JP4660842B2 - Automatic wheel diameter correction method for pendulum controlled railway vehicles - Google Patents

Automatic wheel diameter correction method for pendulum controlled railway vehicles Download PDF

Info

Publication number
JP4660842B2
JP4660842B2 JP28762499A JP28762499A JP4660842B2 JP 4660842 B2 JP4660842 B2 JP 4660842B2 JP 28762499 A JP28762499 A JP 28762499A JP 28762499 A JP28762499 A JP 28762499A JP 4660842 B2 JP4660842 B2 JP 4660842B2
Authority
JP
Japan
Prior art keywords
wheel diameter
ground element
wheel
reference ground
starting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28762499A
Other languages
Japanese (ja)
Other versions
JP2001106070A (en
Inventor
博彦 柿沼
頼光 佐藤
且博 種部
一宇 高橋
朝生 敷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Railway Co
Original Assignee
Hokkaido Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Railway Co filed Critical Hokkaido Railway Co
Priority to JP28762499A priority Critical patent/JP4660842B2/en
Publication of JP2001106070A publication Critical patent/JP2001106070A/en
Application granted granted Critical
Publication of JP4660842B2 publication Critical patent/JP4660842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、振子制御式鉄道車両において、曲線路位置で車体を正確に強制傾斜させることができるように、車輪径を自動補正して車両の現在位置を正確に検知できるようにした振子制御式鉄道車両の車輪径自動補正方法に関する。
【0002】
【従来の技術】
線路における曲線路位置(カーブ)での振子制御式鉄道車両の乗り心地を改善するためには、線路の曲線路位置を正確に検知して車両を強制傾斜させる必要がある。そこで、線路の曲線路位置を検出する方法として、例えば特公平3−73511号公報、特開平7−108933号公報に開示されているように、ATS(自動列車停止装置)の地上子を検出した地点を基点として演算した車輪の回転数と車輪径から車両の走行距離を算出し、記憶してあるカーブ位置データとの比較結果に基づいて車両の位置を検出し、車両が地上子を通過する毎に走行距離を路線データに基づいて補正し、走行距離と路線データ内の曲線路位置を照合することにより曲線路位置を検知する方法が知られている。
【0003】
【発明が解決しようとする課題】
ところで、車輪の回転数から走行距離を演算して走行位置を検知する場合、車輪径のデータが正確であることが位置検知の精度を確保する上で極めて重要であるが、従来はこの車輪径データの補正は制御装置のデジタルスイッチを手動操作により行なうようになっており、数カ月に1度行なう定期検査において車輪径を実測した際や、車輪の交換時に行なっている。
【0004】
しかしながら、車輪径は磨耗、滑走、空転等によって変化するもので常に一定ではないのであって、制御装置の車輪径設定値と実際の車輪径が異なっている場合には積算距離に誤差が生じる。例えば、車輪径が3mm違うと最大車両1両分の長さの誤差が生じるため、車両が通常より早いタイミングで傾斜動作を行うことになる。しかし、従来のように数カ月毎の検査時に修正するのでは、その間は車輪径の誤差があるままで走行距離を演算するために曲線路位置を正確に検知できないことになり、車両の傾斜制御が早すぎたり、遅れたりする結果乗り心地が悪くなるという問題がある。
【0005】
また、制御装置において車輪径の設定は手動で行なっていることから、仮に設定値の入力を誤った場合にも次回検査時に実測値と比較した場合でなければ誤差を確認できないことになり、この間は曲線路位置と車両の傾斜制御のタイミングがずれたままで振子制御式鉄道車両を運行することになる。
【0006】
本発明は上述した従来技術の諸欠点に鑑みなされたもので、常に正確な走行位置を検知することができるので車両の傾斜制御をタイミング良く行うことができるし、車輪径の補正を自動的に行うので手動補正作業の不要化と手動補正によるミスを解消することができ、しかも既設の地上子をそのまま利用できる共に、設置してある地上子の数が異なる複数の出発番線のいずれから始発しても車輪径の補正を常に正確に行うことができる振子制御式鉄道車両の車輪径自動補正方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述した課題を解決するために構成された本発明の手段は、始発点から本線上の任意の距離に位置する地上子を第1の基準地上子とし、該第1の基準地上子から運行方向に所定の間隔で設置される地上子のうち適宜の数の地上子を夫々次順位の基準地上子とし、前記第1の基準地上子から前記始発点方向の線路上の所定の位置にある地上子を後方地上子とし、振子制御式鉄道車両の制御装置により、前記始発点から前記第1の基準地上子と後方地上子との間に設定した基準地点までの距離データ及び前回走行時の車輪回転数と車輪径を記憶し、該始発点から前記基準地点までの現車輪回転数が前記前回車輪回転数に達したときに、現車輪回転数及び該始発点から基準地点までに検知した地上子の積算数の夫々をリセットし、前記鉄道車両に搭載の車上子が前記第1の基準地上子を検知した時点で現車輪回転数を再度リセットし、該第1の基準地上子以降の各基準地上子を通過する度毎に、該基準地上子区間毎の車輪回転数と記憶してある区間距離データとから区間毎の現車輪径を演算し、得られた各区間毎の現車輪径から演算した車輪径平均値に基づいて前回の車輪径設定値を補正するようにするものである。
【0008】
そして、前記区間毎の現車輪径を比較した値が所定の許容誤差内である場合にのみ、該各区間毎の現車輪径から演算した車輪径平均値に基づいて前回の車輪径設定値を補正するようにするとよい。
【0009】
また、前記各基準地上子及び後方地上子には、自動列車停止装置のために線路に設置してある既設の地上子を利用するとよい。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態に係る車輪径自動補正方法を図面に基づき詳述する。図1において、1は線路を示し、該線路1は複数、実施の形態では6本の出発番線2A、2B、・・2F(なお、場合により出発番線2と総称する。)と、該各出発番線2A、2B、・・・2Fが続く本線3とからなっており、出発番線2と本線3との境界は後述する基準地点Bとしている。4A、4B、・・・は前記出発番線2の始発点Aから本線3に至る間の各出発番線2A、2B、・・・2Fに設置したATSの地上子で、該地上子4A、4B、・・・の数は各出発番線2A、2B、・・・2F毎に異なっている。
【0011】
他方、5、6、7、8は4基の基準地上子を示す。該基準地上子5乃至8は前記本線3上に運行方向に所定の間隔で予め設置してある既設地上子を選定したもので、第1の基準地上子5は、出発番線2の始発点Aから本線3上の任意の地点に位置しており、該第1の基準地上子5と始発点A方向に直近の既設の後方地上子4Gとのほぼ中間地点を基準地点Bとしてある。ここで、始発点Aから基準地点Bまでの距離をP、基準地点Bから基準地上子5までの距離をPとする。また、6、7、8は本線3上に順次設置してある既設地上子を選定した第2、第3、第4の基準地上子で、該第2、第3、第4の各基準地上子6、7、8は夫々所定の区間距離P、P、Pの間隔で離間している。
【0012】
11は振子制御式鉄道車両の先頭車Cに搭載した制御装置で、該制御装置11は振子制御装置12と後述する車輪形自動補正装置18とから構成される。13は該振子制御装置12を構成し、CPU、RAM、ROM等から構成した制御回路で、該制御回路13は各走行線区毎の距離データ、走行線区の全曲線路位置データ、地上子位置データの夫々を記憶する機能、これらのデータを基に後述する速度発電機16、17からのパルス信号や地上子の信号を受けて車両の走行位置と曲線路位置を演算する機能、走行距離補正機能、更に、牽引車両毎の傾斜制御を行うために各牽引車両に搭載してあるチルトコントローラ装置に傾斜タイミング指令と距離パルス信号を送る傾斜制御指令機能を夫々有している。
【0013】
14は運転室内に設置され、前記制御回路13に接続した車内モニタ装置で、該車内モニタ装置14によって始発駅、先行駅等を設定することにより走行線区、例えば札幌〜函館間の線区が選定される。15は制御回路13に接続した車上子で、該車上子15は線路1上に設置してある各既設地上子4A〜4F、後方地上子4G、基準地上子5〜8及びそれ以降の既設地上子の各々を検知して位置信号を制御回路13に送る。16は先頭車Cの1軸の回転数を検出するための1軸速度発電機、17は4軸の回転数を検出するための4軸速度発電機を示し、該各速度発電機16、17は車軸の1回転当たりのパルス信号、例えば1回転60パルスの信号を発生して制御回路13に送る。
【0014】
他方、18は振子制御装置12に接続した車輪径自動補正装置を示す。19は該車輪径自動補正装置18を構成するデータ入出力部(I/O)で、該データ入出力部19には前記車上子15が検出した既設地上子4A〜4F、後方地上子4G、基準地上子5〜8及びそれ以降の既設地上子の各位置信号を積算する地上子演算部20、各速度発電機16、17が夫々検出したパルス信号を積算する回転数演算部21、22が接続してある。23は記憶している車輪径データを車輪を交換した場合等に手動で補正するための内部メモリ補正用スイッチ、24はバックアップデータ及び演算結果出力部である。
【0015】
更に、25はデータ入出力部19に接続したデータ演算部で、該データ演算部25はCPU、RAM、ROMから構成してあり、例えば札幌駅、函館駅、釧路駅等の出発駅毎の始発点Aから基準地点Bまでの走行パルスを前回補正した値の車輪径に基づいて設定した設定初期パルス及びその他の各種データを保存するデータ保存機能と、パルスリセット機能、データ入出力部19から送られる車輪径を演算する演算機能、相加平均値から車輪径を演算して保存する機能を有している。ここで、出発駅毎に記憶してある設定初期パルスの例を表1に示す。車輪径は記憶してある前回の設定値を利用している。
【0016】
【表1】

Figure 0004660842
【0017】
本実施の形態は上述の構成からなるが、車輪径を補正する場合のフローチャートを図3乃至図6に示す。制御装置11の電源を投入するとバックアップデータ(前回の車輪径設定値)が読み出される。車内モニタ装置14により始発駅、行先駅等を設定することによりステップ4(7)において上り(下り)走行線間が設定され、ステップ5(8)、6(9)でこの走行線区の初期走行パルス、距離データ、地上子数等の各種データを読み出され、ステップ10で前回走行時の走行パルス数、ATSナンバー数が設定されて走行待機状態になる。列車が出発番線2A〜2Fのいずれかを出発し、各速度発電機16、17により検出する車輪の回転パルス数である走行パルス数の積算値が記憶してある初期走行パルス数に達すると、即ち基準地点Bに達するとそれまでカウントした走行パルス数および地上子数をリセットする(ステップ12)。
【0018】
しかる後、車両に搭載した車上子15が第1の基準地上子5を検知すると、走行パルス数のカウンタを再度リセットし(ステップ15)、第1の基準地上子5以降の走行パルス数をカウントし、車上子15が第2の基準地上子6を検知したら(ステップ17)、第1の基準地上子5から第2の基準地上子6までの区間でカウントした走行パルス数をラムに記憶してカウンタをリセットし(ステップ19)、所定の区間距離P3 のデータと車輪回転数から当該区間における車輪径を演算してラムに記憶する(ステップ20)。更に、第2の基準地上子6を検知した以降の走行パルス数をカウントし、車上子15が第3の基準地上子7を検知したら(ステップ22)上記と同様に、第2の基準地上子6から第3の基準地上子7までの区間でカウントした走行パルス数をラムに記憶してカウンタをリセットし(ステップ23、24)、所定の区間距離P4 のデータと車輪回転数から当該区間における車輪径を演算してラムに記憶する(ステップ25)。
【0019】
更に、車上子15が第4の基準地上子8を検知したら(ステップ27)、上記と同様に、第3の基準地上子7から第4の基準地上子8までの区間でカウントした走行パルス数をラムに記憶した後カウンタをラッチし(ステップ28、29)、所定の区間距離P5 のデータと車輪回転数から当該区間における車輪径を演算してラムに記憶する(ステップ30)。このようにして3区間で得られた各車輪径の値をそれぞれ比較し(ステップ31)、比較値が2mm以内であれば車輪径の平均値を演算し(ステップ33)、記憶してある車輪径補正データ(バックアップデータ)を得られた車輪径データに更新する(ステップ34)。
【0020】
なお、3区間の区間毎に得られた車輪径の演算結果が2mmを超えている場合は、車輪径補正データは更新しないで、そのまま出力する(ステップ35)。これにより、車輪の滑空や空転等による車輪径の誤演算による悪影響を回避することができる。
【0021】
なお、本実施の形態では4点に基準地上子5、6、7、8を配置して3区間毎の車輪回転数を走行パルスにより検出するようにしたが、配置する基準地上子の数は実施の形態に限定されるものではない。
【0022】
【発明の効果】
本発明は以上詳述した如く構成したから、下記の諸効果を奏する。
(1)車両の始発毎に車輪径の設定値を高い精度で補正することができるから、車両の距離演算の累積誤差を常に最小限度に抑えることができ、常に正確な走行位置を検知することができる。従って、曲線路位置における車両の傾斜制御をタイミング良く行うことができるので、乗り心地の向上を図ることができる。
(2)車輪径の計測及びその補正は自動的に行うから、従来の手動設定の作業は不要にできると共に、設定値の入力ミスといった事態を完全に解消できる。
(3)本線上に設置した複数の基準地上子を探索することにより、予め計測してある正確な区間距離データと区間毎の現車輪回転数から車輪径を演算し、得られる車輪径の平均値に基づいて予め記憶してある車輪径設定値を補正するようにしたから、高精度の誤差の修正が可能である。
(4)本線上に設置した基準地上子を探索して車輪径の補正を行うから、本線に出る複数の出発番線のいずれの番線から出発しても、各出発番線によって設置数が異なる地上子の数及び距離に影響されることなく正確な車輪径の補正を行うことができる。
(5)本発明によれば、自動列車停止装置のための既設の地上子を基準地上子及び後方地上子として利用することができるので、地上子の設置等の費用も不要である。
(6)更に、複数の区間毎に得られた車輪径を比較した値が所定の許容誤差内である場合にのみ、該各区間毎の現車輪径から平均車輪径を演算して前回の車輪径設定値を補正するようにしたから、1mm単位での高精度の誤差の修正が可能であるし、車輪の滑空や空転等による車輪径の誤演算による悪影響を回避することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る線路上の既設地上子、基準地上子の配置関係を示す説明図である。
【図2】 実施の形態に係る制御装置のブロック図である。
【図3】 実施の形態における制御を示す流れ図である。
【図4】 図3に続く流れ図である。
【図5】 図4に続く流れ図である。
【図6】 図5に続く流れ図である。
【符号の説明】
4G 後方地上子
5、6、7、8 基準地上子
11 制御装置
A 始発点
B 基準地点
、P、P 区間距離[0001]
[Industrial application fields]
The present invention relates to a pendulum control type in which the current position of the vehicle can be accurately detected by automatically correcting the wheel diameter so that the vehicle body can be accurately and forcibly inclined at a curved road position in a pendulum control type railway vehicle. The present invention relates to a method for automatically correcting a wheel diameter of a railway vehicle.
[0002]
[Prior art]
In order to improve the ride comfort of the pendulum-controlled railway vehicle at the curved road position (curve) on the track, it is necessary to accurately detect the curved road position of the track and to forcibly tilt the vehicle. Therefore, as a method of detecting the curved road position of the track, for example, as disclosed in Japanese Patent Publication No. 3-73511 and Japanese Patent Laid-Open No. 7-108933, the ground element of the ATS (automatic train stop device) is detected. The vehicle travel distance is calculated from the wheel rotation speed and wheel diameter calculated from the point as the base point, the vehicle position is detected based on the comparison result with the stored curve position data, and the vehicle passes through the ground element. There is known a method of detecting a curved road position by correcting the traveling distance on the basis of the route data for each time and comparing the running distance with the curved road position in the route data.
[0003]
[Problems to be solved by the invention]
By the way, when detecting the travel position by calculating the travel distance from the rotational speed of the wheel, it is extremely important to ensure the accuracy of the position detection that the wheel diameter data is accurate. Data correction is performed by manual operation of the digital switch of the control device, and is performed when the wheel diameter is measured in a periodic inspection once every several months or when the wheel is replaced.
[0004]
However, the wheel diameter changes due to wear, gliding, idling, etc., and is not always constant. If the wheel diameter set value of the control device is different from the actual wheel diameter, an error occurs in the integrated distance. For example, if the wheel diameter is different by 3 mm, an error in the length of one vehicle is generated at the maximum , so that the vehicle performs the tilting operation at a timing earlier than usual. However, if the correction is made at the time of inspection every several months as in the past, the position of the curved road cannot be accurately detected in order to calculate the travel distance while there is an error in the wheel diameter. There is a problem that the ride comfort becomes worse as a result of being too early or late.
[0005]
In addition, since the wheel diameter is set manually in the control device, even if the set value is entered incorrectly, the error cannot be confirmed unless it is compared with the measured value at the next inspection. In this case, the pendulum control type railway vehicle is operated with the curved road position and the vehicle tilt control timing shifted.
[0006]
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and can always detect an accurate traveling position, so that vehicle tilt control can be performed in a timely manner, and wheel diameter correction is automatically performed. manual correction errors can be eliminated by unnecessary reduction and manual correction work, yet both the the existing ground coils available as, first train from any number of ground coil that is installed is a different starting track number is performed It is an object of the present invention to provide a method for automatically correcting the wheel diameter of a pendulum control type railway vehicle capable of always accurately correcting the wheel diameter.
[0007]
[Means for Solving the Problems]
The means of the present invention configured to solve the above-described problem is that a ground element located at an arbitrary distance on the main line from the starting point is a first reference ground element, and the direction of operation from the first reference ground element is An appropriate number of ground elements among the ground elements installed at predetermined intervals are set as the reference ground elements of the next order, and the ground located at a predetermined position on the track in the direction of the starting point from the first reference ground element. Distance data from the starting point to the reference point set between the first reference ground element and the rear ground element and the wheel at the previous run by the control device of the pendulum control type railway vehicle with the child as the rear ground element The rotational speed and wheel diameter are stored, and when the current wheel rotational speed from the starting point to the reference point reaches the previous wheel rotational speed, the current wheel rotational speed and the ground detected from the starting point to the reference point are detected. Reset each of the child's cumulative numbers and enter the railway vehicle. When the vehicle upper element detects the first reference ground element, the current wheel speed is reset again, and each time the vehicle passes through each reference ground element after the first reference ground element, the reference ground element is reset. The current wheel diameter for each section is calculated from the wheel speed for each section and the stored section distance data, and the previous wheel diameter is calculated based on the average wheel diameter calculated from the current wheel diameter for each section. The set value is corrected.
[0008]
And only when the value comparing the current wheel diameter for each section is within a predetermined tolerance, the previous wheel diameter set value is calculated based on the wheel diameter average value calculated from the current wheel diameter for each section. It is recommended to correct it.
[0009]
Moreover, it is good to utilize the existing ground element currently installed in the track | line for each said reference ground element and back ground element for an automatic train stop apparatus.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a wheel diameter automatic correction method according to an embodiment of the present invention will be described in detail with reference to the drawings. In FIG. 1, reference numeral 1 denotes a line, and the line 1 includes a plurality of, in the embodiment, six departure number lines 2A, 2B,... 2F (which may be collectively referred to as a departure number line 2 in some cases) and the respective departure points. It consists of a main line 3 followed by number lines 2A, 2B,... 2F, and a boundary between the departure number line 2 and the main line 3 is a reference point B which will be described later. 4A, 4B,... Are ATS ground elements installed on each departure number line 2A, 2B,... 2F from the starting point A of the departure number line 2 to the main line 3, and the ground elements 4A, 4B,. The number of... Differs for each departure number 2A, 2B,.
[0011]
On the other hand, 5, 6, 7, and 8 indicate four reference ground elements. The reference ground elements 5 to 8 are selected from existing ground elements that are previously installed on the main line 3 at predetermined intervals in the direction of operation. The first reference ground element 5 is the starting point A of the departure line 2. Is located at an arbitrary point on the main line 3 from the first reference ground element 5 and an intermediate point between the first rear ground element 4G and the existing rear ground element 4G closest in the direction of the starting point A is defined as a reference point B. Here, the distance from the starting point A to the reference point B is P 1 , and the distance from the reference point B to the reference ground element 5 is P 2 . Reference numerals 6, 7, and 8 denote second, third, and fourth reference ground elements that are selected from existing ground elements that are sequentially installed on the main line 3, and each of the second, third, and fourth reference ground elements. The children 6, 7, and 8 are spaced apart by predetermined interval distances P 3 , P 4 , and P 5 , respectively.
[0012]
Reference numeral 11 denotes a control device mounted on the top car C of the pendulum control type railway vehicle. The control device 11 includes a pendulum control device 12 and a wheel shape automatic correction device 18 to be described later. 13 is a control circuit that constitutes the pendulum control device 12 and includes a CPU, a RAM, a ROM, and the like. The control circuit 13 includes distance data for each travel line section, all curve path position data for the travel line section, ground position A function for storing each of the data, a function for calculating a travel position and a curved road position of the vehicle by receiving a pulse signal from the speed generators 16 and 17 and a ground element signal described later based on these data, and a travel distance correction In addition, in order to perform tilt control for each tow vehicle, each has a tilt control command function for sending a tilt timing command and a distance pulse signal to a tilt controller device mounted on each tow vehicle.
[0013]
14 is an in-vehicle monitor device installed in the driver's cab and connected to the control circuit 13. By setting the starting station, the preceding station, etc. by the in-vehicle monitor device 14, a running line area, for example, a line area between Sapporo and Hakodate, can be obtained. Selected. Reference numeral 15 denotes a vehicle upper element connected to the control circuit 13, and the vehicle upper element 15 is provided on each of the existing ground elements 4A to 4F, the rear ground element 4G, the reference ground elements 5 to 8 and the subsequent elements. Each of the existing ground elements is detected and a position signal is sent to the control circuit 13. Reference numeral 16 denotes a single-axis speed generator for detecting the rotational speed of one axis of the leading car C, and 17 denotes a four-axis speed generator for detecting the rotational speed of four axes. Generates a pulse signal per one revolution of the axle, for example, a signal of 60 pulses per revolution and sends it to the control circuit 13.
[0014]
On the other hand, reference numeral 18 denotes a wheel diameter automatic correction device connected to the pendulum control device 12. Reference numeral 19 denotes a data input / output unit (I / O) constituting the wheel diameter automatic correction device 18, and the data input / output unit 19 includes existing ground elements 4A to 4F and rear ground elements 4G detected by the vehicle upper element 15. , The ground unit calculating unit 20 for integrating the position signals of the reference ground units 5 to 8 and subsequent existing ground units, and the rotation number calculating units 21 and 22 for integrating the pulse signals detected by the speed generators 16 and 17, respectively. Is connected. Reference numeral 23 denotes an internal memory correction switch for manually correcting the stored wheel diameter data when the wheel is replaced, and 24 denotes backup data and a calculation result output unit.
[0015]
Further, 25 is a data operation unit connected to the data input / output unit 19, and the data operation unit 25 is composed of a CPU, a RAM, and a ROM. For example, the first operation for each departure station such as Sapporo Station, Hakodate Station, Kushiro Station, etc. A data storage function for storing a set initial pulse and other various data set based on a wheel diameter of a value corrected last time from a point A to a reference point B, a pulse reset function, and a data input / output unit 19 A calculation function for calculating the wheel diameter, and a function for calculating and storing the wheel diameter from the arithmetic mean value. Here, Table 1 shows an example of the set initial pulse stored for each departure station. The wheel diameter uses the previous set value stored.
[0016]
[Table 1]
Figure 0004660842
[0017]
This embodiment is configured in the above, it shows a flow chart of a case of correcting the wheel diameter in FIGS. 3-6. When the control device 11 is turned on, backup data (previous wheel diameter setting value) is read. By setting the start station, the destination station, etc. by the in-vehicle monitor device 14, the distance between the up (down) travel lines is set in step 4 (7) , and the initial of the travel line section is set in steps 5 (8) and 6 (9). Various data such as travel pulses, distance data, and number of ground elements are read out, and in step 10, the number of travel pulses and the number of ATS numbers at the previous travel are set, and the travel standby state is set. When the train departs from any of the departure number lines 2A to 2F and the accumulated value of the number of traveling pulses that is the number of rotation pulses of the wheels detected by the respective speed generators 16 and 17 reaches the stored initial number of traveling pulses, That is, when the reference point B is reached, the number of traveling pulses and the number of ground elements counted so far are reset (step 12).
[0018]
After that, when the vehicle upper element 15 mounted on the vehicle detects the first reference ground element 5, the traveling pulse number counter is reset again (step 15), and the number of traveling pulses after the first reference ground element 5 is set. When the vehicle base 15 detects the second reference ground element 6 (step 17), the number of traveling pulses counted in the section from the first reference ground element 5 to the second reference ground element 6 is converted into a ram. stored resets the counter (step 19), and stores the ram and calculates the wheel diameter in a predetermined interval distance P 3 data and the section from the wheel rotation speed (step 20). Further, the number of traveling pulses after the second reference ground element 6 is detected is counted, and when the vehicle upper element 15 detects the third reference ground element 7 (step 22), the second reference ground element is detected in the same manner as described above. the number of travel pulses counted in the interval from the child 6 to the third reference ground coil 7 and stored in the ram to reset the counter (step 23, 24), the predetermined interval distance P 4 data and the from the wheel rotation speed The wheel diameter in the section is calculated and stored in the ram (step 25).
[0019]
Further, when the vehicle upper element 15 detects the fourth reference ground element 8 (step 27), the traveling pulses counted in the section from the third reference ground element 7 to the fourth reference ground element 8 are the same as described above. It latches the counter after storing the number in the ram (step 29), and stores the ram and calculates the wheel diameter in a predetermined interval distance P 5 of the data and the section from the wheel rotation speed (step 30). Thus, the wheel diameter values obtained in the three sections are respectively compared (step 31), and if the comparison value is within 2 mm, an average value of the wheel diameters is calculated (step 33), and the stored wheels. The diameter correction data (backup data) is updated to the obtained wheel diameter data (step 34).
[0020]
If the calculation result of the wheel diameter obtained for each of the three sections exceeds 2 mm, the wheel diameter correction data is not updated and is output as it is (step 35). Thereby, it is possible to avoid an adverse effect due to erroneous calculation of the wheel diameter due to wheel glide or idling.
[0021]
In the present embodiment, the reference ground elements 5, 6, 7, and 8 are arranged at four points and the wheel rotation speed in every three sections is detected by the traveling pulse. However, the number of reference ground elements to be arranged is as follows. The present invention is not limited to the embodiment.
[0022]
【The invention's effect】
Since the present invention is configured as described in detail above, the following effects can be obtained.
(1) Since the set value of the wheel diameter can be corrected with high accuracy at every start of the vehicle, the accumulated error in the vehicle distance calculation can always be kept to a minimum, and the accurate running position can always be detected. Can do. Therefore, since the vehicle inclination control at the curved road position can be performed with good timing, the riding comfort can be improved.
(2) Since the measurement of the wheel diameter and the correction thereof are performed automatically, the conventional manual setting operation can be made unnecessary, and the setting value input error can be completely eliminated.
(3) By searching for a plurality of reference ground elements installed on the main line, the wheel diameter is calculated from the accurate section distance data measured in advance and the current wheel rotation speed for each section, and the average wheel diameter obtained Since the wheel diameter setting value stored in advance is corrected based on the value, it is possible to correct the error with high accuracy.
(4) Since the reference ground element installed on the main line is searched and the wheel diameter is corrected, even if the departure from any of a plurality of departure numbers on the main line, the number of installations differs depending on each departure number. The wheel diameter can be accurately corrected without being affected by the number and distance of the wheels.
(5) According to the present invention, since the existing ground element for the automatic train stop device can be used as the reference ground element and the rear ground element, costs such as installation of the ground element are unnecessary.
(6) Furthermore, only when the value obtained by comparing the wheel diameters obtained for each of the plurality of sections is within a predetermined tolerance, the average wheel diameter is calculated from the current wheel diameter for each section, and the previous wheel Since the diameter set value is corrected, it is possible to correct a highly accurate error in units of 1 mm, and to avoid adverse effects due to erroneous calculation of the wheel diameter due to wheel gliding or idling.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an arrangement relationship between an existing ground element and a reference ground element on a track according to an embodiment of the present invention.
FIG. 2 is a block diagram of a control device according to the embodiment.
FIG. 3 is a flowchart showing control in the embodiment.
FIG. 4 is a flowchart following FIG. 3;
FIG. 5 is a flowchart following FIG. 4;
FIG. 6 is a flowchart following FIG. 5;
[Explanation of symbols]
4G rear ground element 5, 6, 7, 8 Reference ground element 11 Controller A First departure point B Reference point P 3 , P 4 , P 5 section distance

Claims (3)

始発点から本線上の任意の距離に位置する地上子を第1の基準地上子とし、該第1の基準地上子から運行方向に所定の間隔で設置される地上子のうち適宜の数の地上子を夫々次順位の基準地上子とし、前記第1の基準地上子から前記始発点方向の線路上の所定の位置にある地上子を後方地上子とし、振子制御式鉄道車両の制御装置により、前記始発点から前記第1の基準地上子と後方地上子との間に設定した基準地点までの距離データ及び前回走行時の車輪回転数と車輪径を記憶し、該始発点から前記基準地点までの現車輪回転数が前記前回車輪回転数に達したときに、現車輪回転数及び該始発点から基準地点までに検知した地上子の積算数の夫々をリセットし、前記鉄道車両に搭載の車上子が前記第1の基準地上子を検知した時点で現車輪回転数を再度リセットし、該第1の基準地上子以降の各基準地上子を通過する度毎に、該基準地上子区間毎の車輪回転数と記憶してある区間距離データとから区間毎の現車輪径を演算し、得られた各区間毎の現車輪径から演算した車輪径平均値に基づいて前回の車輪径設定値を補正するようにしてなる振子制御式鉄道車両の車輪径自動補正方法。  A ground element located at an arbitrary distance on the main line from the starting point is defined as a first reference ground element, and an appropriate number of ground elements among the ground elements installed at predetermined intervals in the operation direction from the first reference ground element. Each child is a reference ground element of the next rank, and a ground element at a predetermined position on the track in the direction of the starting point from the first reference ground element is a rear ground element, The distance data from the starting point to the reference point set between the first reference ground element and the rear ground element, the wheel rotation speed and the wheel diameter at the time of the previous run are stored, and from the starting point to the reference point When the current wheel rotation speed of the vehicle reaches the previous wheel rotation speed, the current wheel rotation speed and the accumulated number of ground elements detected from the starting point to the reference point are reset, and the vehicle mounted on the railway vehicle is reset. The current wheel when the upper child detects the first reference ground child The rotation number is reset again, and every time it passes through each reference ground element after the first reference ground element, the number of wheel revolutions for each reference ground element and the stored distance data are used for each section. Automatic wheel diameter correction for pendulum-controlled railway vehicles that calculates the current wheel diameter and corrects the previous wheel diameter setting value based on the average wheel diameter value calculated from the current wheel diameter for each section obtained. Method. 前記区間毎に得られた現車輪径の比較値が所定の許容誤差内にある場合にのみ、該各区間毎の現車輪径から演算した車輪径平均値に基づいて前回の車輪径設定値を補正するようにしたことを特徴とする請求項1記載の振子制御式鉄道車両の車輪径自動補正方法。  Only when the comparison value of the current wheel diameter obtained for each section is within a predetermined tolerance, the previous wheel diameter set value is calculated based on the wheel diameter average value calculated from the current wheel diameter for each section. 2. A method for automatically correcting a wheel diameter of a pendulum control type railway vehicle according to claim 1, wherein the correction is performed. 前記各基準地上子及び後方地上子には、自動列車停止装置のために線路に設置してある既設地上子を利用することを特徴とする請求項1記載の振子制御式鉄道車両の車輪径自動補正方法。  2. The automatic wheel diameter of the pendulum control type railway vehicle according to claim 1, wherein an existing ground element installed on a track for an automatic train stop device is used for each reference ground element and rear ground element. Correction method.
JP28762499A 1999-10-08 1999-10-08 Automatic wheel diameter correction method for pendulum controlled railway vehicles Expired - Lifetime JP4660842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28762499A JP4660842B2 (en) 1999-10-08 1999-10-08 Automatic wheel diameter correction method for pendulum controlled railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28762499A JP4660842B2 (en) 1999-10-08 1999-10-08 Automatic wheel diameter correction method for pendulum controlled railway vehicles

Publications (2)

Publication Number Publication Date
JP2001106070A JP2001106070A (en) 2001-04-17
JP4660842B2 true JP4660842B2 (en) 2011-03-30

Family

ID=17719667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28762499A Expired - Lifetime JP4660842B2 (en) 1999-10-08 1999-10-08 Automatic wheel diameter correction method for pendulum controlled railway vehicles

Country Status (1)

Country Link
JP (1) JP4660842B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753848B2 (en) * 2006-11-30 2011-08-24 学校法人日本大学 Train control device
JP5412482B2 (en) * 2011-08-29 2014-02-12 日本信号株式会社 Train position detector
JP5898923B2 (en) * 2011-11-10 2016-04-06 日本信号株式会社 On-vehicle equipment
CN103754236B (en) * 2014-01-26 2016-04-27 浙江众合科技股份有限公司 The alignment method in Train Wheel footpath and calibration system
CN112849218A (en) * 2019-11-28 2021-05-28 中车株洲电力机车研究所有限公司 Wheel diameter parameter adaptation method and device
CN114485505B (en) * 2022-01-21 2024-04-09 苏州挚途科技有限公司 Vehicle tire correction method and device and electronic equipment

Also Published As

Publication number Publication date
JP2001106070A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
CN101310163B (en) Mobile object position estimation apparatus and method
KR101991611B1 (en) Apparatus and method for setting stop position
US9892635B2 (en) Congestion information generation device and congestion information generation method
JPH0621791B2 (en) Land vehicle position measuring method and device
JP4660842B2 (en) Automatic wheel diameter correction method for pendulum controlled railway vehicles
JPH02501855A (en) Navigation method for vehicles with electronic compass
JPH02105011A (en) Locator device for moving body
JP2008058256A (en) Device for calculating speed
JP2007015483A (en) Traveling position detection method for railway vehicle
JPH06107172A (en) Curve information calculating method and car body inclination control method
CN111232019A (en) Traction brake distribution method, device, system, medium and railway vehicle
JPH1030919A (en) Device and method for measuring road longitudinal profile
JP3163892B2 (en) Navigation device
JP2507691B2 (en) Abnormality detection method for vehicle body tilt control device
JPH02144262A (en) Steering angle detecting device for vehicle
JP2000168552A (en) Running position sensing method for rolling stock
JP3431229B2 (en) Mileage measurement device
JP3490584B2 (en) Railway vehicle traveling position correction method and erroneous correction prevention method
JP2974933B2 (en) Vehicle travel position detection device
JP2964283B2 (en) Vehicle pendulum control device
JP3049974B2 (en) Traffic volume measuring device and traffic volume measuring method
JP2000041306A (en) Automatic train operating device
JP3262154B2 (en) Railroad vehicle travel position correction method
KR20100075232A (en) Apparatus and method for processing of vehicle driving state information and record medium
JP2710873B2 (en) Navigation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4660842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term