JP4660983B2 - Position detection method or stop position control method by pulse encoder - Google Patents

Position detection method or stop position control method by pulse encoder Download PDF

Info

Publication number
JP4660983B2
JP4660983B2 JP2001192915A JP2001192915A JP4660983B2 JP 4660983 B2 JP4660983 B2 JP 4660983B2 JP 2001192915 A JP2001192915 A JP 2001192915A JP 2001192915 A JP2001192915 A JP 2001192915A JP 4660983 B2 JP4660983 B2 JP 4660983B2
Authority
JP
Japan
Prior art keywords
value
pulses
pulse encoder
pulse
multiplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001192915A
Other languages
Japanese (ja)
Other versions
JP2003005837A (en
Inventor
敏久 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2001192915A priority Critical patent/JP4660983B2/en
Publication of JP2003005837A publication Critical patent/JP2003005837A/en
Application granted granted Critical
Publication of JP4660983B2 publication Critical patent/JP4660983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【発明の属する技術分野】
この発明は、パルスエンコーダの1回転パルス数が任意の値であっても、連続的なパルスカウントにより位置検出や停止位置制御が行えるパルスエンコーダによる位置検出方法または停止位置制御方法に関する。
【従来の技術】
図3は2N P/R(P/R=パルス数/1回転)なるパルス数を出力するパルスエンコーダによる位置検出方法の従来例を示したブロック回路図であるが、ここではパルスエンコーダの出力パルス数が210P/R=1024P/Rの場合を例にして説明する。
図3の従来例回路において、図示していないパルスエンコーダが出力するA相パルス11とB相パルス12(いずれも1024P/R)を4逓倍回路14へ入力させる。A相パルス11とB相パルス12には90度の位相差があるので、それぞれの立ち上がり点と立ち下がり点とを起点とすることで、4逓倍回路14からは1024の所定倍数としての4倍のパルス数,すなわち4096P/Rが得られる。このようにパルスエンコーダの出力パルス数を4倍(または所定数倍)にすることで、検出位置の精度を向上させることができる。この4倍になったパルス数をパルスカウンタ15で計数するのであるが、このときパルスエンコーダからその1回転につき1つ出力されるZ相パルス13も、パルスカウンタ15へ入力される。このパルスカウンタ15での計数値は、次段の16進数変換回路16において16進数の値に変換される。
図4は主軸の原点付近の位置関係を示した位置相関図であって、C点を位置検出の基準となる電気的な原点(以下では単に原点と称する)とし、この原点であるC点から時計方向(以下ではこれを逆転と称する)に1パルス分(1回転の4096分の1)回転させた点を−A点,2パルス分(1回転の4096分の2)回転させた点を−B点とする。また原点であるC点から反時計方向(以下ではこれを正転と称する)に1パルス分回転させた点を+A点,2パルス分回転させた点を+B点とする。
C点(原点)でのパルスカウンタ15の出力値は零であるとする。主軸がこのC点から正転方向に+A点まで回転したときのパルスカウンタ15の出力値は16進数での1であり、+B点まで回転すれば16進数での2を出力する。これから更にほぼ1回転して−B点に達すれば、そのときのパルスカウンタ15の出力は16進数でFFE(10進数では4094)であり、−A点に達すれば16進数でFFF(10進数では4095)となる。また、主軸がこのC点から逆転方向に−A点まで回転したときのパルスカウンタ15の出力値は16進数でのFFFとなり、−B点まで回転すれば16進数でのFFEを出力する。すなわち各点の値は、主軸の回転方向が正転方向であっても逆転方向であっても、同じ値を呈する。
マスク用データ発生回路17では、16進数での1000なる値から1を差し引いたFFF(10進数では212−1=4096−1)なる値がセットされ、これがマスク用データとなる。一方で主軸が−A点から正転方向へ1パルス分回転したC点では、16進数変換回路16の出力値は、FFFに1を加算した1000であり、これとマスク用データ発生回路17のセット値FFFとを論理積演算回路18において論理積演算すれば零となる。すなわち、主軸が1回転する度毎に16進数変換回路16の出力値は零にリセットされるから、論理積演算回路18の演算結果が主軸の現在位置を示すことになる。
【発明が解決しようとする課題】
例えば1回転したときのパルス数が2000となるパルスエンコーダを採用し、これを4逓倍して使用する場合は、1回転のパルス数は8000である。従来と同様に16進数を使ってC点(原点)の値を零とすれば、+A点の値は001,+B点の値は002であり、これからほぼ1回転して−B点に達したときの値は1F3Eで、−A点に達したときの値は1F3Fである。ここで−A点から正方向へ1バルス分回転させたC点の値は、1F3Fに1を加算して1F40となる。またC点から逆方向へ1パルス分回転させた−A点での値は、零から1を減算し、これを4桁でマスクするとFFFFとなり、位置データが異なってしまうことになる。
すなわち、1回転のパルス数が2N とならないパルスエンコーダを使用する場合は、前述したように異なった位置データを呈することになるので、C点で零にクリアする際の処理が複雑になる欠点を有する。
そこでこの発明の目的は、パルス数が2N ではないパルスエンコーダを使用しても、原点の前後で位置データが不連続になるのを回避して、位置検出が容易に行えるようにすることにある。
【課題を解決するための手段】
前記の目的を達成するために、この発明のパルスエンコーダによる位置検出方法または停止位置制御方法は、
2のN乗値を、パルスエンコーダの1回転で出力するパルス数に所定数を乗じた値で除算することで得られる除算演算値を変換定数とし、回転軸に結合した前記パルスエンコーダが出力するパルス数を前記所定数倍して得られるパルス数を計数し、この計数値に前記変換定数を乗じて得られる値を変換パルス数とし、この変換パルス数と、前記2のN乗値の16進数変換値から1を減算して得られるマスクデータとの論理積を演算し、該論理積演算結果を前記主軸の現在位置データとする。
または、2のN乗値を、パルスエンコーダの1回転で出力するパルス数に所定数を乗じた値で除算することで得られる除算演算値を変換定数とし、回転軸に結合した前記パルスエンコーダが出力するパルス数を前記所定数倍して得られるパルス数を計数し、この計数値に前記変換定数を乗じて得られる値を変換パルス数とし、この変換パルス数と、前記2のN乗値の16進数変換値から1を減算して得られるマスクデータとの論理積を演算し、該論理積演算結果と、別途に設定する停止位置設定値に前記変換定数を乗じて得られる値との偏差を求め、この偏差値を零にする調節動作により、前記主軸を前記停止設定位置に停止させる。
前記変換定数を求める際に、2のN乗値から1を差し引いた値が、パルスエンコーダの1回転で出力されるパルス数を前記所定数倍して得られる値よりも大となるように前記Nの値を定める。
【発明の実施の形態】
以下では出力パルス数が30000P/Rのパルスエンコーダを例にして、本発明の詳細を説明する。
図1は本発明の第1実施例を表したブロック回路図である。
図1の第1実施例回路において、図示していないパルスエンコーダが出力するA相パルス21とB相パルス22(いずれも30000P/R)を4逓倍回路14へ入力させることにより、図3で既述の従来例回路と同様に、4逓倍回路14からは30000の4倍である120000P/Rのパルス数が得られる。これをパルスカウンタ15で計数するのであるが、このときパルスエンコーダからのZ相パルス23(1P/R)もパルスカウンタ15へ入力される。このパルスカウンタ15での計数値は変換定数回路24へ入力され、パルス計数値と変換定数との積が演算される。
変換定数はパルスエンコーダの4逓倍値が2N となるように、以下の数式1により求める。
【数1】
変換定数=131072/(30000×4)=1.09226667
この変換定数を算出するための131072なる値は、(2N −1)>(パルスエンコーダのパルス数の4逓倍値)となるようにNの値を定めることで得られる。すなわち図1の第1実施例回路では、2N =217=131072とする。
前述した図4の位置相関図に記載の各点に対応する演算用位置データは、
+A点───1.0922666 −A点───131070.9077
+B点───2.1845333 −B点───131069.8155
として演算処理される。この演算用位置データは小数点を含む実数形であり、位置データをパルス計数値に整数形データとして逆変換する場合に、演算誤差を生じることなく逆変換を行うためには、有効数字が6桁となるようなデータとして位置データを演算すれば、演算誤差を生じない演算が可能になる。
なお、131072を16進数で表せば20000である。マスク用データ発生回路25では、16進数での20000なる値から1を差し引いた1FFFFなる値がセットされる。この1FFFFと、主軸が−A点から正転方向へ1パルス分回転したC点での変換定数回路24の出力値20000とを論理積演算回路18において論理積演算すれば零となる。すなわち、主軸が1回転する度毎に変換定数回路24の出力値は零にリセットされるから、論理積演算回路18の演算結果が主軸の現在位置を示すことになるのは、図3の従来例回路の場合と同じである。
図2は本発明の第2実施例を表したブロック回路図であって、位置検出器27は、30000P/Rのパルスを出力するパルスエンコーダ26,4逓倍回路14,パルスカウンタ15,変換定数回路24,マスク用データ発生回路24および論理積演算回路18で構成されているが、これらの名称・用途・機能は既に説明済であるから、これらの説明は省略する。
この第2実施例回路では、別途に停止位置を停止位置設定器31で設定しているが、この停止位置設定値と数式1で既述の変換定数との積を変換定数回路32で演算する。この変換定数回路32の演算値と論理積演算回路18の演算値との偏差を位置調節器33へ入力させることにより、この入力偏差を零に調節する制御信号が電動機制御回路34へ与えられ、電動機35を制御するから、主軸36は設定された停止位置に停止することになる。
【発明の効果】
従来は、パルスエンコーダの出力パルス数が2N P/Rでない場合は、原点の前後で位置データが不連続になるため、位置検出の演算が複雑になる不都合があった。これに対して本発明では、パルスエンコーダの出力パルス数が任意の値であっても、2N −1なる値がこの出力パルス数,あるいはそれの4逓倍した値よりも大となるようにNの値を選んだ変換定数をパルス計測数との積に採用することにより、原点の前後で位置データが不連続になるのを回避できるので、位置検出が容易に行える効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例を表したブロック回路図
【図2】本発明の第2実施例を表したブロック回路図
【図3】2N P/Rなるパルス数を出力するパルスエンコーダによる位置検出方法の従来例を示したブロック回路図
【図4】主軸の原点付近の位置関係を示した位置相関図
【符号の説明】
11,21 A相パルス
12,22 B相パルス
13,23 Z相パルス
14 4逓倍回路
15 パルスカウンタ
16 16進数変換回路
17,25 マスク用データ発生回路
18 論理積演算回路
24,32 変換定数回路
26 バルスエンコーダ
27 位置検出器
31 停止位置設定器
33 位置調節器
34 電動機制御装置
35 電動機
36 主軸
BACKGROUND OF THE INVENTION
The present invention relates to a position detection method or a stop position control method using a pulse encoder that can perform position detection and stop position control by continuous pulse counting even if the number of pulses per rotation of the pulse encoder is an arbitrary value.
[Prior art]
FIG. 3 is a block circuit diagram showing a conventional example of a position detection method using a pulse encoder that outputs a pulse number of 2 N P / R (P / R = number of pulses / 1 rotation). A case where the number of pulses is 2 10 P / R = 1024 P / R will be described as an example.
In the conventional circuit of FIG. 3, the A-phase pulse 11 and the B-phase pulse 12 (both 1024 P / R) output from a pulse encoder (not shown) are input to the quadruple circuit 14. Since the A-phase pulse 11 and the B-phase pulse 12 have a phase difference of 90 degrees, the quadrature circuit 14 uses the quadrature circuit 14 as a predetermined multiple of 1024 by using the respective rise and fall points as starting points. , That is, 4096 P / R. Thus, the accuracy of the detection position can be improved by increasing the number of output pulses of the pulse encoder four times (or a predetermined number). The number of pulses multiplied by four is counted by the pulse counter 15. At this time, the Z-phase pulse 13 output once per rotation from the pulse encoder is also input to the pulse counter 15. The count value in the pulse counter 15 is converted into a hexadecimal value by the hexadecimal conversion circuit 16 in the next stage.
FIG. 4 is a positional correlation diagram showing the positional relationship near the origin of the spindle. The point C is an electrical origin (hereinafter simply referred to as the origin) serving as a reference for position detection. A point rotated clockwise by 1 pulse (1/4096 of 1 rotation) in the clockwise direction (hereinafter referred to as reverse rotation) is a point −A, and a point rotated by 2 pulses (2/4096 of 1 rotation). -Point B. A point rotated by one pulse counterclockwise (hereinafter referred to as forward rotation) from point C as the origin is defined as + A point, and a point rotated by two pulses is defined as + B point.
Assume that the output value of the pulse counter 15 at point C (origin) is zero. The output value of the pulse counter 15 when the main shaft rotates in the forward direction from the point C to the point + A is 1 in hexadecimal, and when it rotates to the point + B, 2 in hexadecimal is output. From this point, if the rotation reaches about -B point, the output of the pulse counter 15 at that time is FFE in hexadecimal (4094 in decimal), and if it reaches -A point, it is FFF in hexadecimal (in decimal). 4095). The output value of the pulse counter 15 when the main shaft rotates from the point C in the reverse direction to the point -A is FFF in hexadecimal, and when it rotates to the point -B, FFE in hexadecimal is output. That is, the value of each point exhibits the same value regardless of whether the rotation direction of the main shaft is the forward rotation direction or the reverse rotation direction.
In the mask data generation circuit 17, a value of FFF (2 12 -1 = 4096-1 in decimal number) obtained by subtracting 1 from the value of 1000 in hexadecimal number is set, and this becomes mask data. On the other hand, at the point C where the main shaft is rotated by one pulse in the forward direction from the point -A, the output value of the hexadecimal conversion circuit 16 is 1000 obtained by adding 1 to the FFF, and this is the value of the mask data generation circuit 17. If the logical product operation is performed on the set value FFF in the logical product operation circuit 18, the result is zero. That is, every time the spindle rotates once, the output value of the hexadecimal conversion circuit 16 is reset to zero, so that the calculation result of the AND operation circuit 18 indicates the current position of the spindle.
[Problems to be solved by the invention]
For example, when a pulse encoder having a pulse number of 2000 when one rotation is employed and this is multiplied by 4 is used, the number of pulses per rotation is 8000. If the value of point C (origin) is set to zero using a hexadecimal number as in the conventional case, the value of + A point is 001 and the value of + B point is 002. The value at the time is 1F3E, and the value when the point -A is reached is 1F3F. Here, the value of the point C rotated by one pulse in the positive direction from the point -A is 1F40 by adding 1 to 1F3F. Further, the value at the point -A rotated by one pulse in the reverse direction from the point C becomes FFFF when 1 is subtracted from zero and masked with four digits, and the position data will be different.
In other words, when using a pulse encoder in which the number of pulses per rotation is not 2 N , different position data is presented as described above, so the processing for clearing to zero at point C is complicated. Have
Accordingly, an object of the present invention is to make position detection easy by avoiding position data discontinuity before and after the origin even when a pulse encoder whose number of pulses is not 2 N is used. is there.
[Means for Solving the Problems]
In order to achieve the above object, a position detection method or a stop position control method using a pulse encoder according to the present invention includes:
A division constant obtained by dividing the N-th power value of 2 by the number of pulses output by one rotation of the pulse encoder by a predetermined number is used as a conversion constant, and the pulse encoder coupled to the rotary shaft outputs The number of pulses obtained by multiplying the number of pulses by the predetermined number is counted, and a value obtained by multiplying the counted value by the conversion constant is used as a conversion pulse number. A logical product with mask data obtained by subtracting 1 from the decimal conversion value is calculated, and the logical product calculation result is used as the current position data of the spindle.
Alternatively, the pulse encoder coupled to the rotating shaft may be a conversion constant obtained by dividing the N-th power value of 2 by a value obtained by multiplying the number of pulses output in one rotation of the pulse encoder by a predetermined number, and a conversion constant. The number of pulses obtained by multiplying the number of pulses to be output by the predetermined number is counted, and a value obtained by multiplying the counted value by the conversion constant is defined as the number of converted pulses. The logical product with the mask data obtained by subtracting 1 from the hexadecimal conversion value of the above, and the logical operation result and a value obtained by multiplying the stop position setting value set separately by the conversion constant The spindle is stopped at the stop set position by an adjustment operation for obtaining a deviation and making the deviation value zero.
When obtaining the conversion constant, the value obtained by subtracting 1 from the Nth power of 2 is larger than the value obtained by multiplying the number of pulses output by one rotation of the pulse encoder by the predetermined number. Determine the value of N.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described by taking a pulse encoder having an output pulse number of 30000 P / R as an example.
FIG. 1 is a block circuit diagram showing a first embodiment of the present invention.
In the circuit of the first embodiment of FIG. 1, an A-phase pulse 21 and a B-phase pulse 22 (both 30000 P / R) output from a pulse encoder (not shown) are input to the quadruple circuit 14, so that FIG. Similar to the conventional circuit described above, the quadruple circuit 14 can obtain a pulse number of 120,000 P / R, which is four times 30000. This is counted by the pulse counter 15. At this time, the Z-phase pulse 23 (1P / R) from the pulse encoder is also input to the pulse counter 15. The count value in the pulse counter 15 is input to the conversion constant circuit 24, and the product of the pulse count value and the conversion constant is calculated.
The conversion constant is obtained by the following Equation 1 so that the quadruple value of the pulse encoder is 2 N.
[Expression 1]
Conversion constant = 131072 / (30000 × 4) = 1.09226667
The value 131072 for calculating the conversion constant is obtained by determining the value of N so that (2 N −1)> (four times the number of pulses of the pulse encoder). That is, in the circuit of the first embodiment of FIG. 1, 2 N = 2 17 = 131072.
The calculation position data corresponding to each point described in the position correlation diagram of FIG.
+ A point --- 1.09226666 -A point --- 131070.9077
+ B point---2.18545333-B point---131069.8155
Is processed as follows. The position data for calculation is a real number including a decimal point. When position data is converted back to a pulse count value as integer data, in order to perform reverse conversion without causing a calculation error, 6 significant digits are required. If the position data is calculated as such data, calculation without causing a calculation error is possible.
Note that 131072 is 20000 in hexadecimal. In the mask data generation circuit 25, a value of 1FFFF obtained by subtracting 1 from a value of 20000 in hexadecimal is set. If the logical product operation circuit 18 performs an AND operation on the 1FFFF and the output value 20000 of the conversion constant circuit 24 at the C point where the main axis is rotated by one pulse from the -A point in the forward rotation direction, the value becomes zero. That is, every time the spindle rotates once, the output value of the conversion constant circuit 24 is reset to zero, so that the operation result of the AND operation circuit 18 indicates the current position of the spindle. The same as in the case of the example circuit.
FIG. 2 is a block circuit diagram showing a second embodiment of the present invention. The position detector 27 includes a pulse encoder 26 that outputs a pulse of 30000 P / R, a quadruple circuit 14, a pulse counter 15, and a conversion constant circuit. 24, the mask data generation circuit 24 and the logical product operation circuit 18, but their names, uses, and functions have already been described, and thus their descriptions are omitted.
In the circuit of the second embodiment, the stop position is separately set by the stop position setter 31, but the product of the stop position set value and the conversion constant described in Equation 1 is calculated by the conversion constant circuit 32. . By inputting the deviation between the operation value of the conversion constant circuit 32 and the operation value of the logical product operation circuit 18 to the position adjuster 33, a control signal for adjusting the input deviation to zero is given to the motor control circuit 34. Since the electric motor 35 is controlled, the main shaft 36 stops at the set stop position.
【The invention's effect】
Conventionally, when the number of output pulses of the pulse encoder is not 2 N P / R, the position data becomes discontinuous before and after the origin, and there is a disadvantage that the calculation of position detection becomes complicated. On the other hand, in the present invention, even if the number of output pulses of the pulse encoder is an arbitrary value, N N is set so that the value 2 N −1 is larger than the number of output pulses or a value obtained by multiplying the output pulse number by four. By adopting the conversion constant with the value of 1 as the product of the number of pulse measurements, the position data can be prevented from becoming discontinuous before and after the origin, so that the effect of easily detecting the position can be obtained.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram showing a first embodiment of the present invention. FIG. 2 is a block circuit diagram showing a second embodiment of the present invention. FIG. 3 is a pulse that outputs a pulse number of 2 N P / R. Block circuit diagram showing a conventional example of a position detection method using an encoder [Fig. 4] Position correlation diagram showing the positional relationship near the origin of a spindle
11, 21 A-phase pulse 12, 22 B-phase pulse 13, 23 Z-phase pulse 14 Quadruple circuit 15 Pulse counter 16 Hexadecimal conversion circuit 17, 25 Mask data generation circuit 18 AND operation circuit 24, 32 Conversion constant circuit 26 Pulse encoder 27 Position detector 31 Stop position setter 33 Position adjuster 34 Motor controller 35 Motor 36 Spindle

Claims (3)

2のN乗値を、パルスエンコーダの1回転で出力するパルス数に所定数を乗じた値で除算することで得られる除算演算値を変換定数とし、
回転軸に結合した前記パルスエンコーダが出力するパルス数を前記所定数倍して得られるパルス数を計数し、
この計数値に前記変換定数を乗じて得られる値を変換パルス数とし、
この変換パルス数と、前記2のN乗値の16進数変換値から1を減算して得られるマスクデータとの論理積を演算し、
該論理積演算結果を前記主軸の現在位置データとすることを特徴とするパルスエンコーダによる位置検出方法。
The division operation value obtained by dividing the N-th power value of 2 by the value obtained by multiplying the number of pulses output by one rotation of the pulse encoder by a predetermined number is used as a conversion constant.
Counting the number of pulses obtained by multiplying the number of pulses output by the pulse encoder coupled to the rotating shaft by the predetermined number,
The value obtained by multiplying the count value by the conversion constant is the number of conversion pulses,
The logical product of the number of converted pulses and the mask data obtained by subtracting 1 from the hexadecimal converted value of the 2 N power value,
A position detection method using a pulse encoder, wherein the logical product operation result is used as current position data of the spindle.
2のN乗値を、パルスエンコーダの1回転で出力するパルス数に所定数を乗じた値で除算することで得られる除算演算値を変換定数とし、
回転軸に結合した前記パルスエンコーダが出力するパルス数を前記所定数倍して得られるパルス数を計数し、
この計数値に前記変換定数を乗じて得られる値を変換パルス数とし、
この変換パルス数と、前記2のN乗値の16進数変換値から1を減算して得られるマスクデータとの論理積を演算し、
該論理積演算結果と、別途に設定する停止位置設定値に前記変換定数を乗じて得られる値との偏差を求め、
この偏差値を零にする調節動作により、前記主軸を前記停止設定位置に停止させることを特徴とするパルスエンコーダによる停止位置制御方法。
The division operation value obtained by dividing the N-th power value of 2 by the value obtained by multiplying the number of pulses output by one rotation of the pulse encoder by a predetermined number is used as a conversion constant.
Counting the number of pulses obtained by multiplying the number of pulses output by the pulse encoder coupled to the rotating shaft by the predetermined number,
The value obtained by multiplying the count value by the conversion constant is the number of conversion pulses,
The logical product of the number of converted pulses and the mask data obtained by subtracting 1 from the hexadecimal converted value of the 2 N power value,
Obtaining a deviation between the logical product operation result and a value obtained by multiplying the stop position setting value set separately by the conversion constant;
A stop position control method using a pulse encoder, wherein the spindle is stopped at the stop set position by an adjustment operation for setting the deviation value to zero.
請求項1または請求項2に記載のパルスエンコーダによる位置検出方法または停止位置制御方法において、
前記変換定数を求める際に、2のN乗値から1を差し引いた値が、パルスエンコーダの1回転で出力されるパルス数を前記所定数倍して得られる値よりも大となるように前記Nの値を定めることを特徴とするパルスエンコーダによる位置検出方法または停止位置制御方法。
In the position detection method or the stop position control method by the pulse encoder according to claim 1 or 2,
When obtaining the conversion constant, the value obtained by subtracting 1 from the Nth power of 2 is larger than the value obtained by multiplying the number of pulses output by one rotation of the pulse encoder by the predetermined number. A position detection method or a stop position control method using a pulse encoder, wherein a value of N is determined.
JP2001192915A 2001-06-26 2001-06-26 Position detection method or stop position control method by pulse encoder Expired - Lifetime JP4660983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001192915A JP4660983B2 (en) 2001-06-26 2001-06-26 Position detection method or stop position control method by pulse encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001192915A JP4660983B2 (en) 2001-06-26 2001-06-26 Position detection method or stop position control method by pulse encoder

Publications (2)

Publication Number Publication Date
JP2003005837A JP2003005837A (en) 2003-01-08
JP4660983B2 true JP4660983B2 (en) 2011-03-30

Family

ID=19031298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001192915A Expired - Lifetime JP4660983B2 (en) 2001-06-26 2001-06-26 Position detection method or stop position control method by pulse encoder

Country Status (1)

Country Link
JP (1) JP4660983B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373524B2 (en) 2004-02-24 2008-05-13 Covelight Systems, Inc. Methods, systems and computer program products for monitoring user behavior for a server application
JP5251802B2 (en) * 2009-09-17 2013-07-31 日本精工株式会社 Physical quantity measuring device for rolling bearing units

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229910A (en) * 1994-02-22 1995-08-29 Yokogawa Electric Corp Pulse counter circuit
JP2000337926A (en) * 1999-05-27 2000-12-08 Fuji Electric Co Ltd Initial position-detecting device for encoder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229910A (en) * 1994-02-22 1995-08-29 Yokogawa Electric Corp Pulse counter circuit
JP2000337926A (en) * 1999-05-27 2000-12-08 Fuji Electric Co Ltd Initial position-detecting device for encoder

Also Published As

Publication number Publication date
JP2003005837A (en) 2003-01-08

Similar Documents

Publication Publication Date Title
CN109945819B (en) Method for measuring position of rotor of permanent magnet synchronous motor
EP1435090A2 (en) Method and apparatus for calibrating and initializing an electronically commutated motor
US5276722A (en) Absolute multi-revolution encoder
JP4660983B2 (en) Position detection method or stop position control method by pulse encoder
JP2010043981A (en) Angle position detector and rotational speed detector of rotor
JP2005061943A (en) Variable reluctance type resolver
KR20190053101A (en) Semiconductor device, angle value correction circuit and method therefor
JP4797096B2 (en) Stepping motor rotation angle detection device
CN115833683A (en) Calibration method and device for electrical angle offset and permanent magnet synchronous motor
JPH07229910A (en) Pulse counter circuit
TWI425187B (en) Resolver unit
JPH06118090A (en) Speed detector
JP3860324B2 (en) Motor speed control device
JP2012173258A (en) Torque measurement apparatus and steering apparatus mounting the same
JP2941790B1 (en) Pulse counter
JPH0854205A (en) Rotational position detector for electric rotating
JPH0240483Y2 (en)
JPH0725698Y2 (en) Rotating machine speed detector
JPS6347612A (en) Displacement detector
US7154947B2 (en) Coincidence detection apparatus and method
JPH06160113A (en) Generation of high-resolution absolute signal
JPH077985A (en) Digital type speed detector and speed controller of electric motor using the same
JP2562436Y2 (en) Detector
JPH01119717A (en) Absolute position detecting method using double-speed resolver
JPH03289567A (en) Apparatus for detecting rotational speed

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4660983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term