JP4661606B2 - Bending optical system and electronic imaging device - Google Patents

Bending optical system and electronic imaging device Download PDF

Info

Publication number
JP4661606B2
JP4661606B2 JP2006011341A JP2006011341A JP4661606B2 JP 4661606 B2 JP4661606 B2 JP 4661606B2 JP 2006011341 A JP2006011341 A JP 2006011341A JP 2006011341 A JP2006011341 A JP 2006011341A JP 4661606 B2 JP4661606 B2 JP 4661606B2
Authority
JP
Japan
Prior art keywords
optical system
image
bending optical
entrance pupil
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006011341A
Other languages
Japanese (ja)
Other versions
JP2007194925A (en
Inventor
武利 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006011341A priority Critical patent/JP4661606B2/en
Publication of JP2007194925A publication Critical patent/JP2007194925A/en
Application granted granted Critical
Publication of JP4661606B2 publication Critical patent/JP4661606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、屈曲光学系及び電子撮像装置に関するものである。   The present invention relates to a bending optical system and an electronic imaging device.

ディジタルカメラ等の電子撮像装置においては、汎用品として、小型、特に薄型の物が好まれるようになってきている。このような薄型ディジタルカメラの例として、入射した光を屈曲光学部により90°折り曲げ、カメラの横方向に向かう光として、結像光学系の光軸をカメラの横方向に配置し、それによりカメラの厚さを薄くする方法が、例えば特開2004−219516号公報(特許文献1)に記載されている。   In an electronic imaging apparatus such as a digital camera, a small-sized, particularly thin-shaped product is favored as a general-purpose product. As an example of such a thin digital camera, incident light is bent at 90 ° by a bending optical unit, and the optical axis of the imaging optical system is arranged in the lateral direction of the camera as light traveling in the lateral direction of the camera, whereby the camera For example, JP 2004-219516 A (Patent Document 1) describes a method for reducing the thickness of the above.

この概要図を図3に示す。ディジタルカメラの筐体10に入射した光は、屈曲光学部11により90°折り曲げられ、結像光学系12により、被写体の像を、撮像素子13の撮像面上に形成する。
特開2004−219516号公報
A schematic diagram of this is shown in FIG. The light incident on the housing 10 of the digital camera is bent by 90 ° by the bending optical unit 11, and an image of the subject is formed on the imaging surface of the image sensor 13 by the imaging optical system 12.
JP 2004-219516 A

しかしながら、図3を見ると分かるように、屈曲光学部11の厚さ(奥行き)Dは、筐体10の開口14の直径と同じとなり、筐体10の厚さをDより薄くすることができない。   However, as can be seen from FIG. 3, the thickness (depth) D of the bent optical unit 11 is the same as the diameter of the opening 14 of the housing 10, and the thickness of the housing 10 cannot be made thinner than D. .

本発明はこのような事情に鑑みてなされたもので、従来の屈曲光学系よりも薄い(奥行きの小さい)屈曲光学系、及びそれを使用した、厚さの薄い電子撮像装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and provides a bending optical system that is thinner (smaller in depth) than a conventional bending optical system and a thin electronic imaging device using the same. Let it be an issue.

前記課題を解決するための第1の手段は、屈曲光学部と、入射瞳位置が同一位置にある複数の結像光学系と、画像処理装置と、を有し、前記屈曲光学部は、前記入射瞳位置に置かれて前記入射瞳を分割し、前記結像光学系は、分割された前記入射瞳を通過した分割された光を、それぞれ複数の撮像素子の複数の結像面上に結像させ、前記画像処理装置は、前記複数の結像面上に結像した像を画像処理し、前記複数の結像面に結像した像の対応する画素同士を比較することにより、ランダムノイズを除去する機能を有することを特徴とする屈曲光学系である。
The first means for solving the problem includes a bending optical unit, a plurality of imaging optical systems having the same entrance pupil position, and an image processing device. placed in the entrance pupil position by dividing the entrance pupil, said imaging optical system, the divided light passed through the divided the entrance pupil, onto a plurality of image plane of each of the plurality of imaging element The image processing apparatus performs image processing on the image formed on the plurality of image forming surfaces, and compares the corresponding pixels of the image formed on the plurality of image forming surfaces, thereby randomly A bending optical system characterized by having a function of removing noise .

前記課題を解決するための第の手段は、前記第1の手段であって、前記画像処理装置は、前記撮像素子の非有効画素からの出力を入力して、その入力値に基づき、熱ノイズを除去する機能を有することを特徴とするものである。
Second it means for solving the above problems, a first means, pre-outs image processing apparatus receives an output from the non-effective pixels of the image sensor, based on the input value And having a function of removing thermal noise.

前記課題を解決するための第の手段は、前記第1または第2の手段のいずれかであって、前記画像処理装置は、前記分割された入射瞳の非等方性に起因して生じる解像度の異方性を補正するものであることを特徴とするものである。
Third means for solving the above problems, in any one of the first or second means, pre-outs image processing apparatus, due to the anisotropy of the divided entrance pupil In this case, the anisotropy of the resolution that occurs is corrected.

前記課題を解決するための第の手段は、前記第1の手段であって、前記屈曲光学部と前記撮像素子の間に、前記分割された入射瞳の非等方性に起因して生じる解像度の異方性を補正する光学系を有することを特徴とするものである。
A fourth means for solving the above problem is the first means, which occurs between the bending optical part and the imaging element due to anisotropy of the divided entrance pupil. It has an optical system for correcting the anisotropy of resolution.

前記課題を解決するための第の手段は、前記第1の手段から第の手段のいずれかの屈曲光学系を有することを特徴とする電子撮像装置である。 A fifth means for solving the above-mentioned problem is an electronic imaging apparatus characterized by having a bending optical system of any one of the first to fourth means.

本発明によれば、従来の屈曲光学系よりも薄い(奥行きの小さい)屈曲光学系、及びそれを使用した、厚さの薄い電子撮像装置を提供することができる。   According to the present invention, it is possible to provide a bending optical system that is thinner (smaller in depth) than a conventional bending optical system, and a thin electronic imaging apparatus using the bending optical system.

以下、本発明の実施の形態の例を図を用いて説明する。図1は、本発明の第1の実施の形態である屈曲光学系を有する電子カメラの概要を示す図である。筐体1の開口2を通過した光線は、屈曲光学部であるミラー3によって、入射方向に直角な2つの光線に分割される。ミラー3は、光線の入射方向に対して45°傾いた2つの反射面を有するミラーである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of an electronic camera having a bending optical system according to the first embodiment of the present invention. The light beam that has passed through the opening 2 of the housing 1 is divided into two light beams that are perpendicular to the incident direction by a mirror 3 that is a bending optical unit. The mirror 3 is a mirror having two reflecting surfaces inclined by 45 ° with respect to the incident direction of the light beam.

分割された2つの光線は、それぞれ、結像光学系4a、4bにより、物体の像を、撮像素子であるCCD5a、5bの撮像面に結像する。結像光学系4a、4bの入射瞳の位置は同一位置とされ、ミラー3は、この入射瞳の位置に置かれているので、CCD5a、5bに結像する像は同一のものとなる。よって、CCD5a、5bの対応する画素からの出力を加え合わせることにより、後に述べるように、従来のように1つの撮像素子で撮像を行ったときと、ほぼ同様の出力を得ることができる。又、図1から明らかなように、ミラー3の厚さは、筐体1の開口2の直径をDとするとき、D/2でよくなり、従来のものに比して、その奥行きを薄くすることができる。よって、電子カメラの厚さを薄くすることができる。   The two divided light beams form an object image on the imaging surfaces of the CCDs 5a and 5b, which are imaging elements, by the imaging optical systems 4a and 4b, respectively. Since the positions of the entrance pupils of the imaging optical systems 4a and 4b are the same, and the mirror 3 is placed at the position of the entrance pupil, the images formed on the CCDs 5a and 5b are the same. Therefore, by adding together the outputs from the corresponding pixels of the CCDs 5a and 5b, as described later, it is possible to obtain substantially the same output as when imaging with one imaging element as in the prior art. Further, as apparent from FIG. 1, the thickness of the mirror 3 can be D / 2 when the diameter of the opening 2 of the housing 1 is D, and the depth thereof is thinner than that of the conventional one. can do. Therefore, the thickness of the electronic camera can be reduced.

なお、図1においては、光線を2分割する例を示しているが、2以上に分割してもよい。よって、以下の説明は、n(nは2以上の整数)分割されているものとして行う。   In addition, although the example which divides a light ray into 2 is shown in FIG. 1, you may divide | segment into 2 or more. Therefore, the following description is made on the assumption that n (n is an integer of 2 or more) is divided.

瞳を分割して、分割した光束を結像させる個々の光学系は暗くなるためS/N比が低下するが、以下に示す方法によって瞳を分割する前のS/N比に近い値に回復できる。ここでは、信号及びノイズを次のように考える。   The individual optical systems that divide the pupil and image the divided luminous flux darken, so the S / N ratio decreases. However, the following method restores the value close to the S / N ratio before dividing the pupil. it can. Here, signals and noise are considered as follows.

(信号): 信号=量子効率×感度×入射フォトン数
(1)量子効率…光電面で光が電子に変わる効率(%、mA/W)
(2)感度(ゲイン)…電子と電流比の調整で決まる→何倍にも調整できるが、感度を上げるとノイズも一緒に増えるためS/N比が上がるわけではない。
(Signal): Signal = quantum efficiency x sensitivity x number of incident photons
(1) Quantum efficiency: Efficiency at which light is converted to electrons on the photocathode (%, mA / W)
(2) Sensitivity (Gain): Determined by adjustment of the current ratio with electrons → It can be adjusted many times, but increasing the sensitivity does not increase the S / N ratio because noise increases together.

(3)入射フォトン数…CCDサイズと関係があり、画素サイズが大きいほど有利である。 (3) Number of incident photons: This is related to the CCD size, and the larger the pixel size, the more advantageous.

(ノイズ): 全ノイズ=(N +N +N 1/2
(1)N:ランダムノイズ…感度に比例する。温度の影響小。露光時間と無関係。
(Noise): Total noise = (N r 2 + N d 2 + N s 2 ) 1/2
(1) N r : Random noise ... proportional to sensitivity. Small influence of temperature. Irrelevant to exposure time.

(2)N:熱ノイズ…感度にやや比例する。温度影響大。露光時間に比例。微弱光検出で高感度CCDカメラを用いる時には最大のノイズ源となる。 (2) N d : Thermal noise: somewhat proportional to sensitivity. Large temperature effect. Proportional to exposure time. When a highly sensitive CCD camera is used for detecting weak light, it becomes the largest noise source.

(3)N:シリコン光電面で発生するノイズ…一般に光電面に入射する光量の平方根になる。 (3) N s : Noise generated on the silicon photocathode, generally the square root of the amount of light incident on the photocathode.

入射瞳を2分割する図1に示す実施の形態の場合、信号は1/2に低下するため感度を上げて撮像する。よってランダムノイズ・熱ノイズが増加する。ランダムノイズは、分割した光束を結像光学系4a、4bで結像して得られた画像を重ね合わせ、画像処理することで除去できる。分割して得られた2つの画像の同一位置に対応する画素の両方から出力が得られる場合には、有意な信号とノイズの区別が難しいが、分割して得られた画像の一方には出力が見られ、他方の画像には見られなければ、その出力はランダムノイズと判断できる。   In the case of the embodiment shown in FIG. 1 in which the entrance pupil is divided into two, the signal is reduced to ½, so that the image is picked up with increased sensitivity. Therefore, random noise and thermal noise increase. Random noise can be removed by superimposing images obtained by imaging the divided light beams with the imaging optical systems 4a and 4b and processing the images. When the output is obtained from both pixels corresponding to the same position of two images obtained by dividing, it is difficult to distinguish a significant signal and noise, but it is output to one of the images obtained by dividing. Can be seen as random noise if it is not seen in the other image.

すなわち、1つの処理方法の例を挙げると、ある画素に注目したとき、その画素の出力とその近傍の画素とを比較し、注目した画素に突出した出力がある場合には、他方のCCDにおいても、同様な出力が現れているかどうかをチェックする。そして、他方のCCDの出力の対応する画素には、突出した出力が現れていない場合には、突出した出力はノイズであるとして、その画素の出力を、他方のCCDの対応する画素の出力に置き換える(他方のCCDが2つ以上ある場合は、その平均値とする)。   That is, as an example of one processing method, when attention is paid to a certain pixel, the output of that pixel is compared with the neighboring pixels. Also check to see if similar output appears. If no protruding output appears in the corresponding pixel of the output of the other CCD, the protruding output is regarded as noise, and the output of that pixel is converted to the output of the corresponding pixel of the other CCD. Replace (if there are two or more other CCDs, the average value is used).

CCD検出器のある1画素で一定の露光時間でランダムノイズが発生する確率Prandomはポアソン確率Pλ(x)(xはポアソン過程で発生する事象の回数、λはポアソン過程における事象の平均回数)に従うと仮定すると、入射瞳を2分割した各光束を結像光学系4a、4bで結像して得られる画像中で、対象の同一位置に対応する画素でランダムノイズが同時に発生する確率はPλ(x)の二乗に比例する。分割数が増えるほど各画像中の同一位置に対応する画素で同時にランダムノイズが発生する確率は低下するため、ランダムノイズは高い精度で除去できる。 The probability P random that a random noise is generated with a certain exposure time in one pixel of the CCD detector is a Poisson probability P λ (x) (x is the number of events occurring in the Poisson process, λ is the average number of events in the Poisson process) ), The probability of random noise occurring simultaneously in the pixels corresponding to the same target position in the image obtained by imaging the light beams obtained by dividing the entrance pupil into two by the imaging optical systems 4a and 4b is as follows: It is proportional to the square of P λ (x). As the number of divisions increases, the probability of random noise occurring simultaneously in pixels corresponding to the same position in each image decreases, so that random noise can be removed with high accuracy.

熱ノイズはCCD面の非有効画素部分にオプティカルブラック(光が入射しない部分)を設け、その画素からの出力を検出することで熱ノイズ量を見積る。こうして見積られたノイズ量をCCDの各画素の出力値から差し引くことで熱ノイズを除去する。そして、分割された系の各CCDからで得られる信号値を求め、その信号値を対応する各画素について加算することで、瞳を分割することによって低下したS/N比を回復できる。   As for thermal noise, optical black (a portion where light does not enter) is provided in an ineffective pixel portion on the CCD surface, and the amount of thermal noise is estimated by detecting an output from the pixel. The thermal noise is removed by subtracting the estimated noise amount from the output value of each pixel of the CCD. Then, a signal value obtained from each CCD of the divided system is obtained, and the signal value is added to each corresponding pixel, so that the S / N ratio lowered by dividing the pupil can be recovered.

分割前に円形の開口を持っていた光束を2分割した場合、分割後の瞳形状は半円となるため、解像度の異方性が生じる。この解像度の異方性は、次の方法によって修正する。今、物界側に強度分布g(x’,y’)(ただしx’,y’は物界側の局所座標)を持つ物体が存在するとした場合、その像の像面上での強度分布i(x,y)(ただしx,yは像面上の局所座標)は、

Figure 0004661606
When a light beam having a circular aperture before the division is divided into two, the pupil shape after the division becomes a semicircle, and thus anisotropy of resolution occurs. This resolution anisotropy is corrected by the following method. If an object having an intensity distribution g (x ′, y ′) (where x ′, y ′ are local coordinates on the object boundary side) exists on the object boundary side, the intensity distribution on the image plane of the image i (x, y) (where x and y are local coordinates on the image plane) is
Figure 0004661606

で与えられる。ここでr(x,y,x’,y’)は、分割後の瞳に対して結像光学系4a、4bが持つ点像分布関数であり、予めシミュレーションによる計算によって求めておくことができる。(1)式の両辺について2次元フーリエ変換Fをとると、

Figure 0004661606
Given in. Here, r (x, y, x ′, y ′) is a point spread function of the imaging optical systems 4a and 4b with respect to the divided pupil, and can be obtained in advance by calculation by simulation. . Taking the two-dimensional Fourier transform F for both sides of equation (1),
Figure 0004661606

となる。ただし、変数s,tは空間周波数である。(2)式を変形すると、

Figure 0004661606
It becomes. However, the variables s and t are spatial frequencies. When formula (2) is transformed,
Figure 0004661606

となる。 It becomes.

よって、結像光学系4a、4bで得られた画像のフーリエスペクトルを求め、分割後の瞳に対する結像光学系4a、4bの点像強度分布r(x,y,x’,y’)のフーリエスペクトルで除し、得られた結果の2次元逆フーリエ変換を求めることによって、得たい物体の強度分布g(x’,y’)を得ることができる。   Accordingly, the Fourier spectrum of the image obtained by the imaging optical systems 4a and 4b is obtained, and the point image intensity distribution r (x, y, x ′, y ′) of the imaging optical systems 4a and 4b with respect to the divided pupil is obtained. By dividing by the Fourier spectrum and obtaining a two-dimensional inverse Fourier transform of the obtained result, the intensity distribution g (x ′, y ′) of the object to be obtained can be obtained.

図2は、本発明の第2の実施の形態である屈曲光学系を有する電子カメラの概要を示す図である。図2に示す実施の形態は、図1に示す実施の形態とは、変倍光学系6a、6bが設けられていることのみが違うだけであるので、図1に示された構成要素と同じ構成要素には、同じ符号を付してその説明を省略する。   FIG. 2 is a diagram showing an outline of an electronic camera having a bending optical system according to the second embodiment of the present invention. The embodiment shown in FIG. 2 differs from the embodiment shown in FIG. 1 only in that the variable magnification optical systems 6a and 6b are provided, and is therefore the same as the components shown in FIG. Constituent elements are denoted by the same reference numerals and description thereof is omitted.

図2に示す実施の形態においては、方向成分によって屈折力の異なる非球面をもつ変倍光学系6a、6bを結像光学系4a、4bの手前に配置することで、最も解像力がある方向の解像度に、各方向成分での解像度を合わせる。この方法の場合、方向成分によって変倍系の倍率が異なるため、画像のスケールが方向成分によって異なってくる。従って、画像は変形した状態で検出器面に得られるが、結像光学系4a、4bの歪曲も含めて、画像処理によって変形を補正することにより、正しい画像を得ることができる。   In the embodiment shown in FIG. 2, the variable magnification optical systems 6a and 6b having aspherical surfaces having different refractive powers depending on the direction component are arranged in front of the imaging optical systems 4a and 4b, so that the direction with the highest resolving power can be obtained. The resolution in each direction component is matched with the resolution. In the case of this method, since the magnification of the zooming system varies depending on the direction component, the scale of the image varies depending on the direction component. Therefore, the image is obtained on the detector surface in a deformed state, but a correct image can be obtained by correcting the deformation by image processing including distortion of the imaging optical systems 4a and 4b.

以上述べたいずれの実施の形態においても、屈曲光学部であるミラー3の入射側には光学系が無いものとして説明を行ったが、入射側に光学系を設ける場合には、その射出瞳の位置をミラー3の位置に合わせることが好ましい。これにより、この光学系の射出瞳と、結像光学系4a、4b(この場合、ミラー3の入射側の光学系が結像光学系の一部を構成するときは、4a、4bも結像光学系の一部となる)の入射瞳の位置を同一位置とし、瞳による光線の蹴られを最小限とすることができる。   In any of the embodiments described above, the description has been made on the assumption that there is no optical system on the incident side of the mirror 3 which is a bending optical unit. However, when an optical system is provided on the incident side, the exit pupil It is preferable to adjust the position to the position of the mirror 3. As a result, the exit pupil of this optical system and the imaging optical systems 4a and 4b (in this case, when the optical system on the incident side of the mirror 3 forms part of the imaging optical system, 4a and 4b are also imaged). The position of the entrance pupil (which becomes a part of the optical system) can be made the same position, and the kicking of the light beam by the pupil can be minimized.

本発明の第1の実施の形態である屈曲光学系を有する電子カメラの概要を示す図である。It is a figure which shows the outline | summary of the electronic camera which has a bending optical system which is the 1st Embodiment of this invention. 本発明の第2の実施の形態である屈曲光学系を有する電子カメラの概要を示す図である。It is a figure which shows the outline | summary of the electronic camera which has a bending optical system which is the 2nd Embodiment of this invention. 従来の屈曲光学系を用いたディジタルカメラの概要を示す図である。It is a figure which shows the outline | summary of the digital camera using the conventional bending optical system.

符号の説明Explanation of symbols

1…筐体、2…開口、3…ミラー、4a,4b…結像光学系、5a,5b…CCD、6a,6b…変倍光学系 DESCRIPTION OF SYMBOLS 1 ... Housing, 2 ... Aperture, 3 ... Mirror, 4a, 4b ... Imaging optical system, 5a, 5b ... CCD, 6a, 6b ... Variable magnification optical system

Claims (5)

屈曲光学部と、入射瞳位置が同一位置にある複数の結像光学系と、画像処理装置と、を有し、前記屈曲光学部は、前記入射瞳位置に置かれて前記入射瞳を分割し、前記結像光学系は、分割された前記入射瞳を通過した分割された光を、それぞれ複数の撮像素子の複数の結像面上に結像させ、前記画像処理装置は、前記複数の結像面上に結像した像を画像処理し、前記複数の結像面に結像した像の対応する画素同士を比較することにより、ランダムノイズを除去する機能を有することを特徴とする屈曲光学系。 A bending optical unit, a plurality of imaging optical systems having the same entrance pupil position, and an image processing device , wherein the bending optical unit is placed at the entrance pupil position to divide the entrance pupil. the imaging optical system, the divided light passed through the divided the entrance pupil, an image is formed on the plurality of image plane on each of the plurality of imaging element, the image processing apparatus, the plurality of Bending characterized by having a function of removing random noise by performing image processing on an image formed on an image forming surface and comparing corresponding pixels of the image formed on the plurality of image forming surfaces Optical system. 記画像処理装置は、前記撮像素子の非有効画素からの出力を入力して、その入力値に基づき、熱ノイズを除去する機能を有することを特徴とする請求項1に記載の屈曲光学系。 Before Kiga image processing apparatus receives an output from the non-effective pixels of the imaging element, bending optical according to claim 1, based on the input value, and having a function of removing thermal noise system. 記画像処理装置は、前記分割された入射瞳の非等方性に起因して生じる解像度の異方性を補正するものであることを特徴とする請求項1または2に記載の屈曲光学系。 Before Kiga image processing apparatus, bending optical according to claim 1 or 2, characterized in that to correct the anisotropy of resolution caused by the anisotropy of the divided entrance pupil system. 前記屈曲光学部と前記撮像素子の間に、前記分割された入射瞳の非等方性に起因して生じる解像度の異方性を補正する光学系を有することを特徴とする請求項1に記載の屈曲光学系。   The optical system for correcting anisotropy in resolution caused by anisotropy of the divided entrance pupil is provided between the bending optical unit and the imaging element. Bending optical system. 請求項1から請求項のうち、いずれか1項に記載の屈曲光学系を有することを特徴とする電子撮像装置。 An electronic imaging apparatus comprising the bending optical system according to any one of claims 1 to 4 .
JP2006011341A 2006-01-19 2006-01-19 Bending optical system and electronic imaging device Expired - Fee Related JP4661606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011341A JP4661606B2 (en) 2006-01-19 2006-01-19 Bending optical system and electronic imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011341A JP4661606B2 (en) 2006-01-19 2006-01-19 Bending optical system and electronic imaging device

Publications (2)

Publication Number Publication Date
JP2007194925A JP2007194925A (en) 2007-08-02
JP4661606B2 true JP4661606B2 (en) 2011-03-30

Family

ID=38450263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011341A Expired - Fee Related JP4661606B2 (en) 2006-01-19 2006-01-19 Bending optical system and electronic imaging device

Country Status (1)

Country Link
JP (1) JP4661606B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398264B2 (en) * 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115112A (en) * 1984-07-02 1986-01-23 Canon Inc Focus detecting device
JPH06202006A (en) * 1992-12-28 1994-07-22 Olympus Optical Co Ltd Stereoscopic hard endoscope
JPH08220449A (en) * 1995-02-15 1996-08-30 Asahi Optical Co Ltd Stereoscopic vision endoscope
JP2003116064A (en) * 2001-10-03 2003-04-18 Olympus Optical Co Ltd Photographic apparatus
JP2004357135A (en) * 2003-05-30 2004-12-16 Nikon Corp Dark current correction circuit for electronic camera

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115112A (en) * 1984-07-02 1986-01-23 Canon Inc Focus detecting device
JPH06202006A (en) * 1992-12-28 1994-07-22 Olympus Optical Co Ltd Stereoscopic hard endoscope
JPH08220449A (en) * 1995-02-15 1996-08-30 Asahi Optical Co Ltd Stereoscopic vision endoscope
JP2003116064A (en) * 2001-10-03 2003-04-18 Olympus Optical Co Ltd Photographic apparatus
JP2004357135A (en) * 2003-05-30 2004-12-16 Nikon Corp Dark current correction circuit for electronic camera

Also Published As

Publication number Publication date
JP2007194925A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US11195257B2 (en) Image processing method, image processing apparatus, imaging apparatus, lens apparatus, storage medium, and image processing system
US9451216B2 (en) Distance calculating apparatus, image pick-up apparatus using the same, distance calculating method, program for realizing distance calculation, and storage medium having the program stored thereon
JP5358039B1 (en) Imaging device
US10574916B2 (en) Image processing apparatus, image capturing apparatus, image processing method, and computer-readable storage medium
JP5681954B2 (en) Imaging apparatus and imaging system
EP2175632A1 (en) Image processing apparatus and method
US10393996B2 (en) Image processing apparatus, image pickup apparatus, image processing method, and storage medium
EP2536125B1 (en) Imaging device and method, and image processing method for imaging device
US20130114887A1 (en) Stereo distance measurement apparatus and stereo distance measurement method
JP6214271B2 (en) Distance detection device, imaging device, distance detection method, program, and recording medium
JP4856293B2 (en) Imaging apparatus and image restoration method
Kuo et al. DiffuserCam: diffuser-based lensless cameras
JP5000030B1 (en) Image processing apparatus, imaging apparatus, and image processing method
KR20120073203A (en) Method for improving images
US10204400B2 (en) Image processing apparatus, imaging apparatus, image processing method, and recording medium
US9841580B2 (en) Distance measuring apparatus
JP2015004883A (en) Image forming optical system, imaging system, and imaging method
TWI776848B (en) Method and optical system for acquiring the tomographical distribution of wave fronts of electromagnetic fields
JP4661606B2 (en) Bending optical system and electronic imaging device
US20150276398A1 (en) Distance determining apparatus, imaging apparatus, distance determining method, and parallax-amount determining apparatus
JP6642998B2 (en) Image shift amount calculating apparatus, imaging apparatus, and image shift amount calculating method
JP7191588B2 (en) Image processing method, image processing device, imaging device, lens device, program, and storage medium
JP6362070B2 (en) Image processing apparatus, imaging apparatus, image processing method, program, and storage medium
JP2020021314A (en) Image processing system and image processing method
JP2014241580A (en) Imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4661606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees