JP4659584B2 - Digital modulation signal generator - Google Patents

Digital modulation signal generator Download PDF

Info

Publication number
JP4659584B2
JP4659584B2 JP2005302882A JP2005302882A JP4659584B2 JP 4659584 B2 JP4659584 B2 JP 4659584B2 JP 2005302882 A JP2005302882 A JP 2005302882A JP 2005302882 A JP2005302882 A JP 2005302882A JP 4659584 B2 JP4659584 B2 JP 4659584B2
Authority
JP
Japan
Prior art keywords
signal
quadrature
error
component signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005302882A
Other languages
Japanese (ja)
Other versions
JP2007116241A (en
Inventor
健 塩入
仁志 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2005302882A priority Critical patent/JP4659584B2/en
Publication of JP2007116241A publication Critical patent/JP2007116241A/en
Application granted granted Critical
Publication of JP4659584B2 publication Critical patent/JP4659584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

本発明は、ベースバンド信号発生部から出力されたベースバンドのデジタルの同相成分信号と直交成分信号とを、それぞれD/A変換器によりアナログの同相成分信号と直交成分信号に変換して直交変調器に入力し、アナログの同相成分信号と直交成分信号とで直交変調された所定周波数帯の信号を出力するデジタル変調信号発生装置において、特定の校正用のベースバンド信号を用いることなく高精度なデジタル変調信号を生成できるようにするための技術に関する。   The present invention converts a baseband digital in-phase component signal and a quadrature component signal output from a baseband signal generation unit into an analog in-phase component signal and a quadrature component signal by a D / A converter, respectively, and performs quadrature modulation. In a digital modulation signal generator that outputs a signal in a predetermined frequency band that is quadrature-modulated with an analog in-phase component signal and a quadrature component signal, it is highly accurate without using a specific calibration baseband signal. The present invention relates to a technique for enabling generation of a digital modulation signal.

デジタル無線通信機器等を試験するための信号源として、従来から直交変調器を用いたデジタル変調信号発生装置が使用されている。   2. Description of the Related Art Conventionally, a digital modulation signal generator using a quadrature modulator has been used as a signal source for testing digital wireless communication devices and the like.

図7は、デジタル変調信号発生装置10の基本構成を示すものであり、ベースバンド信号発生部11から出力されたベースバンドのデジタルの同相成分信号I(k)と直交成分信号Q(k)とを、それぞれD/A変換器12、13によりアナログの同相成分信号I(t)と直交成分信号Q(t)に変換して直交変調器14に入力し、同相成分信号I(t)と直交成分信号Q(t)とで直交変調された所定周波数帯の信号mを生成出力している。   FIG. 7 shows the basic configuration of the digital modulation signal generator 10, and the baseband digital in-phase component signal I (k) and quadrature component signal Q (k) output from the baseband signal generator 11. Are converted into analog in-phase component signal I (t) and quadrature component signal Q (t) by D / A converters 12 and 13, respectively, and input to quadrature modulator 14, and are orthogonal to in-phase component signal I (t). A signal m in a predetermined frequency band that is orthogonally modulated with the component signal Q (t) is generated and output.

ここで、アナログ型の直交変調器14は、キャリア信号発生器14aから出力された所定周波数fcのキャリア信号Cを移相器14bに入力して、90度の位相差をもつキャリア信号Ca、Cbを生成し、一方のキャリア信号Caを第1ミキサ14cに入力し、他方のキャリア信号Cbを第2ミキサ14dに入力する。   Here, the analog type quadrature modulator 14 inputs the carrier signal C of the predetermined frequency fc output from the carrier signal generator 14a to the phase shifter 14b, and carries carrier signals Ca and Cb having a phase difference of 90 degrees. One carrier signal Ca is input to the first mixer 14c, and the other carrier signal Cb is input to the second mixer 14d.

同相成分信号I(t)は第1ミキサ14cによりキャリア信号Caと混合され、直交成分信号Q(t)は第2ミキサ14dによりキャリア信号Cbと混合され、両混合成分が合成器14eによって合成されてデジタル変調出力信号mが生成される。   The in-phase component signal I (t) is mixed with the carrier signal Ca by the first mixer 14c, the quadrature component signal Q (t) is mixed with the carrier signal Cb by the second mixer 14d, and both mixed components are combined by the combiner 14e. Thus, a digital modulation output signal m is generated.

ここで、
Ca=cos ωt,Cb=sin ωt (ω=2πfc)
とすると、変調出力信号mは、
m(t)=I(t)・cos ωt−Q(t)・sin ωt
と表すことができる。
here,
Ca = cos ωt, Cb = sin ωt (ω = 2πfc)
Then, the modulation output signal m is
m (t) = I (t) · cos ωt−Q (t) · sin ωt
It can be expressed as.

また、例えばベースバンド信号の周波数をfbとし、
I(t)=cos ω’t,Q(t)=sin ω’t (ω=2πfb)
とすれば、変調出力信号mは、
m(t)=cos ω’t・cos ωt−sin ω’t・sin ωt
=cos (ω+ω’)t
となり、周波数(fc+fb)の正弦波信号となる。
For example, the frequency of the baseband signal is fb,
I (t) = cos ω′t, Q (t) = sin ω′t (ω = 2πfb)
Then, the modulation output signal m is
m (t) = cos ω′t · cos ωt−sin ω′t · sin ωt
= Cos (ω + ω ') t
Thus, a sine wave signal having a frequency (fc + fb) is obtained.

上記したデジタル変調信号発生装置10の基本構成は、例えば特許文献1に記載されている。   The basic configuration of the above-described digital modulation signal generator 10 is described in Patent Document 1, for example.

特開2001−136216号公報JP 2001-136216 A

上記構成のデジタル変調信号発生装置では、主に直交変調器14の直交誤差、キャリアリークの影響により、変調出力信号mの品質が大きく低下することが知られている。   In the digital modulation signal generating apparatus having the above configuration, it is known that the quality of the modulation output signal m is greatly deteriorated mainly due to the influence of the quadrature error of the quadrature modulator 14 and the carrier leak.

即ち、キャリア信号Ca、Cbの位相差が90度に対して誤差をもつか、あるいはキャリア信号Ca、Cb間に振幅差があると、変調出力信号mの変調精度、例えば、EVM(Error Vector Magnitude)等が悪くなる。   That is, if the phase difference between the carrier signals Ca and Cb has an error with respect to 90 degrees, or if there is an amplitude difference between the carrier signals Ca and Cb, the modulation accuracy of the modulation output signal m, for example, EVM (Error Vector Magnitude). ) Etc.

さらに、直交変調器14のミキサ14c、14dに直流オフセットがあると、キャリア信号Ca、Cbが出力側に漏れ、変調出力信号mに周波数fcのキャリア成分が大きなレベルで発生してしまう。   Further, if the mixers 14c and 14d of the quadrature modulator 14 have a DC offset, the carrier signals Ca and Cb leak to the output side, and the carrier component of the frequency fc is generated at a large level in the modulation output signal m.

この直交変調器14のオフセット誤差や直交誤差による変調出力信号mの品質低下を防ぐための補償技術が種々検討されている。   Various compensation techniques for preventing the quality deterioration of the modulation output signal m due to the offset error and the quadrature error of the quadrature modulator 14 have been studied.

例えば、特許文献2には、直交変調器に入力されるアナログの同相成分信号と直交成分信号に対して直流電圧を加算して、直交変調器のオフセット誤差を補償する技術が開示されている。   For example, Patent Document 2 discloses a technique for compensating for an offset error of a quadrature modulator by adding a DC voltage to an analog in-phase component signal and a quadrature component signal input to the quadrature modulator.

特開2003−249822号公報JP 2003-249822 A

また、直交変調器の直交誤差を補償する場合には、例えば前記したように変調出力信号が単一周波数の正弦波となるようなベースバンド信号を校正用信号として用い、直交誤差によって変調出力信号に含まれるイメージ成分をスペクトラムアナライザにより観測し、このイメージ成分のレベルが最小となるように直交変調器14に入力される同相成分信号Iと直交成分信号Qの振幅と位相の調整をしている。   Further, when compensating for the quadrature error of the quadrature modulator, for example, as described above, a baseband signal whose modulation output signal is a single frequency sine wave is used as a calibration signal, and the modulation output signal is generated by the quadrature error. The image component included in the signal is observed by a spectrum analyzer, and the amplitude and phase of the in-phase component signal I and the quadrature component signal Q input to the quadrature modulator 14 are adjusted so that the level of the image component is minimized. .

しかしながら、上記のように校正用の信号を用いて変調出力信号のスペクトラムを測定してイメージ成分が最小となるように振幅、位相を補償する方法では、操作者の熟練を要し、補償精度にバラツキが生じるという問題があった。   However, the method of measuring the spectrum of the modulation output signal using the calibration signal as described above and compensating the amplitude and phase so that the image component is minimized requires operator skill and increases the compensation accuracy. There was a problem of variation.

また、補償のためのパラメータを調整あるいは再調整する間は、校正用のベースバンド信号しか出力できず、調整が完了するまで実際の試験を行うことができないという問題があった。   In addition, during adjustment or readjustment of compensation parameters, only a calibration baseband signal can be output, and there is a problem that an actual test cannot be performed until the adjustment is completed.

本発明は、この問題を解決し、オフセット誤差および直交誤差の補償精度を高く且つ安定に維持でき、任意のパターンのベースバンド信号を出力している際に補償用のパラメータを更新することができるデジタル変調信号発生装置を提供することを目的としている。   The present invention solves this problem, can maintain high and stable compensation accuracy of offset error and orthogonal error, and can update parameters for compensation when outputting a baseband signal of an arbitrary pattern. An object of the present invention is to provide a digital modulation signal generator.

前記目的を達成するために、本発明の請求項1のデジタル変調信号発生装置は、
ベースバンドのデジタルの同相成分信号と直交成分信号とを出力するベースバンド信号発生部(11)と、前記デジタルの同相成分信号と直交成分信号をアナログの同相成分信号と直交成分信号に変換するD/A変換器(12、13)と、前記アナログの同相成分信号と直交成分信号とで直交変調された所定周波数帯の信号を出力する直交変調器(14)とを有し、且つ、
前記ベースバンド信号発生部と前記D/A変換器との間に、前記直交変調器のオフセット誤差および直交誤差を補償する誤差補償部(22)が設けられたデジタル変調信号発生装置において、
前記誤差補償部は、
前記ベースバンド信号発生部が出力した同相成分信号と前記直交変調器の出力信号を直交復調して得られる同相成分信号の振幅比をGi、前記ベースバンド信号発生部が出力した直交成分信号と前記直交変調器の出力信号を直交復調して得られる直交成分信号の振幅比をGq、同相成分信号に対する前記直交変調器のキャリア信号の位相誤差をθi、該キャリア信号のリークレベルをLi、直交成分信号に対する前記直交変調器のキャリア信号の位相誤差をθq、該キャリア信号のリークレベルをLqとし、
入力される同相成分信号Iと直交成分信号Qに対して、次式
I′={(I−Li)cos θq−(Q−Lq)sin θq}
/{Gi・cos (θq−θi)}
Q′=−{(I−Li)sin θi−(Q−Lq)cos θi}
/{Gq・cos (θq−θi)}
の演算を行うことにより、前記オフセット誤差、振幅誤差および位相誤差が補償された同相成分信号I′と直交成分信号Q′を生成することを特徴としている。
In order to achieve the above object, a digital modulation signal generator according to claim 1 of the present invention comprises:
A baseband signal generator (11) for outputting a baseband digital in-phase component signal and a quadrature component signal; and D for converting the digital in-phase component signal and the quadrature component signal into an analog in-phase component signal and a quadrature component signal. / A converter (12, 13), and a quadrature modulator (14) for outputting a signal in a predetermined frequency band that is quadrature modulated by the analog in-phase component signal and the quadrature component signal, and
In the digital modulation signal generation device, an error compensation unit (22) for compensating for an offset error and a quadrature error of the quadrature modulator is provided between the baseband signal generation unit and the D / A converter.
The error compensator is
The amplitude ratio between the in-phase component signal output from the baseband signal generation unit and the in-phase component signal obtained by quadrature demodulation of the output signal of the quadrature modulator is Gi, and the quadrature component signal output from the baseband signal generation unit and the The amplitude ratio of the quadrature component signal obtained by quadrature demodulation of the output signal of the quadrature modulator is Gq, the phase error of the carrier signal of the quadrature modulator with respect to the in-phase component signal is θi, the leak level of the carrier signal is Li, and the quadrature component The phase error of the carrier signal of the quadrature modulator with respect to the signal is θq, the leak level of the carrier signal is Lq,
For the input in-phase component signal I and quadrature component signal Q, the following expression I ′ = {(I−Li) cos θq− (Q−Lq) sin θq}
/ {Gi · cos (θq−θi)}
Q ′ = − {(I−Li) sin θi− (Q−Lq) cos θi}
/ {Gq · cos (θq−θi)}
In this way, the in-phase component signal I ′ and the quadrature component signal Q ′ in which the offset error, amplitude error and phase error are compensated are generated.

また、本発明の請求項2のデジタル変調信号発生装置は、請求項1記載のデジタル変調信号発生装置において、
前記直交変調器の出力信号を受けて、デジタルのベースバンドの同相成分信号と直交成分信号を復調する復調部(31)と、
前記復調部によって復調された同相成分信号と直交成分信号とをIQ直交座標上のシンボル点の座標情報として順次記憶し、該記憶した各シンボル点の座標情報から、前記オフセット誤差の補償に必要なリークレベル、前記直交誤差の補償に必要な振幅比Gi、Gqおよび位相誤差θi、θqを求めて前記誤差補償部に設定する誤差検出部(32)とを備えたことを特徴としている。
A digital modulation signal generator according to claim 2 of the present invention is the digital modulation signal generator according to claim 1,
A demodulator (31) that receives the output signal of the quadrature modulator and demodulates the digital baseband in-phase component signal and the quadrature component signal;
The in-phase component signal and the quadrature component signal demodulated by the demodulator are sequentially stored as the coordinate information of the symbol points on the IQ orthogonal coordinates, and are necessary for compensating the offset error from the stored coordinate information of each symbol point. And an error detection unit (32) for obtaining a leak level, amplitude ratios Gi and Gq and phase errors θi and θq necessary for compensation of the orthogonal error, and setting them in the error compensation unit.

このように本発明のデジタル変調信号発生装置は、誤差補償部が、
入力される同相成分信号Iと直交成分信号Qに対して、次式
I′={(I−Li)cos θq−(Q−Lq)sin θq}
/{Gi・cos (θq−θi)}
Q′=−{(I−Li)sin θi−(Q−Lq)cos θi}
/{Gq・cos (θq−θi)}
の演算を行うことにより、オフセット誤差、振幅誤差および位相誤差が補償された同相成分信号I′と直交成分信号Q′を生成しているので、既知の各パラメータを用いて各誤差が補償された成分信号を得ることができ、人手による補償精度のバラツキをなくすことができる。
Thus, in the digital modulation signal generator of the present invention, the error compensator is
For the input in-phase component signal I and quadrature component signal Q, the following expression I ′ = {(I−Li) cos θq− (Q−Lq) sin θq}
/ {Gi · cos (θq−θi)}
Q ′ = − {(I−Li) sin θi− (Q−Lq) cos θi}
/ {Gq · cos (θq−θi)}
Since the in-phase component signal I ′ and the quadrature component signal Q ′ in which the offset error, the amplitude error, and the phase error have been compensated are generated by performing the above calculation, each error is compensated using each known parameter. Component signals can be obtained, and manual compensation accuracy variation can be eliminated.

また、復調部と、復調部によって復調された同相成分信号と直交成分信号とをIQ直交座標上のシンボル点の座標情報として順次記憶し、該記憶した各シンボル点の座標情報から、前記オフセット誤差の補償に必要なリークレベルLi、Lq、前記直交誤差の補償に必要な振幅比Gi、Gqおよび位相誤差θi、θqを求めて前記誤差補償部に設定する誤差検出部とを備えたデジタル変調信号発生装置では、各補償に必要なパラメータを特定の校正用信号を用いることなく、任意パターンのベースバンド信号を出力している間に得ることができ、高い変調品質を維持できる。   Further, the demodulator and the in-phase component signal and the quadrature component signal demodulated by the demodulator are sequentially stored as the coordinate information of the symbol points on the IQ orthogonal coordinates, and the offset error is calculated from the stored coordinate information of each symbol point. Modulation signal having a leak level Li, Lq necessary for compensation of the error, an amplitude detector Gi, Gq and phase error θi, θq necessary for compensation of the quadrature error, and set in the error compensator In the generator, parameters necessary for each compensation can be obtained while a baseband signal having an arbitrary pattern is output without using a specific calibration signal, and high modulation quality can be maintained.

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用したデジタル変調信号発生装置20の構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of a digital modulation signal generator 20 to which the present invention is applied.

図1に示しているように、このデジタル変調信号発生装置20は、前記したデジタル変調信号発生装置10の基本構成をなすベースバンド信号発生部11、D/A変換器12、13および直交変調器14を有している。   As shown in FIG. 1, the digital modulation signal generator 20 includes a baseband signal generator 11, D / A converters 12 and 13, and a quadrature modulator that form the basic configuration of the digital modulation signal generator 10 described above. 14.

また、ベースバンド信号発生部11とD/A変換器12、13の間には、誤差補償部22が設けられている。   An error compensation unit 22 is provided between the baseband signal generation unit 11 and the D / A converters 12 and 13.

また、直交変調器14の出力側には、変調出力信号mを出力端子20aと復調部31とに分配する信号分配器26が設けられている。   A signal distributor 26 that distributes the modulated output signal m to the output terminal 20 a and the demodulator 31 is provided on the output side of the quadrature modulator 14.

復調部31は、変調出力信号mをA/D変換器31aによりデジタル信号Mに変換し、直交復調器31bによりベースバンドの同相成分信号Irと直交成分信号Qrを復調して、後述の誤差検出部32に出力する。   The demodulating unit 31 converts the modulation output signal m into a digital signal M by the A / D converter 31a, and demodulates the baseband in-phase component signal Ir and the quadrature component signal Qr by the quadrature demodulator 31b to detect error detection described later. To the unit 32.

次に、この実施形態の補償原理について説明する。
図2の(a)は、デジタル変調信号発生装置の基本構成の誤差モデルである。
Next, the compensation principle of this embodiment will be described.
FIG. 2A shows an error model of the basic configuration of the digital modulation signal generator.

図2の(a)において、ゲイン誤差回路103、104は、ベースバンド信号発生部11から直交変調器14までの各成分信号に対するゲインGi、Gq(理想値は1)を示し、ゲインGiは、ベースバンド信号発生部11が出力した同相成分信号と直交変調器14の出力信号を直交復調して得られる同相成分信号の振幅比に相当し、ゲインGqは、ベースバンド信号発生部11が出力した直交成分信号と直交変調器14の出力信号を直交復調して得られる直交成分信号の振幅比に相当している。   In FIG. 2A, gain error circuits 103 and 104 indicate gains Gi and Gq (ideal value is 1) for each component signal from the baseband signal generation unit 11 to the quadrature modulator 14, and the gain Gi is This corresponds to the amplitude ratio between the in-phase component signal output from the baseband signal generation unit 11 and the in-phase component signal obtained by quadrature demodulation of the output signal of the quadrature modulator 14, and the gain Gq is output from the baseband signal generation unit 11. This corresponds to the amplitude ratio of the quadrature component signal obtained by quadrature demodulation of the quadrature component signal and the output signal of the quadrature modulator 14.

ベースバンド信号発生部11からデジタル値で出力されたベースバンドの理想的な各成分信号I、Qが、ゲイン誤差回路103、104を経て、直交変調器14のミキサ14c、14dに入力される(D/A変換器12、13は省略し、各成分信号I、Qはデジタル、アナログの区別なく説明する)。   The baseband ideal component signals I and Q output as digital values from the baseband signal generator 11 are input to the mixers 14c and 14d of the quadrature modulator 14 via the gain error circuits 103 and 104 ( The D / A converters 12 and 13 are omitted, and the component signals I and Q will be described without distinction between digital and analog).

また、移相器14bからミキサ14cに入力されるキャリア信号Caにθiの位相誤差があり、ミキサ14dに入力されるキャリア信号Cbにθqの位相誤差があるものとし、さらに、直交変調器14自体の直流オフセットの影響により発生するキャリア信号Caのミキサ14c側へのリークレベルをLi、キャリア信号Cbのミキサ14d側へのリークレベルをLqとしている。ただし、各リークレベルLi、Lqは直交変調器14の入力換算値である。   Further, it is assumed that the carrier signal Ca input from the phase shifter 14b to the mixer 14c has a phase error of θi, the carrier signal Cb input to the mixer 14d has a phase error of θq, and the quadrature modulator 14 itself. The leak level of the carrier signal Ca generated due to the direct current offset to the mixer 14c side is Li, and the leak level of the carrier signal Cb to the mixer 14d side is Lq. However, the leak levels Li and Lq are input conversion values of the quadrature modulator 14.

この誤差モデルにおいて、図2の(b)に示しているように、ゲインGi、Gqの逆数のゲイン1/Gi,1/Gqをもつ回路107、108をベースバンド信号発生部11から直交変調器14(あるいはD/A変換器12、13)の間に挿入することで、各成分信号I、Qに対するゲインはともに1に補償される。   In this error model, as shown in FIG. 2B, circuits 107 and 108 having gains 1 / Gi and 1 / Gq which are reciprocals of the gains Gi and Gq are connected from the baseband signal generator 11 to the quadrature modulator. 14 (or D / A converters 12 and 13), the gains for the component signals I and Q are both compensated to unity.

上記ゲイン誤差の補償を行うことで、変調出力信号mは次のようなる。   By performing the gain error compensation, the modulation output signal m becomes as follows.

m(t)=Gi・(1/Gi)・I・cos (ωt+θi)
−Gq・(1/Gq)・Q・sin (ωt+θq)
+(Li)cos (ωt+θi)
−(Lq)sin (ωt+θq)
=(I+Li)cos (ωt+θi)
−(Q+Lq)sin (ωt+θq)
………(4)
m (t) = Gi · (1 / Gi) · I · cos (ωt + θi)
-Gq · (1 / Gq) · Q · sin (ωt + θq)
+ (Li) cos (ωt + θi)
− (Lq) sin (ωt + θq)
= (I + Li) cos (ωt + θi)
− (Q + Lq) sin (ωt + θq)
……… (4)

さらに、図2の(c)のように、オフセット誤差によるリーク分を抑制するために各成分信号I、QからLi、Lqをそれぞれ減算する回路109、110を挿入すると、変調出力信号mは次のように表される。   Further, as shown in FIG. 2C, when the circuits 109 and 110 for subtracting Li and Lq from the component signals I and Q, respectively, are inserted to suppress the leak due to the offset error, the modulation output signal m is It is expressed as

m(t)=(I−Li+Li)cos (ωt+θi)
−(Q−Lq+Lq)sin (ωt+θq)
=I・cos (ωt+θi)−Q・sin (ωt+θq)
………(5)
m (t) = (I−Li + Li) cos (ωt + θi)
− (Q−Lq + Lq) sin (ωt + θq)
= I · cos (ωt + θi)-Q · sin (ωt + θq)
......... (5)

上記式(5)は、ゲイン誤差およびオフセット誤差が補償された状態の変調出力を示しており、さらにこの式を分解すると、次式(6)が得られる。   The above equation (5) shows the modulation output in a state where the gain error and the offset error are compensated. Further, when this equation is further decomposed, the following equation (6) is obtained.

m(t)=I{cos ωt・cos θi−sin ωt・sin θi}
−Q{sin ωt・cos θq+cos ωt・sin θq}
={I・cos θi−Q・sin θq}cos ωt
−{I・sin θi+Q・cos θq}sin ωt
=Ia・cos ωt−Qa・sin ωt
ただし、
Ia=I・cos θi−Q・sin θq
Qa=I・sin θi+Q・cos θq
…………(6)
m (t) = I {cos ωt · cos θi−sin ωt · sin θi}
-Q {sin ωt · cos θq + cos ωt · sin θq}
= {I · cos θi-Q · sin θq} cos ωt
− {I · sin θi + Q · cos θq} sin ωt
= Ia ・ cos ωt−Qa ・ sin ωt
However,
Ia = I · cos θi−Q · sin θq
Qa = I · sin θi + Q · cos θq
………… (6)

上記式(6)で、変調出力信号mのIa、Qaがそれぞれ元の各成分信号I、Qと等しくなれば、位相誤差が補償されたことになる。   In the above equation (6), if Ia and Qa of the modulation output signal m are equal to the original component signals I and Q, respectively, the phase error is compensated.

ここで、位相誤差が正しく補償されて直交変調器14に入力されるベースバンド信号をIa′、Iq′とすると、次の式が成り立つ。   Here, assuming that the baseband signals that are correctly compensated for the phase error and input to the quadrature modulator 14 are Ia ′ and Iq ′, the following equations are established.

Ia=I=Ia′・cos θi−Qa′・sin θq
Qa=Q=Ia′・sin θi+Qa′・cos θq
…………(7)
Ia = I = Ia ′ · cos θi−Qa ′ · sin θq
Qa = Q = Ia ′ · sin θi + Qa ′ · cos θq
............ (7)

上記式(7)を、位相補償出力Ia′、Qa′について解くと、次の結果が得られる(途中式省略)。   Solving the above equation (7) with respect to the phase compensation outputs Ia ′ and Qa ′, the following result is obtained (the intermediate equation is omitted).

Ia′=(I・cos θq−Q・sin θq)/cos(θq−θi)
Qa′=−(I・sin θi−Q・cos θi)/cos(θq−θi)
…………(8)
Ia ′ = (I · cos θq−Q · sin θq) / cos (θq−θi)
Qa ′ = − (I · sin θi−Q · cos θi) / cos (θq−θi)
............ (8)

したがって、図2の(d)のように、演算回路111、112により入力成分信号I、Qに対して上記式(8)の演算処理をそれぞれ行って直交変調器14に入力すれば、その変調出力信号mは、
m(t)=I・cos ωt−Q・sin ωt
と理想状態にすることができる。
Therefore, as shown in FIG. 2D, if the arithmetic circuits 111 and 112 perform the arithmetic processing of the above equation (8) on the input component signals I and Q, respectively, and input the signals to the quadrature modulator 14, the modulation is performed. The output signal m is
m (t) = I · cos ωt−Q · sin ωt
And can be in an ideal state.

図1に示している実施形態では、誤差補償部22が、ベースバンド信号発生部11から出力された各成分信号I、Qに対して、図2の回路109、110の減算処理と、回路107、108、109、110の演算処理とを含めて、次の演算処理を行い、変調出力信号m(t)に含まれるキャリアリークおよびイメージ成分を抑圧する。   In the embodiment shown in FIG. 1, the error compensation unit 22 performs subtraction processing of the circuits 109 and 110 in FIG. 2 and the circuit 107 for each component signal I and Q output from the baseband signal generation unit 11. , 108, 109, and 110, the following calculation process is performed to suppress the carrier leak and the image component included in the modulation output signal m (t).

={(I−Li)cos θq−(Q−Lq)sin θq}
/{Gi・cos(θq−θi)}
=−{(I−Li)sin θi−(Q−Lq)cos θi}
/{Gq・cos(θq−θi)}
…………(9)
I 1 = {(I−Li) cos θq− (Q−Lq) sin θq}
/ {Gi · cos (θq−θi)}
Q 1 = − {(I−Li) sin θi− (Q−Lq) cos θi}
/ {Gq · cos (θq−θi)}
............ (9)

この式(9)の補償演算処理により、オフセット誤差および直交誤差による品質劣化がない高精度な変調出力信号を得ることができる。   By the compensation calculation processing of the equation (9), a highly accurate modulation output signal free from quality deterioration due to offset error and orthogonal error can be obtained.

上記した各補償処理を正しく行うために必要なパラメータであるゲイン(振幅比)Gi、Gq、リークレベルLi、Lq、位相誤差θi、θqは、前記した復調部31および誤差検出部32によって得られる。   The gains (amplitude ratios) Gi and Gq, leak levels Li and Lq, and phase errors θi and θq, which are parameters necessary for correctly performing the above-described compensation processes, are obtained by the demodulator 31 and the error detector 32 described above. .

誤差検出部32は、復調部31によって復調された各成分信号Ir、QrをIQ直交座標上のシンボル点の座標情報として順次記憶し、その記憶した各シンボル点の座標情報から、オフセット誤差の補償に必要なリークレベルLi、Lq、直交誤差の補償に必要なゲインGi、Gqおよび位相誤差θi、θqを求める。   The error detection unit 32 sequentially stores the component signals Ir and Qr demodulated by the demodulation unit 31 as coordinate information of symbol points on IQ orthogonal coordinates, and compensates for offset errors from the stored coordinate information of each symbol point. The gain levels Gi and Gq and the phase errors θi and θq necessary to compensate for the leak levels Li and Lq, the quadrature error, are obtained.

例えば、変調方式がQPSKでI、Qの絶対値が1の場合で説明すると、理想的なデジタル変調信号を復調して得られる理想シンボル点は、図3の(a)に示すように、IQ直交座標の座標原点を重心とする正方形の頂点Sa(1,1)、Sb(−1,1)、Sc(−1,−1)、Sd(1,−1)のいずれかであり、時間経過に伴い各シンボル点Sa〜Sdの間を移動することになる。   For example, in the case where the modulation scheme is QPSK and the absolute value of Q is 1, the ideal symbol point obtained by demodulating an ideal digital modulation signal is IQ, as shown in FIG. Square vertex Sa (1, 1), Sb (-1, 1), Sc (-1, -1), Sd (1, -1) centered on the origin of Cartesian coordinates, and time As the time passes, the symbol points Sa to Sd are moved.

ここで、前記各誤差のうち、オフセット誤差のみがあり、他の誤差が無いと仮定した場合、復調された各シンボル点には、リークレベルLi、Lqが加わるため、図3の(b)のように、各理想シンボル点Sa〜Sdにそれぞれ対応した受信シンボル点Sa1〜Sd1は、I軸方向にLi、Q軸方向にLq分移動することになる。   Here, if it is assumed that there is only an offset error and no other errors among the errors, leak levels Li and Lq are added to the demodulated symbol points. As described above, the reception symbol points Sa1 to Sd1 respectively corresponding to the ideal symbol points Sa to Sd move by Li in the I-axis direction and Lq in the Q-axis direction.

また、前記各誤差のうち、例えばゲインGi>1、Gq<1の誤差があり、他の誤差が無いと仮定した場合、復調された各シンボル点のI座標、Q座標はそれぞれGi倍、Gq倍となるので、図3の(c)のように、各理想シンボル点Sa〜Sdにそれぞれ対応した受信シンボル点Sa2〜Sd2のI座標の絶対値が1より大きくなり、受信シンボル点Sa2〜Sd2のQ座標の絶対値は1より小さくなり、4点を結んで形成される4角形は横長の長方形となる。   Further, of the errors, for example, assuming that there are errors of gain Gi> 1, Gq <1, and no other errors, the I and Q coordinates of each demodulated symbol point are Gi times and Gq, respectively. Therefore, as shown in FIG. 3C, the absolute values of the I coordinates of the reception symbol points Sa2 to Sd2 corresponding to the ideal symbol points Sa to Sd respectively become larger than 1, and the reception symbol points Sa2 to Sd2 The absolute value of the Q coordinate is smaller than 1, and the quadrilateral formed by connecting the four points is a horizontally long rectangle.

また、前記各誤差のうち、例えば位相誤差θiのみがあり、他の誤差が無いと仮定した場合、前記式(6)から、復調された各シンボル点Sa3〜Sd3のI座標、Q座標は、
Ia=I・cos θi
Qa=I・sin θi+Q
で表される。
Further, of the errors, for example, when there is only the phase error θi and there is no other error, from the above equation (6), the I and Q coordinates of the demodulated symbol points Sa3 to Sd3 are
Ia = I · cos θi
Qa = I · sin θi + Q
It is represented by

ここで、I、Qの絶対値を1とすれば、受信シンボル点Sa3の座標は(cos θi,sin
θi+1)、受信シンボル点Sb3の座標は(−cos θi,−sin θi+1)となり、2つの点Sa3、Sb3を結ぶ線分のI軸に対する傾きkは、
k=(sin θi+1+sin θi−1)/(cos θi+cos θi)
=sin θi/cos θi=tan θi
となる。また、受信シンボル点Sc3、Sd3を結ぶ線分のI軸に対する傾きも同一結果となる。
Here, if the absolute values of I and Q are 1, the coordinates of the reception symbol point Sa3 are (cos θi, sin
θi + 1), the coordinates of the received symbol point Sb3 are (−cos θi, −sin θi + 1), and the slope k with respect to the I axis of the line segment connecting the two points Sa3 and Sb3 is
k = (sin θi + 1 + sin θi−1) / (cos θi + cos θi)
= Sin θi / cos θi = tan θi
It becomes. In addition, the inclination with respect to the I axis of the line segment connecting the reception symbol points Sc3 and Sd3 has the same result.

つまり、図3の(d)のように、受信シンボル点Sa3、Sb3を結ぶ線分および受信シンボル点Sc3、Sd3を結ぶ線分は、I軸に対して位相誤差θiだけ傾いている。   That is, as shown in FIG. 3D, the line segment connecting the reception symbol points Sa3 and Sb3 and the line segment connecting the reception symbol points Sc3 and Sd3 are inclined by the phase error θi with respect to the I axis.

なお、このとき、受信シンボル点Sa3、Sd3のI座標はともにcos θiで等しく、受信シンボル点Sb3、Sc3のI座標はともに−cos
θiで等しい。
At this time, the I coordinates of the received symbol points Sa3 and Sd3 are both equal to cos θi, and the I coordinates of the received symbol points Sb3 and Sc3 are both -cos.
It is equal by θi.

また、前記各誤差のうち、例えば位相誤差θqのみがあり、他の誤差が無いと仮定した場合、前記式(6)から、復調された各シンボル点Sa4〜Sd4のI座標、Q座標は、
Ia=I−Q・sin θq
Qa=Q・cos θq
で表される。
Further, of the errors, for example, when it is assumed that there is only the phase error θq and there is no other error, from the equation (6), the I coordinate and Q coordinate of the demodulated symbol points Sa4 to Sd4 are
Ia = I−Q · sin θq
Qa = Q · cos θq
It is represented by

ここで、I、Qの絶対値を1とすれば、受信シンボル点Sa4の座標は(1−sin θq,cos
θq)、受信シンボル点Sd4の座標は(1+sin θq,−cos θq)となり、2つの点Sa4、Sd4を結ぶ線分のQ軸に対する傾きkは、
k=(1+sin θq−1+sin θq)/(cos θq+cos θq)
=sin θq/cos θq=tan θi
となる。また、受信シンボル点Sb4、Sc4を結ぶ線分のQ軸に対する傾きも同一結果となる。
Here, if the absolute values of I and Q are 1, the coordinates of the reception symbol point Sa4 are (1-sin θq, cos
θq), the coordinates of the received symbol point Sd4 are (1 + sin θq, −cos θq), and the slope k with respect to the Q axis of the line segment connecting the two points Sa4 and Sd4 is
k = (1 + sin θq−1 + sin θq) / (cos θq + cos θq)
= Sin θq / cos θq = tan θi
It becomes. In addition, the inclination with respect to the Q axis of the line segment connecting the reception symbol points Sb4 and Sc4 has the same result.

つまり、図3の(e)のように、受信シンボル点Sa4、Sd4を結ぶ線分および受信シンボル点Sb4、Sc4を結ぶ線分は、Q軸に対して位相誤差θqだけ傾いている。   That is, as shown in FIG. 3E, the line segment connecting the reception symbol points Sa4 and Sd4 and the line segment connecting the reception symbol points Sb4 and Sc4 are inclined by the phase error θq with respect to the Q axis.

なお、このとき、受信シンボル点Sa4、Sb4のQ座標はともにcos θqで等しく、受信シンボル点Sc4、Sd4のQ座標はともに−cos
θqで等しい。
At this time, the Q coordinates of the received symbol points Sa4 and Sb4 are both equal to cos θq, and the Q coordinates of the received symbol points Sc4 and Sd4 are both -cos.
It is equal by θq.

したがって、上記した全ての誤差が含まれている場合に得られる受信シンボル点Sa′〜Sd′を順番に結んで得られる理論上の図形は、図4に示すような平行四辺形となり、その対角線の交点である重心の座標がリークレベルLi、Lqに相当し、受信シンボル点Sa′、Sb′(あるいはSc′、Sd′)を結ぶ線分の長さの1/2がゲインGiに相当し、その線分のI軸に対する角度が位相誤差θiに相当し、受信シンボル点Sa′、Sd′(あるいはSb′、Sc′)を結ぶ線分の長さの1/2がゲインGqに相当し、その線分のQ軸に対する角度が位相誤差θqに相当する。   Therefore, the theoretical figure obtained by connecting the received symbol points Sa ′ to Sd ′ in order when all the errors described above are included is a parallelogram as shown in FIG. The coordinates of the center of gravity, which is the intersection of the two, correspond to the leak levels Li and Lq, and ½ of the length of the line segment connecting the reception symbol points Sa ′ and Sb ′ (or Sc ′ and Sd ′) corresponds to the gain Gi. The angle of the line segment with respect to the I axis corresponds to the phase error θi, and ½ of the length of the line segment connecting the reception symbol points Sa ′ and Sd ′ (or Sb ′ and Sc ′) corresponds to the gain Gq. The angle of the line segment with respect to the Q axis corresponds to the phase error θq.

ただし、実際に復調されたベースバンド信号に対して得られる受信シンボル点Sa′〜Sd′の位置にはノイズの影響等でバラツキが生じるので、誤差検出部32は、復調部31によって復調された各成分信号Ir、QrをIQ直交座標上のシンボル点の座標情報として順次記憶し、4つの理想シンボル点Sa〜Sdにそれぞれ対応した受信シンボル点の平均化を行い、その平均化で得られた4つのシンボル点Sa″〜Sd″の座標情報について、上記した各演算を行うことで、オフセット誤差の補償に必要なリークレベルLi、Lq、直交誤差の補償に必要なゲインGi、Gqおよび位相誤差θi、θqを求め、これらの補償パラメータを誤差補償部22に設定している。   However, since the positions of the received symbol points Sa ′ to Sd ′ obtained with respect to the actually demodulated baseband signal vary due to the influence of noise or the like, the error detector 32 is demodulated by the demodulator 31. Each component signal Ir, Qr is sequentially stored as coordinate information of symbol points on IQ orthogonal coordinates, and the received symbol points respectively corresponding to the four ideal symbol points Sa to Sd are averaged, and obtained by the averaging. By performing each calculation described above for the coordinate information of the four symbol points Sa ″ to Sd ″, leak levels Li and Lq necessary for offset error compensation, gains Gi and Gq necessary for quadrature error compensation, and phase error θi and θq are obtained, and these compensation parameters are set in the error compensator 22.

次に、この実施形態のデジタル変調信号発生装置20の動作について説明する。
始めに、誤差補償部22の補償動作を停止させた状態、即ち、前記した誤差モデルの状態で装置を作動させ、直交変調器14から出力された変調出力信号m(t)に対する復調処理を復調部31で行い、復調部31で得られたベースバンド信号Ir、Qrを誤差検出部32に入力して、その同相成分信号Irと直交成分信号Qrとで決まる受信シンボル点の座標を記憶し、平均化処理して、図5のように、平行四辺形の頂点を形成する4つのシンボル点Sa″〜Sd″を求める。
Next, the operation of the digital modulation signal generator 20 of this embodiment will be described.
First, the apparatus is operated in a state where the compensation operation of the error compensator 22 is stopped, that is, in the state of the error model described above, and the demodulation processing for the modulation output signal m (t) output from the quadrature modulator 14 is demodulated. The baseband signals Ir and Qr obtained by the demodulation unit 31 are input to the error detection unit 32, and the received symbol point coordinates determined by the in-phase component signal Ir and the quadrature component signal Qr are stored. The averaging process is performed to obtain four symbol points Sa ″ to Sd ″ that form the vertices of the parallelogram as shown in FIG.

そして、この平行四辺形の重心Gの座標を、オフセット誤差の補償に必要なリークレベルLi、Lqとし、誤差補償部22に設定する。   Then, the coordinates of the center of gravity G of the parallelogram are set as the leak levels Li and Lq necessary for offset error compensation and set in the error compensator 22.

また、誤差検出部32は、シンボル点Sa″、Sb″間(あるいはSc″、Sd″間)の長さの1/2と、シンボル点Sa″、Sd″間(あるいはSb″、Sc″間)の長さの1/2を、それぞれゲインGi、Gqとして求め、さらに、シンボル点Sa″、Sb″(あるいはSc″、Sd″)を結ぶ線分のI軸に対する傾き角θiと、シンボル点Sa″、Sd″(あるいはSb″、Sc″)を結ぶ線分のQ軸に対する傾き角θqとを位相誤差として求め、ゲインGi、Gqとともに誤差補償部22に設定する。   Further, the error detection unit 32 is configured to ½ the length between the symbol points Sa ″ and Sb ″ (or between Sc ″ and Sd ″) and between the symbol points Sa ″ and Sd ″ (or between Sb ″ and Sc ″). ) Is obtained as gains Gi and Gq, respectively, and the inclination angle θi with respect to the I axis of the line segment connecting the symbol points Sa ″ and Sb ″ (or Sc ″ and Sd ″) and the symbol point The inclination angle θq with respect to the Q axis of the line segment connecting Sa ″ and Sd ″ (or Sb ″ and Sc ″) is obtained as a phase error, and set in the error compensator 22 together with the gains Gi and Gq.

上記各パラメータの設定により、オフセット誤差および直交誤差が補償されて直交変調器14の出力信号に含まれていたキャリアリークおよびイメージ成分が抑圧され、これを復調したときに得られる各受信シンボル点は、図5に示しているようにそれぞれ対応する理想シンボル点Sa〜Sdに重なるように修正され、その結果、高精度なデジタル変調信号が得られる。   By setting each of the above parameters, the offset error and the quadrature error are compensated, the carrier leak and the image component included in the output signal of the quadrature modulator 14 are suppressed, and each received symbol point obtained when demodulating this is as follows. As shown in FIG. 5, correction is performed so as to overlap the corresponding ideal symbol points Sa to Sd, and as a result, a highly accurate digital modulation signal is obtained.

なお、上記のように補償用のパラメータを求めて設定する動作を、1回だけでなく、複数回繰り返すことで、より理想状態に近づけることができる。   Note that the operation for obtaining and setting the compensation parameters as described above can be made closer to the ideal state by repeating not only once but also a plurality of times.

このように実施形態のデジタル変調信号発生装置20は、校正用の特定の信号を必要とせず、任意のパターンのベースバンド信号を出力している間に、オフセット誤差および直交誤差の補償に必要なパラメータを取得して設定することができ、従来のようにスペクトラム波形を観測しながらパラメータを調整するという煩雑で熟練を要する作業が不要となる。   As described above, the digital modulation signal generator 20 according to the embodiment does not require a specific signal for calibration, and is necessary for compensating for an offset error and an orthogonal error while outputting a baseband signal having an arbitrary pattern. The parameters can be acquired and set, and the complicated and skillful work of adjusting the parameters while observing the spectrum waveform as in the prior art is unnecessary.

また、測定中の任意のタイミングに新たなパラメータを取得して設定することができ、温度等の環境変化による品質劣化を防ぐことができ、高い変調品質を維持することができる。   In addition, new parameters can be acquired and set at an arbitrary timing during measurement, quality deterioration due to environmental changes such as temperature can be prevented, and high modulation quality can be maintained.

上記実施形態では、復調部31および誤差検出部32が装置内部に設けられていたが、図6に示すデジタル変調信号発生装置20′のように、復調部31および誤差検出部32を装置内に設けず、工場出荷時等に復調処理および誤差検出処理によって得られた補償用のパラメータを、装置内のパラメータ記憶部35に記憶設定する構成であってもよい。   In the above embodiment, the demodulator 31 and the error detector 32 are provided inside the apparatus. However, as in the digital modulation signal generator 20 ′ shown in FIG. 6, the demodulator 31 and the error detector 32 are included in the apparatus. A configuration may be adopted in which the compensation parameters obtained by the demodulation process and the error detection process at the time of factory shipment are stored in the parameter storage unit 35 in the apparatus without being provided.

また、前記実施形態では、誤差検出の処理として変調方式QPSKの場合について説明したが、16QAM、64QAM等の他の変調方式の場合でも本発明を適用できる。   In the above-described embodiment, the case of the modulation method QPSK has been described as the error detection process. However, the present invention can also be applied to other modulation methods such as 16QAM and 64QAM.

即ち、前記したQPSKも含めて一般形で言えば、オフセット誤差の補償に必要なリークレベルを検出する場合には、変調方式で決まる理想シンボル点のうち、座標原点を重心とする正n角形(nは4以上)の各頂点に位置する理想シンボル点を選択し、その選択した理想シンボル点にそれぞれ対応する受信シンボル点(またはその平均化で得られる点)を結んで形成されるn角形の重心のI座標とQ座標をリークレベルLi、Lqとして求める。   In other words, in a general form including the above-described QPSK, when detecting a leak level necessary for offset error compensation, among ideal symbol points determined by the modulation method, a regular n-gonal shape with the coordinate origin as the center of gravity ( n is an n-gonal shape formed by selecting ideal symbol points located at respective vertices of 4) and connecting received symbol points corresponding to the selected ideal symbol points (or points obtained by averaging thereof). The I and Q coordinates of the center of gravity are obtained as leak levels Li and Lq.

また、変調方式によって決まる全ての理想シンボル点にそれぞれ対応する各受信シンボル点(またはその平均化で得られる点)のI座標の総和を求めてこれをリークレベルLi、Q座標の総和を求めてこれをリークレベルLqとしてもよい。   Also, the sum of the I coordinates of each received symbol point (or the point obtained by averaging) corresponding to all ideal symbol points determined by the modulation method is obtained, and this is obtained as the sum of the leak levels Li and Q coordinates. This may be the leak level Lq.

また、振幅を求める場合には、変調方式で決まる理想シンボル点のうち、座標原点を重心とする正方形の頂点に位置する理想シンボル点を選択し、その選択した理想シンボル点にそれぞれ対応する受信シンボル点(またはその平均化で得られた点)を結んで形成される四角形の辺の長さを求め、その辺の長さに基づいて振幅を求めればよい。   When obtaining the amplitude, the ideal symbol point determined by the modulation method is selected from the ideal symbol points located at the vertices of the square with the coordinate origin as the center of gravity, and the received symbol corresponding to each of the selected ideal symbol points is selected. What is necessary is just to obtain | require the length of the side of the rectangle formed by connecting the points (or the points obtained by the averaging), and obtain the amplitude based on the length of the sides.

さらに、位相誤差を求める場合、変調方式で決まる理想シンボル点のうち、Q座標が等しい2つの理想シンボル点にそれぞれ対応する2つの受信点間を結ぶ線分のI軸に対する傾きを位相誤差θiとして求め、I座標が等しい2つの理想シンボル点にそれぞれ対応する2つの受信シンボル点間を結ぶ線分のQ軸に対する傾きを位相誤差θqとして求めればよい。   Further, when obtaining the phase error, the inclination with respect to the I-axis of the line segment connecting the two reception points respectively corresponding to the two ideal symbol points having the same Q coordinate among the ideal symbol points determined by the modulation method is defined as the phase error θi. The inclination with respect to the Q axis of the line segment connecting the two received symbol points respectively corresponding to the two ideal symbol points having the same I coordinate may be obtained as the phase error θq.

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention 実施形態の誤差モデルと補償との関係を示す図The figure which shows the relationship between the error model of embodiment, and compensation 誤差とシンボル点が描く図形との関係を示す図Diagram showing the relationship between error and figure drawn by symbol point オフセット誤差と直交誤差を有する信号を復調したときに得られるシンボル点が描く図形を示す図The figure which shows the figure which the symbol point which is obtained when demodulating the signal which has the offset error and the quadrature error draws 受信シンボル点の平均化により得られた図形と補償によるシンボル点の変化を示す図Figure showing the figure obtained by averaging received symbol points and the change in symbol points due to compensation 他の実施形態の構成を示す図The figure which shows the structure of other embodiment. 従来装置の構成図Configuration diagram of conventional equipment

符号の説明Explanation of symbols

11……ベースバンド信号発生部、20、20′……デジタル変調信号発生装置、22……誤差補償部、12、13……D/A変換器、14……直交変調器、31……復調部、32……誤差検出部、35……パラメータ記憶部   DESCRIPTION OF SYMBOLS 11 ... Baseband signal generator, 20, 20 '... Digital modulation signal generator, 22 ... Error compensation part, 12, 13 ... D / A converter, 14 ... Quadrature modulator, 31 ... Demodulation Part, 32 ... error detection part, 35 ... parameter storage part

Claims (2)

ベースバンドのデジタルの同相成分信号と直交成分信号とを出力するベースバンド信号発生部(11)と、前記デジタルの同相成分信号と直交成分信号をアナログの同相成分信号と直交成分信号に変換するD/A変換器(12、13)と、前記アナログの同相成分信号と直交成分信号とで直交変調された所定周波数帯の信号を出力する直交変調器(14)とを有し、且つ、
前記ベースバンド信号発生部と前記D/A変換器との間に、前記直交変調器のオフセット誤差および直交誤差を補償する誤差補償部(22)が設けられたデジタル変調信号発生装置において、
前記誤差補償部は、
前記ベースバンド信号発生部が出力した同相成分信号と前記直交変調器の出力信号を直交復調して得られる同相成分信号の振幅比をGi、前記ベースバンド信号発生部が出力した直交成分信号と前記直交変調器の出力信号を直交復調して得られる直交成分信号の振幅比をGq、同相成分信号に対する前記直交変調器のキャリア信号の位相誤差をθi、該キャリア信号のリークレベルをLi、直交成分信号に対する前記直交変調器のキャリア信号の位相誤差をθq、該キャリア信号のリークレベルをLqとし、
入力される同相成分信号Iと直交成分信号Qに対して、次式
I′={(I−Li)cos θq−(Q−Lq)sin θq}
/{Gi・cos (θq−θi)}
Q′=−{(I−Li)sin θi−(Q−Lq)cos θi}
/{Gq・cos (θq−θi)}
の演算を行うことにより、前記オフセット誤差、振幅誤差および位相誤差が補償された同相成分信号I′と直交成分信号Q′を生成することを特徴とするデジタル変調信号発生装置。
A baseband signal generator (11) for outputting a baseband digital in-phase component signal and a quadrature component signal; and D for converting the digital in-phase component signal and the quadrature component signal into an analog in-phase component signal and a quadrature component signal. / A converter (12, 13), and a quadrature modulator (14) for outputting a signal in a predetermined frequency band that is quadrature modulated by the analog in-phase component signal and the quadrature component signal, and
In the digital modulation signal generation device, an error compensation unit (22) for compensating for an offset error and a quadrature error of the quadrature modulator is provided between the baseband signal generation unit and the D / A converter.
The error compensator is
The amplitude ratio between the in-phase component signal output from the baseband signal generation unit and the in-phase component signal obtained by quadrature demodulation of the output signal of the quadrature modulator is Gi, and the quadrature component signal output from the baseband signal generation unit and the The amplitude ratio of the quadrature component signal obtained by quadrature demodulation of the output signal of the quadrature modulator is Gq, the phase error of the carrier signal of the quadrature modulator with respect to the in-phase component signal is θi, the leak level of the carrier signal is Li, and the quadrature component The phase error of the carrier signal of the quadrature modulator with respect to the signal is θq, the leak level of the carrier signal is Lq,
For the input in-phase component signal I and quadrature component signal Q, the following expression I ′ = {(I−Li) cos θq− (Q−Lq) sin θq}
/ {Gi · cos (θq−θi)}
Q ′ = − {(I−Li) sin θi− (Q−Lq) cos θi}
/ {Gq · cos (θq−θi)}
A digital modulation signal generator that generates the in-phase component signal I ′ and the quadrature component signal Q ′ in which the offset error, the amplitude error, and the phase error are compensated for by performing the above calculation.
前記直交変調器の出力信号を受けて、デジタルのベースバンドの同相成分信号と直交成分信号を復調する復調部(31)と、
前記復調部によって復調された同相成分信号と直交成分信号とをIQ直交座標上のシンボル点の座標情報として順次記憶し、該記憶した各シンボル点の座標情報から、前記オフセット誤差の補償に必要なリークレベルLi、Lq、前記直交誤差の補償に必要な振幅比Gi、Gqおよび位相誤差θi、θqを求めて前記誤差補償部に設定する誤差検出部(32)とを備えたことを特徴とする請求項1記載のデジタル変調信号発生装置。
A demodulator (31) that receives the output signal of the quadrature modulator and demodulates the digital baseband in-phase component signal and the quadrature component signal;
The in-phase component signal and the quadrature component signal demodulated by the demodulator are sequentially stored as the coordinate information of the symbol points on the IQ orthogonal coordinates, and are necessary for compensating the offset error from the stored coordinate information of each symbol point. And an error detection unit (32) that obtains leak levels Li and Lq, amplitude ratios Gi and Gq and phase errors θi and θq necessary for compensation of the quadrature error, and sets them in the error compensation unit. The digital modulation signal generator according to claim 1.
JP2005302882A 2005-10-18 2005-10-18 Digital modulation signal generator Expired - Fee Related JP4659584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005302882A JP4659584B2 (en) 2005-10-18 2005-10-18 Digital modulation signal generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005302882A JP4659584B2 (en) 2005-10-18 2005-10-18 Digital modulation signal generator

Publications (2)

Publication Number Publication Date
JP2007116241A JP2007116241A (en) 2007-05-10
JP4659584B2 true JP4659584B2 (en) 2011-03-30

Family

ID=38098063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005302882A Expired - Fee Related JP4659584B2 (en) 2005-10-18 2005-10-18 Digital modulation signal generator

Country Status (1)

Country Link
JP (1) JP4659584B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012581B2 (en) * 2008-03-06 2012-08-29 富士通株式会社 Distortion compensation amplification apparatus and correction method
KR101070130B1 (en) * 2008-12-19 2011-10-05 한국전자통신연구원 Device and method for detecting phase error and quadrature error
US8406283B2 (en) * 2009-07-20 2013-03-26 Advantest Corporation Modulation apparatus, test apparatus and correction method
JP2011103541A (en) * 2009-11-10 2011-05-26 Mitsubishi Electric Corp Transmitter
JP5572662B2 (en) * 2011-05-23 2014-08-13 アンリツ株式会社 Quadrature modulator, signal generator, and quadrature modulation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275746A (en) * 1991-03-01 1992-10-01 Toshiba Corp Orthogonal modulator
JPH0568060A (en) * 1991-03-11 1993-03-19 Nippon Telegr & Teleph Corp <Ntt> Distortion compensation orthogonal modulator
JPH11136302A (en) * 1997-10-29 1999-05-21 Fujitsu Ltd Distortion compensation circuit
JP2000116240A (en) * 1998-10-09 2000-04-25 Fukuoka Marumoto Kk Panel for cultivation
JP2001339452A (en) * 2000-05-26 2001-12-07 Hitachi Kokusai Electric Inc Orthogonal modulating device and orthogonal modulation error detecting method
WO2003101061A1 (en) * 2002-05-24 2003-12-04 Anritsu Corporation Quadrature modulator carrier quadrature error detection method and quadrature modulation device
JP2007116240A (en) * 2005-10-18 2007-05-10 Anritsu Corp Digital modulation signal generating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275746A (en) * 1991-03-01 1992-10-01 Toshiba Corp Orthogonal modulator
JPH0568060A (en) * 1991-03-11 1993-03-19 Nippon Telegr & Teleph Corp <Ntt> Distortion compensation orthogonal modulator
JPH11136302A (en) * 1997-10-29 1999-05-21 Fujitsu Ltd Distortion compensation circuit
JP2000116240A (en) * 1998-10-09 2000-04-25 Fukuoka Marumoto Kk Panel for cultivation
JP2001339452A (en) * 2000-05-26 2001-12-07 Hitachi Kokusai Electric Inc Orthogonal modulating device and orthogonal modulation error detecting method
WO2003101061A1 (en) * 2002-05-24 2003-12-04 Anritsu Corporation Quadrature modulator carrier quadrature error detection method and quadrature modulation device
JP2007116240A (en) * 2005-10-18 2007-05-10 Anritsu Corp Digital modulation signal generating apparatus

Also Published As

Publication number Publication date
JP2007116241A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP5365516B2 (en) Signal processing apparatus and signal processing method
JP4918927B2 (en) Signal processing circuit
US8224269B2 (en) Vector modulator calibration system
KR100710125B1 (en) Tranceiver circuit for compensating iq mismatch and carrier leakage and control method of the same
CN1649334B (en) Apparatus and method for adjusting quadrature modulator, and acommunication apparatus
JP4659584B2 (en) Digital modulation signal generator
US9490858B2 (en) Transmitter capable of reducing local oscillation leakage and in-phase/quadrature-phase (I/Q) mismatch and adjusting methods thereof
JP4376689B2 (en) Quadrature modulation system
JP2004343806A (en) Digital orthogonal modulator
CN101123460A (en) Communication system for calibrate impairments in transmitting signal and related method
JP3737819B2 (en) Carrier quadrature error detection method and quadrature modulation apparatus for quadrature modulator
JP4557863B2 (en) Digital modulation signal generator
US7944989B2 (en) Quadrature modulation apparatus, method, program, and recording medium
CN105610760B (en) Wireless comprehensive test instrument is to the unbalanced detection method of single carrier QPSK signal IQ
US8755467B2 (en) Method and circuit system for deciding a symbol upon reception of received symbols coupled with a quadrature signal pair
JP3144649B2 (en) Distortion compensated quadrature modulator
US7068983B2 (en) Method for detecting quadrature modulator carrier leak adjusting point by geometrical analysis/calculation method, carrier leak adjusting method, and quadrature modulation apparatus
KR20050121212A (en) Orthogonal modulation device, method, program, recording medium, and modulation device
EP2547059B1 (en) Transmitter including calibration of an in-phase/Quadrature (I/Q) modulator and associated methods
TW201444325A (en) Digital radios
JP2004274288A (en) Quadrature modulator
JPH04275746A (en) Orthogonal modulator
JP2000324026A (en) Digital modulation signal measurement instrument
JP2006186581A (en) Method and circuit for orthogonal demodulation error compensation
JP2002232498A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees