JP4657175B2 - Measuring method of protein fiber retention - Google Patents

Measuring method of protein fiber retention Download PDF

Info

Publication number
JP4657175B2
JP4657175B2 JP2006230436A JP2006230436A JP4657175B2 JP 4657175 B2 JP4657175 B2 JP 4657175B2 JP 2006230436 A JP2006230436 A JP 2006230436A JP 2006230436 A JP2006230436 A JP 2006230436A JP 4657175 B2 JP4657175 B2 JP 4657175B2
Authority
JP
Japan
Prior art keywords
amount
protein fiber
hair
measured
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230436A
Other languages
Japanese (ja)
Other versions
JP2008051742A (en
Inventor
真吾 高田
智 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006230436A priority Critical patent/JP4657175B2/en
Publication of JP2008051742A publication Critical patent/JP2008051742A/en
Application granted granted Critical
Publication of JP4657175B2 publication Critical patent/JP4657175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、タンパク質繊維の保液量の測定方法、それを用いたタンパク質繊維の液の浸透分布の測定方法、タンパク質繊維の膨潤率の測定方法、及びそれを用いた剤の浸透量の測定方法に関する。   The present invention relates to a method for measuring the amount of protein fiber retentate, a method for measuring the permeation distribution of protein fiber solution using the same, a method for measuring the swelling rate of protein fibers, and a method for measuring the amount of agent permeation using the same. About.

近年、シャンプー、リンス、コンディショナー等の毛髪に使用する剤には、保水成分や保湿成分等が添加されたものが数多く提供されている。また、染毛剤やブリーチ剤の開発においては、その使用後において毛髪の保水性や保湿性への影響も考慮されている。このような中、シャンプー、リンス、コンディショナー、染毛剤、ブリーチ剤等の毛髪に使用する剤の開発において、毛髪の局所における保水量や水の浸透の具合を把握することは、添加する保水成分を選択したり、これらの剤の毛髪内への浸透具合を把握する上で極めて有効であると考えられる。   In recent years, many agents used for hair such as shampoos, rinses, conditioners, etc., to which water-retaining components, moisturizing components and the like are added have been provided. In the development of hair dyes and bleaching agents, the effect on the water retention and moisture retention of the hair after use is also considered. Under such circumstances, in the development of agents used for hair such as shampoos, rinses, conditioners, hair dyes, bleaching agents, etc., it is necessary to grasp the amount of water retention and the degree of water penetration in the local area of the hair. It is considered to be extremely effective in selecting the above and grasping the penetration of these agents into the hair.

毛髪の保水量や水の浸透分布の測定技術に関して、これまで種々の方法が提案されているが(下記特許文献1等参照)、これらの技術では、毛髪全体の平均水分量が求まるため、局所的な毛髪の保水量を把握することが困難であった。   Various techniques have been proposed so far for techniques for measuring the water retention amount and water penetration distribution (see Patent Document 1 below). However, since these techniques determine the average moisture content of the entire hair, It was difficult to grasp the water retention amount of the typical hair.

一方、下記非特許文献1及び2に記載の技術のように、共焦点ラマン分光法に皮膚のラマンスペクトルを測定し、その深さ方向における水分量を測定する技術が提案されている。非特許文献1の技術では、皮膚をピンホールを有する板に押し当て、ピンホールにて露出された皮膚面を共焦点ラマン測定している。また非特許文献2の技術では透明基板に皮膚を押し当て、形成された皮膚平面に対して、透明基板ごしの測定を行っている。何れの技術も、皮膚面を剤に浸漬したままの状態で、皮膚内局所における化学組成情報を取得することはできないため、これらの技術をそのまま適用しても、剤に浸漬した状態で、毛髪の局所における保水量を把握するには難があった。   On the other hand, as in the techniques described in Non-Patent Documents 1 and 2 below, a technique has been proposed in which the Raman spectrum of the skin is measured by confocal Raman spectroscopy and the moisture content in the depth direction is measured. In the technique of Non-Patent Document 1, the skin is pressed against a plate having a pinhole, and the skin surface exposed through the pinhole is measured by confocal Raman measurement. In the technique of Non-Patent Document 2, the skin is pressed against the transparent substrate, and the measurement of the transparent substrate is performed on the formed skin plane. None of the techniques can acquire chemical composition information in the local area of the skin with the skin surface immersed in the agent, so even if these techniques are applied as they are, the hair remains immersed in the agent. It was difficult to grasp the amount of water retained locally.

特開2003−344279号公報JP 2003-344279 A L.Chrit et al.:" In vivo chemical investigation of human skin using a confocal Raman fiber optic microprobe", Journal of Biomedical Optics 10(4),044007(July/August 2005)L. Chrit et al .: "In vivo chemical investigation of human skin using a confocal Raman fiber optic microprobe", Journal of Biomedical Optics 10 (4), 044007 (July / August 2005) PJ Caspers et al.:" In vivo confocal Raman microscopy of the skin: noninvasive determination of molecular concentration profile", Journal of Investigative Dermatology 116(3), 434(2001)PJ Caspers et al .: "In vivo confocal Raman microscopy of the skin: noninvasive determination of molecular concentration profile", Journal of Investigative Dermatology 116 (3), 434 (2001)

本発明は、上述の課題に鑑みてなされたものであり、剤に浸漬した状態でのタンパク質繊維の局所における、保液量、液の浸透分布、膨潤率の測定方法、剤の浸透量を好適に測定することができる、タンパク質繊維の局所における保液量の測定方法、タンパク質繊維の液の浸透分布の測定方法、タンパク質繊維の膨潤率の測定方法、タンパク質繊維における剤の浸透量の測定方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is suitable for the amount of liquid retention, the liquid permeation distribution, the method for measuring the swelling rate, and the permeation amount of the agent in the region of the protein fiber immersed in the agent. A method for measuring the amount of protein retentate locally, a method for measuring the permeation distribution of protein fiber liquid, a method for measuring the swelling rate of protein fibers, and a method for measuring the amount of agent permeation into protein fibers. The purpose is to provide.

本発明は、保液量の異なる既知の基準タンパク質毎のラマンスペクトルを共焦点ラマン分光法によって測定し、該測定結果に基づく該基準タンパク質の保液量の検量線を作成し、測定対象となるタンパク質繊維のラマンスペクトルを共焦点ラマン分光法によって測定し、該タンパク質繊維についての測定結果と前記検量線とを用いて該タンパク質繊維の局所における保液量を求めるタンパク質繊維の保液量の測定方法を提供することにより、前記目的を達成したものである。   The present invention measures the Raman spectrum of each known reference protein having a different liquid retention amount by confocal Raman spectroscopy, creates a calibration curve of the liquid retention amount of the reference protein based on the measurement result, and becomes a measurement object A method for measuring a protein fiber retentive amount by measuring a Raman spectrum of a protein fiber by confocal Raman spectroscopy, and using the measurement result of the protein fiber and the calibration curve to determine a retentive amount of the protein fiber locally. By providing the above, the above object is achieved.

また、本発明は、前記本発明のタンパク質繊維の保液量の測定方法により、タンパク質繊維のラマンスペクトルを表面からの深さを変えて共焦点ラマン分光法によって測定し、該タンパク質繊維中の局所における液の浸透分布を求めるタンパク質繊維の液の浸透分布の測定方法を提供するものである。   The present invention also provides a method for measuring the amount of protein fiber retained in the present invention, wherein the Raman spectrum of the protein fiber is measured by confocal Raman spectroscopy while changing the depth from the surface. A method for measuring the permeation distribution of a protein fiber liquid is provided.

また、本発明は、前記本発明のタンパク質繊維の保液量の測定方法により、前記タンパク質繊維の局所における保液量を測定し、該測定結果に基づいて水及び非膨潤状態における毛髪の密度からタンパク質液中の局所における膨潤率を求めるタンパク質繊維の膨潤率の測定方法を提供するものである。   Moreover, the present invention measures the amount of the protein fiber locally retained by the method for measuring the amount of protein fiber retained according to the present invention, and based on the measurement result, the density of water and the hair in a non-swelled state is measured. The present invention provides a method for measuring the swelling rate of protein fibers to obtain the local swelling rate in a protein solution.

また、本発明は、保液量の異なる既知の基準タンパク質毎及び濃度の異なる既知の剤の溶液毎のラマンスペクトルを共焦点ラマン分光法によってそれぞれ測定し、それらの測定結果に基づいて前記基準タンパク質における前記剤の保有量の検量線を作成し、測定対象となるタンパク質繊維のラマンスペクトルを共焦点ラマン分光法によって測定し、該測定結果と前記検量線とを用いて前記タンパク質繊維の局所における前記剤の保有量を求めるタンパク質繊維における剤の浸透量の測定方法を提供するものである。   In addition, the present invention measures the Raman spectrum of each known reference protein having a different liquid retention amount and each solution of a known agent having a different concentration by confocal Raman spectroscopy, and the reference protein is based on the measurement results. A calibration curve of the amount of the agent held in is prepared, the Raman spectrum of the protein fiber to be measured is measured by confocal Raman spectroscopy, and the protein fiber locally in the protein fiber using the measurement result and the calibration curve The present invention provides a method for measuring the amount of penetration of an agent into a protein fiber for obtaining the amount of the agent to be retained.

本発明によれば、毛髪等のタンパク質繊維の局所における保液量、液の浸透分布、膨潤率及び剤の浸透量を好適に測定することができる。   ADVANTAGE OF THE INVENTION According to this invention, the liquid retention amount in the local of protein fibers, such as hair, the penetration distribution of a liquid, a swelling rate, and the penetration amount of an agent can be measured suitably.

以下本発明を、その好ましい実施形態に基づいて説明する。
先ず、本発明のタンパク質繊維の液の浸透分布の測定方法及びタンパク質繊維の保液量の測定方法を、毛髪の水の浸透分布の測定方法及び毛髪の保水量の測定方法に適用した好ましい実施形態に基づいて説明する。
The present invention will be described below based on preferred embodiments thereof.
First, a preferred embodiment in which the method for measuring the permeation distribution of protein fiber liquid and the method for measuring the amount of protein fiber retention of the present invention is applied to the method of measuring the water penetration distribution of hair and the method of measuring the water retention amount of hair. Based on

本実施形態において使用される基準タンパク質は、測定対象となるタンパク質繊維に応じて選択される。本実施形態のように、測定対象のタンパク質繊維が毛髪の場合には、好ましい基準タンパク質として、ゼラチン、アルブミン、カゼイン等の水溶性のタンパク質が挙げられる。これらの中でも、水溶解性の高さ、取り扱い性、入手のしやすさ、等の点から、ゼラチンが好ましい。   The reference protein used in this embodiment is selected according to the protein fiber to be measured. As in this embodiment, when the protein fiber to be measured is hair, preferred reference proteins include water-soluble proteins such as gelatin, albumin, and casein. Among these, gelatin is preferable from the viewpoint of high water solubility, handleability, availability, and the like.

本実施形態の測定方法では、保水量の異なる既知の基準タンパク質毎のラマンスペクトルを共焦点ラマン分光法によって測定し、該測定結果に基づく該基準タンパク質の保水量の検量線を作成する。なお、ここでの保水量とは、水〔質量%〕/基準タンパク質〔質量%〕で表されるとする。そして、測定対象となる毛髪のラマンスペクトルを共焦点ラマン分光法によって測定し、該測定結果と前記検量線とを用いて前記毛髪の局所における保水量を求める。以下、本実施形態の測定方法をさらに詳細に説明する。なお、以下の説明において、単にラマンスペクトルという場合には、共焦点ラマン分光法により測定されるラマンスペクトルをいう。   In the measurement method of this embodiment, a Raman spectrum for each known reference protein having a different water retention amount is measured by confocal Raman spectroscopy, and a calibration curve for the water retention amount of the reference protein is created based on the measurement result. Here, the water retention amount is expressed as water [mass%] / reference protein [mass%]. Then, the Raman spectrum of the hair to be measured is measured by confocal Raman spectroscopy, and the water retention amount in the local area of the hair is obtained using the measurement result and the calibration curve. Hereinafter, the measurement method of this embodiment will be described in more detail. In the following description, the term “Raman spectrum” refers to a Raman spectrum measured by confocal Raman spectroscopy.

上述のように保水量の異なる既知の基準タンパク質についてのラマンスペクトルを測定する際には、水と基準タンパク質を一定の割合で均一に混合させ、該混合試料に対してレーザー光を照射し、照射部より発生するラマン散乱光を集光し、検出器を備えた分光器に導入する。混合試料へのレーザーの照射・集光は、ガラス等の窓材を介して行っても良いし、水浸型の対物レンズを試料に直接接触させても良い。   As described above, when measuring the Raman spectrum of known reference proteins with different water retention amounts, water and reference proteins are uniformly mixed at a fixed ratio, and the mixed sample is irradiated with laser light. The Raman scattered light generated from the unit is collected and introduced into a spectrometer equipped with a detector. Laser irradiation and condensing of the mixed sample may be performed through a window material such as glass, or a water immersion type objective lens may be brought into direct contact with the sample.

次に、測定の結果得られたラマンスペクトルにおいて、保水量が既知の基準タンパク質のラマンスペクトルIM1(ω)が、下記式(1)に示すように、α、βをパラメータとし、水を含まない基準タンパク質(絶乾状態:25℃、72時間の乾燥後、以下同じ。)のラマンスペクトルIN1(ω)及び水のラマンスペクトルIN2(ω)によって表されるものとし、IM1(ω)、IN1(ω)、IN2(ω)よりパラメータα及びβ、又はβ/αを求める。ここで、ωはラマンシフトの波数とする。そして、求めたパラメータα及びβ、又はβ/αと、基準タンパク質の保水量(水〔質量%〕/基準タンパク質〔質量%〕)との関係から検量線を作成する。
IM1(ω)=αIN1(ω)+βIN2(ω)・・・(1)
Next, in the Raman spectrum obtained as a result of the measurement, the Raman spectrum IM1 (ω) of the reference protein whose water retention amount is known has α and β as parameters and does not contain water as shown in the following formula (1). It is represented by the Raman spectrum IN1 (ω) of the reference protein (absolutely dry state: after drying at 25 ° C. for 72 hours and the same applies below) and the Raman spectrum IN2 (ω) of water, and IM1 (ω), IN1 ( Parameters α and β, or β / α are obtained from ω) and IN2 (ω). Here, ω is the wave number of the Raman shift. Then, a calibration curve is created from the relationship between the obtained parameters α and β, or β / α, and the water retention amount of the reference protein (water [mass%] / reference protein [mass%]).
IM1 (ω) = αIN1 (ω) + βIN2 (ω) (1)

具体的には、例えば、保水量を変えた基準タンパク質、水を含まない基準タンパク質、及び水のみについてラマンスペクトルを測定する。そして、それぞれのラマンスペクトルの2900cm-1付近の毛髪のCH伸縮振動に由来するピーク、及び3300cm-1付近の水のOH伸縮振動に由来するピークを含む波数領域について前記式(1)を適用し、図1に示すように、(β/α)vs水〔質量%〕/基準タンパク質〔質量%〕で表される検量線を求める。 Specifically, for example, a Raman spectrum is measured only for a reference protein with a different amount of water retention, a reference protein that does not contain water, and water. Then, the above formula (1) is applied to the wave number region including the peak derived from the CH stretching vibration of hair near 2900 cm −1 and the peak derived from the OH stretching vibration of water near 3300 cm −1 in each Raman spectrum. As shown in FIG. 1, a calibration curve expressed by (β / α) vs water [mass%] / reference protein [mass%] is obtained.

次に、測定対象となる毛髪のラマンスペクトルを測定する。この測定の際には、水を含まない毛髪のスペクトルの取得時は、窓材上、あるいは空気中に設置した毛髪に対してレーザーを照射して測定する。剤に浸漬した状態の毛髪の測定には、倒立型の共焦点ラマン分光器の場合は、底面に窓材を取り付けた容器内に毛髪と剤を入れ、窓材を介してレーザーを毛髪に照射することによりスペクトルを測定する。また正立型共焦点ラマン分光器の場合は、容器内に毛髪と剤を入れ、剤中に水浸レンズ先端部を挿入し、レーザーを毛髪に照射することにより、スペクトルを測定する。   Next, the Raman spectrum of the hair to be measured is measured. In this measurement, when acquiring the spectrum of the hair not containing water, the measurement is performed by irradiating laser on the hair placed on the window material or in the air. In the case of an inverted confocal Raman spectroscope, the hair and the agent are placed in a container with a window material attached to the bottom, and laser is irradiated to the hair through the window material. To measure the spectrum. In the case of an erecting confocal Raman spectrometer, the hair and the agent are placed in a container, the tip of a water immersion lens is inserted into the agent, and the spectrum is measured by irradiating the hair with laser.

次に、測定の結果得られたラマンスペクトルにおいて、保水量未知の毛髪のラマンスペクトルIM2(ω)が、下記式(2)に示すように、α、βをパラメータとし、水を含まない毛髪(絶乾状態)のラマンスペクトルIN1(ω)及び水のラマンスペクトルIN2(ω)によって表されるものとし、それらのパラメータα及びβ、又はβ/αを求める。そして、求めたパラメータα及びβ、又はβ/αと、基準タンパク質の保水量についての検量線から毛髪の保水量Hwを求める。
IM2(ω)=αIN1(ω)+βIN2(ω)・・・(2)
次に、毛髪をタンパク質と水の2成分で近似して、下記式(3)より毛髪中の水分量WW〔質量%〕を求める。
WW={HW/(HW+1)}×100・・・(3)
Next, in the Raman spectrum obtained as a result of the measurement, the Raman spectrum IM2 (ω) of the hair whose amount of water retention is unknown is represented by the following formula (2). It is expressed by a Raman spectrum IN1 (ω) in a completely dry state and a Raman spectrum IN2 (ω) of water, and their parameters α and β, or β / α are obtained. And the water retention amount Hw of hair is calculated | required from the calculated | required parameter (alpha) and beta, or (beta) / (alpha), and the calibration curve about the water retention amount of a reference | standard protein.
IM2 (ω) = αIN1 (ω) + βIN2 (ω) (2)
Next, the hair is approximated with two components of protein and water, and the water content WW [mass%] in the hair is obtained from the following formula (3).
WW = {HW / (HW + 1)} × 100 (3)

具体的には、例えば、保水量未知の毛髪、水を含まない毛髪及び水のみについてラマンスペクトルを測定する。そして、それぞれのラマンスペクトルの2900cm-1付近の毛髪のCH伸縮振動に由来するピークの面積、及び3300cm-1付近の水のOH伸縮振動に由来するピークを含む波数領域において、前記式(2)に適用して(β/α)を求め、前記基準タンパク質の保水量についての検量線(図1)から毛髪の局所における保水量HW(水〔質量%〕/タンパク質〔質量%〕)を求める。次に、HWを前記式(3)に適用して毛髪中の水分量Ww〔質量%〕を求める。ここで、局所とは、レーザービームが照射されたときの焦点部分となる毛髪の一部分をいい、レーザービームの照射面積(ビーム径)、及び共焦点ラマン分光器の共焦点光学系のピンホールによって定まる範囲をいう。 Specifically, for example, the Raman spectrum is measured only for hair whose water retention amount is unknown, hair not containing water, and water. Then, in the wave number region including the peak area derived from the CH stretching vibration of hair near 2900 cm −1 and the peak derived from the OH stretching vibration of water near 3300 cm −1 in each Raman spectrum, the above formula (2) (Β / α) is obtained, and a water retention amount HW (water [mass%] / protein [mass%]) in the local area of the hair is obtained from a calibration curve (FIG. 1) for the water retention amount of the reference protein. Next, the water content Ww [mass%] in hair is calculated | required by applying HW to said Formula (3). Here, the local means a part of hair that becomes a focal part when the laser beam is irradiated, and depends on the irradiation area (beam diameter) of the laser beam and the pinhole of the confocal optical system of the confocal Raman spectrometer. A fixed range.

次に、上述のような毛髪のラマンスペクトルを表面からの深さを変えて測定し、毛髪中の局所における水の浸透分布を求める。測定する深さの間隔が狭い程より精度の高い結果が得られるが、毛髪キューティクルの一層の厚さが約0.5μmであることを考慮すると、0.25〜0.5μmの間隔で測定すれば、所望の測定結果を得ることができる。   Next, the Raman spectrum of the hair as described above is measured while changing the depth from the surface, and the permeation distribution of water locally in the hair is obtained. The narrower the measurement depth, the more accurate the results are obtained. However, considering that the thickness of the hair cuticle is about 0.5 μm, the measurement is performed at intervals of 0.25 to 0.5 μm. Thus, a desired measurement result can be obtained.

このように、本実施形態の毛髪の保水量の測定方法、及び毛髪の水の浸透分布の測定方法によれば、毛髪の局所的な保水量及び水の浸透分布を簡便に測定することができる。よって、後述するように、毛髪の局所的な膨潤率や剤の浸透量を簡便に測定することができる。また、本実施形態では、毛髪の保水量を水中の毛髪についてその水分量や水の浸透分布を測定するので、剤に作用している状態での毛髪の局所における保水量や水の浸透の具合を把握することができる。   As described above, according to the method for measuring the water retention amount of the hair and the method for measuring the water penetration distribution of the hair according to this embodiment, the local water retention amount and the water penetration distribution of the hair can be easily measured. . Therefore, as will be described later, the local swelling rate of hair and the penetration amount of the agent can be easily measured. In this embodiment, the water retention amount of the hair is measured with respect to the hair in water, and the water penetration amount and water penetration distribution are measured. Can be grasped.

次に、本発明のタンパク質繊維の膨潤率の測定方法を、毛髪の保水による膨潤率の測定方法に適用した好ましい実施形態に基づいて説明する。   Next, the method for measuring the swelling rate of the protein fiber of the present invention will be described based on a preferred embodiment applied to the method for measuring the swelling rate by retaining the hair.

本実施形態の膨潤率の測定方法では、先ず、前記実施形態の毛髪の保水量の測定方法のように、毛髪のラマンスペクトルを測定する。そして、毛髪の局所における水分量を測定し、その測定結果(HW)と水の密度(DW)及び非膨潤状態(絶乾状態)における毛髪の密度(DH)から、下記式(4)により膨潤率を求める。ただし、保水に伴って水と毛髪は理想混合し、混合に伴う体積の収縮はないものとする。
膨潤率〔%〕=[(HW/DW)+{(1−HW)/DH}]/{(1−HW)/DH}×100・・・(4)
In the method for measuring the swelling rate of this embodiment, first, the Raman spectrum of hair is measured as in the method for measuring the water retention amount of the hair of the above embodiment. Then, the amount of water in the local area of the hair is measured, and the measurement result (HW), the density of the water (DW), and the density of the hair in the non-swelled state (absolutely dry state) (DH) are swollen by the following formula (4). Find the rate. However, water and hair are ideally mixed with water retention, and there is no volume shrinkage associated with mixing.
Swelling ratio [%] = [(HW / DW) + {(1-HW) / DH}] / {(1-HW) / DH} × 100 (4)

このように、本実施形態の膨潤率の測定方法によれば、保水に伴う毛髪の局所的な膨潤率を好適に測定することができる。本実施形態の膨潤率の測定方法によれば、毛髪の局所的な膨潤率の変化を把握することができるので、局所的な毛髪の膨潤による毛髪内部構造のひずみに伴うダメージの影響等を把握することができる。   Thus, according to the method for measuring the swelling rate of the present embodiment, the local swelling rate of hair accompanying water retention can be suitably measured. According to the method for measuring the swelling rate of the present embodiment, since the change in the local swelling rate of the hair can be grasped, the influence of the damage caused by the distortion of the hair internal structure due to the local swelling of the hair is grasped. can do.

次に、本発明のタンパク質繊維における剤の浸透量の測定方法を、毛髪における水系のブリーチ剤中の過酸化水素の浸透量の測定方法に適用した好ましい実施形態に基づいて説明する。   Next, the method for measuring the penetration amount of the agent in the protein fiber of the present invention will be described based on a preferred embodiment applied to the method for measuring the penetration amount of hydrogen peroxide in the aqueous bleaching agent in the hair.

本実施形態の測定方法では、保水量の異なる既知の基準タンパク質毎、及び濃度の異なる既知のブリーチ剤の水溶液毎のラマンスペクトルをそれぞれ測定し、それらの測定結果に基づいて前記基準タンパク質におけるブリーチ剤中の保有量の検量線を作成し、測定対象となるタンパク質繊維のラマンスペクトルを測定し、該測定結果と前記検量線とを用いて前記タンパク質繊維の前記局所におけるブリーチ剤の保有量を求め、ブリーチ剤中の過酸化水素の重量分率から過酸化水素量を求める。以下、本実施形態の測定方法をさらに詳細に説明する。   In the measurement method of the present embodiment, the Raman spectrum is measured for each known reference protein having a different water retention amount and each aqueous solution of a known bleaching agent having a different concentration, and the bleaching agent for the reference protein is determined based on the measurement results. Create a calibration curve for the amount of protein in it, measure the Raman spectrum of the protein fiber to be measured, and determine the amount of bleaching agent retained locally in the protein fiber using the measurement result and the calibration curve, The amount of hydrogen peroxide is determined from the weight fraction of hydrogen peroxide in the bleaching agent. Hereinafter, the measurement method of this embodiment will be described in more detail.

先ず、前記実施形態の毛髪の保水量の測定方法と同様にして、保水量が既知の基準タンパク質のラマンスペクトルを測定し、得られた測定結果について、パラメータα及びβ、又はβ/αと、基準タンパク質の保水量との関係から検量線を作成する。例えば、図1に示したような(β/α)vs(水〔質量%〕/基準タンパク質〔質量%〕)で表される検量線を作成する。本実施形態においても、前記実施形態と同様に水を含まない毛髪についての測定を除き、毛髪のラマンスペクトルの測定は、水中で行うことが好ましい。   First, in the same manner as the method for measuring the water retention amount of the hair in the above embodiment, the Raman spectrum of a reference protein with a known water retention amount is measured, and the obtained measurement results are obtained with parameters α and β, or β / α, A calibration curve is created from the relationship with the water content of the reference protein. For example, a calibration curve represented by (β / α) vs (water [mass%] / reference protein [mass%]) as shown in FIG. 1 is created. Also in this embodiment, it is preferable that the measurement of the Raman spectrum of hair is performed in water, except for the measurement of hair not containing water, as in the above embodiment.

次に、濃度が既知のブリーチ剤の水溶液のラマンスペクトルを測定する。この測定の方法は、上述の水中にける毛髪の測定法と基本的には同じであるが、ブリーチ剤は1剤と2剤を混合後、過酸化水素が発生するため、1剤と2剤を混合後速やかに毛髪の処理を開始することが好ましい。   Next, the Raman spectrum of an aqueous solution of bleaching agent having a known concentration is measured. This measurement method is basically the same as the above-described method for measuring hair in water. However, bleaching agent generates hydrogen peroxide after mixing one agent and two agents, so one agent and two agents. It is preferable to start the hair treatment immediately after mixing.

次に、測定の結果得られたラマンスペクトルにおいて、濃度が既知のブリーチ剤の水溶液のラマンスペクトルIM4(ω)が、下記式(5)に示すように、β、γをパラメータとし、水のみのラマンスペクトルIN2(ω)及びブリーチ剤のみのラマンスペクトルIN3(ω)によって表されるものとし、それらのパラメータβ及びγ、又はγ/βを求める。そして、求めたパラメータβ及びγ、又はγ/βと、ブリーチ剤〔質量%〕/水〔質量%〕)との関係から検量線を作成する。
IM4(ω)=βIN2(ω)+γIN3(ω)・・・(5)
Next, in the Raman spectrum obtained as a result of the measurement, the Raman spectrum IM4 (ω) of the aqueous solution of bleaching agent having a known concentration is represented by the following equation (5), with β and γ as parameters, The parameters β and γ, or γ / β are determined by the Raman spectrum IN2 (ω) and the Raman spectrum IN3 (ω) of the bleaching agent only. Then, a calibration curve is created from the relationship between the obtained parameters β and γ, or γ / β, and bleaching agent [mass%] / water [mass%]).
IM4 (ω) = βIN2 (ω) + γIN3 (ω) (5)

具体的には、例えば、濃度を変えたブリーチ剤の水溶液、ブリーチ剤のみ、及び水のみについてラマンスペクトルを測定する。そして、それぞれのラマンスペクトルについて3300cm-1付近の水のOH伸縮振動、及び870cm-1付近のブリーチ剤中の過酸化水素のOO伸縮振動に由来するピークを含む波数領域について、前記式(5)を適用し、(γ/β)vs(ブリーチ剤〔質量%〕/水〔質量%〕)で表される検量線を求める。 Specifically, for example, a Raman spectrum is measured for an aqueous solution of bleaching agent with different concentrations, only the bleaching agent, and only water. For each Raman spectrum, the wave number region including the peak derived from the OH stretching vibration of water near 3300 cm −1 and the OO stretching vibration of hydrogen peroxide in the bleaching agent near 870 cm −1 is expressed by the above formula (5). Is applied to obtain a calibration curve represented by (γ / β) vs (bleaching agent [mass%] / water [mass%]).

そして、これらの得られた前記式(1)と前記式(5)に関する検量線の傾きの係数について積算し、(γ/α)vs(ブリーチ剤〔質量%〕/基準タンパク質〔質量%〕)で表される前記基準タンパク質におけるブリーチ剤の保有量の検量線の傾きの係数とした。   Then, the obtained slopes of the calibration curves relating to the above formulas (1) and (5) were integrated, and (γ / α) vs (bleaching agent [mass%] / reference protein [mass%]). The slope coefficient of the calibration curve of the amount of bleaching agent held in the reference protein represented by

次に、所定濃度のブリーチ剤水溶液に浸漬したときの、毛髪のラマンスペクトル(ブリーチ剤の保有量未知の毛髪のラマンスペクトル)IM5(ω)が、下記式(6)に示すように、α、γをパラメータとし、水を含まない毛髪(絶乾状態)のラマンスペクトルIN1(ω)及びブリーチ剤のラマンスペクトルIN3(ω)によって表されるものとし、それらのパラメータα及びγ、又はγ/αを求める。そして、求めたパラメータα及びγ、又はγ/αと、上述した基準タンパク質の保水量及びブリーチ剤の濃度についての検量線の組み合わせからブリーチ剤の保有量未知の毛髪のブリーチ剤の保有量HBを求める。
IM5(ω)=αIN1(ω)+γIN3(ω)・・・(6)
次に、毛髪をタンパク質と水、ブリーチ剤の3成分で近似すると、毛髪中のブリーチ剤量WB〔質量%〕は下記式(7)で示される。
WB={HB/(HB+HW+1)}×100・・・(7)
さらに、ブリーチ剤中の過酸化水素の重量分率WBD[質量%]から下記式(8)により、毛髪中の過酸化水素量WD〔質量%〕を求める。
WD=(WB×WBD)/100・・・(8)
Next, when immersed in a bleaching agent aqueous solution of a predetermined concentration, the Raman spectrum of hair (the Raman spectrum of hair with unknown bleaching agent retention amount) IM5 (ω) is expressed as α, It is assumed that γ is a parameter and is represented by a Raman spectrum IN1 (ω) of hair not containing water (absolutely dry state) and a Raman spectrum IN3 (ω) of a bleaching agent, and those parameters α and γ, or γ / α Ask for. From the combination of the obtained parameters α and γ, or γ / α, and the above-mentioned calibration curve for the water retention amount and the concentration of the bleaching agent, the bleaching agent holding amount HB of the hair bleaching agent unknown Ask.
IM5 (ω) = αIN1 (ω) + γIN3 (ω) (6)
Next, when the hair is approximated by three components of protein, water, and bleaching agent, the bleaching agent amount WB [% by mass] in the hair is represented by the following formula (7).
WB = {HB / (HB + HW + 1)} × 100 (7)
Further, the hydrogen peroxide amount WD [mass%] in the hair is obtained from the weight fraction WBD [mass%] of the hydrogen peroxide in the bleaching agent by the following formula (8).
WD = (WB × WBD) / 100 (8)

具体的には、例えば、ブリーチ剤の保有量未知の毛髪、水を含まない毛髪、及びブリーチ剤のみについてラマンスペクトルを測定する。そして、それぞれのラマンスペクトルについて2900cm-1付近の毛髪のCH伸縮振動に由来するピーク、及び870cm-1付近のブリーチ剤中の過酸化水素のOO伸縮振動に由来するピークを含む波数領域について前記式(6)に適用して(γ/α)を求め、前記基準タンパク質の保水量及びブリーチ剤の濃度についての検量線の組み合わせからブリーチ剤の保有量未知の毛髪の局所におけるブリーチ剤の保有量HB(過酸化水素〔質量%〕/基準タンパク質〔質量%〕)を求める。次に、HBを前記式(7)に適用して毛髪中のブリーチ剤量WBD〔質量%〕を求める。さらに、WBD〔質量%〕を前記式(8)に適用して毛髪中の過酸化水素量WB〔質量%〕を求める。本実施形態においても、毛髪をブリーチ剤の水溶液中に浸した状態でラマンスペクトルを測定することが好ましい。 Specifically, for example, the Raman spectrum is measured only for hair with unknown amount of bleaching agent, hair without water, and bleaching agent only. Then, for each Raman spectrum, the above-mentioned formula is used for the wave number region including the peak derived from the CH stretching vibration of hair near 2900 cm −1 and the peak derived from the OO stretching vibration of hydrogen peroxide in the bleaching agent near 870 cm −1. (6) is applied to obtain (γ / α), and the amount of bleaching agent in the local area of the hair where the amount of bleaching agent is unknown HB from the combination of calibration curves for the water retention amount of the reference protein and the concentration of bleaching agent HB (Hydrogen peroxide [mass%] / reference protein [mass%]) is determined. Next, HB is applied to the formula (7) to determine the bleaching agent amount WBD [mass%] in the hair. Further, WBD [mass%] is applied to the formula (8) to determine the amount of hydrogen peroxide WB [mass%] in the hair. Also in this embodiment, it is preferable to measure the Raman spectrum in a state where the hair is immersed in an aqueous solution of a bleaching agent.

このように、本実施形態の毛髪の剤の浸透量の測定方法によれば、毛髪の局所的なブリーチ剤及びブリーチ剤中の過酸化水素の浸透量(保有量)を簡便に測定することができる。また、本実施形態では、毛髪をブリーチ剤(の水溶液)に浸した状態でその浸透量を測定できるので、ブリーチ剤の使用形態に即した浸透量の測定結果を得ることができる。   Thus, according to the method for measuring the amount of penetration of the hair agent of this embodiment, the local bleaching agent for hair and the penetration amount (retention amount) of hydrogen peroxide in the bleaching agent can be easily measured. it can. Moreover, in this embodiment, since the penetration amount can be measured in a state where the hair is immersed in the bleaching agent (an aqueous solution thereof), it is possible to obtain a measurement result of the penetration amount in accordance with the use form of the bleaching agent.

本発明は、前記実施形態に制限されるものではない。本発明は、前記実施形態におけるように、測定対象となるタンパク質繊維として毛髪が好適であるが、本発明の測定対象となるタンパク質繊維は、タンパク質繊維からなるものであれば、特に制限はない。測定対象となる好ましいタンパク質繊維としては、人毛以外に、獣毛、絹糸等の天然タンパク質繊維や各種の人工繊維が挙げられる。   The present invention is not limited to the embodiment. In the present invention, hair is suitable as the protein fiber to be measured as in the above embodiment, but the protein fiber to be measured in the present invention is not particularly limited as long as it is made of protein fiber. Preferred protein fibers to be measured include natural protein fibers such as animal hair and silk and various artificial fibers in addition to human hair.

本発明は、浸透量の測定対象となる剤は前記実施形態におけるようなブリーチ剤に制限されない。本発明の適用される浸透量の測定対象となる剤としては、測定対象となるタンパク質繊維の及び水のラマンスペクトルのピークの発現位置(cm-1)と重ならないようなラマンスペクトルのピークを有する剤が好ましい。測定材料となる好ましい剤としては、シャンプー、リンス、コンディショナー、染毛剤、くせ毛矯正剤等が挙げられる。 In the present invention, the agent for measuring the amount of penetration is not limited to the bleaching agent as in the above embodiment. The agent to be measured for the amount of penetration to which the present invention is applied has a Raman spectrum peak that does not overlap with the expression position (cm −1 ) of the Raman spectrum peak of the protein fiber to be measured and water. Agents are preferred. Preferable agents that serve as measurement materials include shampoos, rinses, conditioners, hair dyes, hair straighteners, and the like.

以下実施例により本発明をさらに具体的に説明する。本発明の範囲は斯かる実施例に制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. The scope of the present invention is not limited to such examples.

〔実施例1〕
基準タンパク質としてゼラチンを使用し、下記のように保水量を代えた複数の試料を作製し、下記測定条件でラマンスペクトルを測定した。また、水のみのラマンスペクトルも併せて測定した。ラマンスペクトルの測定には、市販の共焦点ラマン分光器(東京インスツルメンツ社製、ナノファインダー)を使用した。図2にそれらの測定結果を示す。図2に示したように2900cm-1付近に毛髪のCH伸縮振動、3300cm-1付近に水のOH伸縮振動に由来するピークを示すラマンスペクトルが得られた。そしてこれらの二つのピークを含む波数領域について上記式(1)を適用し、図3に示すような基準タンパク質の保水量についての検量線を求めた。
[Example 1]
Using gelatin as a reference protein, a plurality of samples with different water retention amounts were prepared as described below, and Raman spectra were measured under the following measurement conditions. Moreover, the Raman spectrum of only water was also measured. A commercially available confocal Raman spectrometer (manufactured by Tokyo Instruments Inc., Nano Finder) was used for the measurement of the Raman spectrum. FIG. 2 shows the measurement results. CH stretching vibration of the hair near 2900 cm -1, as shown in FIG. 2, the Raman spectrum having a peak derived from OH stretching vibration of water is obtained in the vicinity of 3300 cm -1. And the said Formula (1) was applied about the wavenumber area | region containing these two peaks, and the calibration curve about the water retention amount of a reference | standard protein as shown in FIG. 3 was calculated | required.

<基準タンパク質試料>
性状:水とゼラチン粉末の均一混合物
保水量:19、9.0、5.7、4.0
<Reference protein sample>
Properties: Uniform mixture of water and gelatin powder Water retention amount: 19, 9.0, 5.7, 4.0

<測定条件>
ガラス製の底面をもつ容器に、基準タンパク質試料又は水を入れた。容器の底面を油浸オイルを介してレンズに密着させ、波長633nmのレーザー光を入射してラマンスペクトルを測定した。
<Measurement conditions>
A reference protein sample or water was placed in a glass bottom container. The bottom surface of the container was brought into close contact with the lens via oil immersion oil, and laser light having a wavelength of 633 nm was incident to measure the Raman spectrum.

次に、測定対象の下記毛髪について、下記測定条件で毛髪表面からの深さを変えてラマンスペクトルを測定した。図4にその測定結果を示す。図4に示したように2900cm-1付近に毛髪のCH伸縮振動、3300cm-1付近に水のOH伸縮振動に由来するピークを示すラマンスペクトルが得られた。 Next, the Raman spectrum of the hair to be measured was measured by changing the depth from the hair surface under the following measurement conditions. FIG. 4 shows the measurement results. Hair CH stretching vibration near 2900 cm -1, as shown in FIG. 4, a Raman spectrum having a peak derived from OH stretching vibration of water is obtained in the vicinity of 3300 cm -1.

<毛髪>
寸法・形状:容器に即した長さに切断した毛髪。また、メラニン色素を含まない毛髪(白髪)が好ましい。
<Hair>
Dimensions / shape: Hair cut to a length suitable for the container. Moreover, the hair (white hair) which does not contain a melanin pigment is preferable.

<測定条件>
ガラス製の底面をもつ容器内で、毛髪を水に浸漬させた。容器の底面を油浸オイルを介してレンズに密着させ、波長633nmのレーザー光を入射して、深さ方向に焦点位置を変えてラマンスペクトルを測定した。
<Measurement conditions>
The hair was immersed in water in a container with a glass bottom. The bottom surface of the container was brought into close contact with the lens via oil immersion oil, a laser beam having a wavelength of 633 nm was incident, and the focal position was changed in the depth direction to measure the Raman spectrum.

得られたラマンスペクトルの上記二つのピークの面積を求め、式(2)に適用し、(β/α)を求めて図3検量線から各深さにおける毛髪の局所の保水量(水の浸透分布)を求めた。さらに毛髪を水とタンパク質の2成分で近似し、式(3)に基づいて水分量[質量%]の深さ方向分布を求めた。その結果を図5に示す。   Obtain the area of the above two peaks of the obtained Raman spectrum, apply it to the equation (2), obtain (β / α), and determine the local water retention amount of hair (water penetration at each depth) from the calibration curve in FIG. Distribution). Furthermore, the hair was approximated with two components of water and protein, and the depth direction distribution of the water content [% by mass] was determined based on the formula (3). The result is shown in FIG.

図5に示したように、表面の深さが深くなるにつれて保水量は少なくなることが確認できた。   As shown in FIG. 5, it was confirmed that the water retention amount decreased as the surface depth increased.

〔実施例2〕
上記条件で求まった保水量に基づき、上記式(4)により膨潤率を求めた。その結果を図6に示す。
[Example 2]
Based on the water retention amount obtained under the above conditions, the swelling rate was obtained by the above formula (4). The result is shown in FIG.

図6に示したように、表面の深さが深くなるにつれて膨潤率は小さくなることが確認できた。   As shown in FIG. 6, it has been confirmed that the swelling rate decreases as the depth of the surface increases.

〔実施例3〕
保水量が既知の基準タンパク質のラマンスペクトルを〔実施例2〕と同様に測定し、図3に示すような基準タンパク質の保水量についての検量線を求めた。
Example 3
A Raman spectrum of a reference protein with a known water retention amount was measured in the same manner as in [Example 2], and a calibration curve for the water retention amount of the reference protein as shown in FIG. 3 was obtained.

濃度を変えたブリーチ剤水溶液を作製し、〔実施例2〕と同様にしてラマンスペクトルを測定した。また、水のみのラマンスペクトルも併せて測定した。3300cm-1付近に発現する水のOH伸縮振動、及び870cm-1付近に発現するブリーチ剤中の過酸化水素のOO伸縮振動に由来するピークが出現したラマンスペクトルが得られた。そしてこれらの二つのピークを含む波数領域について上記式(5)を適用し、ブリーチ剤の量についての検量線を求めた。 Bleaching agent aqueous solutions with different concentrations were prepared, and Raman spectra were measured in the same manner as in [Example 2]. Moreover, the Raman spectrum of only water was also measured. A Raman spectrum was obtained in which a peak derived from the OH stretching vibration of water expressed in the vicinity of 3300 cm −1 and the OO stretching vibration of hydrogen peroxide in the bleaching agent expressed in the vicinity of 870 cm −1 was obtained. And the said Formula (5) was applied about the wavenumber area | region containing these two peaks, and the calibration curve about the quantity of a bleaching agent was calculated | required.

そして、これらの得られた検量線を組み合わせ、前記基準タンパク質におけるブリーチ剤の保有量の検量線を作成した。   These calibration curves were combined to create a calibration curve for the amount of bleaching agent in the reference protein.

ブリーチ剤の保有量未知の毛髪、水を含まない毛髪及びブリーチ剤のみについてラマンスペクトルを測定した。それぞれ2900cm-1付近に毛髪のCH伸縮振動に由来するピーク、3300cm-1付近に水のOH伸縮振動に由来するピーク、及び870cm-1付近にブリーチ剤中の過酸化水素のOO伸縮振動に由来するピークが出現したラマンスペクトルが得られた。 The Raman spectrum was measured only for hair with unknown amount of bleaching agent, hair without water and bleaching agent. Peak derived from CH stretching vibration of hair around 2900 cm −1, peak derived from OH stretching vibration of water near 3300 cm −1 , and OO stretching vibration of hydrogen peroxide in bleaching agent around 870 cm −1 , respectively. A Raman spectrum in which a peak appears was obtained.

前記式(6)に適用して(γ/α)を求め、前記基準タンパク質の保水量及びブリーチ剤の濃度についての検量線の組み合わせからブリーチ剤の保有量未知の毛髪の局所におけるブリーチ剤の保有量(保有量〔質量%〕/基準タンパク質量〔質量%〕)を求めた。次にこの結果を前記式(7)に適用して、毛髪中のブリーチ剤量WBD〔質量%〕を求めた。さらに、WBD〔質量%〕を前記式(8)に適用して毛髪中の過酸化水素量〔質量%〕を求めた。その結果を図7に示す。   Applying to the equation (6) to obtain (γ / α), and holding the bleaching agent in the local area of the hair where the amount of the bleaching agent is unknown based on the combination of the calibration curve for the water retention amount of the reference protein and the concentration of the bleaching agent The amount (retention amount [mass%] / reference protein amount [mass%]) was determined. Next, this result was applied to the formula (7) to determine the amount of bleaching agent WBD [mass%] in the hair. Furthermore, WBD [mass%] was applied to the formula (8) to determine the amount of hydrogen peroxide [mass%] in the hair. The result is shown in FIG.

図7に示したように、表面の深さが深くなるにつれて過酸化水素量〔質量%〕の小さくなることが確認できた。   As shown in FIG. 7, it was confirmed that the amount of hydrogen peroxide [mass%] decreased as the surface depth increased.

本発明のタンパク質繊維の保水量及び浸透分布の測定方法において使用する基準タンパク質による保水量の検量線の概略図である。It is the schematic of the calibration curve of the water retention amount by the reference | standard protein used in the measuring method of the water retention amount and permeation distribution of the protein fiber of this invention. 本発明の実施例における水、基準タンパク質、及び保水量既知の基準タンパク質のラマンスペクトルの一例を示す図である。It is a figure which shows an example of the Raman spectrum of water, the reference | standard protein, and the reference | standard protein with known water retention amount in the Example of this invention. 本発明の実施例により得られた基準タンパク質による保水量の検量線を示す図である。It is a figure which shows the calibration curve of the amount of water retention by the reference | standard protein obtained by the Example of this invention. 本発明の実施例における保水量未知の毛髪の各深さにおけるラマンスペクトルを示す図である。It is a figure which shows the Raman spectrum in each depth of the hair whose water retention amount is unknown in the Example of this invention. 本発明の実施例による各深さにおける毛髪の局所の水分量(水の浸透分布)を示す図である。It is a figure which shows the local moisture content (water penetration distribution) of the hair in each depth by the Example of this invention. 本発明の実施例による各深さにおける毛髪の局所の膨潤率を示す図である。It is a figure which shows the local swelling rate of the hair in each depth by the Example of this invention. 本発明の実施例による各深さにおける毛髪の局所の過酸化水素量(過酸化水素の浸透分布)を示す図である。It is a figure which shows the local hydrogen peroxide amount (permeation distribution of hydrogen peroxide) of the hair in each depth by the Example of this invention.

Claims (8)

保液量の異なる既知の基準タンパク質毎のラマンスペクトルを共焦点ラマン分光法によって測定し、該測定結果に基づく該基準タンパク質の保液量の検量線を作成し、測定対象となるタンパク質繊維のラマンスペクトルを共焦点ラマン分光法によって測定し、該タンパク質繊維についての測定結果と前記検量線とを用いて該タンパク質繊維の局所における保液量を求めるタンパク質繊維の保液量の測定方法。   The Raman spectrum of each known reference protein with different liquid retention amount is measured by confocal Raman spectroscopy, a calibration curve of the liquid retention amount of the reference protein based on the measurement result is created, and the Raman of the protein fiber to be measured A method for measuring a retained amount of protein fiber, wherein a spectrum is measured by confocal Raman spectroscopy, and a measured amount of the protein fiber and a calibration curve are used to obtain a locally retained amount of the protein fiber. 前記タンパク質繊維を液中に浸した状態で前記ラマンスペクトルを測定する請求項1に記載のタンパク質繊維の保液量の測定方法。   The method for measuring the protein fiber retention amount according to claim 1, wherein the Raman spectrum is measured in a state where the protein fiber is immersed in a liquid. 前記タンパク質繊維が毛髪である請求項1又は2に記載のタンパク質繊維の保液量の測定方法。   The method for measuring a protein fiber retention amount according to claim 1 or 2, wherein the protein fiber is hair. 請求項1〜3の何れかに記載のタンパク質繊維の保液量の測定方法により、タンパク質繊維のラマンスペクトルを表面からの深さを変えて共焦点ラマン分光法によって測定し、該タンパク質繊維中の局所における液の浸透分布を求めるタンパク質繊維の液の浸透分布の測定方法。   The method for measuring the amount of protein fiber retentate according to any one of claims 1 to 3, wherein the Raman spectrum of the protein fiber is measured by confocal Raman spectroscopy while changing the depth from the surface. A method for measuring the permeation distribution of protein fiber liquid to determine the local liquid permeation distribution. 請求項1〜3の何れかに記載のタンパク質繊維の保液量の測定方法により、前記タンパク質繊維の局所における保液量を測定し、該測定結果に基づいて、水及び非膨潤状態における毛髪の密度から該タンパク質繊維中の局所における膨潤率を求めるタンパク質繊維の膨潤率の測定方法。   The method for measuring the protein fiber retentive amount according to any one of claims 1 to 3, wherein the protein fiber local retentate amount is measured, and based on the measurement results, the water and the hair in a non-swelled state are measured. A method for measuring the swelling ratio of a protein fiber to obtain a local swelling ratio in the protein fiber from the density. 保液量の異なる既知の基準タンパク質毎及び濃度の異なる既知の剤の溶液毎のラマンスペクトルを共焦点ラマン分光法によってそれぞれ測定し、それらの測定結果に基づいて前記基準タンパク質における前記剤の保有量の検量線を作成し、測定対象となるタンパク質繊維のラマンスペクトルを共焦点ラマン分光法によって測定し、該測定結果と前記検量線とを用いて前記タンパク質繊維の局所における前記剤の保有量を求めるタンパク質繊維における剤の浸透量の測定方法。   The Raman spectrum of each known reference protein having a different liquid retention amount and each solution of a known agent having a different concentration are measured by confocal Raman spectroscopy, and the amount of the agent retained in the reference protein based on the measurement results. A calibration curve of the protein fiber is prepared, the Raman spectrum of the protein fiber to be measured is measured by confocal Raman spectroscopy, and the amount of the agent held locally in the protein fiber is determined using the measurement result and the calibration curve. A method for measuring the amount of an agent penetrating into a protein fiber. 前記タンパク質繊維を液中に浸した状態で前記ラマンスペクトルを測定する請求項6に記載のタンパク質繊維における剤の浸透量の測定方法。   The method according to claim 6, wherein the Raman spectrum is measured in a state where the protein fiber is immersed in a liquid. 前記タンパク質繊維が毛髪である請求項6又は7に記載のタンパク質繊維における剤の浸透量の測定方法。   The method for measuring the amount of penetration of an agent in a protein fiber according to claim 6 or 7, wherein the protein fiber is hair.
JP2006230436A 2006-08-28 2006-08-28 Measuring method of protein fiber retention Expired - Fee Related JP4657175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230436A JP4657175B2 (en) 2006-08-28 2006-08-28 Measuring method of protein fiber retention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230436A JP4657175B2 (en) 2006-08-28 2006-08-28 Measuring method of protein fiber retention

Publications (2)

Publication Number Publication Date
JP2008051742A JP2008051742A (en) 2008-03-06
JP4657175B2 true JP4657175B2 (en) 2011-03-23

Family

ID=39235922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230436A Expired - Fee Related JP4657175B2 (en) 2006-08-28 2006-08-28 Measuring method of protein fiber retention

Country Status (1)

Country Link
JP (1) JP4657175B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679596B2 (en) * 2008-02-27 2011-04-27 花王株式会社 Method for measuring moisture content in hair
JP5288912B2 (en) * 2008-07-04 2013-09-11 花王株式会社 Method for measuring skin moisture content
JP5460528B2 (en) * 2010-09-02 2014-04-02 花王株式会社 Method for measuring skin moisture content
CN103439310A (en) * 2013-09-02 2013-12-11 中国检验检疫科学研究院 Raman spectrum method for rapidly testing moisture content in triethylene glycol

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233740A (en) * 1994-11-25 1996-09-13 Kdk Corp Method and apparatus for determining hydrogen peroxide through raman scattering
JPH09178738A (en) * 1995-12-26 1997-07-11 Kao Corp Diagnostic method for curled hair
JP2002014041A (en) * 2000-06-27 2002-01-18 Kao Corp Quantitative analysis, method for fiber-surface adhered substance
JP2002536567A (en) * 1999-02-09 2002-10-29 アコルディス インダストリアル ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for measuring dye absorption of polyethylene terephthalate fiber
JP2003344279A (en) * 2002-05-29 2003-12-03 Shiseido Co Ltd Method for measuring hair moisture
JP2007240180A (en) * 2006-03-06 2007-09-20 Mandom Corp Damage evaluation method of keratin fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233740A (en) * 1994-11-25 1996-09-13 Kdk Corp Method and apparatus for determining hydrogen peroxide through raman scattering
JPH09178738A (en) * 1995-12-26 1997-07-11 Kao Corp Diagnostic method for curled hair
JP2002536567A (en) * 1999-02-09 2002-10-29 アコルディス インダストリアル ファイバース ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for measuring dye absorption of polyethylene terephthalate fiber
JP2002014041A (en) * 2000-06-27 2002-01-18 Kao Corp Quantitative analysis, method for fiber-surface adhered substance
JP2003344279A (en) * 2002-05-29 2003-12-03 Shiseido Co Ltd Method for measuring hair moisture
JP2007240180A (en) * 2006-03-06 2007-09-20 Mandom Corp Damage evaluation method of keratin fiber

Also Published As

Publication number Publication date
JP2008051742A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
Oliveira et al. The optical clearing method: A new tool for Clinical Practice and Biomedical Engineering
US6503478B2 (en) Chemically specific imaging of tissue
Cicchi et al. Multidimensional non-linear laser imaging of Basal Cell Carcinoma
Abadie et al. 3D imaging of cleared human skin biopsies using light‐sheet microscopy: A new way to visualize in‐depth skin structure
Cicchi et al. Nonlinear laser imaging of skin lesions
Cicchi et al. Clinical nonlinear laser imaging of human skin: a review
Darvin et al. Confocal Raman microscopy combined with optical clearing for identification of inks in multicolored tattooed skin in vivo
JP5460528B2 (en) Method for measuring skin moisture content
Carneiro et al. Kinetics of optical properties of colorectal muscle during optical clearing
JP4657175B2 (en) Measuring method of protein fiber retention
Lunter How confocal is confocal Raman microspectroscopy on the skin? Impact of microscope configuration and sample preparation on penetration depth profiles
JP4679596B2 (en) Method for measuring moisture content in hair
Yasui et al. Tomographic imaging of collagen fiber orientation in human tissue using depth-resolved polarimetry of second-harmonic-generation light
Niesner et al. 3D-resolved investigation of the pH gradient in artificial skin constructs by means of fluorescence lifetime imaging
Gareau et al. Confocal fluorescence spectroscopy of subcutaneous cartilage expressing green fluorescent protein versus cutaneous collagen autofluorescence
JP4673771B2 (en) Keratin fiber damage assessment method
JP2004290234A (en) Fluorescence measuring method for skin and apparatus therefor
Bashkatov et al. In-vivo and in-vitro study of control of rat skin optical properties by action of 40%-glucose solution
US20220018779A1 (en) Method, system and application for 3d molecular diffusion tensor measurement and structural imaging
Otberg et al. Scalp imaging techniques
Selifonov et al. Investigation of the diffusion of methylene blue through dentin from a human tooth
JP5288912B2 (en) Method for measuring skin moisture content
Demos et al. Imaging of tissue microstructures using a multimodal microscope design
Dahal et al. Characterization of multiphoton photoacoustic spectroscopy for subsurface brain tissue diagnosis and imaging
Ashtikar et al. Confocal microscopy for visualization of skin penetration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4657175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees