JP4660737B2 - Spiro compound and method for producing the same, photoresponsive composition and photoresponsive polymer using the same - Google Patents

Spiro compound and method for producing the same, photoresponsive composition and photoresponsive polymer using the same Download PDF

Info

Publication number
JP4660737B2
JP4660737B2 JP2005037319A JP2005037319A JP4660737B2 JP 4660737 B2 JP4660737 B2 JP 4660737B2 JP 2005037319 A JP2005037319 A JP 2005037319A JP 2005037319 A JP2005037319 A JP 2005037319A JP 4660737 B2 JP4660737 B2 JP 4660737B2
Authority
JP
Japan
Prior art keywords
compound
same
photoresponsive
state
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005037319A
Other languages
Japanese (ja)
Other versions
JP2006225267A (en
Inventor
信之 玉置
デイビス リジュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005037319A priority Critical patent/JP4660737B2/en
Publication of JP2006225267A publication Critical patent/JP2006225267A/en
Application granted granted Critical
Publication of JP4660737B2 publication Critical patent/JP4660737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

本発明は、フォトクロミック現象を利用する技術分野に関し、光照射によって可逆的な色変化を示すフォトクロミック化合物、及びその製造方法に関する。また本発明は、フォトクロミック特性を有するスピロ化合物、およびそれにより得られる光応答性組成物および光応答性高分子に関する。   The present invention relates to a technical field using a photochromic phenomenon, and relates to a photochromic compound exhibiting a reversible color change by light irradiation and a method for producing the same. The present invention also relates to a spiro compound having photochromic properties, and a photoresponsive composition and photoresponsive polymer obtained thereby.

紫外線や短波長の可視光線の照射を受けることにより、吸収スペクトルの変化を生じる化合物があり、フォトクロミック(光応答性)化合物と呼ばれている。このフォトクロミック化合物は、無機化合物と有機化合物に大別されるが、それぞれ利点とともに問題点を抱えている。
無機フォトクロミック化合物については、Hg、ZnSなどが挙げられるが、一般的に加工性が悪く、色調の豊富さに欠け、湿度に対しても不安定であることから応用性に乏しい。
一方、有機フォトクロミック化合物は、加工性がよく、色調も多様という優れた性質をもっている。これまで提案されてきた有機フォトクロミック化合物として、ベンゾスピロピラン類、スピロオキサジン類、フルギド類、ジアリールエテン類、アントラセン類等が挙げられる。
There are compounds that change in the absorption spectrum when irradiated with ultraviolet rays or short-wavelength visible light, and are called photochromic (photoresponsive) compounds. This photochromic compound is roughly classified into an inorganic compound and an organic compound, but each has problems and advantages.
Inorganic photochromic compounds include Hg 2 S 2 I 2 , ZnS, etc., but generally have poor processability, lack of abundant color tone, and are unstable to humidity, resulting in poor applicability. .
On the other hand, organic photochromic compounds have excellent properties such as good processability and various color tones. Examples of organic photochromic compounds that have been proposed so far include benzospiropyrans, spirooxazines, fulgides, diarylethenes, anthracenes and the like.

有機フォトクロミック化合物は、上述のように加工性および色調の多様性に優れるほか、目的に応じて誘導体を分子設計することが可能であり、高分子フィルム中への分散および均質化にも優れ、蒸着方法を適用するなどして、各種の媒体を使い、それに適用し種々の形状にできるなど多くの利点がある。かくて、各種の調光材料、記録材料、または表示材料としてその用途が期待されている。   As mentioned above, organic photochromic compounds are excellent in processability and variety of color tones. In addition, derivatives can be molecularly designed according to the purpose, and they are excellent in dispersion and homogenization in polymer films. There are many advantages such as applying various methods, using various media, and applying them to various shapes. Thus, its use is expected as various light control materials, recording materials, or display materials.

しかし、有機フォトクロミック化合物にも問題があり、一般に着色状態の吸収波長域が狭く、単一の化合物で400〜700nmの可視光域をカバーできる化合物は少ない。調光材料として用いるためには、広い吸収域は不可欠である。この解決方法として、複数の有機フォトクロミック化合物を混合し、可視光域をカバーすることが考えられる。しかし、この方法では、有機フォトクロミック化合物間で、光反応の量子収率の差および熱による戻り速度の差があり、発色および消色過程で色調が変化し問題となる。   However, organic photochromic compounds also have problems and generally have a narrow absorption wavelength range in a colored state, and few compounds can cover a visible light range of 400 to 700 nm with a single compound. A wide absorption range is indispensable for use as a light control material. As a solution, it is conceivable to mix a plurality of organic photochromic compounds to cover the visible light region. However, in this method, there is a difference in the quantum yield of the photoreaction and a difference in the return speed due to heat between the organic photochromic compounds, and the color tone changes in the process of color development and decoloration, which is a problem.

非特許文献1には、比較的広い波長域に吸収を有するフォトクロミック化合物、その合成方法、およびその機能が報告されている。しかしながら、ここで開示されている合成方法は多段階であり実用的ではない。また、熱平衡によって消色体と発色体の混合物となるという問題点もある。
現在までのところ各種の調光材料、記録材料、および表示材料としての要求性能をすべて満足する化合物は少なく、より優れた化合物の探索が行われている。
Non-Patent Document 1 reports a photochromic compound having absorption in a relatively wide wavelength range, a synthesis method thereof, and a function thereof. However, the synthesis method disclosed here is multistage and not practical. In addition, there is a problem that a mixture of a decolorant and a color former is formed due to thermal equilibrium.
To date, there are few compounds that satisfy all the required performances as various light control materials, recording materials, and display materials, and search for better compounds has been conducted.

「ケミカル・レビュー」, Minkin, V. I., 2004, 104, 2751“Chemical Review”, Minkin, V. I., 2004, 104, 2751

本発明は、発色体の吸収波長域が広い(例えば、可視光全域に広がる)フォトクロミック特性を有するスピロ化合物、およびその効率的な(例えば、複雑な工程を要せず、短時間、低コストの)製造方法の提供を目的とする。さらに本発明は、該フォトクロミック特性を有するスピロ化合物を含む組成物および高分子化合物、ならびにその製造方法の提供を目的とする。   The present invention relates to a spiro compound having a photochromic characteristic in which the absorption wavelength range of the color former is wide (for example, spreading over the entire visible light range), and its efficient (for example, no complicated process is required, and a short time and low cost). ) To provide a manufacturing method. Furthermore, an object of the present invention is to provide a composition and a polymer compound containing the spiro compound having the photochromic property, and a production method thereof.

上記課題は下記の手段により達成された。
(1)下記化合物(I)または(II)で表されるスピロ化合物。

Figure 0004660737
Figure 0004660737
(2)(1)記載のスピロ化合物を高分子化合物中に分散させたことを特徴とする光応答性組成物。
(3)1,8−ジアミノナフタレンの酸化工程を含むことを特徴とする下記化合物(I)または(II)で表されるスピロ化合物の製造方法。
Figure 0004660737
Figure 0004660737
The above problems have been achieved by the following means.
(1) A spiro compound represented by the following compound (I) or (II).
Figure 0004660737
Figure 0004660737
(2) A photoresponsive composition, wherein the spiro compound according to (1) is dispersed in a polymer compound.
(3) A process for producing a spiro compound represented by the following compound (I) or (II), which comprises an oxidation step of 1,8-diaminonaphthalene.
Figure 0004660737
Figure 0004660737

本発明のスピロ化合物は、フォトクロミック特性を示し、発色体の吸収波長域が広く(例えば、可視光全域にわたり)、優れた調光材料とすることができる。さらに、本発明のスピロ化合物は、複雑な製造過程を必要とせず、効率的に(例えば、市販の化合物からの1段反応で短時間、低コストに)製造することができ、工業的な応用も可能である。
また、本発明のスピロ化合物は、一級アミノ基を有しているため、高分子化合物やその他の有機化合物へ化学結合により導入することができる。さらに、本発明のスピロ化合物は、高分子化合物中に分散させて組成物とすることもできる。得られた高分子化合物または組成物は、基材にコーティングして膜とすることができ、優れた調光材料、記録材料、および表示材料として広範に利用することが可能である。
The spiro compound of the present invention exhibits photochromic properties, has a wide absorption wavelength range of the color former (for example, over the entire visible light range), and can be an excellent light control material. Furthermore, the spiro compound of the present invention does not require a complicated production process and can be produced efficiently (for example, in a short time and at a low cost in a one-step reaction from a commercially available compound). Is also possible.
Moreover, since the spiro compound of this invention has a primary amino group, it can introduce | transduce into a high molecular compound and another organic compound by a chemical bond. Furthermore, the spiro compound of the present invention can be dispersed in a polymer compound to form a composition. The obtained polymer compound or composition can be coated on a substrate to form a film, and can be widely used as an excellent light control material, recording material, and display material.

本発明の下記化学式で表されるスピロ化合物(I)または(II)について、以下詳細に説明する。   The spiro compound (I) or (II) represented by the following chemical formula of the present invention will be described in detail below.

Figure 0004660737
Figure 0004660737

Figure 0004660737
Figure 0004660737

化合物(I)または(II)は、それぞれ可逆的に変化する2つの状態(第1着色状態と第2着色状態)を有する。この2つの着色状態は、それぞれ異なる吸収波長を有しており、光照射などにより、交互にその状態を変化しうるものである。2つの着色状態のうち、いずれか1つの着色状態における吸収波長の範囲は広いことが好ましい。
広い吸収波長の範囲を示す着色状態において、その吸収波長は400nm〜700nmの範囲に広がっている。
光の吸収波長は例えば常用の可視・紫外吸収スペクトル測定装置により測定することができ、吸収があると認められる範囲(例えば、吸光度が0.1以上の範囲)の連続により吸収波長の範囲(広がり)を判断することができる。
Compound (I) or (II) has two states (first colored state and second colored state) that change reversibly. The two colored states have different absorption wavelengths, and can be alternately changed by light irradiation or the like. It is preferable that the range of the absorption wavelength in any one of the two colored states is wide.
In a colored state showing a wide absorption wavelength range, the absorption wavelength extends in the range of 400 nm to 700 nm.
The absorption wavelength of light can be measured by, for example, a common visible / ultraviolet absorption spectrum measuring apparatus, and the range of absorption wavelength (spread) is continued by a range in which absorption is recognized (for example, the absorbance is 0.1 or more). ) Can be determined.

第1着色状態から第2着色状態への変化は、光の照射により行うことができ、波長360nm〜440nmの光照射により行うことが好ましい。光照射による状態変化にかかる時間(レスポンス)は10〜300秒が好ましい。状態を変化させる(光照射する)条件に特に制約はないが、温度0〜80℃で行うことが好ましい。光を照射する装置は、好ましい波長の光が得られれば特に制約はないが、例えば水銀灯などを用いることができる。
第2着色状態から第1着色状態への変化は、光の照射または静置することにより行うことができる。光照射による場合、波長440nm〜750nmの光照射により行うことが好ましい。光照射による状態変化にかかる時間(レスポンス)は10秒〜3時間が好ましい。状態を変化させる(光照射する)条件に特に制約はないが、温度0〜80℃で行うことが好ましい。光を照射する装置は、好ましい波長の光が得られれば特に制約はないが、例えばレーザー照射装置などを用いることができる。
静置して状態を変化させる場合、その条件に特に制約はないが、光照射と区別する意味で暗所に静置してもよい。静置する温度は20〜100℃が好ましい。静置する時間は、0.5〜20時間が好ましい。
The change from the first colored state to the second colored state can be performed by light irradiation, and is preferably performed by light irradiation with a wavelength of 360 nm to 440 nm. The time (response) required for the state change by light irradiation is preferably 10 to 300 seconds. Although there is no restriction | limiting in particular in the conditions to change a state (light irradiation), It is preferable to carry out at the temperature of 0-80 degreeC. The apparatus for irradiating light is not particularly limited as long as light having a preferable wavelength can be obtained. For example, a mercury lamp can be used.
The change from the second colored state to the first colored state can be performed by light irradiation or standing. In the case of light irradiation, it is preferably performed by light irradiation with a wavelength of 440 nm to 750 nm. The time (response) required for the state change by light irradiation is preferably 10 seconds to 3 hours. Although there is no restriction | limiting in particular in the conditions to change a state (light irradiation), It is preferable to carry out at the temperature of 0-80 degreeC. The apparatus for irradiating light is not particularly limited as long as light having a preferable wavelength can be obtained. For example, a laser irradiation apparatus can be used.
When changing the state by standing still, there are no particular restrictions on the conditions, but it may be left in a dark place in order to distinguish it from light irradiation. As for the temperature to stand still, 20-100 degreeC is preferable. The standing time is preferably 0.5 to 20 hours.

本発明のスピロ化合物においては、2つの着色状態間の可逆的な変化を繰り返し行うことができ、2つの状態の吸収スペクトルにおいて等吸収点に実質的な変化がないことが好ましい。また、一方の変化を光照射で行い他方(逆)の変化を静置することで行うこともできるが、双方向の変化を異なる波長の光照射により行うこともできる。これらを適宜組み合わせて繰り返しの変化を行ってもよい。
本発明のスピロ化合物の色は、光の吸収波長により定まるものであるが、狭い波長範囲に吸収を示す状態では、トルエン等の有機溶媒に溶解した色でいうと薄い色であり、例えば薄い黄色ということができる。一方、広い範囲に吸収波長を示す状態では、濃い色を示し、例えば、焦げ茶色または濃紺ということができる。
In the spiro compound of the present invention, it is preferable that a reversible change between two colored states can be repeated, and that there is no substantial change in the isosbestic point in the absorption spectra of the two states. Moreover, although one change can be performed by light irradiation and the other (reverse) change can be left stationary, bidirectional changes can also be performed by light irradiation of different wavelengths. Repeated changes may be made by appropriately combining these.
The color of the spiro compound of the present invention is determined by the absorption wavelength of light. However, in the state of absorption in a narrow wavelength range, the color dissolved in an organic solvent such as toluene is a pale color, for example, a pale yellow It can be said. On the other hand, in a state where the absorption wavelength is shown in a wide range, it shows a dark color, for example, dark brown or dark blue.

本発明のスピロ化合物は、以下のようにして製造することができる。
1,8−ジアミノナフタレンを、酸化剤を含む有機溶媒中で酸化して合成することができる。より詳しくは、1,8−ジアミノナフタレンを酸化剤により部分的に酸化、脱水素しながらカップリング(2量化)して得ることができる。
酸化剤に特に制約はないが、例えば、二酸化マンガン、過マンガン酸カリ、次亜塩素酸ナトリウム、t−ブトキシカリウム/酸素、塩化第一銅/酸素などが挙げられる。その中でも、二酸化マンガンが良好な収率が得られる点で好ましい。酸化剤の量は、1,8−ジアミノナフタレン100質量部に対して100〜1000質量部であることが好ましい。
The spiro compound of the present invention can be produced as follows.
1,8-diaminonaphthalene can be synthesized by oxidation in an organic solvent containing an oxidizing agent. More specifically, 1,8-diaminonaphthalene can be obtained by coupling (dimerization) while partially oxidizing and dehydrogenating with an oxidizing agent.
Although there is no restriction | limiting in particular in an oxidizing agent, For example, manganese dioxide, potassium permanganate, sodium hypochlorite, potassium t-butoxy / oxygen, cuprous chloride / oxygen etc. are mentioned. Among these, manganese dioxide is preferable in that a good yield can be obtained. The amount of the oxidizing agent is preferably 100 to 1000 parts by mass with respect to 100 parts by mass of 1,8-diaminonaphthalene.

有機溶媒は、酸化剤の種類によって適宜選択することができるが、例えばベンゼン、トルエン、t−ブタノール、ジメチルスルホキシド、ピリジン等が挙げられる。反応温度は0℃〜溶媒の沸点で行うことができるが、20〜40℃が特に好ましい。高すぎると副生成物が多くなり、低すぎると反応時間が長くなる。反応時間は温度、酸化剤の種類によっても異なるが1時間〜5日間程度が好ましい。有機溶媒の量は、1,8−ジアミノナフタレン100質量部に対して20〜500質量部であることが好ましい。
また、本発明のスピロ化合物の製造方法において、収率などを害さなければ、上述の有機溶媒または酸化剤以外にその他の化合物などを添加してもよい。
The organic solvent can be appropriately selected depending on the type of oxidizing agent, and examples thereof include benzene, toluene, t-butanol, dimethyl sulfoxide, and pyridine. The reaction temperature can be 0 ° C. to the boiling point of the solvent, and 20 to 40 ° C. is particularly preferable. If it is too high, there will be many by-products, and if it is too low, the reaction time will be long. The reaction time varies depending on the temperature and the type of oxidizing agent, but is preferably about 1 hour to 5 days. The amount of the organic solvent is preferably 20 to 500 parts by mass with respect to 100 parts by mass of 1,8-diaminonaphthalene.
In the method for producing a spiro compound of the present invention, other compounds may be added in addition to the organic solvent or the oxidizing agent as long as the yield is not impaired.

化合物(I)および(II)は通常同時に合成する。合成時に混合状態にある、化合物(I)と化合物(II)は、精製操作により、単離して回収することができる。このとき、同時に含まれる副生成物(例えば、8,8’−ジアミノ−1,1’−アゾナフタレン)なども精製操作によって除去し、化合物(I)または(II)を、それぞれ単離することが好ましい。
精製操作は、カラムクロマトグラフィー、溶液からの再結晶、もしくはそれらの組み合わせにより行うことができる。化合物(I)または(II)の単離精製に用いるカラムクロマトグラフィーとしては、固定相として中性シリカゲルを用いることが好ましい。移動相としてはヘキサン、酢酸エチルなどを用いることができる。
単離精製の純度は、光応答性を害さなければ特に制約はないが、95〜100質量%が実際的である。
Compounds (I) and (II) are usually synthesized simultaneously. Compound (I) and compound (II) which are in a mixed state at the time of synthesis can be isolated and recovered by a purification operation. At this time, by-products (for example, 8,8′-diamino-1,1′-azonaphthalene) and the like contained at the same time are also removed by a purification operation, and the compound (I) or (II) is isolated, respectively. Is preferred.
The purification operation can be performed by column chromatography, recrystallization from a solution, or a combination thereof. As column chromatography used for isolation and purification of compound (I) or (II), it is preferable to use neutral silica gel as a stationary phase. As the mobile phase, hexane, ethyl acetate or the like can be used.
The purity of the isolation and purification is not particularly limited as long as the photoresponsiveness is not impaired, but 95 to 100% by mass is practical.

本発明のスピロ化合物は、高分子に分散した組成物とするか、高分子化合物中に化学結合させることで、フォトクロミック特性を有する高分子化合物の固体薄膜とすることができる。
組成物とするために分散させる高分子化合物は、ポリスチレン、ポリメチルメタクリレートなどを用いることができるが、極性が低い高分子化合物ほど発色の効率が高いため好ましい。本発明のスピロ化合物の含有量は、高分子化合物100質量部に対して化合物(I)または化合物(II)0.5〜30質量部であることが好ましく、1〜5質量部がより好ましい。本発明のスピロ化合物の量が少なすぎると発色の濃度が低く、多すぎると不均一な膜となりやすい。
本発明のスピロ化合物を高分子化合物に結合させる方法は、特に制約はなく、常用の方法を用いることができるが、アミノ基と反応性を有する重合性モノマーに化合物(I)または(II)を化学結合させて重合性フォトクロミックモノマーを得ておくことが好ましい。その後に、熱もしくは光重合によってフォトクロミック(光応答性)高分子を得ることができる。アミノ基と反応性を有する重合性モノマーとしては、例えばメタクリル酸クロリド、アクリル酸クロリド、多官能イソシアネート等があげられる。
The spiro compound of the present invention can be a composition dispersed in a polymer, or can be a solid thin film of a polymer compound having photochromic properties by chemical bonding in the polymer compound.
Polystyrene, polymethyl methacrylate, or the like can be used as the polymer compound to be dispersed to form a composition, but a polymer compound having a low polarity is preferable because of high coloring efficiency. The content of the spiro compound of the present invention is preferably 0.5 to 30 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polymer compound. If the amount of the spiro compound of the present invention is too small, the color density is low, and if it is too large, a non-uniform film tends to be formed.
The method for bonding the spiro compound of the present invention to the polymer compound is not particularly limited, and a conventional method can be used. However, compound (I) or (II) is added to a polymerizable monomer having reactivity with an amino group. It is preferable to obtain a polymerizable photochromic monomer by chemical bonding. Thereafter, a photochromic (photoresponsive) polymer can be obtained by heat or photopolymerization. Examples of the polymerizable monomer having reactivity with an amino group include methacrylic acid chloride, acrylic acid chloride, polyfunctional isocyanate and the like.

本発明のスピロ化合物を含む高分子化合物または組成物で形成する膜の厚さに特に制約はなく、用途に応じて適宜定められるが、例えば、0.0002〜2mmが好ましい。膜を形成する基板に特に制約はないが、例えば、ガラス基板などが挙げられる。また、基板上に本発明のスピロ化合物を含む高分子化合物層以外に、保護層などを追加してもよい。   There is no restriction | limiting in particular in the thickness of the film | membrane formed with the high molecular compound or composition containing the spiro compound of this invention, Although it determines suitably according to a use, 0.0002-2 mm is preferable, for example. Although there is no restriction | limiting in particular in the board | substrate which forms a film | membrane, For example, a glass substrate etc. are mentioned. In addition to the polymer compound layer containing the spiro compound of the present invention, a protective layer or the like may be added on the substrate.

以下に本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
化合物(I)および化合物(II)の合成
1,8−ジアミノナフタレン2.5gを250mlの乾燥したベンゼンに溶解し、この溶液に活性化した二酸化マンガン13gと、モレキュラーシーブ4A1gを加え、室温下(27℃)で3時間撹拌した。反応混合物を濾過し、ろ液から溶媒を減圧下で除去した。得られた生成物は固定相としてシリカゲル60、移動相としてヘキサン/酢酸エチル(4/1体積比)を用いてカラムクロマトグラフィーにより単離精製した。以下に示す分析結果から構造を確認した。
Example 1
Synthesis of Compound (I) and Compound (II) 2.5 g of 1,8-diaminonaphthalene was dissolved in 250 ml of dry benzene, and 13 g of activated manganese dioxide and 1 g of molecular sieve 4A were added to this solution at room temperature ( (27 ° C.) for 3 hours. The reaction mixture was filtered and the solvent was removed from the filtrate under reduced pressure. The obtained product was isolated and purified by column chromatography using silica gel 60 as a stationary phase and hexane / ethyl acetate (4/1 volume ratio) as a mobile phase. The structure was confirmed from the analysis results shown below.

化合物(I):収率3%、黄色固体、1H NMR ((CD3)2CO, 300 MHz) 6.09 (br, 2H, NH2), 6.16 (d, J = 9.87 Hz, 1H), 6.40-6.46 (m, 2H), 6.64 (d, J = 7.41 Hz, 2H), 6.75 (d, J = 9.33 Hz, 2H), 7.12-7.16 (m, 3H), 7.23 (t, 2H) 7.70 (br, 2H, NH), 10.79 (s, 1H, NH); 13C NMR (150MHz, CDCl3) 65.44, 106.18, 109.00, 111.42, 115.80, 116.47, 117.23, 126.94, 126.98, 129.90, 131.92, 134.03, 134.32, 139.16, 150.13, 174.73、質量分析ESIMS (m/z) [M+H]+ 計算値 (C20H17N4) 313.15, 測定値 313.23、 元素分析 計算値(C20H16N4): C 76.90, H 5.16 N 17.94%, 測定値C 76.38, H 5.00, N17.78%. Compound (I): Yield 3%, yellow solid, 1 H NMR ((CD 3 ) 2 CO, 300 MHz) 6.09 (br, 2H, NH 2 ), 6.16 (d, J = 9.87 Hz, 1H), 6.40 -6.46 (m, 2H), 6.64 (d, J = 7.41 Hz, 2H), 6.75 (d, J = 9.33 Hz, 2H), 7.12-7.16 (m, 3H), 7.23 (t, 2H) 7.70 (br , 2H, NH), 10.79 (s, 1H, NH); 13 C NMR (150 MHz, CDCl 3 ) 65.44, 106.18, 109.00, 111.42, 115.80, 116.47, 117.23, 126.94, 126.98, 129.90, 131.92, 134.03, 134.32, 139.16, 150.13, 174.73, mass spectrometry ESIMS (m / z) [M + H] + calculated value (C 20 H 17 N 4 ) 313.15, measured 313.23, calculated elemental analysis (C 20 H 16 N 4 ): C 76.90, H 5.16 N 17.94%, measured C 76.38, H 5.00, N17.78%.

化合物(II):収率7%、黄色固体、1H NMR ((CD3)2CO, 300 MHz) 6.06 (d, J = 10.14 Hz, 1H), 6.17 (br, 2H, NH2), 6.62 (d, J = 7.14 Hz, 2H), 6.82 (d, J = 9.33 Hz, 1H), 6.96 (d, J = 10.17 Hz, 1H), 7.11-7.26 (m, 5H), 7.34 (t, 1H)、質量分析ESIMS (m/z) [M+H]+ 計算値 (C20H16N3O) 314.13, 測定値 314.13, 元素分析 計算値(C20H15N3O): C 76.66, H 4.82 N 13.41%, 測定値 C 76.12, H 4.60, N 13.44%. Compound (II): Yield 7%, yellow solid, 1 H NMR ((CD 3 ) 2 CO, 300 MHz) 6.06 (d, J = 10.14 Hz, 1H), 6.17 (br, 2H, NH 2 ), 6.62 (d, J = 7.14 Hz, 2H), 6.82 (d, J = 9.33 Hz, 1H), 6.96 (d, J = 10.17 Hz, 1H), 7.11-7.26 (m, 5H), 7.34 (t, 1H) , Mass spectrometry ESIMS (m / z) [M + H] + calculated value (C 20 H 16 N 3 O) 314.13, measured value 314.13, elemental analysis calculated value (C 20 H 15 N 3 O): C 76.66, H 4.82 N 13.41%, measured value C 76.12, H 4.60, N 13.44%.

(実施例2)
化合物(I)を3X10−5Mの濃度でトルエンに溶解し、可視・紫外吸収スペクトルをヒューレットパッカード社製8453により測定したところ、410nmに吸収極大を示した(第1状態)。
この溶液に水銀灯から取り出した405nm光を照射したところ、410nmに極大を有する吸収帯の強度は減少し、同時に490nmに極大を有し580nm付近に肩を有し吸収の長波長端が700nmである新たな吸収帯が出現した(第2状態)。レスポンスは約120秒であった。この状態で吸収波長は400〜700nmにわたって広がっていた。
暗所、27℃下で静置したところ、5.4時間の寿命(1/k)で、元の490nmに極大を有する吸収スペクトル(第1状態)に戻った。
(Example 2)
Compound (I) was dissolved in toluene at a concentration of 3 × 10 −5 M, and the visible / ultraviolet absorption spectrum was measured with 8453 manufactured by Hewlett-Packard Company. As a result, the absorption maximum was shown at 410 nm (first state).
When this solution was irradiated with 405 nm light extracted from a mercury lamp, the intensity of the absorption band having a maximum at 410 nm decreased, and at the same time, the maximum was 490 nm, the shoulder was near 580 nm, and the long wavelength end of absorption was 700 nm. A new absorption band appeared (second state). The response was about 120 seconds. In this state, the absorption wavelength spread over 400 to 700 nm.
When it was allowed to stand at 27 ° C. in the dark, it returned to the original absorption spectrum (first state) having a maximum at 490 nm with a life of 5.4 hours (1 / k).

(実施例3)
実施例2に記載の方法で、化合物(I)を第2状態にした。この試料に532nmのレーザー光を照射すると、元の490nmに吸収帯を有するスペクトル(第1状態)に約3時間で戻った。
さらに、405nm光と532nm光の交互照射により、10サイクルの可逆的光反応を行ったが、等吸収点は変化せず、高い繰り返し安定性を示した。
(Example 3)
Compound (I) was brought into the second state by the method described in Example 2. When this sample was irradiated with 532 nm laser light, it returned to the original spectrum having the absorption band at 490 nm (first state) in about 3 hours.
Furthermore, although 10 cycles of reversible photoreaction were performed by alternately irradiating 405 nm light and 532 nm light, the isosbestic point was not changed and high repetitive stability was exhibited.

(実施例4)
化合物(II)を1.7X10−5Mの濃度でトルエンに溶解し、実施例2と同様にして可視・紫外吸収スペクトルを測定したところ、398nmに吸収極大を示した(第1状態)。
この溶液に水銀灯から取り出した405nm光を照射したところ、398nmに極大を有する吸収帯の強度は減少し、同時に520nmと595nmに極大を有し吸収の長波長端が750nmである新たな吸収帯が出現した(第2状態)。レスポンスは約120秒であった。この状態で吸収波長は400〜750nmにわたって広がっていた。
暗所、27℃下で静置したところ、26分の寿命(1/k)で、元の490nmに吸収帯を有する吸収スペクトル(第1状態)に戻った。
Example 4
Compound (II) was dissolved in toluene at a concentration of 1.7 × 10 −5 M, and a visible / ultraviolet absorption spectrum was measured in the same manner as in Example 2. As a result, an absorption maximum was shown at 398 nm (first state).
When this solution was irradiated with 405 nm light extracted from a mercury lamp, the intensity of the absorption band having a maximum at 398 nm decreased, and at the same time, a new absorption band having a maximum at 520 nm and 595 nm and a long wavelength end of absorption of 750 nm was obtained. Appeared (second state). The response was about 120 seconds. In this state, the absorption wavelength was spread over 400 to 750 nm.
When it was allowed to stand at 27 ° C. in the dark, it returned to the original absorption spectrum (first state) having an absorption band at 490 nm with a lifetime of 26 minutes (1 / k).

(実施例5)
実施例4に記載の方法で、化合物(II)を第2状態にした。この試料に532nmのレーザー光を照射すると、元の398nmに吸収帯を有するスペクトル(第1状態)に約1時間で戻った。
さらに、405nm光と532nm光の交互照射により6サイクルの可逆的光反応を行ったが、等吸収点は変化せず、高い繰り返し安定性を示した。
(Example 5)
Compound (II) was brought into the second state by the method described in Example 4. When this sample was irradiated with a laser beam of 532 nm, it returned to the original spectrum (first state) having an absorption band at 398 nm in about 1 hour.
Furthermore, although 6 cycles of reversible photoreactions were carried out by alternately irradiating 405 nm light and 532 nm light, the isoabsorption point did not change and high repetition stability was exhibited.

(実施例6)
化合物(I)1質量部およびポリスチレン40質量部をクロロホルム200質量部に溶解し、約100質量部のクロロホルムを減圧下で除去して溶液を濃縮後、スピンコーターでガラス基板にコーティングした。乾燥後に得られた薄膜は薄い黄色であり、410nmに吸収極大を示した(第1状態)。
水銀灯から取り出した405nm光を照射したところ薄膜は焦げ茶色に変化し(第2状態)、その後室温下で10分放置すると元の薄い黄色へと変化した(第1状態)。この可逆的な変化を10回以上繰り返した。
(Example 6)
1 part by mass of Compound (I) and 40 parts by mass of polystyrene were dissolved in 200 parts by mass of chloroform, about 100 parts by mass of chloroform was removed under reduced pressure, the solution was concentrated, and then coated on a glass substrate with a spin coater. The thin film obtained after drying was pale yellow and showed an absorption maximum at 410 nm (first state).
When irradiated with 405 nm light extracted from a mercury lamp, the thin film turned dark brown (second state), and then changed to the original light yellow color when left at room temperature for 10 minutes (first state). This reversible change was repeated 10 times or more.

Claims (3)

下記化合物(I)または(II)で表されるスピロ化合物。
Figure 0004660737
Figure 0004660737
A spiro compound represented by the following compound (I) or (II).
Figure 0004660737
Figure 0004660737
請求項1記載のスピロ化合物を高分子化合物中に分散させたことを特徴とする光応答性組成物。   A photoresponsive composition, wherein the spiro compound according to claim 1 is dispersed in a polymer compound. 1,8−ジアミノナフタレンの酸化工程を含むことを特徴とする下記化合物(I)または(II)で表されるスピロ化合物の製造方法。
Figure 0004660737
Figure 0004660737
The manufacturing method of the spiro compound represented by the following compound (I) or (II) characterized by including the oxidation process of 1, 8- diamino naphthalene.
Figure 0004660737
Figure 0004660737
JP2005037319A 2005-02-15 2005-02-15 Spiro compound and method for producing the same, photoresponsive composition and photoresponsive polymer using the same Active JP4660737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037319A JP4660737B2 (en) 2005-02-15 2005-02-15 Spiro compound and method for producing the same, photoresponsive composition and photoresponsive polymer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037319A JP4660737B2 (en) 2005-02-15 2005-02-15 Spiro compound and method for producing the same, photoresponsive composition and photoresponsive polymer using the same

Publications (2)

Publication Number Publication Date
JP2006225267A JP2006225267A (en) 2006-08-31
JP4660737B2 true JP4660737B2 (en) 2011-03-30

Family

ID=36986950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037319A Active JP4660737B2 (en) 2005-02-15 2005-02-15 Spiro compound and method for producing the same, photoresponsive composition and photoresponsive polymer using the same

Country Status (1)

Country Link
JP (1) JP4660737B2 (en)

Also Published As

Publication number Publication date
JP2006225267A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
WO2002090342A1 (en) Chromene compound
Shibata et al. Extraordinarily low cycloreversion quantum yields of photochromic diarylethenes with methoxy substituents
JP3491704B2 (en) Dithienylethene compound and photochromic material comprising the compound
JP5803025B2 (en) Photochromic molecule
Tan et al. Synthesis, characterization and photochromic studies in film of heterocycle-containing spirooxazines
JP4660737B2 (en) Spiro compound and method for producing the same, photoresponsive composition and photoresponsive polymer using the same
JPH07138251A (en) Spiropyran compound with photochromic characteristics
JPH03261762A (en) Diaryl ethene compound
JPH08511778A (en) Photochromic compound (8)
Watkins et al. Synthesis, characterization, and solvent-independent photochromism of spironaphthooxazine dimers
Ahmed Photochromism of dihydroindolizines part VII: multiaddressable photophysical properties of new photochromic dihydroindolizines bearing substituted benzo [i] phenanthridine as a fluorescing moiety
EP3401308A1 (en) Chiral compound, liquid crystal material, method for fabrication thereof, and display device
JP2000344693A (en) Diarylethene compound and organic photochromic film
WO2015147126A1 (en) Pentaarylbiimidazole compound and production method for said compound
JPH0559025A (en) Diarylethene compound
JP5713750B2 (en) Bisimidazole compound
JP2008162895A (en) Diarylethene compound
JPS61263935A (en) Diallylethene derivative
JP3260471B2 (en) Anthracene derivative
JPH07165764A (en) New photochromic compound
JPH02231437A (en) Anthracene derivative
JPH05125060A (en) Triazole-based compound
JPS6330488A (en) Spirooxazine derivative and sensitized material using said derivative
JPS6354377A (en) Photochromic material
JPH03236388A (en) Pyrido(4,3-g)quinoline and organic photochromic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

R150 Certificate of patent or registration of utility model

Ref document number: 4660737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250