JP4660598B2 - Method for producing tin-plated steel sheet with excellent post-retort coating adhesion - Google Patents

Method for producing tin-plated steel sheet with excellent post-retort coating adhesion Download PDF

Info

Publication number
JP4660598B2
JP4660598B2 JP2009058804A JP2009058804A JP4660598B2 JP 4660598 B2 JP4660598 B2 JP 4660598B2 JP 2009058804 A JP2009058804 A JP 2009058804A JP 2009058804 A JP2009058804 A JP 2009058804A JP 4660598 B2 JP4660598 B2 JP 4660598B2
Authority
JP
Japan
Prior art keywords
tin
sodium dichromate
aqueous solution
seconds
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009058804A
Other languages
Japanese (ja)
Other versions
JP2010209435A (en
Inventor
浩 西田
茂 平野
和成 長谷川
正之 太田
利明 高宮
博一 横矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009058804A priority Critical patent/JP4660598B2/en
Priority to KR1020117020460A priority patent/KR101310598B1/en
Priority to PCT/JP2010/051629 priority patent/WO2010090267A1/en
Priority to CN201080006593.2A priority patent/CN102308026B/en
Publication of JP2010209435A publication Critical patent/JP2010209435A/en
Application granted granted Critical
Publication of JP4660598B2 publication Critical patent/JP4660598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、塗装等の樹脂被覆をして食缶に用いられるスズめっき鋼板の製造方法に関する。   The present invention relates to a method for producing a tin-plated steel sheet that is used for food cans with resin coating such as painting.

スズめっき鋼板は金属缶用素材として広く使用されている。内容物が果実の場合には、缶内面は無塗装で使用されることがあるが、その他の内容物では、塗装等の樹脂被覆をして使用されることが一般的である。缶の内容物としては様々なものが充填されることになる。炭酸飲料や果汁飲料及び果実などの酸性食品を除くと、ほとんどの内容物が充填後にレトルト殺菌される。そのため、素材のスズめっき鋼板には高温湿潤環境下での塗膜密着性が要求される。特に、内面側に関しては、内容物が多岐にわたり、内容物によって塗膜の密着性を低下させるメカニズムも異なる。内容物毎に、スズめっき鋼板素材を準備するよりも、幅広い内容物に対してレトルト後の塗膜密着性を確保できる素材が望まれる。また、スズめっき鋼板素材は船舶での高温域の輸送あるいは倉庫での長期保管もあり、経時後においてもレトルト後の塗膜密着性を確保できることが要求される。   Tin-plated steel sheets are widely used as materials for metal cans. When the contents are fruit, the inner surface of the can may be used without painting, but with other contents, it is generally used with a resin coating such as painting. A variety of can contents are filled. Excluding acidic foods such as carbonated drinks, fruit juice drinks and fruits, most contents are retort sterilized after filling. For this reason, the tin-plated steel sheet as a raw material is required to have a coating film adhesion under a high temperature and humidity environment. In particular, the contents on the inner surface side are diverse, and the mechanism for reducing the adhesion of the coating film varies depending on the contents. Rather than preparing a tin-plated steel sheet material for each content, a material that can ensure coating film adhesion after retorting over a wide range of contents is desired. In addition, the tin-plated steel sheet material is sometimes transported in a high temperature range on a ship or stored for a long time in a warehouse, and it is required that the coating film adhesion after retort can be secured even after aging.

湿潤下での経時塗料密着性に優れたスズめっき鋼板の製造法については従来から種々の提案がなされており、例えば下記特許文献1において、リフロー工程後のアルカリ性溶液での清浄化処理工程あるいはニッケルイオンを含む強酸での清浄化処理工程の提案がなされており、レトルト後の塗膜密着性を確保することは可能であるが、従来のスズめっき鋼板設備においては、清浄化処理工程を設備に組み込むには大幅な設備改造が必要であり、現実的ではない。   Various proposals have heretofore been made for a method for producing a tin-plated steel sheet excellent in paint adhesion over time under wet conditions. For example, in Patent Document 1 below, a cleaning treatment step with an alkaline solution after a reflow step or nickel A cleaning process with strong acid containing ions has been proposed, and it is possible to ensure adhesion of the coating film after retorting. However, in conventional tin-plated steel sheet equipment, the cleaning process is used as the equipment. Incorporation requires major equipment modifications and is not realistic.

また、下記特許文献2において、スズめっき鋼板の酸化錫を斜方晶のSnOにする方法が提案されており、スマッジ性や1次密着性を確保することは可能であるが、この方法でも2次密着性に関しては十分な密着性を確保することができなかった。   Further, in Patent Document 2 below, a method has been proposed in which tin oxide of a tin-plated steel sheet is converted to orthorhombic SnO, and it is possible to ensure smudge property and primary adhesion. As for the next adhesion, sufficient adhesion could not be ensured.

特開平7−11483号公報Japanese Patent Laid-Open No. 7-11483 特開昭54−142135号公報JP 54-142135 A

本発明は、前述した従来技術の問題点を解決し、大きな設備改造を行うことなく、レトルト後塗膜密着性に優れたスズめっき鋼板の製造方法を提供することを課題とする。   This invention solves the problem of the prior art mentioned above, and makes it a subject to provide the manufacturing method of the tin plating steel plate excellent in the coating film adhesiveness after a retort, without performing big equipment remodeling.

本発明者らは、スズめっき後のリフロー処理条件と化成処理条件に関して、種々の検討を行い、本発明に至ったものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)冷延鋼板に、スズめっき、リフロー処理、および、化成処理を施す缶用スズめっき鋼板の製造方法であって、スズめっき工程において、鋼板の缶内面となる側に1.5〜13.0g/mのスズめっきを施し、リフロー工程において、水蒸気濃度が0〜40g/m3の雰囲気でリフロー処理を行い、
重クロム酸ナトリム水溶液中に0.5〜4.0秒無電解で浸漬した後、重クロム酸ナトリム水溶液中で0.8〜6.5C/dm2の通電量で陰極電解による化成処理を行うことを特徴とするレトルト密着性に優れるスズめっき鋼板の製造方法。
(2)前記リフロー工程において、スズめっきの溶融時間が0.1〜0.7秒となるリフロー処理を行うことを特徴とする(1)に記載のレトルト密着性に優れるスズめっき鋼板の製造方法。
The inventors of the present invention have made various studies on the reflow treatment conditions and the chemical conversion treatment conditions after tin plating and have arrived at the present invention. The gist of the present invention is as follows. Content.
(1) A method for producing a tin-plated steel sheet for cans, which comprises subjecting a cold-rolled steel sheet to tin plating, reflow treatment, and chemical conversion treatment. 0.0 g / m 2 of tin plating is performed, and in the reflow process, reflow treatment is performed in an atmosphere having a water vapor concentration of 0 to 40 g / m 3 .
After immersion in sodium dichromate aqueous solution for 0.5 to 4.0 seconds without electrolysis, chemical conversion treatment by cathodic electrolysis is performed in sodium dichromate aqueous solution at a current of 0.8 to 6.5 C / dm 2. The manufacturing method of the tin plating steel plate excellent in the retort adhesiveness characterized by the above-mentioned.
(2) In the said reflow process, the reflow process from which the melting time of tin plating becomes 0.1 to 0.7 second is performed, The manufacturing method of the tin plating steel plate excellent in the retort adhesiveness as described in (1) .

本発明によれば、スズめっき後のリフロー条件の制御および化成処理液中での無電解浸漬時間の確保との組合せにより、従来のスズめっき鋼板では安定して得られなかったレトルト密着性に優れるスズめっき鋼板を大きな設備変更など多大な費用をかけることなく安価に製造することが可能になり、産業上有用な著しい効果を奏する。   According to the present invention, the combination of the control of the reflow conditions after tin plating and the securing of the electroless immersion time in the chemical conversion solution is excellent in retort adhesion that could not be stably obtained with conventional tin-plated steel sheets. It becomes possible to manufacture tin-plated steel sheets at low cost without incurring great expenses such as large equipment changes, and there are significant industrially useful effects.

以下、本発明について、詳細に説明する。
まず、冷延鋼板をスズめっきの前処理としてアルカリ水溶液中で電解脱脂し、次いで酸洗を行い、電気スズめっきを行う。めっき浴としては公知のスズめっき浴、フェノールスルホン浴、硫酸浴、メタンスルホン酸浴、ハロゲン浴、アルカリ浴等を用いることができる。スズめっきの付着量は少なくとも缶内面となる側は1.5〜13.0g/mとするが、これは、スズ付着量1.5g/m未満では、鋼板の表面を錫が完全に被覆しておらず、鉄が露出した状態となり、鉄が酢酸に溶解し易いことから、酢酸系溶液で加熱殺菌するレトルト後の塗膜密着性が不安定になり易くなるうえ、錫の犠牲防食期間が短くなることから耐食性が不十分となるためである。また、スズめっきの付着量13.0g/m超では耐食性は十分満足できるようになり、スズ目付け量の効果は飽和し、コスト的な不利を招くためである。更には、 2.0〜4.0g/m2の範囲のスズ付着量が好ましい。
Hereinafter, the present invention will be described in detail.
First, a cold rolled steel sheet is electrolytically degreased in an aqueous alkaline solution as a pretreatment for tin plating, and then pickled and electrotin plated. As the plating bath, a known tin plating bath, phenol sulfone bath, sulfuric acid bath, methanesulfonic acid bath, halogen bath, alkaline bath, or the like can be used. The amount of tin plating attached is at least 1.5 to 13.0 g / m 2 on the inner surface side of the can. However, when the amount of tin attached is less than 1.5 g / m 2 , the surface of the steel plate is completely covered with tin. Since it is not coated and iron is exposed, and iron is easily dissolved in acetic acid, adhesion of the coating film after retorting by heat sterilization with an acetic acid solution tends to be unstable, and sacrificial corrosion prevention of tin This is because the corrosion resistance becomes insufficient because the period is shortened. Moreover, when the adhesion amount of tin plating exceeds 13.0 g / m 2 , the corrosion resistance can be sufficiently satisfied, and the effect of the tin weight is saturated, resulting in a cost disadvantage. Furthermore, the tin adhesion amount in the range of 2.0 to 4.0 g / m 2 is preferable.

次に、めっきされたスズを加熱して溶解するリフロー処理を行う。このリフロー処理によって、電気めっきされたスズは光沢ない外観から光沢外観へと変わる。同時に、スズの一部は地鉄と反応して耐食性に有効な錫鉄合金層を形成する。   Next, a reflow process for heating and dissolving the plated tin is performed. This reflow process changes the electroplated tin from a dull appearance to a glossy appearance. At the same time, a part of tin reacts with the base iron to form a tin-iron alloy layer effective for corrosion resistance.

一方で、スズめっきの表面では酸化錫が生成される。ここで生成される酸化錫にはSnOとSnOとの2種類がある。なお、リフローの加熱方法は通電加熱または誘導加熱あるいは通電加熱と誘導加熱の併用で行う方法が、温度制御の面から望ましい。 On the other hand, tin oxide is generated on the surface of tin plating. There are two types of tin oxide produced here: SnO and SnO 2 . Note that the reflow heating method is preferably an electric heating method, an induction heating method, or a combination of the electric heating method and the induction heating method in terms of temperature control.

本発明者等は、この酸化錫をリフロー処理工程と化成処理工程とにおいて制御することにより、大きな設備改造を行うことなくレトルト後の塗膜密着性を大きく改善できるとの知見を得て、本発明に至ったものである。   The present inventors have obtained the knowledge that by controlling this tin oxide in the reflow treatment step and the chemical conversion treatment step, the adhesion of the coating film after retort can be greatly improved without performing major equipment modifications. Invented.

即ち、めっきされたスズを溶融させるリフロー工程において、水蒸気濃度が0〜40g/m3以下の雰囲気でリフロー処理を行い、次の化成処理工程での重クロム酸ナトリム水溶液中での陰極電解処理の前に重クロム酸ナトリム水溶液中で無電解の浸漬時間を0.5〜4.0秒確保することとの組合せが本発明の最も重要な点である。 That is, in the reflow process for melting the plated tin, the reflow process is performed in an atmosphere having a water vapor concentration of 0 to 40 g / m 3 or less, and the cathode electrolysis process in the sodium dichromate aqueous solution in the next chemical conversion process is performed. The most important point of the present invention is the combination of securing the electroless immersion time in the aqueous solution of sodium dichromate before 0.5 to 4.0 seconds.

リフロー処理での雰囲気の水蒸気濃度が40g/m3超ではリフロー処理後のスズ表面に生成する酸化錫のうち、酢酸系溶液でのレトルト後の塗膜密着性を低下させるSnOが増加するためである。好ましくは水蒸気濃度の上限は30g/m3である。水蒸気濃度が低い程、SnOの生成が少なく、酢酸系溶液でのレトルト後の塗膜密着性は良好となる。 When the water vapor concentration of the atmosphere in the reflow treatment exceeds 40 g / m 3 , among the tin oxides formed on the tin surface after the reflow treatment, SnO that decreases the adhesion of the coating film after retorting with the acetic acid solution increases. is there. Preferably, the upper limit of the water vapor concentration is 30 g / m 3 . The lower the water vapor concentration, the less SnO is produced and the better the coating film adhesion after retorting with an acetic acid solution.

化成処理工程の第1段階において、重クロム酸ナトリム水溶液中に無電解での浸漬時間を0.5秒未満とすると、酢酸系溶液でのレトルト後の塗膜密着性が大幅に低下する。この理由は明確ではないが、重クロム酸ナトリム水溶液中に無電解で浸漬することによって、リフロー処理工程で生成したSnOが溶解するが、浸漬時間が短いとSnOの溶解が不十分となり、酢酸系溶液でのレトルト後の塗膜密着性が大幅に低下するものと推定される。また、重クロム酸ナトリム水溶液中に無電解での浸漬時間が4.0秒を超えると、SnOは十分に溶解すると推測され、酢酸系溶液でのレトルト後の塗膜密着性は十分なものとなるが、4.0秒超の浸漬時間を確保するためには生産速度を大幅に低下させるか、または、化成処理の工程を長くするための設備レイアウトの変更が必要になり、新設設備でも化成処理セクションが大きくなり高設備投資が必要となるため好ましくない。このため、重クロム酸ナトリム水溶液中に無電解での浸漬時間は0.5〜4.0秒とし、更に好ましくは、0.7〜2.0秒の範囲である。   In the first stage of the chemical conversion treatment step, when the immersion time in electroless sodium dichromate aqueous solution is less than 0.5 seconds, the adhesion of the coating film after retorting with an acetic acid solution is greatly reduced. The reason for this is not clear, but SnO generated in the reflow treatment process dissolves by electroless immersion in an aqueous sodium dichromate solution. However, if the immersion time is short, the dissolution of SnO becomes insufficient and the acetic acid type It is presumed that the adhesion of the coating film after retorting with the solution is greatly reduced. In addition, when the electroless immersion time in the sodium dichromate aqueous solution exceeds 4.0 seconds, SnO is presumed to be sufficiently dissolved, and the coating film adhesion after retorting with an acetic acid solution is sufficient. However, in order to secure a soaking time of more than 4.0 seconds, it is necessary to significantly reduce the production speed or change the equipment layout in order to lengthen the chemical conversion treatment process. This is not preferable because the processing section becomes large and high capital investment is required. For this reason, the electroless immersion time in the sodium dichromate aqueous solution is 0.5 to 4.0 seconds, and more preferably 0.7 to 2.0 seconds.

リフロー処理工程にて、スズを溶融させる時間が0.1秒未満では、耐食性に有効な錫鉄合金層の形成が鋼板の幅方向、あるいは長手方法で不均一となる場合があり、またスズが溶融した後の光沢のある外観が、均一に得られないなどの問題を起こす。一方、スズを溶融させる時間が0.7秒超では、酸化錫が増加する。当然SnOも増加することになり、酢酸系溶液でのレトルト後の塗膜密着性を低下させることになる。このため、リフロー処理工程にて、スズを溶融させる時間は0.1〜0.7秒の範囲が好ましい。   If the time for melting tin in the reflow process is less than 0.1 seconds, the formation of a tin-iron alloy layer effective for corrosion resistance may become uneven in the width direction or longitudinal direction of the steel sheet. Glossy appearance after melting causes problems such as being not uniformly obtained. On the other hand, if the time for melting tin exceeds 0.7 seconds, tin oxide increases. Naturally, SnO also increases, and the adhesion of the coating film after retorting with an acetic acid-based solution is lowered. For this reason, the time for melting tin in the reflow treatment step is preferably in the range of 0.1 to 0.7 seconds.

次に重要な点は、化成処理工程の第2段階における重クロム酸ナトリム水溶液中での陰極電解の通電量である。通電量は0.8〜6.5C/dmである。0.8C/dm未満では、経時によって黄変と呼ばれるスズめっき鋼板の変色が発生することがあり、6.5C/dm超では化成処理皮膜の効果が飽和するとともに、過剰な化成処理皮膜により腐食が一点に集中して、缶体の穿孔腐食に至る危険がある。更に好ましくは0.8〜4.0C/dmの範囲が好ましい。 The next important point is the amount of cathodic electrolysis in the aqueous sodium dichromate solution in the second stage of the chemical conversion treatment step. Energization amount is 0.8~6.5C / dm 2. If it is less than 0.8 C / dm 2 , discoloration of the tin-plated steel sheet called yellowing may occur over time, and if it exceeds 6.5 C / dm 2 , the effect of the chemical conversion treatment film is saturated and excessive chemical conversion treatment film As a result, the corrosion concentrates on one point, and there is a risk of piercing corrosion of the can body. More preferably, the range of 0.8 to 4.0 C / dm 2 is preferable.

化成処理工程の第2段階における重クロム酸ナトリム水溶液中での陰極電流密度は0.2〜10.0/dmの範囲が望ましい。電流密度の影響が顕著に現れるのは、経時後である。スズめっき鋼板は赤道域を輸送、あるいは使用されるまで長期間倉庫で保管されることがあり、この点も考慮する必要がある。陰極電流密度が0.2A/dm未満では経時後に塗装した場合の酢酸系溶液でのレトルト後の塗膜密着性が大幅に低下し、また、陰極電流密度が10A/dm超でも同様に、経時後に塗装した場合の酢酸系溶液でのレトルト後の塗膜密着性が大幅に低下する。この理由は、陰極電流密度が0.2A/dm未満では化成処理皮膜が不均一となり、経時によりスズめっき鋼板表面のSnOが成長するためではないかと推定される。また、陰極電流密度が10A/dm超では化成処理皮膜の被覆は均一となるが、酢酸系溶液で加熱殺菌するレトルト後の塗膜密着性が低下する。その理由に関しては現時点では不明である。更に好ましくは0.2〜5.0A/dmの範囲である。 Cathodic current density at bichromate sodium in aqueous solution in the second stage of the chemical conversion treatment step is preferably in the range of 0.2 to 10.0 / dm 2. The influence of the current density appears notably after time. Tin-plated steel sheets are sometimes stored in warehouses for a long time until they are transported or used in the equator, and this point needs to be taken into consideration. When the cathode current density is less than 0.2 A / dm 2 , the adhesion of the coating film after retorting with an acetic acid-based solution when coated after a lapse of time is greatly reduced, and similarly, even when the cathode current density exceeds 10 A / dm 2 The adhesion of the coating film after retorting with an acetic acid-based solution when applied after lapse of time is greatly reduced. This is presumably because the chemical conversion treatment film becomes non-uniform when the cathode current density is less than 0.2 A / dm 2 and SnO on the surface of the tin-plated steel sheet grows with time. Further, when the cathode current density exceeds 10 A / dm 2 , the coating of the chemical conversion treatment film becomes uniform, but the adhesion of the coating film after retorting by heat sterilization with an acetic acid solution decreases. The reason is unknown at this time. More preferably, it is the range of 0.2-5.0 A / dm < 2 >.

さらに、化成処理の浴温は40〜55℃の範囲が作業性、設備面からも望ましい。また、化成処理溶液である重クロム酸ナトリムの濃度についても20〜30g/Lの範囲が作業性、設備面から望ましい。   Furthermore, the bath temperature of the chemical conversion treatment is preferably in the range of 40 to 55 ° C. from the viewpoint of workability and equipment. Further, the concentration of sodium dichromate, which is the chemical conversion solution, is preferably in the range of 20 to 30 g / L from the viewpoint of workability and equipment.

化成処理液は電解時には液の抵抗発熱により、浴には熱量が加えられる方向であり、特に、夏期において浴温を40℃未満に制御するためには、冷却装置が必要になる。   The chemical conversion treatment liquid is in a direction in which heat is applied to the bath due to the resistance heat generation of the solution during electrolysis, and in particular, a cooling device is required to control the bath temperature below 40 ° C. in the summer.

また、浴温が55℃超では浴からの水蒸気の蒸発量が多くなり、浴濃度管理の頻度を上げる必要があること、さらに、浴の腐食性が高くなるため、電解槽やタンクの材質も高耐食性の材質を使用する必要が生じる。   Also, if the bath temperature exceeds 55 ° C, the amount of water vapor evaporated from the bath will increase, and it will be necessary to increase the frequency of bath concentration management. It is necessary to use a material with high corrosion resistance.

以下に本発明例及び比較例、ならびに評価方法を述べる。
<発明例1>
0.20mm厚みの冷延鋼板を10%の水酸化ナトリウム水溶液で電解脱脂し、水洗し、10%塩酸水溶液中に浸漬酸洗、水洗した後、フェノールスルホン酸浴中で1.7g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
Examples of the present invention, comparative examples, and evaluation methods are described below.
<Invention Example 1>
A 0.20 mm thick cold-rolled steel sheet was electrolytically degreased with a 10% aqueous sodium hydroxide solution, washed with water, dipped in a 10% aqueous hydrochloric acid solution, washed with water, and then washed with 1.7 g / m 2 tin in a phenolsulfonic acid bath. Plating was applied. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<発明例2>
発明例1と同様の前処理を行い、メタンスルホン酸浴12.4g/m2スズめっきを施した。次いで、発明例1と同様の雰囲気で同様リフロー処理を行い、さらに、発明例1と同様の無電解の浸漬後、同様の陰極電解処理を行った。
<Invention Example 2>
The same pretreatment as in Invention Example 1 was performed, and a methanesulfonic acid bath 12.4 g / m 2 tin plating was applied. Subsequently, the same reflow treatment was performed in the same atmosphere as in Invention Example 1, and the same cathodic electrolysis treatment was performed after electroless immersion as in Invention Example 1.

<発明例3>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.1g/m2スズめっきを施した。次いで、発明例1と同様の雰囲気で同様リフロー処理を行い、さらに、発明例1と同様の無電解の浸漬後、同様の陰極電解処理を行った。
<Invention Example 3>
The same pretreatment as in Invention Example 1 was performed, and 2.1 g / m 2 tin plating was applied in a phenolsulfonic acid bath. Subsequently, the same reflow treatment was performed in the same atmosphere as in Invention Example 1, and the same cathodic electrolysis treatment was performed after electroless immersion as in Invention Example 1.

<発明例4>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で3.8g/m2スズめっきを施した。次いで、発明例1と同様の雰囲気で同様リフロー処理を行い、さらに、発明例1と同様の無電解の浸漬後、同様の陰極電解処理を行った。
<Invention Example 4>
The same pretreatment as in Invention Example 1 was performed, and 3.8 g / m 2 tin plating was applied in a phenolsulfonic acid bath. Subsequently, the same reflow treatment was performed in the same atmosphere as in Invention Example 1, and the same cathodic electrolysis treatment was performed after electroless immersion as in Invention Example 1.

<発明例5>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度37g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。さらに、発明例1と同様の無電解の浸漬後、同様の陰極電解処理を行った。
<Invention Example 5>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Subsequently, reflow treatment was performed in an atmosphere having a water vapor concentration of 37 g / m 3 to melt tin and rapidly cooled in 80 ° C. warm water. The melting time of tin was 0.42 seconds. Further, after the same electroless immersion as in Invention Example 1, the same cathodic electrolysis treatment was performed.

<発明例6>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度27g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。さらに、発明例1と同様の無電解の浸漬後、同様の陰極電解処理を行った。
<Invention Example 6>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, reflow treatment was performed in an atmosphere having a water vapor concentration of 27 g / m 3 to melt tin and rapidly cooled in 80 ° C. warm water. The melting time of tin was 0.42 seconds. Further, after the same electroless immersion as in Invention Example 1, the same cathodic electrolysis treatment was performed.

<発明例7>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.12秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.0秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度2.2A/dm2で2段目の陰極電解処理を行った。通電量は1.0C/dm2とした。
<Invention Example 7>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The tin melting time was 0.12 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.0 second in a non-electrical state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 2.2 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.0 C / dm 2 .

<発明例8>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.68秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は2.2C/dm2とした。
<Invention Example 8>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The tin melting time was 0.68 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 2.2 C / dm 2 .

<発明例9>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で0.6秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 9>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 0.6 seconds in a non-electrical state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<発明例10>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.65秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で3.7秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.1A/dm2で2段目の陰極電解処理を行った。通電量は1.9C/dm2とした。
<Invention Example 10>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The tin melting time was 0.65 seconds. Next, it was immersed in an aqueous solution of sodium dichromate at 50 ° C. and 25 g / L for 3.7 seconds in an uncharged state, and then at a current density of 1.8 A / dm 2 in an aqueous solution of sodium dichromate at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by a second-stage cathodic electrolysis at a current density of 1.1 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The energization amount was 1.9 C / dm 2 .

<発明例11>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で0.8秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 11>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 0.8 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<発明例12>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.65秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.8秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は2.2C/dm2とした。
<Invention Example 12>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The tin melting time was 0.65 seconds. Next, it was immersed in an aqueous solution of sodium dichromate at 50 ° C. and 25 g / L for 1.8 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in an aqueous solution of sodium dichromate at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 2.2 C / dm 2 .

<発明例13>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度0.3A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.1C/dm2とした。
<Invention Example 13>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 0.3 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.1 C / dm 2 .

<発明例14>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度9.0A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.6C/dm2とした。
<Invention Example 14>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 9.0 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.6 C / dm 2 .

<発明例15>
発明例1と同様の前処理を行い、メタンスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度4.6A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.4C/dm2とした。
<Invention Example 15>
The same pretreatment as in Invention Example 1 was performed, and 2.6 g / m 2 tin plating was applied in a methanesulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 4.6 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.4 C / dm 2 .

<発明例16>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度0.3A/dm2で2段目の陰極電解処理を行った。通電量は2.2C/dm2とした。
<Invention Example 16>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis in a 25 g / L sodium dichromate aqueous solution at a current density of 0.3 A / dm 2 . The energization amount was 2.2 C / dm 2 .

<発明例17>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度9.0A/dm2で2段目の陰極電解処理を行った。通電量は1.6C/dm2とした。
<Invention Example 17>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 1.8 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L at a current density of 9.0 A / dm 2 . The energization amount was 1.6 C / dm 2 .

<発明例18>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度4.6A/dm2で2段目の陰極電解処理を行った。通電量は3.0C/dm2とした。
<Invention Example 18>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 4.6 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The energization amount was 3.0 C / dm 2 .

<発明例19>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.1A/dm2で2段目の陰極電解処理を行った。通電量は0.9C/dm2とした。
<Invention Example 19>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by a second-stage cathodic electrolysis at a current density of 1.1 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The energization amount was 0.9 C / dm 2 .

<発明例20>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.65秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度4.5A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で2段目の陰極電解処理を行った。通電量は6.2C/dm2とした。
<Invention Example 20>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The tin melting time was 0.65 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 4.5 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The energization amount was 6.2 C / dm 2 .

<発明例21>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.65秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.4A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.4A/dm2で2段目の陰極電解処理を行った。通電量は3.7C/dm2とした。
<Invention Example 21>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The tin melting time was 0.65 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.4 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by a second-stage cathodic electrolysis at a current density of 3.4 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 3.7 C / dm 2 .

<発明例22>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、42℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、42℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、42℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 22>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 42 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 42 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in a sodium dichromate aqueous solution at 42 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<発明例23>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、53℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、53℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、53℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 23>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in an aqueous solution of sodium dichromate at 53 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in an aqueous solution of sodium dichromate at 53 ° C. and 25 g / L. The first-stage cathodic electrolysis treatment was further performed, and then the second-stage cathodic electrolysis treatment was performed at 53 ° C. in a 25 g / L sodium dichromate aqueous solution at a current density of 1.8 A / dm 2 . The energization amount was 1.3 C / dm 2 .

<発明例24>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、22g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、22g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、22g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 24>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 22 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in an aqueous solution of sodium dichromate at 50 ° C. and 22 g / L. The first-stage cathodic electrolysis was further performed, followed by a second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in a 50 g, 22 g / L sodium dichromate aqueous solution. The energization amount was 1.3 C / dm 2 .

<発明例25>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、28g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、28g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、28g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 25>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in an aqueous solution of sodium dichromate at 50 ° C. and 28 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in an aqueous solution of sodium dichromate at 50 ° C. and 28 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 28 g / L. The energization amount was 1.3 C / dm 2 .

<発明例26>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.0A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 26>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.0 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<発明例27>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度2.2A/dm2で陰極電解処理を行った。通電量は1.3C/dm2とした。
<Invention Example 27>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 2.2 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. Cathodic electrolysis was performed. The energization amount was 1.3 C / dm 2 .

<発明例28>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.08秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は0.9C/dm2とした。
<Invention Example 28>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.08 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 0.9 C / dm 2 .

<発明例29>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.73秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.0A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.1A/dm2で2段目の陰極電解処理を行った。通電量は2.1C/dm2とした。
<Invention Example 29>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.73 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.0 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by a second-stage cathodic electrolysis at a current density of 1.1 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. Energization amount was 2.1C / dm 2.

<比較例1>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で1.2g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Comparative Example 1>
The same pretreatment as in Invention Example 1 was performed, and 1.2 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1 second in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<比較例2>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度45g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Comparative Example 2>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, reflow treatment was performed in an atmosphere having a water vapor concentration of 45 g / m 3 to melt the tin and rapidly cooled in 80 ° C. warm water. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<比較例3>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で0.3秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度3.7A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度1.8A/dm2で2段目の陰極電解処理を行った。通電量は1.3C/dm2とした。
<Comparative Example 3>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 0.3 seconds in a non-electrical state, and then at a current density of 3.7 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 1.8 A / dm 2 in an aqueous sodium dichromate solution at 50 ° C. and 25 g / L. The energization amount was 1.3 C / dm 2 .

<比較例4>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度0.9A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度0.9A/dm2で2段目の陰極電解処理を行った。通電量は0.6C/dm2とした。
<Comparative example 4>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 0.9 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by the second-stage cathodic electrolysis at a current density of 0.9 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The energization amount was 0.6 C / dm 2 .

<比較例5>
発明例1と同様の前処理を行い、フェノールスルホン酸浴中で2.6g/m2スズめっきを施した。次いで、水蒸気濃度25g/m3の雰囲気でリフロー処理を行い、スズを溶融し、80℃の温水中で急冷した。なお、スズの溶融時間0.42秒とした。次いで、50℃、25g/Lの重クロム酸ナトリウム水溶液中に無電階の状態で1.5秒浸漬し、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度4.2A/dm2で1段目の陰極電解処理をさらに、その後、50℃、25g/Lの重クロム酸ナトリウム水溶液中で電流密度4.2A/dm2で2段目の陰極電解処理を行った。通電量は6.9C/dm2とした。
<Comparative Example 5>
The same pretreatment as in Invention Example 1 was carried out, and 2.6 g / m 2 tin plating was performed in a phenolsulfonic acid bath. Next, a reflow treatment was performed in an atmosphere having a water vapor concentration of 25 g / m 3 to melt tin and quench in hot water at 80 ° C. The melting time of tin was 0.42 seconds. Next, it was immersed in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L for 1.5 seconds in an uncharged state, and then at a current density of 4.2 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The first-stage cathodic electrolysis was further performed, followed by a second-stage cathodic electrolysis at a current density of 4.2 A / dm 2 in a sodium dichromate aqueous solution at 50 ° C. and 25 g / L. The energization amount was 6.9 C / dm 2 .

発明例1〜29、比較例1〜5で得られたスズめっき鋼板について、次に示す塗料密着性評価試験を行い、その結果を表1および表2に示した。
<評価方法>
(1)塗装及び成型
試料表面にエポキシフェノール塗料を8g/m塗布し、204℃で10分間加熱した後、室温まで冷却した。さらに、8時間以上室温で保管したのち、塗装面を缶内面となるようにφ200のEND(缶蓋)を成型した。
(2)レトルト密着性
成型したEND(缶蓋)は4種の水溶液に浸漬して120℃で90分のレトルトを行い、レトルト終了後、直ちに水洗、クロスカット、テープ剥離試験を行った。
クロスカットは3mmピッチで100マスの碁盤目を形成し、テープ剥離試験で剥離面積により、10段階(剥離無しを10点、100%剥離したものを1点)の密着性評価を行った。4種の浸漬液での試験で、全て密着性7点以上を合格とした。
浸漬液は以下の4種とした。
A:3%酢酸+2%NaCl
B:1.1%乳酸
C:2%クエン酸+0.4%アスコルビン酸
D:0.056%システインHCl+0.4%KHPO+0.81%NaHPO
(3)経時試験
作成したスズめっき鋼板を、50℃で湿度90%RHの条件で防錆紙に梱包し、同条件で7日間貯蔵したのち、前記(1)および(2)と同じ条件でレトルト密着性の評価を行った。
The tin-coated steel sheets obtained in Invention Examples 1 to 29 and Comparative Examples 1 to 5 were subjected to the following paint adhesion evaluation test, and the results are shown in Tables 1 and 2.
<Evaluation method>
(1) Painting and molding An epoxy phenol coating was applied to the sample surface at 8 g / m 2 , heated at 204 ° C. for 10 minutes, and then cooled to room temperature. Furthermore, after storing at room temperature for 8 hours or more, an END (can lid) of φ200 was molded so that the painted surface became the inner surface of the can.
(2) Retort adhesion The molded END (can lid) was immersed in four types of aqueous solutions and retorted at 120 ° C. for 90 minutes. Immediately after completion of the retort, water washing, crosscutting, and tape peeling test were performed.
The crosscut formed a grid of 100 squares at a pitch of 3 mm, and evaluated the adhesion in 10 stages (10 points for no peeling, 1 point for 100% peeling) according to the peeling area in the tape peeling test. In the test with four kinds of immersion liquids, all of the adhesion points of 7 or more were regarded as acceptable.
The following four types of immersion liquids were used.
A: 3% acetic acid + 2% NaCl
B: 1.1% lactic acid C: 2% citric acid + 0.4% ascorbic acid D: 0.056% cysteine HCl + 0.4% KH 2 PO 4 + 0.81% Na 2 HPO 4
(3) Aging test The prepared tin-plated steel sheet was packed in rust-proof paper at 50 ° C. and a humidity of 90% RH, stored for 7 days under the same conditions, and then under the same conditions as in (1) and (2) above. Retort adhesion was evaluated.

発明例1〜29は、本発明の条件を満足するため、全て外観が良好であるうえ、経時処理を行わない場合、および、経時処理を行った場合の全てのケースにおいてA〜Dの浸漬液のいずれのケースにおいてもレトルト密着性評価結果が7点以上だった。
一方、比較例1は、スズめっき量が1.2g/m2であり発明範囲未満なので極僅か光沢が低く、浸漬液A、Dについてレトルト密着性評価結果が6点以下だった。
比較例2は、リフロー処理の雰囲気の水蒸気濃度が45g/m3であり発明範囲を超えているので、浸漬液Aの場合にレトルト密着性評価結果が6点以下だった。
比較例3は、重クロム酸ナトリウム水溶液中に無電解の状態での秒浸漬時間が0.3秒であり発明範囲未満なので、浸漬液Aについてレトルト密着性評価結果が6点以下だった。
比較例4は、化成処理の電解処理における通電量が0.6C/dmであり発明範囲未満なので、浸漬液Dについてレトルト密着性評価結果が6点以下だった。
比較例5は、化成処理の電解処理における通電量が6.9C/dmであり発明範囲を超えているので、経時処理後における浸漬液Aについてレトルト密着性評価結果が6点以下だった。
以上の実施例により、本発明の効果が確認された。
Inventive Examples 1 to 29 satisfy the conditions of the present invention, so that the appearance is all good, and the immersion liquids A to D are used in all cases where the aging treatment is not performed and when the aging treatment is performed. In any of the cases, the retort adhesion evaluation result was 7 points or more.
On the other hand, Comparative Example 1 had a tin plating amount of 1.2 g / m 2 and was less than the range of the invention, so that the gloss was very low, and the retort adhesion evaluation results for immersion liquids A and D were 6 points or less.
In Comparative Example 2, since the water vapor concentration in the atmosphere of the reflow treatment was 45 g / m 3 and exceeded the range of the invention, in the case of the immersion liquid A, the retort adhesion evaluation result was 6 points or less.
In Comparative Example 3, since the second immersion time in an electroless state in an aqueous sodium dichromate solution was 0.3 seconds and less than the range of the invention, the retort adhesion evaluation result for the immersion liquid A was 6 points or less.
In Comparative Example 4, the energization amount in the electrolytic treatment of the chemical conversion treatment was 0.6 C / dm 2 , which was less than the scope of the invention, so the retort adhesion evaluation result for the immersion liquid D was 6 points or less.
In Comparative Example 5, the energization amount in the electrolytic treatment of the chemical conversion treatment was 6.9 C / dm 2 and exceeded the scope of the invention, so the retort adhesion evaluation result for the immersion liquid A after the aging treatment was 6 points or less.
The effects of the present invention were confirmed by the above examples.

Figure 0004660598
Figure 0004660598

Figure 0004660598
Figure 0004660598

Claims (2)

冷延鋼板に、スズめっき、リフロー処理、および、化成処理を施す缶用スズめっき鋼板の製造方法であって、
スズめっき工程において、鋼板の缶内面となる側に1.5〜13.0g/mのスズめっきを施し、
リフロー工程において、水蒸気濃度が0〜40g/m3の雰囲気でリフロー処理を行い、
重クロム酸ナトリム水溶液中に0.5〜4.0秒無電解で浸漬した後、重クロム酸ナトリム水溶液中で0.8〜6.5C/dm2の通電量で陰極電解による化成処理を行うことを特徴とするレトルト密着性に優れるスズめっき鋼板の製造方法。
A method for producing a tin-plated steel sheet for cans that is subjected to tin plating, reflow treatment, and chemical conversion treatment on a cold-rolled steel sheet,
In the tin plating step, 1.5 to 13.0 g / m 2 of tin plating is applied to the side of the steel plate that becomes the inner surface of the can.
In the reflow process, reflow treatment is performed in an atmosphere having a water vapor concentration of 0 to 40 g / m 3 ,
After immersion in sodium dichromate aqueous solution for 0.5 to 4.0 seconds without electrolysis, chemical conversion treatment by cathodic electrolysis is performed in sodium dichromate aqueous solution at a current of 0.8 to 6.5 C / dm 2. The manufacturing method of the tin plating steel plate excellent in the retort adhesiveness characterized by the above-mentioned.
前記リフロー工程において、スズめっきの溶融時間が0.1〜0.7秒となるリフロー処理を行うことを特徴とする請求項1に記載のレトルト密着性に優れるスズめっき鋼板の製造方法。   2. The method for producing a tin-plated steel sheet having excellent retort adhesion according to claim 1, wherein in the reflow step, a reflow process is performed in which the melting time of tin plating is 0.1 to 0.7 seconds.
JP2009058804A 2009-02-04 2009-03-12 Method for producing tin-plated steel sheet with excellent post-retort coating adhesion Active JP4660598B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009058804A JP4660598B2 (en) 2009-03-12 2009-03-12 Method for producing tin-plated steel sheet with excellent post-retort coating adhesion
KR1020117020460A KR101310598B1 (en) 2009-02-04 2010-02-04 Tin-plated steel sheet and method for producing the same
PCT/JP2010/051629 WO2010090267A1 (en) 2009-02-04 2010-02-04 Tin-plated steel sheet and method for producing the same
CN201080006593.2A CN102308026B (en) 2009-02-04 2010-02-04 Method for producing tin-plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009058804A JP4660598B2 (en) 2009-03-12 2009-03-12 Method for producing tin-plated steel sheet with excellent post-retort coating adhesion

Publications (2)

Publication Number Publication Date
JP2010209435A JP2010209435A (en) 2010-09-24
JP4660598B2 true JP4660598B2 (en) 2011-03-30

Family

ID=42969900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058804A Active JP4660598B2 (en) 2009-02-04 2009-03-12 Method for producing tin-plated steel sheet with excellent post-retort coating adhesion

Country Status (1)

Country Link
JP (1) JP4660598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209414A (en) * 2009-03-10 2010-09-24 Nippon Steel Corp Method of producing tin-plated steel sheet having excellent adhesiveness to coating film after retort

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356785A (en) * 2001-05-28 2002-12-13 Nippon Steel Corp Tinned steel sheet having excellent oxidation resistance and production method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736993B2 (en) * 1974-02-06 1982-08-06
JPS61104099A (en) * 1984-10-24 1986-05-22 Kawasaki Steel Corp Surface-treated steel sheet and its manufacture
JPS6379994A (en) * 1986-09-22 1988-04-09 Nippon Steel Corp Production of steel sheet for welded can
JPH01234596A (en) * 1988-03-15 1989-09-19 Nippon Steel Corp Electrolytic treatment of steel sheet plated with chromium
JP2942105B2 (en) * 1993-06-24 1999-08-30 東洋鋼鈑株式会社 Manufacturing method of tin-coated steel sheet with excellent paint adhesion over time under wet conditions
JPH10101090A (en) * 1996-09-25 1998-04-21 Hokkai Can Co Ltd Aluminum can body for sulfur-containing canned food, and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356785A (en) * 2001-05-28 2002-12-13 Nippon Steel Corp Tinned steel sheet having excellent oxidation resistance and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209414A (en) * 2009-03-10 2010-09-24 Nippon Steel Corp Method of producing tin-plated steel sheet having excellent adhesiveness to coating film after retort

Also Published As

Publication number Publication date
JP2010209435A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4920627B2 (en) Plated steel sheet for can and manufacturing method thereof
KR101430216B1 (en) Process for production of steel sheet for container material which has reduced load on environments, steel sheet for container material which has reduced load on environments, and laminate steel sheet for container material and coated precoat steel sheet for container material which are produced using the steel sheet
WO2009025390A1 (en) Environmentally friendly steel sheet for container material, process for producing the same, and environmentally friendly laminated steel sheet for container material and precoated steel sheet for container material each produced from that steel sheet
JP6119930B2 (en) Steel plate for container and method for producing steel plate for container
TWI391532B (en) A plated steel sheet for use in a tank and a method for manufacturing the same
KR101318545B1 (en) Process for production of tin-plated steel sheets, tin-plated steel sheets and chemical conversion treatment fluid
JP4660626B2 (en) Tin-plated steel sheet with excellent post-retort coating film adhesion and method for producing the same
KR101310598B1 (en) Tin-plated steel sheet and method for producing the same
JP4660598B2 (en) Method for producing tin-plated steel sheet with excellent post-retort coating adhesion
JP2003082497A (en) Tinned steel sheet, and production method therefor
GB2164899A (en) Method for production or metal sheet covered with polyester resin film
JP6119931B2 (en) Steel plate for container and method for producing steel plate for container
JP5187239B2 (en) Method for producing tin-plated steel sheet with excellent post-retort coating adhesion
KR101929086B1 (en) Steel sheet for container, and method for manufacturing same
JPS587077B2 (en) Copper foil for printed circuits and its manufacturing method
JP2014162978A (en) Method of producing surface-treated steel plate
JP4177543B2 (en) Tin-plated steel sheet with excellent oxidation resistance and method for producing the same
JP2002356785A (en) Tinned steel sheet having excellent oxidation resistance and production method therefor
JP6156299B2 (en) Steel plate for container and method for producing the same
JP5428906B2 (en) Tin-plated steel sheet with excellent paint performance
WO2010090267A1 (en) Tin-plated steel sheet and method for producing the same
JP6583539B2 (en) Chemical conversion treated steel sheet and method for producing chemical conversion treated steel sheet
JP2005213580A (en) Production method of tin plated steel plate
JP3140305B2 (en) Manufacturing method of tin-coated steel sheet with excellent paint adhesion
JP2000080499A (en) Chemical treating method for nickel plated steel sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4660598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350