molding surface of the mold, but the shape of the horizontal cross section is any one of a circular shape, a polygonal shape, and a star shape. The shape of the vertical cross section is preferably rectangular or trapezoidal, and may be hemispherical.

前記小突起26は、金型2の成形面の少なくとも一面に形成すれば前記効果を発揮することができるが、双方の成形面に形成してもよい。また、金型2の成形面の一部に設けても全面に設けてもよい。
なお、小突起26は、その形状がプレス成形品に転写されて成形品の表面性状を害することがあるので、小突起周囲の金型部分を除去して窪みを形成するか、図15に示すように小突起形成位置における金型部分に小突起26の高さと一致する深さの窪みを形成し、当該窪みに小突起26を形成することが望ましい。
The small protrusions 26 can exhibit the above-described effects if formed on at least one of the molding surfaces of the mold 2, but may be formed on both molding surfaces. Further, it may be provided on a part of the molding surface of the mold 2 or on the entire surface.
Since the shape of the small protrusion 26 may be transferred to the press-molded product and damage the surface property of the molded product, the mold portion around the small protrusion is removed to form a recess, or as shown in FIG. Thus, it is desirable to form a recess having a depth matching the height of the small protrusion 26 in the mold portion at the small protrusion forming position, and to form the small protrusion 26 in the recess.

小突起26の面積率としては、金型2の成形面の1〜90%であることが望ましく、連続していないことが望ましい。1%未満では被成形材に突起部形状が転写し易く、90%を超える場合は小突起26の間隙が狭く、断熱部としては成形面方向の熱伝達を妨げることができず、冷却部としては圧力損失が大きくなり冷媒が充填又は流動できないため、冷却効率が低下する。
小突起26の水平断面形状が円状である場合には小突起26の直径、多角形状又は星型形状である場合には小突起26の外接円の直径が10μm〜5mmであることが望ましい。直径又は外接円の直径が10μm未満では突起の摩耗が大きく、長期間にわたり効果を発揮することができず、5mmを超える場合は均一に冷却することができない。
小突起26の高さは、5μm〜1mmであることが望ましい。高さが5μm未満では被成形材との隙間が小さすぎるため、金型2と被成形材の間に冷媒を循環させることが困難であり、1mmを越す場合は隙間が過大となるため、加工量が増え経済的でない。いずれの場合であっても、小突起の高さは、周囲に窪みを形成していない場合、クリアランスから板厚を差し引いた分より大きくはできない。
The area ratio of the small protrusions 26 is desirably 1 to 90% of the molding surface of the mold 2 and desirably not continuous. If it is less than 1%, the shape of the protrusion can be easily transferred to the material to be molded, and if it exceeds 90%, the gap between the small protrusions 26 is narrow, and the heat insulating part cannot prevent heat transfer in the molding surface direction. Since the pressure loss becomes large and the refrigerant cannot be charged or flown, the cooling efficiency is lowered.
When the horizontal cross-sectional shape of the small protrusion 26 is circular, it is desirable that the diameter of the small protrusion 26 is 10 μm to 5 mm, and when it is a polygonal shape or a star shape, the diameter of the circumscribed circle of the small protrusion 26 is 10 μm to 5 mm. When the diameter or circumscribed circle diameter is less than 10 μm, the protrusions are greatly worn, and the effect cannot be exhibited over a long period of time. When the diameter exceeds 5 mm, cooling cannot be performed uniformly.
The height of the small protrusions 26 is desirably 5 μm to 1 mm. If the height is less than 5 μm, the gap between the material to be molded is too small and it is difficult to circulate the coolant between the mold 2 and the material to be molded. Volume increases and is not economical. In any case, the height of the small protrusion cannot be larger than the amount obtained by subtracting the plate thickness from the clearance if no depression is formed around the small protrusion.

さらには、図16および図17に示すように、第1の凹部19の底面に1または2以上の板面支持突起28を形成することが望ましい。これにより、金属板材1が第1の凹部19へ流入することを、ひいては、プレス製品の成形不良を防止することができる。
板面支持突起28の面積率としては、第1の凹部19の底面面積の1〜90%であることが望ましい。1%未満では金属板材1が第1の凹部19内に流入し易く、90%を超えると当該板面支持突起28と金属板材1との接触により金属板材の抜熱が発生し、断熱手段である第1の凹部19の断熱作用が低下する。
板面支持突起28の水平断面形状が円状である場合には板面支持突起28の直径、多角形状又は星型形状である場合には板面支持突起28の外接円の直径が10μm〜5mmであることが望ましい。直径又は外接円の直径が10μm未満では金属板材1の第1の凹部19への流入を防ぐための強度を確保できず、5mmを超える場合は板材から抜熱が大きくなるため断熱の効果が確保できない。
また、板面支持突起28の高さについては、第1の凹部の深さと同一であることが望ましい。板面支持突起28の高さが第1の凹部の深さよりも低いと金属板材1が第1の凹部19に流入し、第1の凹部の深さよりも高いと金属板材1が当該板面支持突起28に引っかかるので、いずれもプレス製品の成形不良を招来してしまう。
なお、同様の理由により、第2の凹部27の底面に1または2以上の板面支持突起28を形成することが望ましい。この場合、板面支持突起28の面積率を第2の凹部27の底面面積の1〜90%とする理由、および板面支持突起28の高さを第2の凹部27の深さと同一とする理由についても、第1の凹部19の底面に板面支持突起28を形成する場合と同様である。
なお、板面支持突起は第1の凹部の場合、成形面方向に伝熱が生じないように、第2の凹部の場合、冷媒が凹部にくまなく流れるように不連続であることが望ましい。
Furthermore, as shown in FIGS. 16 and 17, it is desirable to form one or more plate surface support protrusions 28 on the bottom surface of the first recess 19. Thereby, it can prevent that the metal plate material 1 flows into the 1st recessed part 19, and by extension, the shaping | molding defect of a press product.
The area ratio of the plate surface support protrusion 28 is preferably 1 to 90% of the bottom surface area of the first recess 19. If it is less than 1%, the metal plate material 1 tends to flow into the first recess 19, and if it exceeds 90%, heat removal of the metal plate material occurs due to contact between the plate surface support projections 28 and the metal plate material 1, and heat insulation means. The heat insulation effect of a certain first recess 19 is reduced.
When the horizontal cross-sectional shape of the plate surface supporting projection 28 is circular, the diameter of the plate surface supporting projection 28 is set. When the plate surface supporting projection 28 is polygonal or star-shaped, the diameter of the circumscribed circle of the plate surface supporting projection 28 is 10 μm to 5 mm. It is desirable that If the diameter or the diameter of the circumscribed circle is less than 10 μm, the strength to prevent the metal plate 1 from flowing into the first recess 19 cannot be secured, and if it exceeds 5 mm, the heat removal from the plate increases and the heat insulation effect is secured. Can not.
Further, it is desirable that the height of the plate surface support protrusion 28 is the same as the depth of the first recess. When the height of the plate surface support projection 28 is lower than the depth of the first recess, the metal plate material 1 flows into the first recess 19, and when the height of the plate surface support protrusion 28 is higher than the depth of the first recess, the metal plate material 1 supports the plate surface. Since they are caught by the protrusions 28, both of them cause a molding defect of the press product.
For the same reason, it is desirable to form one or more plate surface support protrusions 28 on the bottom surface of the second recess 27. In this case, the reason why the area ratio of the plate surface support protrusion 28 is 1 to 90% of the bottom surface area of the second recess 27 and the height of the plate surface support protrusion 28 is the same as the depth of the second recess 27. The reason is the same as in the case where the plate surface support protrusion 28 is formed on the bottom surface of the first recess 19.
In the case of the first recess, the plate surface support protrusion is desirably discontinuous so that the refrigerant flows through the recess in the case of the second recess so that heat transfer does not occur in the molding surface direction.

板面支持突起28は、電解加工、化学エッチング、放電加工、めっき法等によって形成することができる。
化学エッチングは、可視光硬化型感光性樹脂を金型表面に塗布、乾燥した後、可視光を遮断するマスクで被覆して可視光を照射し、照射部を硬化させ、硬化部以外の樹脂を有機溶剤により除去する方法である。例えば、塩化ナトリウム水溶液等のエッチング液に金型表面を1〜30分程度浸漬し、エッチングすればよい。板面支持突起28の直径又はピッチは可視光を遮断するマスクの形状によって適宜選択することが可能であり、板面支持突起28の高さはエッチング時間によって適宜調整することができる。
放電加工は、目的とする突起形状を反転させた凹部を表面パターンとして有する銅電極を金型に対向して設置し、電流ピーク値、パルス幅を変え、直流パルス電流を流す加工方法である。好ましい電流値は2〜100A、パルス幅は2〜1000μsecであり、金型材質、及び所望の突起部形状に応じて、適宜調整すればよい。
めっき法の場合、半球状突起部の直径を10μm以上とするため、めっきの厚みを10μm以上とすることが好ましく、上限は剥離を防止するため80μm以下とすることが望ましい。めっき層は、アルカリ脱脂し、めっき液中で金型を陽極として電解処理する電解エッチングを行った後、所定の浴温、電流密度で形成することができる。なお、クロムめっきの場合はクロムめっき液中で、電流密度1〜200A/dm程度、浴温30〜60℃程度、NiWめっきの場合は、NiWめっき液中、電流密度1〜100A/dm程度、浴温30〜80℃程度の条件にすれば、10〜80μmの厚みのめっき層を設けることができる。なお、半球状突起部形状を有するめっき層を形成するには、例えば、電流密度を段階的に増加させた後、一定電流密度でめっきすればよい。
The plate surface support protrusions 28 can be formed by electrolytic processing, chemical etching, electric discharge processing, plating, or the like.
In chemical etching, a visible light curable photosensitive resin is applied to the mold surface, dried, then covered with a mask that blocks visible light, irradiated with visible light, the irradiated part is cured, and a resin other than the cured part is applied. This is a method of removing with an organic solvent. For example, the mold surface may be immersed in an etching solution such as a sodium chloride aqueous solution for about 1 to 30 minutes and etched. The diameter or pitch of the plate surface support protrusions 28 can be selected as appropriate according to the shape of the mask that blocks visible light, and the height of the plate surface support protrusions 28 can be adjusted as appropriate according to the etching time.
The electric discharge machining is a machining method in which a copper electrode having a concave portion in which a target projection shape is inverted as a surface pattern is placed facing a mold, a current peak value and a pulse width are changed, and a direct current pulse current is passed. A preferable current value is 2 to 100 A, a pulse width is 2 to 1000 μsec, and the current value may be appropriately adjusted according to the mold material and the desired protrusion shape.
In the case of the plating method, in order to make the diameter of the hemispherical protrusion 10 μm or more, the thickness of the plating is preferably 10 μm or more, and the upper limit is preferably 80 μm or less in order to prevent peeling. The plating layer can be formed at a predetermined bath temperature and current density after alkaline degreasing and electrolytic etching in which a mold is used as an anode in a plating solution. In the case of chromium plating, the current density is about 1 to 200 A / dm 2 in the chromium plating solution, and the bath temperature is about 30 to 60 ° C. In the case of NiW plating, the current density is 1 to 100 A / dm 2 in the NiW plating solution. When the bath temperature is about 30 to 80 ° C., a plating layer having a thickness of 10 to 80 μm can be provided. In order to form a plating layer having a hemispherical projection shape, for example, after increasing the current density stepwise, plating may be performed at a constant current density.

次に、冷媒供給管13が備える弁機構、すなわち、開閉弁14、流量調整弁15および圧力調整弁16の各機能について説明する。
一般に冷媒による冷却能力については熱伝達係数αを用いて表すことができ、当該熱伝達係数α、冷媒の吐出量Q、吐出流速U、吐出圧力Pおよび吐出時間Tとの関係は以下の式により表すことができる。なお、f、g、hは、それぞれ関数を表し、例えば、熱伝達係数αは冷媒の吐出量Qの関数として成立することを示す。
熱伝達係数α =f(冷媒の吐出量Q) ・・・ (1)
冷媒の吐出量Q =g(吐出流速U、吐出時間T) ・・・ (2)
吐出流速U =h(吐出圧力P) ・・・ (3)
Next, the valve mechanism provided in the refrigerant supply pipe 13, that is, each function of the on-off valve 14, the flow rate adjustment valve 15, and the pressure adjustment valve 16 will be described.
In general, the cooling capacity by the refrigerant can be expressed using a heat transfer coefficient α, and the relationship between the heat transfer coefficient α, the refrigerant discharge amount Q, the discharge flow rate U, the discharge pressure P, and the discharge time T is expressed by the following equation. Can be represented. Note that f, g, and h represent functions, for example, that the heat transfer coefficient α is established as a function of the refrigerant discharge amount Q.
Heat transfer coefficient α = f (refrigerant discharge amount Q) (1)
Refrigerant discharge amount Q = g (discharge flow velocity U, discharge time T) (2)
Discharge flow rate U = h (discharge pressure P) (3)

すなわち、本発明は、冷媒供給管13が備える開閉弁14、流量調整弁15および圧力調整弁16の少なくとも1つの弁によって、冷媒の吐出量Q、吐出流速U、吐出圧力P、吐出時間T、および吐出タイミングから選択される1又は2以上のパラメータを制御し、これにより前記熱伝達係数を制御するものである。すなわち、本発明においては、必ずしも開閉弁14、流量調整弁15および圧力調整弁16の3種類の弁を設ける必要がなく、1つの弁によって当該機能を達成することができる。ただし、開閉弁14、流量調整弁15および圧力調整弁16の3種類の弁を設けることにより、前記パラメータの制御が容易となるので、開閉弁14、流量調整弁15および圧力調整弁16の3種類の弁を設けることが望ましい。
なお、前記弁は応答性を良好に保つために冷媒吐出口12に近い金型内部に内蔵してもよいが、弁の調整を行うたびに金型を分解する手間を要するため、ダイセット11に設置することが望ましい。
That is, according to the present invention, the refrigerant discharge amount Q, the discharge flow rate U, the discharge pressure P, the discharge time T, the at least one of the on-off valve 14, the flow rate adjustment valve 15, and the pressure adjustment valve 16 provided in the refrigerant supply pipe 13. And one or two or more parameters selected from the discharge timing, thereby controlling the heat transfer coefficient. That is, in the present invention, it is not always necessary to provide three types of valves, that is, the on-off valve 14, the flow rate adjusting valve 15, and the pressure adjusting valve 16, and the function can be achieved by one valve. However, by providing three types of valves, that is, the on-off valve 14, the flow rate adjusting valve 15, and the pressure adjusting valve 16, the parameters can be easily controlled. It is desirable to provide a type of valve.
The valve may be built in the mold close to the refrigerant discharge port 12 in order to keep the responsiveness good. However, it takes time to disassemble the mold every time the valve is adjusted. It is desirable to install in.

また、前記したように本発明は、少なくとも1つの弁によって、冷媒の吐出量Q、吐出流速U、吐出圧力P、吐出時間T、および吐出タイミングから選択される1又は2以上のパラメータを制御することにより、冷媒吐出による熱伝達係数αを制御するものであるが、当該制御を各冷媒吐出口毎に行えば、金型の成形面、第1の凹部19の底面または第2の凹部27の底面のいずれかに形成した冷媒吐出口12からの冷媒吐出による冷却の熱伝達係数αを自在に可変することが可能となり、様々な強度分布を有するプレス製品を得ることができる。
さらには、柱状のプレス製品を成形する場合には、パンチ押し込み量が同一となる位置関係にある複数の冷媒吐出口12からの冷媒吐出をグループ化してグループ毎に制御すれば、成形性を向上させることが可能である。
Further, as described above, the present invention controls one or more parameters selected from the refrigerant discharge amount Q, the discharge flow rate U, the discharge pressure P, the discharge time T, and the discharge timing by at least one valve. Thus, the heat transfer coefficient α due to refrigerant discharge is controlled. If this control is performed for each refrigerant discharge port, the molding surface of the mold, the bottom surface of the first concave portion 19 or the second concave portion 27 is controlled. It becomes possible to freely change the heat transfer coefficient α for cooling by refrigerant discharge from the refrigerant discharge port 12 formed on any one of the bottom surfaces, and press products having various strength distributions can be obtained.
Furthermore, when forming a columnar press product, the moldability can be improved by grouping and controlling the refrigerant discharge from a plurality of refrigerant discharge ports 12 in the positional relationship where the punch push-in amount is the same. It is possible to make it.

次に、冷媒供給管13に備えた開閉弁14、流量調整弁15および圧力調整弁16の少なくとも1つを制御する制御装置30について説明する。なお、当該制御装置30は、図18に示すように、前記した熱間プレス成形用金型2とともに、本発明に係る熱間プレス成形装置31を構成する要素の1つである。
当該制御装置30としては、特に限定されるものではなく、前記冷媒供給管13に備えた開閉弁14、流量調整弁15および圧力調整弁16の開閉を制御できるものであれば、機械的、電子的手段を問わず、あるいはこれらを複合させた手段であってもよい。例えば、これらの弁機構にリレースイッチを採用し、当該リレースイッチの開閉(オン・オフ)を計算機(コンピュータ)により制御することにより、前記冷媒供給管13と連通する冷媒吐出口12からの冷媒吐出、具体的には当該冷媒吐出口12における熱伝達係数αを調整することができる。
Next, the control device 30 that controls at least one of the on-off valve 14, the flow rate adjustment valve 15, and the pressure adjustment valve 16 provided in the refrigerant supply pipe 13 will be described. In addition, as shown in FIG. 18, the said control apparatus 30 is one of the elements which comprise the hot press-molding apparatus 31 which concerns on this invention with the above-mentioned hot press-molding metal mold | die 2. As shown in FIG.
The control device 30 is not particularly limited as long as it can control the opening / closing of the on / off valve 14, the flow rate adjusting valve 15 and the pressure adjusting valve 16 provided in the refrigerant supply pipe 13; Regardless of the target means, or a means in which these are combined. For example, by employing a relay switch for these valve mechanisms and controlling the opening and closing (on / off) of the relay switch by a computer (computer), the refrigerant discharge from the refrigerant discharge port 12 communicating with the refrigerant supply pipe 13 Specifically, the heat transfer coefficient α at the refrigerant discharge port 12 can be adjusted.

また、冷媒吐出口12からの冷媒吐出タイミングは、パンチ押し込み量32(ストローク位置とも言う)と同期させることが望ましいため、図18に示すように、パンチ押し込み量32を示す計測データあるいはこれに相当する信号を制御装置30に入力することが望ましい。これにより、前記冷媒供給管13に備えた開閉弁14、流量調整弁15および圧力調整弁16の各弁をパンチ押し込み量32と同期させて制御することが可能となり、前記冷媒供給管13と連通する冷媒吐出口12からの冷媒吐出をパンチ押し込み量と同期させることが可能となる。
また、柱状のプレス製品を成形する場合には、パンチ押し込み量が同一となる位置関係にある複数の冷媒吐出口12における冷媒吐出を同一にすることにより成形性が向上するので、この場合には、パンチ押し込み量が同一となる位置関係にある複数の冷媒吐出口12と連通する冷媒供給管13の開閉弁等の制御を同一にすることが望ましい。
Moreover, since it is desirable to synchronize the refrigerant discharge timing from the refrigerant discharge port 12 with the punch push-in amount 32 (also referred to as a stroke position), as shown in FIG. It is desirable to input a signal to the control device 30. This makes it possible to control the on-off valve 14, the flow rate adjustment valve 15, and the pressure adjustment valve 16 provided in the refrigerant supply pipe 13 in synchronization with the punch push-in amount 32, and communicate with the refrigerant supply pipe 13. It is possible to synchronize the refrigerant discharge from the refrigerant discharge port 12 to the punch push-in amount.
In the case of forming a columnar press product, the formability is improved by making the refrigerant discharge at the plurality of refrigerant discharge ports 12 in the positional relationship where the punch push-in amount is the same, in this case, It is desirable to make the control of the on-off valves and the like of the refrigerant supply pipe 13 communicating with the plurality of refrigerant discharge ports 12 in the positional relationship where the punch push-in amount is the same.

最後に冷媒吐出口12から吐出される冷媒について説明する。本発明で用いる冷媒としては、難燃性、腐食性から、水、多価アルコール類、多価アルコール類水溶液、ポリグリコール、引火点120℃以上の鉱物油、合成エステル、シリコンオイル、フッ素オイル、滴点120℃以上のグリース、鉱物油、合成エステルに界面活性剤を配合した水エマルションのいずれでもよく、これらの混合物を用いてもよい。
なお、冷媒は、液体でも気体でもよい。冷媒として気体を用いる場合、熱伝達係数が低いので、比較的加工の厳しくない場合や、マルテンサイト変態、ベイナイト変態させない場合に限られる。また、表面の酸化を避けるために活性の低い窒素、CO、不活性ガスを用いることが望ましい。さらに、冷媒が気体である場合は、成形品や熱間プレス成形用金型2に付着して残ることがないので、不必要な汚れやさびなどを生じさせることが少ないという効果がある。
Finally, the refrigerant discharged from the refrigerant discharge port 12 will be described. As the refrigerant used in the present invention, water, polyhydric alcohols, polyhydric alcohol aqueous solution, polyglycol, mineral oil having a flash point of 120 ° C. or higher, synthetic ester, silicon oil, fluorine oil, from flame retardancy and corrosiveness, Either a grease having a dropping point of 120 ° C. or higher, mineral oil, or a water emulsion in which a surfactant is blended with a synthetic ester may be used, or a mixture thereof may be used.
The refrigerant may be liquid or gas. When a gas is used as the refrigerant, the heat transfer coefficient is low, so that it is limited to a case where the processing is not relatively severe, or a case where the martensite transformation or the bainite transformation is not performed. Also, it is desirable to use nitrogen, CO 2 , or inert gas with low activity in order to avoid surface oxidation. Furthermore, when the refrigerant is a gas, it does not remain attached to the molded product or the hot press molding die 2, so that there is an effect that unnecessary dirt and rust are less likely to occur.

プレス成形品の強度分布を示す模式図であり、(a)はプレス成形品の一例、(b)はテーラードブランクによるプレス成形品の強度分布、(c)は従来技術によるプレス成形品の強度分布を示す模式図である。It is a schematic diagram which shows strength distribution of a press-formed product, (a) is an example of a press-formed product, (b) is a strength distribution of a press-formed product by a tailored blank, and (c) is a strength distribution of a press-formed product by a conventional technique. It is a schematic diagram which shows. 鋼板の冷却開始温度と冷却速度を制御することにより鋼板の組織を制御できることを示す炭素鋼のCCT曲線の一例である。It is an example of the CCT curve of carbon steel which shows that the structure of a steel plate can be controlled by controlling the cooling start temperature and cooling rate of a steel plate. 本発明に係る熱間プレス成形用金型の構成を示す模式図であり、(a)はダイスホルダーとパンチホルダーを記載した図、(b)は構成を明確にするためにダイスホルダーとパンチホルダーを省略して記載した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the structure of the hot press molding metal mold | die which concerns on this invention, (a) is the figure which described the die holder and the punch holder, (b) is a die holder and a punch holder in order to clarify a structure. It is the figure which abbreviate | omitted and described. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、成形面に形成した冷媒吐出口12、冷媒供給管13および第1の凹部19を模式的に示した断面図である。It is sectional drawing which shows an example of the hot press molding metal mold | die which concerns on this invention, and is sectional drawing which showed typically the refrigerant | coolant discharge port 12, the refrigerant | coolant supply pipe | tube 13, and the 1st recessed part 19 which were formed in the molding surface. . 本発明に係る熱間プレス成形用金型の一例を示す断面図である。It is sectional drawing which shows an example of the die for hot press molding which concerns on this invention. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、第1の凹部19に断熱材23を配置した断面図である。FIG. 3 is a cross-sectional view showing an example of a hot press molding die according to the present invention, and is a cross-sectional view in which a heat insulating material 23 is arranged in a first recess 19. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、成形面に形成した冷媒回収口17および冷媒回収管18を模式的に示した断面図である。It is sectional drawing which shows an example of the hot press molding metal mold | die which concerns on this invention, and is sectional drawing which showed typically the refrigerant | coolant collection port 17 and the refrigerant | coolant collection pipe | tube 18 which were formed in the molding surface. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、第1の凹部19に断熱材23を配置した断面図である。FIG. 3 is a cross-sectional view showing an example of a hot press molding die according to the present invention, and is a cross-sectional view in which a heat insulating material 23 is arranged in a first recess 19. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、第2の凹部27の底面に形成した冷媒吐出口12および冷媒回収口17を模式的に示した断面図である。FIG. 4 is a cross-sectional view showing an example of a hot press molding die according to the present invention, and is a cross-sectional view schematically showing the refrigerant discharge port 12 and the refrigerant recovery port 17 formed on the bottom surface of the second recess 27. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、第1の凹部19に断熱材23を配置した断面図である。FIG. 3 is a cross-sectional view showing an example of a hot press molding die according to the present invention, and is a cross-sectional view in which a heat insulating material 23 is arranged in a first recess 19. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、第2の凹部27の底面に形成した冷媒吐出口12および冷媒回収口17を模式的に示した断面図である。FIG. 4 is a cross-sectional view showing an example of a hot press molding die according to the present invention, and is a cross-sectional view schematically showing the refrigerant discharge port 12 and the refrigerant recovery port 17 formed on the bottom surface of the second recess 27. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、第1の凹部19に断熱材23を配置した断面図である。FIG. 3 is a cross-sectional view showing an example of a hot press molding die according to the present invention, and is a cross-sectional view in which a heat insulating material 23 is arranged in a first recess 19. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、断熱手段である第1の凹部19を冷却手段として、冷却手段である第2の凹部27を断熱手段として切り替えて機能させることを模式的に示した断面図である。It is sectional drawing which shows an example of the hot press molding metal mold | die which concerns on this invention, changes the 1st recessed part 19 which is a heat insulation means as a cooling means, and switches the 2nd recessed part 27 which is a cooling means as a heat insulation means, and functions. It is sectional drawing which showed making it do typically. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、第2の凹部27に断熱材23を配置した断面図である。FIG. 4 is a cross-sectional view showing an example of a hot press molding die according to the present invention, and is a cross-sectional view in which a heat insulating material 23 is arranged in a second recess 27. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、板面支持突起28または小突起26の形成方法の一例を模式的に示した断面図である。It is sectional drawing which shows an example of the hot press molding metal mold | die which concerns on this invention, and is sectional drawing which showed typically an example of the formation method of the plate surface support protrusion 28 or the small protrusion 26. FIG. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、断熱手段から冷却手段に切り替えた第1の凹部19の底面に形成した板面支持突起28を模式的に示した断面図である。It is sectional drawing which shows an example of the die for hot press molding concerning this invention, and is the cross section which showed typically the plate | board surface support protrusion 28 formed in the bottom face of the 1st recessed part 19 switched from the heat insulation means to the cooling means. FIG. 本発明に係る熱間プレス成形用金型の一例を示す断面図であり、冷却手段から断熱手段に切り替えた第2の凹部27の部位に断熱材23を配置した断面図である。It is sectional drawing which shows an example of the hot press molding metal mold | die which concerns on this invention, and is sectional drawing which has arrange | positioned the heat insulating material 23 in the site | part of the 2nd recessed part 27 switched from the cooling means to the heat insulation means. 本発明に係る熱間プレス成形装置31の構成を示す模式図である。It is a schematic diagram which shows the structure of the hot press molding apparatus 31 which concerns on this invention.

符号の説明Explanation of symbols

1 金属板材 2 熱間プレス成形用金型
3 ダイス 4 パンチ
5 パッド 6 板押さえ
7 ダイベース(上型) 8 ダイベース(下型)
9 ダイスホルダー 10 パンチホルダー
11 ダイセット 12 冷媒吐出口
13 冷媒供給管 14 開閉弁
15 流量調整弁 16 圧力調整弁
17 冷媒回収口 18 冷媒回収管
19 第1の凹部 20 中子
21 シール 22 金型全体冷却部
23 断熱材 26 小突起
27 第2の凹部 28 板面支持突起
30 制御装置 31 熱間プレス成形装置
32 パンチ押し込み量
DESCRIPTION OF SYMBOLS 1 Metal plate material 2 Hot press molding die 3 Dies 4 Punch 5 Pad 6 Plate presser 7 Die base (upper die) 8 Die base (lower die)
DESCRIPTION OF SYMBOLS 9 Die holder 10 Punch holder 11 Die set 12 Refrigerant discharge port 13 Refrigerant supply pipe 14 On-off valve 15 Flow rate adjustment valve 16 Pressure adjustment valve 17 Refrigerant recovery port 18 Refrigerant recovery pipe 19 1st recessed part 20 Core 21 Seal 22 Whole mold Cooling unit 23 Heat insulating material 26 Small protrusion 27 Second recess 28 Plate surface support protrusion 30 Control device 31 Hot press forming device 32 Punch pushing amount

Claims (15)

加熱した金属板材をプレス成形するとともに具備する冷却手段および断熱手段により成形品各部の強度を制御する熱間プレス成形用金型であって、
前記冷却手段は、金型の成形面に形成する複数の冷媒吐出口と、当該冷媒吐出口に連通する管であり弁機構を備える金型の内部に形成する冷媒供給管とから構成され、
前記断熱手段は、金型の成形面に形成する第1の凹部を有し、かつ、
強度を制御する成形品各部の境界において強度がステップ状に変化するように、前記冷媒吐出口と第1の凹部とを近接して形成したことを特徴とする熱間プレス成形用金型。
A hot press mold for controlling the strength of each part of a molded product by means of cooling means and heat insulating means to press and form a heated metal plate,
The cooling means is composed of a plurality of refrigerant discharge ports formed on the molding surface of the mold, and a refrigerant supply pipe formed inside the mold that is a pipe communicating with the refrigerant discharge port and having a valve mechanism,
The heat insulating means has a first recess formed on the molding surface of the mold, and
A hot press molding die characterized in that the coolant discharge port and the first recess are formed close to each other so that the strength changes stepwise at the boundary of each part of the molded product whose strength is controlled.
前記第1の凹部に断熱材を配置したことを特徴とする請求項1に記載の熱間プレス成形用金型。
The hot press molding die according to claim 1, wherein a heat insulating material is disposed in the first recess.
前記第1の凹部に熱源を配置したことを特徴とする請求項1に記載の熱間プレス成形用金型。
The hot press molding die according to claim 1, wherein a heat source is disposed in the first recess.
前記熱源が、電気ヒータ、誘導加熱コイル、バーナーのいずれかであることを特徴とする請求項3に記載の熱間プレス成形用金型。
The hot press molding die according to claim 3, wherein the heat source is one of an electric heater, an induction heating coil, and a burner.
金型の成形面に複数の冷媒回収口を備え、
金型内部に各冷媒回収口と連通する冷媒回収管を配したことを特徴とする請求項1〜4のいずれか1項に記載の熱間プレス成形用金型。
Equipped with multiple coolant recovery ports on the molding surface of the mold,
The hot press molding die according to any one of claims 1 to 4, wherein a refrigerant recovery pipe communicating with each refrigerant recovery port is arranged inside the die.
強度を制御する成形品各部の境界において強度がステップ状に変化するように、金型の成形面に前記第1の凹部と近接させて第2の凹部を形成し、
各第2の凹部の底面に冷媒吐出口を形成したことを特徴とする請求項1〜5のいずれか1項に記載の熱間プレス成形用金型。
Forming a second recess on the molding surface of the mold close to the first recess so that the strength changes stepwise at the boundary of each part of the molded product that controls the strength;
The hot press molding die according to any one of claims 1 to 5, wherein a coolant discharge port is formed on a bottom surface of each second recess.
金型の成形面に第2の凹部を形成し、
各第2の凹部の底面に冷媒回収口を形成したことを特徴とする請求項6に記載の熱間プレス成形用金型。
Forming a second recess on the molding surface of the mold;
The hot press molding die according to claim 6, wherein a refrigerant recovery port is formed in a bottom surface of each second recess.
さらに、前記第1の凹部の底面に冷媒吐出口を、
金型内部に当該冷媒吐出口と連通する管であり、弁機構を備える冷媒供給管を形成したことを特徴とする請求項1〜7のいずれか1項に記載の熱間プレス成形用金型。
Furthermore, a refrigerant discharge port is formed on the bottom surface of the first recess.
The hot press molding die according to any one of claims 1 to 7, characterized in that a refrigerant supply pipe having a valve mechanism is formed inside the die and communicating with the refrigerant discharge port. .
さらに、前記第1の凹部の底面に冷媒回収口を、
金型内部に当該冷媒回収口と連通する冷媒回収管を形成したことを特徴とする請求項1〜8のいずれか1項に記載の熱間プレス成形用金型。
Furthermore, a refrigerant recovery port is provided on the bottom surface of the first recess.
The hot press molding die according to any one of claims 1 to 8, wherein a refrigerant recovery pipe communicating with the refrigerant recovery port is formed inside the die.
前記第1の凹部の底面に、
面積率が1〜90%、
直径又は外接円の直径が10μm〜5mm、
高さが前記第1の凹部の深さと同一である板面支持突起を1または2以上形成したことを特徴とする請求項1〜9のいずれか1項に記載の熱間プレス成形用金型。
On the bottom surface of the first recess,
The area ratio is 1 to 90%,
The diameter or diameter of the circumscribed circle is 10 μm to 5 mm,
The hot press molding die according to any one of claims 1 to 9, wherein one or more plate surface supporting protrusions having a height equal to the depth of the first recess are formed. .
前記第2の凹部の底面に、
面積率が1〜90%、
直径又は外接円の直径が10μm〜5mm、
高さが前記第2の凹部の深さと同一である板面支持突起を1または2以上形成したことを特徴とする請求項6または7に記載の熱間プレス成形用金型。
On the bottom surface of the second recess,
The area ratio is 1 to 90%,
The diameter or diameter of the circumscribed circle is 10 μm to 5 mm,
The hot press molding die according to claim 6 or 7 , wherein one or more plate surface supporting projections having a height equal to the depth of the second recess are formed.
加熱した金属板材をプレス成形するとともに具備する冷却手段および断熱手段により成形品各部の強度を制御する熱間プレス成形装置であって、
請求項1〜11のいずれか1項に記載の熱間プレス成形用金型と、
前記熱間プレス成形用金型が備える冷媒供給管の弁機構を制御して各冷媒吐出口からの冷媒吐出を制御する制御装置を有することを特徴とする熱間プレス成形装置。
A hot press molding apparatus that controls the strength of each part of a molded product by means of a cooling means and a heat insulation means that are provided by press forming a heated metal plate material,
A hot press molding die according to any one of claims 1 to 11,
A hot press molding apparatus comprising: a control device that controls a valve mechanism of a refrigerant supply pipe included in the hot press molding die to control refrigerant discharge from each refrigerant discharge port.
強度を制御する成形品各部の境界において強度がステップ状に変化するように、金型の成形面に第1の凹部と第2の凹部を近接させて形成し、各第1および2の凹部の底面に冷媒供給管と連通した冷媒吐出口を形成した金型と、
それぞれの凹部の冷媒吐出を制御する弁機構とを用いて、
断熱手段としてから冷却手段としておよび/または冷却手段としてから断熱手段として機能を切り替えることを特徴とする熱間プレス成形方法。
The first concave portion and the second concave portion are formed close to the molding surface of the mold so that the strength changes stepwise at the boundary of each part of the molded product for controlling the strength. A mold having a refrigerant discharge port communicating with the refrigerant supply pipe on the bottom surface;
With a valve mechanism that controls refrigerant discharge in each recess,
A hot press molding method characterized in that the function is switched as a heat insulation means and then as a cooling means and / or as a cooling means and then as a heat insulation means.
前記金型が前記第1の凹部および/または前記第2の凹部に冷媒回収口を設けていることを特徴とする請求項13に記載の熱間プレス成形方法。
14. The hot press molding method according to claim 13, wherein the mold is provided with a refrigerant recovery port in the first recess and / or the second recess.
前記金型の前記第1の凹部および/または前記第2の凹部に面積率が1〜90%、
直径又は外接円の直径が10μm〜5mm、
高さが凹部の深さと同一である板面支持突起を1または2以上形成したことを特徴とする請求項13または14に記載の熱間プレス成形方法。
The area ratio is 1 to 90% in the first recess and / or the second recess of the mold,
The diameter or diameter of the circumscribed circle is 10 μm to 5 mm,
The hot press molding method according to claim 13 or 14, wherein one or more plate surface supporting protrusions having a height equal to the depth of the recess are formed.
JP2005264026A 2005-09-12 2005-09-12 Hot press molding die, hot press molding apparatus, and hot press molding method Active JP4664781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264026A JP4664781B2 (en) 2005-09-12 2005-09-12 Hot press molding die, hot press molding apparatus, and hot press molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264026A JP4664781B2 (en) 2005-09-12 2005-09-12 Hot press molding die, hot press molding apparatus, and hot press molding method

Publications (2)

Publication Number Publication Date
JP2007075834A JP2007075834A (en) 2007-03-29
JP4664781B2 true JP4664781B2 (en) 2011-04-06

Family

ID=37936645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264026A Active JP4664781B2 (en) 2005-09-12 2005-09-12 Hot press molding die, hot press molding apparatus, and hot press molding method

Country Status (1)

Country Link
JP (1) JP4664781B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855819A (en) * 2016-04-06 2016-08-17 湖北工业大学 Manufacturing method for conformal cooling channels in steel injection mold
CN111468583A (en) * 2019-01-24 2020-07-31 马自达汽车株式会社 Hot-pressing processing device
CN111601671A (en) * 2018-01-16 2020-08-28 高周波热錬株式会社 Method for heating steel sheet and method for producing hot-pressed product
JP2020157372A (en) * 2019-03-28 2020-10-01 株式会社ジーテクト Metallic mold and hot press molding device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563469B2 (en) 2008-05-16 2010-10-13 トヨタ自動車株式会社 Press processing method and press processed product
KR101032535B1 (en) 2008-12-03 2011-05-04 주식회사 포스코 Apparatus for hot press forming
KR101159895B1 (en) * 2009-03-26 2012-06-26 현대제철 주식회사 Cooling system for press mold and method for producing automobile parts using the same
SE533825C2 (en) * 2009-06-15 2011-01-25 Gestamp Hardtech Ab Ways to form and harden a steel sheet material
KR100951042B1 (en) 2009-11-13 2010-04-05 현대하이스코 주식회사 Hot press forming device for promoting cooling efficiency
JP5505014B2 (en) * 2010-03-24 2014-05-28 Jfeスチール株式会社 Strength prediction method and strength control method for hot press molded products
KR101247604B1 (en) 2010-09-16 2013-03-26 금강철강(주) Hot forming apparatus and method
WO2012128230A1 (en) * 2011-03-18 2012-09-27 有限会社リナシメタリ Metal processing method
DE102011055643A1 (en) * 2011-11-23 2013-05-23 Thyssenkrupp Steel Europe Ag Method and forming tool for hot forming and press hardening of workpieces made of sheet steel, in particular galvanized workpieces made of sheet steel
JP5786728B2 (en) * 2012-01-23 2015-09-30 Jfeスチール株式会社 Press forming method and apparatus
CN102744328A (en) * 2012-07-16 2012-10-24 天津职业技术师范大学 Method for manufacturing high strength steel plate hot stamping die
JP5901493B2 (en) * 2012-10-17 2016-04-13 本田技研工業株式会社 Hot press molding method and mold
KR101423302B1 (en) * 2013-02-08 2014-07-24 (주)현성테크노 Latent heat removal apparatus of press metallic mold for vehicle panel
JP6093630B2 (en) * 2013-04-12 2017-03-08 東プレ株式会社 Manufacturing method of hot press products
JP5929846B2 (en) * 2013-06-18 2016-06-08 Jfeスチール株式会社 Warm press molding method and molding die used in this molding method
CN103350148B (en) * 2013-07-24 2015-10-07 陈扬 The direct-cooled technique of cooling fluid based on the hot-forming die of boron steel steel pipe and device
DE102013110902B3 (en) * 2013-10-01 2014-12-04 Benteler Defense Gmbh & Co. Kg Method for producing a wear-resistant component with increased vibration resistance in the connection area
CN104138953A (en) * 2014-06-23 2014-11-12 东莞市正强五金电子有限公司 Method for manufacturing exhaust pipe for magnetron and exhaust pipe for magnetron
DE102014109553A1 (en) * 2014-07-08 2016-01-14 Thyssenkrupp Ag Hardening tool and method for producing hardened profile moldings
DE102014213196A1 (en) * 2014-07-08 2016-01-14 Bayerische Motoren Werke Aktiengesellschaft Mold for the production of hot-formed components
DE102014221997A1 (en) * 2014-10-29 2016-05-04 Bayerische Motoren Werke Aktiengesellschaft Mold for the production of hot-formed components
JP2017070973A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Hot pressing mold, and manufacturing method of hot pressing molding by using the hot pressing mold
DE102016004959B4 (en) * 2016-04-23 2018-05-09 Audi Ag Forming tool for forming metal or non-metal materials
US11680300B2 (en) * 2016-09-15 2023-06-20 Liebherr-Aerospace Lindenberg Gmbh Tool for realising a press quenching and tempering method
JP7127331B2 (en) * 2018-03-30 2022-08-30 マツダ株式会社 HOT PRESS WORKING METHOD AND WORKING APPARATUS
JP7110685B2 (en) * 2018-04-03 2022-08-02 日本製鉄株式会社 Method for manufacturing press-formed product, press-formed product, and hot press-forming mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916389A (en) * 1996-06-07 1999-06-29 Ssab Hardtech Ab Method of producing a sheet steel product such as a reinforcement element in a larger structure
JP2005161366A (en) * 2003-12-03 2005-06-23 Nippon Steel Corp Press-forming method and apparatus for steel sheet
JP2005169394A (en) * 2003-10-02 2005-06-30 Nippon Steel Corp Apparatus and method for hot press working of metal plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916389A (en) * 1996-06-07 1999-06-29 Ssab Hardtech Ab Method of producing a sheet steel product such as a reinforcement element in a larger structure
JP2005169394A (en) * 2003-10-02 2005-06-30 Nippon Steel Corp Apparatus and method for hot press working of metal plate
JP2005161366A (en) * 2003-12-03 2005-06-23 Nippon Steel Corp Press-forming method and apparatus for steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855819A (en) * 2016-04-06 2016-08-17 湖北工业大学 Manufacturing method for conformal cooling channels in steel injection mold
CN111601671A (en) * 2018-01-16 2020-08-28 高周波热錬株式会社 Method for heating steel sheet and method for producing hot-pressed product
CN111468583A (en) * 2019-01-24 2020-07-31 马自达汽车株式会社 Hot-pressing processing device
JP2020157372A (en) * 2019-03-28 2020-10-01 株式会社ジーテクト Metallic mold and hot press molding device

Also Published As

Publication number Publication date
JP2007075834A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4664781B2 (en) Hot press molding die, hot press molding apparatus, and hot press molding method
JP4542439B2 (en) Method and apparatus for hot press forming metal plate material
JP4616737B2 (en) Hot press molding die, hot press molding apparatus, and hot press molding method
JP4700364B2 (en) Hot press forming method for metal sheet
JP4542435B2 (en) Method and apparatus for hot press forming metal plate material
CA2540737C (en) Metal plate material hot press molding apparatus and hot press molding method
JP5403768B2 (en) Press hardening mold cooling device
CN106391882B (en) A kind of processing method based on from resistance heating properties gradient heat-punch member
JP2009125808A (en) Hot deforming press
TW200902271A (en) Molding die and control method thereof
JP5287537B2 (en) Apparatus and method for hot press forming metal tube
JP2014531319A (en) Method of forming parts from steel plate
US20190100820A1 (en) 3-d printed cooling channels to produce phs parts with tailored properties
KR20140118353A (en) Hot stamping forming device
JP5587845B2 (en) Aluminum casting equipment
WO2021217266A1 (en) Stamping apparatus for forming tailored properties on a stamped part
CN102672054A (en) Hot forming method and hot forming mould
CN104907420A (en) Medium-thick plate differential thermal volume forming device and process
JP2004025247A (en) Method of producing highly strengthened component
CN103394557A (en) U-shaped bent piece die device for Q&amp;P one-step hot stamping forming
KR100842710B1 (en) Oil cooling die which has function of preventing heat deformation and manufacturing method for machine parts using the same
KR20140018184A (en) Process and furnace for treating workpieces
CN104772448A (en) Foam and metal material layered casting-integral molding equipment and method
CN113423518B (en) Method and system for forming custom tempering features using air gaps in a hot stamping tool
RU2326752C2 (en) Method of fabricating continuous cast deformed blanks out of high temperature metals and assembly for implementation of this method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R151 Written notification of patent or utility model registration

Ref document number: 4664781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350