JP4659239B2 - Microwave electron tube input / output window structure - Google Patents

Microwave electron tube input / output window structure Download PDF

Info

Publication number
JP4659239B2
JP4659239B2 JP2001066027A JP2001066027A JP4659239B2 JP 4659239 B2 JP4659239 B2 JP 4659239B2 JP 2001066027 A JP2001066027 A JP 2001066027A JP 2001066027 A JP2001066027 A JP 2001066027A JP 4659239 B2 JP4659239 B2 JP 4659239B2
Authority
JP
Japan
Prior art keywords
waveguide
dielectric plate
metal sleeve
input
electron tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001066027A
Other languages
Japanese (ja)
Other versions
JP2002270104A (en
Inventor
邦美 古元
康次郎 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2001066027A priority Critical patent/JP4659239B2/en
Publication of JP2002270104A publication Critical patent/JP2002270104A/en
Application granted granted Critical
Publication of JP4659239B2 publication Critical patent/JP4659239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ波電子管の入出力窓構造に関し、特に発振周波数の高いミリ波帯で動作するマイクロ波電子管の入出力窓構造に関する。
【0002】
【従来の技術】
従来からマイクロ波電子管の真空度を保ち、マイクロ波電力を通過させる入力または出力の窓として数々の方式のものが知られている。円盤状の誘電体を使った図3に示したピルタイプの窓が従来技術の代表例で、広帯域特性、耐電力特性の観点からマイクロ波電子管の入出力窓構造として広く用いられている。
【0003】
図3はピルタイプの窓がマイクロ波電子管であるマグネトロンに用いられている例を示した図である。マグネトロンは発振管であるので入力窓はなく、出力窓のみになっている。マグネトロンの出力はアノードブロック52に設けたスリット54を介して導波管のリッジ部分55を通り矩形導波管56に取り出される。この矩形導波管56に円筒空胴60を設け、その中央に誘電体円盤61を配置する。この構造がいわゆる一般的なピルタイプの窓で、誘電体には通常セラミクスが用いられる。ピルタイプの窓は誘電体円盤61を含んだ円筒空胴60が動作周波数において空胴共振器の特定の共振モードで共振する寸法に設計している。通常、この共振モードは円筒導波管の基本モードであるTE11モードが用いられ、円筒空胴のTE111モードが一般的に利用されている。さらに、動作周波数が高くなると、従来のピルタイプの窓ではそれに応じてセラミクス円盤の厚さを薄く、例えば35GHz帯では0.3mm程度にしなければならず、これを、その側面すなわち0.3mm部分でロウ付けすることは非常に困難であった。
【0004】
【発明が解決しようとする課題】
上記のような入出力窓では、動作周波数が高くいわゆるミリ波領域のマイクロ波管の場合、正常な動作のためには、厳しい寸法精度が要求され、かつ寸法を波長に応じて小さくしなければならない構造であるので、周波数が高く誘電体円盤が小さい場合、そのロウ付け部分の信頼性が良くないと言った問題点があった。本発明は上記問題点を解消し、寸法精度をさほど必要とせず、低コストで、かつ信頼性の高いマイクロ波電子管の入出力窓構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明のマイクロ波電子管の入出力窓構造は、上記目的を達成するために、動作周波数において基本モードのみが伝送する導波管入力または導波管出力とするマイクロ波電子管であって、前記導波管の外側に該導波管を内包するよう金属スリーブを嵌合し、該金属スリーブ端面を誘電体板で被蓋し、前記金属スリーブの端面と前記誘電体板の平面部分を気密封止して接合し、前記導波管は前記誘電体板に当接し、前記金属スリーブと前記導波管と前記誘電体板を周囲の壁面とするチョーク機能を持ち、前記導波管と前記誘電体板の間のインピーダンスを整合する空胴を形成すると共に、前記誘電体板は伝送モードにより引き起こされる前記誘電体板部分での共振周波数が前記動作周波数とは異なる共振周波数となる寸法としたものである。
【0006】
また、前記導波管外形は、端部の径が縮小して段をなす円柱状に形成され、前記金属スリーブは円筒状に形成され、前記端部が前記空胴の前記壁面の一部をなすことを特徴とする。
【0007】
【発明の実施の形態】
図1は本発明を35GHz帯動作のマグネトロン出力窓に適用した実施例で、1はシェル、2はアノードブロック、3は金属スリーブ、4はスリット、5はリッジ導波管、6は矩形導波管、7はチョーク空胴、8は誘電体板である。また、図2は図1のマグネトロンを出力導波管に取り付けたときの結合部を示し、9は結合フランジ、10は出力導波管を示す。
【0008】
マグネトロンの出力窓はマグネトロン管球内を真空に保ったままその中で発生させたマイクロ波電力を外部に取り出すために必要であり、その出力は、スリット4、導波管のリッジ部分5、矩形導波管6、誘電体板8を通り出力導波管10から取り出される。出力導波管10および矩形導波管6は、WR−28の規格導波管と同一の寸法(7.11mm×3.556mm)の導波路をもつ。矩形導波管6の外形はφ12.6mmの円柱状であり、出力側端部がφ7.84mmに縮小されて段をなしている。金属スリーブ3は内径φ12.6mm、外径φ13.5mmの円筒形状で、矩形導波管6を内包するようその外側に嵌合されている。
誘電体板8はφ17.6mm、厚さ1.3mmのセラミクス円盤である。
【0009】
金属スリーブ3はマグネトロンの真空気密を得るため、管球の外側を覆っているシェル1にロウ付けされ、その他端は開口が被蓋されるように誘電体板8がロウ付けされている。矩形導波管6は誘電体板8に突き当てられており、誘電体板8とは特にロウ付けなどはされていない。したがって、誘電体板と矩形導波管の熱膨張率の違いによる歪も発生せず良好な信頼性が得られる。矩形導波管6は動作周波数において基本モードであるTE10モードのみが伝送される寸法であるが、誘電体板部分は基本モードのほかに、数々のモードが伝送可能な寸法である。本発明の窓の設計に際しては、これらの伝送モードによって引き起こされる誘電体板部分での共振を動作周波数から避ける寸法にすれば良い。
【0010】
チョーク空胴7は、金属スリーブ3、矩形導波管6及び誘電体板8を周囲の壁面とし、これらに囲まれて形成されているもので、チョーク機能を持つ。このチョーク空胴7の寸法は、矩形導波管6と誘電体板8との間でインピーダンスの不整合が生じないよう予め実験等により適宜選択する。なお、本例のチョーク空胴7は、外形がφ12.6mm(金属スリーブ内径)、内径φ7.84mm(矩形導波管6端部径)のリング形状であり、その幅は2.38mmで一様である。チョーク空胴7の幅寸法は、動作周波数におけるマイクロ波波長の概略1/4を中心値として約その1割程度の振れ幅内で調整するとよい。
【0011】
本実施例は、このような構造であるため、容易に製造することができる。すなわち、矩形導波管6は、小さなものであれば銅のスラグから冷間鍛造で一度に最終形状のものを得ることができ、大きなものでも引き抜き加工と旋盤加工で容易に得ることができる。また、チョーク空胴7を形成するのにフライス加工など用いる必要がなく、金属スリーブ3を矩形導波管6に外嵌するのみで形成できる。ロウ付けも従来のように導波管内部で行わずに外部から見える部分で行えるので作業性が良好となる。また、金属スリーブを市販されている鋼管とすればコストも抑えることができる。
【0012】
本実施例は発振管であるマグネトロンで説明したので出力機能のみであるが、クロスフィールド増幅管や進行波管などのアンプ管では入出力機能の両方があり、上記と同様な構成によってインピーダンスの整合をとることができる。なお、本例では誘電体板8にセラミクス円盤を用いているが、材質としてはガラスやダイアモンド、サファイアなどの誘電体を用いることも可能である。また、本例では金属スリーブ3を円筒形状にしてあるが、製作上の容易性のためで必ずしも円筒形状である必要はない。セラミクス円盤についても同様である。
【0013】
以上説明したように、本実施例と従来例との構造上大きな相違点は、本実施例には円筒空胴60がないという点にある。円筒空胴60は空胴共振器を構成し、その寸法によって所望の周波数の高周波のみを通過させる、いわゆるバンドパスフィルタの役目をはたしている。そのため、中に組み入れられるセラミクス円盤61は共振周波数を合わせるために、その厚さを厳密に決めている。本実施例の場合、従来の円筒空胴60に当たる部分は矩形導波管6、誘電体板8、出力導波管10の継ぎ目部に形成される。すなわち、チョーク空胴7の寸法を適宜に変えることで誘電体板部分の前後で生じる不整合を解消している。なお、本実施例の窓は結合フランジ9と合わせて窓としての整合が取れるように構成するため、結合フランジ9の形状は通常の規格フランジとは異なり特殊な形状であるが、平面で取り付くバットフランジでも、チョーク構造を設けたチョークフランジでも採用可能である。このように構成することによって出力導波管との接続を容易にし、かつ整合性の高い高効率の取り付け構造を提供している。
【0014】
【発明の効果】
本発明の入出力窓はセラミクス板を特定の共振周波数に合わせるのではなく、共振周波数を動作周波数から避けるだけで良いので、寸法公差が比較的粗くても動作に悪影響が少ない。また、誘電体板寸法は動作周波数の割に大きくできるので、ミリ波帯といった高い周波数のマイクロ波管においても組み立て性がよい入出力窓となる。本発明の入出力窓は同じ35GHz帯でセラミクス板の厚さは1.3mmで可能、かつロウ付けは側面ではなく平面部分で行えるので組み立ても容易である。
【0015】
また、導波管の外形を段部の付いた円柱状とし、円筒状の金属スリーブを外嵌して、これらと誘電体板で囲まれる空間を、チョーク機能を持つ空胴とする構成をとれば、さらに生産性が向上したマイクロ波電子管を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例であるマイクロ波電子管の入出力窓構造を示す断面図である。
【図2】図1のマイクロ波電子管の取り付け構造を示す断面図である。
【図3】従来のマイクロ波電子管の入出力窓構造を示す断面図である。
【符号の説明】
1:シェル、2:アノードブロック、3:金属スリーブ、4:スリット、5:リッジ導波管、6:矩形導波管、7:チョーク空胴、8:誘電体板、9:結合フランジ、10:出力導波管、51:シェル、52:アノードブロック、54:スリット、55:リッジ導波管、56:矩形導波管、60:円筒空胴、61:セラミクス円盤、62:出力導波管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an input / output window structure of a microwave electron tube, and more particularly to an input / output window structure of a microwave electron tube operating in a millimeter wave band having a high oscillation frequency.
[0002]
[Prior art]
Conventionally, various types of input or output windows for maintaining the degree of vacuum of a microwave electron tube and allowing microwave power to pass therethrough are known. The pill type window shown in FIG. 3 using a disk-shaped dielectric is a typical example of the prior art, and is widely used as an input / output window structure of a microwave electron tube from the viewpoint of broadband characteristics and power durability.
[0003]
FIG. 3 is a diagram showing an example in which a pill type window is used in a magnetron which is a microwave electron tube. Since the magnetron is an oscillation tube, there is no input window and only an output window. The output of the magnetron is taken out to a rectangular waveguide 56 through a ridge portion 55 of the waveguide through a slit 54 provided in the anode block 52. A cylindrical cavity 60 is provided in the rectangular waveguide 56, and a dielectric disk 61 is disposed in the center thereof. This structure is a so-called general pill type window, and ceramic is usually used for the dielectric. The pill type window is designed such that the cylindrical cavity 60 including the dielectric disk 61 resonates at a specific resonance mode of the cavity resonator at the operating frequency. Normally, the TE11 mode, which is a fundamental mode of a cylindrical waveguide, is used as this resonance mode, and the TE111 mode of a cylindrical cavity is generally used. Furthermore, when the operating frequency is increased, the thickness of the ceramic disk has to be reduced correspondingly in the conventional pill type window, for example, about 0.3 mm in the 35 GHz band, and this is reduced on the side surface, that is, the 0.3 mm portion. It was very difficult to braze.
[0004]
[Problems to be solved by the invention]
In the case of the input / output window as described above, in the case of a so-called millimeter-wave region microwave tube, strict dimensional accuracy is required for normal operation, and the size must be reduced according to the wavelength. Since this structure does not work, when the frequency is high and the dielectric disk is small, there is a problem that the reliability of the brazed portion is not good. An object of the present invention is to solve the above problems, and to provide an input / output window structure for a microwave electron tube that does not require much dimensional accuracy, is low in cost, and has high reliability.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an input / output window structure of a microwave electron tube according to the present invention is a microwave electron tube having a waveguide input or a waveguide output for transmitting only a fundamental mode at an operating frequency. A metal sleeve is fitted to the outside of the wave tube so as to enclose the waveguide, and the end surface of the metal sleeve is covered with a dielectric plate, and the end surface of the metal sleeve and the planar portion of the dielectric plate are hermetically sealed. to joining, the waveguide abuts on the dielectric plate, the said metal sleeve and the waveguide dielectric plate Chi lifting choke function of the surrounding wall, the dielectric and the waveguide A cavity for matching impedance between body plates is formed, and the dielectric plate is dimensioned so that a resonance frequency at the dielectric plate portion caused by a transmission mode is a resonance frequency different from the operating frequency. .
[0006]
The outer shape of the waveguide is formed in a columnar shape having a stepped diameter by reducing the diameter of the end portion, the metal sleeve is formed in a cylindrical shape, and the end portion covers a part of the wall surface of the cavity. It is characterized by doing.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment in which the present invention is applied to a 35 GHz band operation magnetron output window. 1 is a shell, 2 is an anode block, 3 is a metal sleeve, 4 is a slit, 5 is a ridge waveguide, and 6 is a rectangular waveguide. A tube, 7 is a choke cavity, and 8 is a dielectric plate. 2 shows a coupling portion when the magnetron of FIG. 1 is attached to the output waveguide, 9 is a coupling flange, and 10 is an output waveguide.
[0008]
The output window of the magnetron is necessary for taking out the microwave power generated in the magnetron tube while keeping the inside of the magnetron vacuum, and the output is the slit 4, the ridge portion 5 of the waveguide, the rectangular shape The light is taken out from the output waveguide 10 through the waveguide 6 and the dielectric plate 8. The output waveguide 10 and the rectangular waveguide 6 have the same dimensions (7.11 mm × 3.556 mm) as the standard waveguide of WR-28. The rectangular waveguide 6 has a cylindrical shape with a diameter of φ12.6 mm, and the output side end portion is reduced to φ7.84 mm to form a step. The metal sleeve 3 has a cylindrical shape with an inner diameter of φ12.6 mm and an outer diameter of φ13.5 mm, and is fitted to the outside so as to enclose the rectangular waveguide 6.
The dielectric plate 8 is a ceramic disk having a diameter of 17.6 mm and a thickness of 1.3 mm.
[0009]
In order to obtain the vacuum tightness of the magnetron, the metal sleeve 3 is brazed to the shell 1 covering the outside of the tube, and the dielectric plate 8 is brazed so that the opening is covered at the other end. The rectangular waveguide 6 is abutted against the dielectric plate 8 and is not particularly brazed to the dielectric plate 8. Therefore, distortion due to the difference in thermal expansion coefficient between the dielectric plate and the rectangular waveguide does not occur, and good reliability can be obtained. The rectangular waveguide 6 has such a dimension that only the TE10 mode, which is the fundamental mode, is transmitted at the operating frequency. However, the dielectric plate portion has dimensions capable of transmitting various modes in addition to the fundamental mode. In designing the window of the present invention, the dimensions should be such that resonance in the dielectric plate portion caused by these transmission modes is avoided from the operating frequency.
[0010]
The choke cavity 7 is formed by surrounding the metal sleeve 3, the rectangular waveguide 6 and the dielectric plate 8 with surrounding walls, and has a choke function. The dimensions of the choke cavity 7 are appropriately selected by experiments or the like in advance so as not to cause impedance mismatch between the rectangular waveguide 6 and the dielectric plate 8. The choke cavity 7 of the present example has a ring shape with an outer diameter of φ12.6 mm (inner diameter of the metal sleeve) and an inner diameter of φ7.84 mm (diameter of the end of the rectangular waveguide 6), and its width is 2.38 mm. It is like. The width dimension of the choke cavity 7 is preferably adjusted within about 10% of the fluctuation width with the center value being approximately 1/4 of the microwave wavelength at the operating frequency.
[0011]
Since the present embodiment has such a structure, it can be easily manufactured. That is, if the rectangular waveguide 6 is small, the final shape can be obtained from a copper slag at a time by cold forging, and even a large one can be easily obtained by drawing and turning. Further, it is not necessary to use a milling process or the like to form the choke cavity 7, and the choke cavity 7 can be formed only by fitting the metal sleeve 3 to the rectangular waveguide 6. Since brazing can also be performed in a portion that can be seen from the outside without being performed inside the waveguide as in the prior art, workability is improved. Further, if the metal sleeve is a commercially available steel pipe, the cost can be reduced.
[0012]
Since this embodiment has been described with a magnetron as an oscillation tube, it has only an output function, but an amplifier tube such as a cross-field amplifier tube or traveling wave tube has both input and output functions. Can be taken. In this example, a ceramic disk is used for the dielectric plate 8, but it is also possible to use a dielectric such as glass, diamond, or sapphire as the material. In this example, the metal sleeve 3 has a cylindrical shape. However, it is not always necessary to have a cylindrical shape for ease of manufacture. The same applies to ceramic discs.
[0013]
As described above, the great difference in structure between the present embodiment and the conventional example is that the present embodiment does not have the cylindrical cavity 60. The cylindrical cavity 60 constitutes a cavity resonator and functions as a so-called band-pass filter that allows only a high frequency of a desired frequency to pass through depending on its size. Therefore, the thickness of the ceramic disk 61 incorporated therein is strictly determined in order to match the resonance frequency. In the case of this embodiment, the portion corresponding to the conventional cylindrical cavity 60 is formed at the joint portion of the rectangular waveguide 6, the dielectric plate 8, and the output waveguide 10. That is, mismatching occurring before and after the dielectric plate portion is eliminated by appropriately changing the dimensions of the choke cavity 7. In addition, since the window of the present embodiment is configured so as to be aligned as the window together with the coupling flange 9, the shape of the coupling flange 9 is a special shape unlike the normal standard flange, but the bat that is mounted on a plane is used. Either a flange or a choke flange provided with a choke structure can be used. By configuring in this way, the connection with the output waveguide is facilitated, and a highly efficient and highly efficient mounting structure is provided.
[0014]
【The invention's effect】
Since the input / output window of the present invention does not adjust the ceramic plate to a specific resonance frequency, it is only necessary to avoid the resonance frequency from the operating frequency. In addition, since the dielectric plate size can be increased with respect to the operating frequency, it is an input / output window that can be easily assembled even in a high-frequency microwave tube such as a millimeter wave band. The input / output window of the present invention is the same 35 GHz band and the thickness of the ceramic plate can be 1.3 mm, and brazing can be performed not on the side but on the flat surface, so that assembly is easy.
[0015]
In addition, the outer shape of the waveguide can be a columnar shape with a stepped portion, and a cylindrical metal sleeve can be externally fitted, and the space surrounded by these and a dielectric plate can be a cavity with a choke function. Thus, a microwave electron tube with further improved productivity can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an input / output window structure of a microwave electron tube according to an embodiment of the present invention.
2 is a cross-sectional view showing a structure for attaching the microwave electron tube of FIG. 1; FIG.
FIG. 3 is a cross-sectional view showing an input / output window structure of a conventional microwave electron tube.
[Explanation of symbols]
1: shell, 2: anode block, 3: metal sleeve, 4: slit, 5: ridge waveguide, 6: rectangular waveguide, 7: choke cavity, 8: dielectric plate, 9: coupling flange, 10 : Output waveguide, 51: Shell, 52: Anode block, 54: Slit, 55: Ridge waveguide, 56: Rectangular waveguide, 60: Cylindrical cavity, 61: Ceramic disc, 62: Output waveguide

Claims (2)

動作周波数において基本モードのみが伝送する導波管入力または導波管出力とするマイクロ波電子管の入出力窓構造であって、前記導波管の外側に該導波管を内包するよう金属スリーブを嵌合し、該金属スリーブ端面を誘電体板で被蓋し、前記金属スリーブの端面と前記誘電体板の平面部分を気密封止して接合し、前記導波管は前記誘電体板に当接し、前記金属スリーブと前記導波管と前記誘電体板を周囲の壁面とするチョーク機能を持ち、前記導波管と前記誘電体板の間のインピーダンスを整合する空胴を形成すると共に、前記誘電体板は伝送モードにより引き起こされる前記誘電体板部分での共振周波数が前記動作周波数とは異なる共振周波数となる寸法であることを特徴とするマイクロ波電子管の入出力窓構造。An input / output window structure of a microwave electron tube having a waveguide input or a waveguide output for transmitting only a fundamental mode at an operating frequency, wherein a metal sleeve is included outside the waveguide so as to enclose the waveguide. The end face of the metal sleeve is covered with a dielectric plate, and the end face of the metal sleeve and the planar portion of the dielectric plate are hermetically sealed and joined, and the waveguide is in contact with the dielectric plate. contact, together with the metal sleeve and the waveguide and the dielectric plate Chi lifting the choke function of the surrounding wall to form a cavity matching the impedance of the dielectric plates and the waveguide, the dielectric The input / output window structure of a microwave electron tube, wherein the body plate has a dimension such that a resonance frequency in the dielectric plate portion caused by a transmission mode is a resonance frequency different from the operation frequency . 前記導波管外形は、端部の径が縮小して段をなす円柱状に形成され、前記金属スリーブは円筒状に形成され、前記端部が前記空胴の前記壁面の一部をなすことを特徴とする請求項1に記載のマイクロ波電子管の入出力窓構造。  The waveguide outer shape is formed in a columnar shape in which the diameter of the end portion is reduced to form a step, the metal sleeve is formed in a cylindrical shape, and the end portion forms part of the wall surface of the cavity. The input / output window structure of the microwave electron tube according to claim 1.
JP2001066027A 2001-03-09 2001-03-09 Microwave electron tube input / output window structure Expired - Fee Related JP4659239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066027A JP4659239B2 (en) 2001-03-09 2001-03-09 Microwave electron tube input / output window structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066027A JP4659239B2 (en) 2001-03-09 2001-03-09 Microwave electron tube input / output window structure

Publications (2)

Publication Number Publication Date
JP2002270104A JP2002270104A (en) 2002-09-20
JP4659239B2 true JP4659239B2 (en) 2011-03-30

Family

ID=18924586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066027A Expired - Fee Related JP4659239B2 (en) 2001-03-09 2001-03-09 Microwave electron tube input / output window structure

Country Status (1)

Country Link
JP (1) JP4659239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109767964A (en) * 2018-12-30 2019-05-17 中国电子科技集团公司第十二研究所 A kind of microwave seal window

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817082B2 (en) * 1989-05-09 1996-02-21 株式会社東芝 Waveguide airtight window structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109767964A (en) * 2018-12-30 2019-05-17 中国电子科技集团公司第十二研究所 A kind of microwave seal window

Also Published As

Publication number Publication date
JP2002270104A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
EP0817303A2 (en) Dielectric filter and dielectric duplexer
US3860891A (en) Microwave waveguide window having the same cutoff frequency as adjoining waveguide section for an increased bandwidth
US8237366B2 (en) Output window with venting means for use with a vacuum electron device
JP4659239B2 (en) Microwave electron tube input / output window structure
US2883631A (en) High frequency transmitting windows
JPH06112708A (en) Waveguide/plane line converter
JPH03145201A (en) Microwave window
US3281729A (en) Hermetic window construction of waveguide for extremely high frequency electronic tubes
US2768327A (en) Wave guide output circuit for a magnetron
US3728650A (en) Ghost-mode shifted dielectric window
JP2007287382A (en) Pillbox vacuum window and manufacturing method of same
JPH05183301A (en) Structure for package input/output section for ultra-high frequency band
JP2848146B2 (en) Microwave vacuum airtight coaxial window
JP2002374101A (en) Choke flange
JP3283457B2 (en) Airtight high-frequency window
JP3503595B2 (en) Output window and manufacturing method thereof
JPS5936001Y2 (en) Connection structure between vacuum window and waveguide
JPH08154001A (en) Pillbox type vacuum window
JP2842058B2 (en) Traveling wave tube
JP2745916B2 (en) The cavity resonator of a multi-cavity klystron.
JPH0427082Y2 (en)
JPH0817082B2 (en) Waveguide airtight window structure
US5166575A (en) Grid tube with coupled-cavity output, with coupling element integral with said tube
JPH0595203A (en) Coaxial resonator filter
JPH0963491A (en) Traveling wave tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees