JP4656826B2 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP4656826B2
JP4656826B2 JP2003315624A JP2003315624A JP4656826B2 JP 4656826 B2 JP4656826 B2 JP 4656826B2 JP 2003315624 A JP2003315624 A JP 2003315624A JP 2003315624 A JP2003315624 A JP 2003315624A JP 4656826 B2 JP4656826 B2 JP 4656826B2
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
unit fuel
flow path
stacking direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003315624A
Other languages
Japanese (ja)
Other versions
JP2005085573A (en
Inventor
哲郎 菊地
直宏 竹下
博則 能登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2003315624A priority Critical patent/JP4656826B2/en
Publication of JP2005085573A publication Critical patent/JP2005085573A/en
Application granted granted Critical
Publication of JP4656826B2 publication Critical patent/JP4656826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は燃料電池に関し、とくに単位燃料電池を積層した積層型燃料電池の冷却構造に関する。   The present invention relates to a fuel cell, and more particularly to a cooling structure for a stacked fuel cell in which unit fuel cells are stacked.

従来の積層型燃料電池の冷却法は、図2の冷却水通路模式図に示すように、積層された各セル(単位燃料電池)間の冷媒流路26に冷媒(通常は、冷却水)を通すことにより、各セル19の温度を制御する。セル積層方向端部のセル19Aの両面にも冷却水を流すが、端部セル19Aに隣接する片側部分(ターミナル)は発熱せず、端部セルの熱は該セルを押さえて電流を取り出すターミナルを介して外に奪われてしまうため、端部セル19Aはセル積層方向中央部のセルに比較して温度が低くなってしまう。
従来の積層型燃料電池スタック内の、セル積層方向位置によってセル内を流れる冷却水の温度の変化を、図11の破線で示す。
従来は、端部セル19Aの温度が他のセルの温度より低いために、発電が活発でなくなるという問題があった。
さらに、燃料電池内の水分量が多い場合には、温度が低い端部セル19A内において飽和蒸気圧が低くなるため、結露水が増大することにより液体の水分が充満し、セル内に燃料ガスが十分いきわたらなくなり、発電が阻害され、ひいてはそのセルの電圧低下を招くという問題があった。
As shown in the schematic diagram of the cooling water passage shown in FIG. 2, the conventional method for cooling a stacked fuel cell is to supply a refrigerant (usually cooling water) to the refrigerant channel 26 between the stacked cells (unit fuel cells). By passing, the temperature of each cell 19 is controlled. Although cooling water is allowed to flow on both surfaces of the cell 19A at the end of the cell stacking direction, one side portion (terminal) adjacent to the end cell 19A does not generate heat, and the heat of the end cell suppresses the cell and takes out current. Therefore, the temperature of the end cell 19A becomes lower than that of the cell at the center in the cell stacking direction.
A change in the temperature of the cooling water flowing in the cells depending on the position in the cell stacking direction in the conventional stacked fuel cell stack is shown by a broken line in FIG.
Conventionally, since the temperature of the end cell 19A is lower than the temperature of other cells, there is a problem that power generation becomes inactive.
Further, when the amount of water in the fuel cell is large, the saturated vapor pressure is lowered in the end cell 19A where the temperature is low, so that the moisture of the liquid is filled by increasing the dew condensation water, and the fuel gas is filled in the cell. However, there is a problem in that power generation is hindered, resulting in a voltage drop in the cell.

特開2001−68141号公報は、端部のセルの温度を中央部のセルの温度と均一化するために、いったん各セルを冷却した水の全量を端部のセルに流す方法を提案している。しかし、この方法は冷却水の「全量」を端部セルに流すため、その圧力損失が多く、冷却水循環ポンプの動力損失が多いという問題があった。
また、特開2001−68141号公報の冷却水通路構造は、冷却水の燃料電池スタックへの供給口とスタックの各セルから集積した冷却水の出口とは、スタックのセル積層方向の互いに反対側の端部に設けられており、その後端部セルに循環するために、各セルへの冷却水の流量の分配が均一になりにくいという問題もあった。
特開2001−68141号公報
Japanese Patent Laid-Open No. 2001-68141 proposes a method in which the total amount of water that has once cooled each cell is allowed to flow to the end cell in order to make the end cell temperature uniform with the center cell temperature. Yes. However, this method has a problem that since the “total amount” of the cooling water flows to the end cells, the pressure loss is large and the power loss of the cooling water circulation pump is large.
Further, in the cooling water passage structure of Japanese Patent Application Laid-Open No. 2001-68141, the supply port of the cooling water to the fuel cell stack and the outlet of the cooling water accumulated from each cell of the stack are opposite to each other in the stacking direction of the cells Since it is provided at the end of the gas and circulates to the rear end cell, there is also a problem that the distribution of the flow rate of the cooling water to each cell is difficult to be uniform.
JP 2001-68141 A

本発明が解決しようとする問題点は、いったん各セルを冷却した水の全量を端部のセルに流す従来構造では、圧力損失が多く、冷却水循環ポンプの動力損失が多いという問題である。
本発明が解決しようとするもう一つの問題点は、冷却水の供給口と出口とがスタックの互いに反対側に設けられている従来構造では、各セルへの冷却水の流量の分配が均一になりにくいという問題である。
The problem to be solved by the present invention is that the conventional structure in which the total amount of water once cooled in each cell is passed to the end cell has a large pressure loss and a large power loss of the cooling water circulation pump.
Another problem to be solved by the present invention is that in the conventional structure in which the cooling water supply port and the outlet are provided on opposite sides of the stack, the distribution of the cooling water flow rate to each cell is uniform. It is a problem that it is difficult to become.

本発明の目的は、いったん各セルを冷却した水を端部のセルに流しても圧力損失を小さくできる冷媒流路構造をもった燃料電池を提供することにある。
本発明のもう一つの目的は、冷却水の各セルへの分配を均一化できる冷媒流路構造をもった燃料電池を提供することにある。
An object of the present invention is to provide a fuel cell having a refrigerant flow path structure that can reduce pressure loss even if water that has once cooled each cell is allowed to flow through the end cell.
Another object of the present invention is to provide a fuel cell having a refrigerant flow path structure that can uniformly distribute cooling water to each cell.

上記目的を達成する本発明はつぎの通りである。
(1) 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記供給路に接続される前記冷媒流路のうち、前記単位燃料電池の積層方向の、外部より冷媒が供給される前記供給路の入口に近い冷媒流路ほど、前記冷媒流路に接続される前記排出路の外部への出口に近いように配置した燃料電池。
) 前記第2の冷媒流路の、前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する流路部分は、単位燃料電池積層方向の少なくとも一端部に位置する燃料電池と接触する燃料電池以外の板に形成された溝を含む(1)記載の燃料電池。
) 積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池には、発電する機能をもたせずに、冷媒による温度調整機能だけをもたせた(1)記載の燃料電池。
) 前記第2の冷媒流路は、前記排出路の単位燃料電池積層方向一端部から分岐し、前記排出路の単位燃料電池積層方向他端部に接続している(1)記載の燃料電池。
) 前記第2の冷媒流路が、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池と熱交換する第1の流路部分と、積層された単位燃料電池の積層方向の他端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の流路部分と、前記第1の流路部分と前記第2の流路部分を連通する第3の流路部分を含んでおり、前記第3の流路部分は、前記排出路とは別の通路でかつ前記積層された複数の単位燃料電池の中に形成された通路である()記載の燃料電池。
) 前記第2の冷媒流路が、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池と熱交換する第1の流路部分と、積層された単位燃料電池の積層方向の他端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の流路部分と、前記第1の流路部分と前記第2の流路部分を連通する第3の流路部分を含んでおり、前記第3の流路部分は、前記排出路とは別の通路でかつ前記積層された複数の単位燃料電池の外に管路として形成された通路である()記載の燃料電池。
) 単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの供給路への冷媒の入口および各スタックの排出路からの冷媒の出口を、複数のスタックに対して共通化した(1)または(4)記載の燃料電池。
) 単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの、スタック間側の端部燃料電池には第2の冷媒流路を通さないようにした(1)記載の燃料電池。
) 前記第2の冷媒流路は、前記排出路の、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池とそれに隣接する単位燃料電池との間の冷媒流路の出口より、単位燃料電池積層方向中央部側に隔たった部位から分岐している(1)記載の燃料電池。
(10) 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記第2の冷媒流路の、前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する流路部分は、単位燃料電池積層方向の少なくとも一端部に位置する燃料電池と接触する燃料電池以外の板に形成された溝を含む燃料電池。
(11) 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池には、発電する機能をもたせずに、冷媒による温度調整機能だけをもたせた燃料電池。
(12) 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記第2の冷媒流路は、前記排出路の単位燃料電池積層方向一端部から分岐し、前記排出路の単位燃料電池積層方向他端部に接続している燃料電池。
(13) 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの供給路への冷媒の入口および各スタックの排出路からの冷媒の出口を、複数のスタックに対して共通化した燃料電池。
(14) 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの、スタック間側の端部燃料電池には第2の冷媒流路を通さないようにした燃料電池。
(15) 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記第2の冷媒流路は、前記排出路の、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池とそれに隣接する単位燃料電池との間の冷媒流路の出口より、単位燃料電池積層方向中央部側に隔たった部位から分岐している燃料電池。
The present invention for achieving the above object is as follows.
(1) A fuel cell in which a plurality of unit fuel cells each having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant from the outside in the stacking direction of the plurality of unit fuel cells, and the supply A refrigerant flow path for connecting the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and the discharge Heat exchange with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells by diverting a part of the refrigerant branched from the path and flowing into the discharge path from the coolant channel to a second refrigerant flow path, it comprises a, of the refrigerant flow path connected to the supply passage, the stacking direction of the unit fuel cell, the coolant is close to the inlet of the supply passage in which the refrigerant from the outside is supplied The more the channel, the more the coolant channel It arranged the fuel cell as close to the outlet to the outside of the discharge path to be continued.
( 2 ) The flow path portion for exchanging heat with at least one unit fuel cell disposed at least at one end of the stacked unit fuel cell in the stacking direction of the stacked unit fuel cells in the second refrigerant channel is a unit fuel cell stacking direction. (1) Symbol mounting a fuel cell including the fuel plate groove formed other than the battery in contact with the fuel cell positioned along at least one end of the.
(3) at least one unit fuel cell disposed at one end of the stacking direction of the stacked unit fuel cells, without remembering function of power, remembering only the temperature adjustment function of the refrigerant (1) Symbol placement Fuel cell.
(4) No second refrigerant flow path is branched from the unit fuel cell stacking direction end portion of the discharge passage is connected to the unit fuel cell stacking direction other end portion of the discharge channel (1) Symbol placement Fuel cell.
( 5 ) The second refrigerant flow path includes a first flow path portion that exchanges heat with at least one unit fuel cell disposed at one end in the stacking direction of the stacked unit fuel cells, and a stacked unit. A second flow path portion for exchanging heat with at least one unit fuel cell disposed at the other end of the fuel cell in the stacking direction; and a first flow path portion communicating with the first flow path portion and the second flow path portion. 3, wherein the third flow path part is a path different from the discharge path and formed in the stacked unit fuel cells ( 4 ). The fuel cell as described.
( 6 ) The second refrigerant flow path includes a first flow path portion that exchanges heat with at least one unit fuel cell disposed at one end in the stacking direction of the stacked unit fuel cells, and a stacked unit. A second flow path portion for exchanging heat with at least one unit fuel cell disposed at the other end of the fuel cell in the stacking direction; and a first flow path portion communicating with the first flow path portion and the second flow path portion. 3, and the third flow path part is a path different from the discharge path and formed as a pipe line outside the plurality of stacked unit fuel cells. ( 4 ) The fuel cell as described.
( 7 ) A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked are arranged in series and in contact with each other in the unit fuel cell stacking direction, and the refrigerant inlet to the supply path of each stack and the discharge path of each stack the outlet of the refrigerant, common to the (1) or (4) Symbol mounting the fuel cell to a plurality of stacks.
( 8 ) A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked are arranged in series and in contact with each other in the unit fuel cell stacking direction. fuel cells that do not pass through the flow channel (1) Symbol placement.
( 9 ) The second refrigerant flow path is from the outlet of the refrigerant flow path between at least one unit fuel cell at one end of the discharge path in the unit fuel cell stacking direction and the unit fuel cell adjacent thereto. branches from sites distant to the unit fuel cell stacking direction central portion (1) Symbol mounting the fuel cell.
(10) A fuel cell in which a plurality of unit fuel cells each having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant from outside to a stacking direction of the plurality of unit fuel cells, and the supply A refrigerant flow path for connecting the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and the discharge Heat exchange with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells by diverting a part of the refrigerant branched from the path and flowing into the discharge path from the coolant channel A flow for heat exchange with at least one unit fuel cell disposed at least at one end of the second refrigerant channel in the stacking direction of the stacked unit fuel cells. Road part is unit A fuel cell comprising a groove formed in a plate other than a fuel cell that contacts a fuel cell located at least at one end in the fuel cell stacking direction.
(11) A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying refrigerant from the outside in the stacking direction of the plurality of unit fuel cells, and the supply A refrigerant flow path for connecting the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and the discharge Heat exchange with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells by diverting a part of the refrigerant branched from the path and flowing into the discharge path from the coolant channel And at least one unit fuel cell disposed at one end in the stacking direction of the stacked unit fuel cells without having a function of generating power, and a temperature adjusting function using the coolant Only Fuel cell.
(12) A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying refrigerant from the outside in the stacking direction of the plurality of unit fuel cells, and the supply A refrigerant flow path for connecting the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and the discharge Heat exchange with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells by diverting a part of the refrigerant branched from the path and flowing into the discharge path from the coolant channel A second refrigerant flow path that branches from one end of the discharge path in the unit fuel cell stacking direction and is connected to the other end of the discharge path in the unit fuel cell stacking direction. Fuel cell.
(13) A fuel cell in which a plurality of unit fuel cells each having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant from the outside in a stacking direction of the plurality of unit fuel cells, and the supply A refrigerant flow path for connecting the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and the discharge Heat exchange with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells by diverting a part of the refrigerant branched from the path and flowing into the discharge path from the coolant channel A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked in series and in contact with each other in the unit fuel cell stacking direction. Entrance and each star A fuel cell in which the outlet of the refrigerant from the stack discharge path is shared by multiple stacks.
(14) A fuel cell in which a plurality of unit fuel cells each having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant from the outside in a stacking direction of the plurality of unit fuel cells, and the supply A refrigerant flow path for connecting the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and the discharge Heat exchange with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells by diverting a part of the refrigerant branched from the path and flowing into the discharge path from the coolant channel A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked in series, in contact with each other in the unit fuel cell stacking direction, and an end of each stack on the side between the stacks. Some fuel cells A fuel cell in which the second refrigerant channel is not passed.
(15) A fuel cell in which a plurality of unit fuel cells each having a pair of electrodes and separators sandwiching an electrolyte are stacked, the supply path supplying refrigerant from the outside in the stacking direction of the plurality of unit fuel cells, and the supply A refrigerant flow path for connecting the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and the discharge Heat exchange with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells by diverting a part of the refrigerant branched from the path and flowing into the discharge path from the coolant channel A second refrigerant flow path, wherein the second refrigerant flow path includes at least one unit fuel cell at one end of the discharge path in the unit fuel cell stacking direction and a unit fuel cell adjacent thereto. The refrigerant flow path between A fuel cell that branches off from a portion that is separated from the mouth toward the center side of the unit fuel cell stacking direction.

上記(1)の燃料電池によれば、排出される冷媒の「一部」を利用して積層方向端部に配置される単位燃料電池をあたためることができるので、圧損を抑制でき、かつ、端部に配置される単位燃料電池の温度低下を防止することができる。
上記()の燃料電池によれば、冷媒が流れ難い供給路入口に近い冷媒流路ほど、排出路の出口に近いように配置されるので、供給路入口に近い冷媒流路の冷媒の流れを流れ易くすることができ、単位燃料電池の冷媒の流れを均一化することができる。
上記(2)と(10)の燃料電池によれば、端部の単位燃料電池と熱交換する流路部分が、該単位燃料電池と接触する燃料電池以外の板に形成された溝を含むので、端部の単位燃料電池の流路構造を中央の単位燃料電池の流路構造と同じにすることができ、圧損低下のために特別に端部単位燃料電池の溝幅や溝深さを増大させる必要はない。
上記(3)と(11)の燃料電池によれば、端部単位燃料電池を発電機能をもたされていないダミーとした場合は、温度が高くなっている冷媒を流した場合に、端部単位燃料電池での発熱が加わった時に、端部単位燃料電池の温度が逆に他の単位燃料電池の温度より上がるようなことが起こることを防止することができる。
上記(4)と(12)の燃料電池によれば、冷媒流路が、排出路の単位燃料電池積層方向一端部から分岐し、排出路の単位燃料電池積層方向他端部に接続しているので、積層方向両端部にある単位燃料電池をあたためることができる。
上記()の燃料電池によれば、第3の流路部分が、積層された複数の単位燃料電池の中に形成された通路であるので、配管の取回しが複雑化しない。
上記()の燃料電池によれば、第3の流路部分が、積層された複数の単位燃料電池の外に管路として形成された通路であるので、中央単位燃料電池のセパレータに、副流路を設ける必要がなく、セパレータの設計変更を最少とすることができる。
上記(7)と(13)の燃料電池によれば、燃料電池スタックを、複数、直列に配置し、冷媒の入口、出口をスタック間エンドプレートに設けたので、冷媒の入口、出口を共通化でき、冷却構造を単純化できる。
上記(8)と(14)の燃料電池によれば、燃料電池スタックを、複数、直列に配置したので、スタック間側は熱の逃げ場がなくあたためなくてよく、スタック間に近い側の端部単位燃料電池に第2の冷媒通路を通すことを省略することができ、冷却構造を単純化できる。
上記(9)と(15)の燃料電池によれば、第2の冷媒流路が、排出路の、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池とそれに隣接する単位燃料電池との間の冷媒流路の出口より、単位燃料電池積層方向中央部側に隔たった部位から分岐しているので、排出路の、単位燃料電池積層方向一端部にある単位燃料電池とそれに隣接する単位燃料電池との間の冷媒流路の出口部位から分岐する場合よりも、温度の高い冷媒を第2の冷媒流路に分流させることができる。
According to the fuel cell of the above (1), the unit fuel cell disposed at the end portion in the stacking direction can be warmed using “part” of the discharged refrigerant, so that pressure loss can be suppressed and It is possible to prevent a temperature drop of the unit fuel cell disposed in the section.
According to the fuel cell of the above ( 1 ), the refrigerant flow path closer to the supply path entrance where the refrigerant hardly flows is arranged closer to the outlet of the discharge path, so that the refrigerant flow in the refrigerant flow path closer to the supply path entrance The flow of the refrigerant in the unit fuel cell can be made uniform.
According to the fuel cells of the above ( 2) and (10) , the flow path portion for exchanging heat with the unit fuel cell at the end includes a groove formed in a plate other than the fuel cell in contact with the unit fuel cell. The channel structure of the end unit fuel cell can be made the same as the channel structure of the central unit fuel cell, and the groove width and depth of the end unit fuel cell are specially increased to reduce the pressure loss. There is no need to let them.
According to the fuel cells of ( 3) and (11) above, when the end unit fuel cell is a dummy that does not have a power generation function, when the coolant having a high temperature is passed, When heat is generated in the unit fuel cell, it can be prevented that the temperature of the end unit fuel cell is raised more than the temperature of other unit fuel cells.
According to the fuel cells of ( 4) and (12) above, the refrigerant flow path branches off from one end of the discharge path in the unit fuel cell stacking direction and is connected to the other end of the discharge path in the unit fuel cell stacking direction. Therefore, the unit fuel cells at both ends in the stacking direction can be warmed.
According to the fuel cell of ( 5 ), since the third flow path portion is a passage formed in the stacked unit fuel cells, the piping operation is not complicated.
According to the fuel cell of the above ( 6 ), the third flow path portion is a passage formed as a pipe line outside the plurality of unit fuel cells that are stacked. There is no need to provide a flow path, and the design change of the separator can be minimized.
According to the fuel cells of ( 7) and (13) above, a plurality of fuel cell stacks are arranged in series, and the refrigerant inlet and outlet are provided on the end plate between the stacks, so the refrigerant inlet and outlet are shared. And the cooling structure can be simplified.
According to the fuel cells of the above ( 8) and (14) , since a plurality of fuel cell stacks are arranged in series, the side between the stacks does not have a heat escape place and does not need to be heated. Passing the second refrigerant passage through the unit fuel cell can be omitted, and the cooling structure can be simplified.
According to the fuel cells of ( 9) and (15) above, the second refrigerant flow path includes at least one unit fuel cell at one end of the discharge path in the unit fuel cell stacking direction and a unit fuel cell adjacent thereto. Branching from a portion separated from the outlet of the refrigerant flow path between the unit fuel cell stacking direction central portion side, so that the unit fuel cell at one end of the unit fuel cell stacking direction of the discharge path and the unit adjacent thereto The refrigerant having a higher temperature can be diverted to the second refrigerant flow path than when branching from the outlet portion of the refrigerant flow path between the fuel cell and the fuel cell.

以下に、本発明の燃料電池の制御方法を図1−図13を参照して説明する。ただし、図2、図3は比較例であり、本発明には含まない。また、図12、図13は燃料電池の一般構造を示し、本発明にも適用可能である。
図1、図4−6は本発明の実施例1の燃料電池を示し、図7は本発明の実施例2の燃料電池を示し、図8は本発明の実施例3の燃料電池を示し、図9は本発明の実施例4の燃料電池を示し、図10は本発明の実施例5の燃料電池を示す。図11は本発明と比較例との燃料電池の温度分布を示す。
本発明の全実施例に共通する、または類似する部分には、本発明の全実施例にわたって同じ符号を付してある。
Below, the control method of the fuel cell of this invention is demonstrated with reference to FIGS. However, FIGS. 2 and 3 are comparative examples and are not included in the present invention. 12 and 13 show the general structure of the fuel cell, which can also be applied to the present invention.
1 and 4-6 show a fuel cell of Example 1 of the present invention, FIG. 7 shows a fuel cell of Example 2 of the present invention, FIG. 8 shows a fuel cell of Example 3 of the present invention, FIG. 9 shows a fuel cell according to Embodiment 4 of the present invention, and FIG. 10 shows a fuel cell according to Embodiment 5 of the present invention. FIG. 11 shows the temperature distribution of the fuel cell of the present invention and the comparative example.
Portions common to or similar to all the embodiments of the present invention are denoted by the same reference numerals throughout the embodiments of the present invention.

まず、本発明の全実施例に共通する、または類似する部分の構成と作用、効果を図1、図4−6、図11、図12、図13を参照して説明する。
本発明で対象となる燃料電池10は、単位燃料電池19を積層した積層型燃料電池であり、たとえば積層型の固体高分子電解質型燃料電池である。該燃料電池1は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
First, the configuration, operation, and effect of the parts that are common to or similar to all the embodiments of the present invention will be described with reference to FIGS. 1, 4-6, 11, 12, and 13.
The fuel cell 10 that is a subject of the present invention is a stacked fuel cell in which unit fuel cells 19 are stacked, for example, a stacked solid polymer electrolyte fuel cell. The fuel cell 1 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.

燃料電池10、たとえば積層型の固体高分子電解質型燃料電池は、図12、図13に示すように、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータ18とを有する単位燃料電池19(「単電池」、「単セル」ともいう)を積層したものからなる。積層方向は任意である。膜−電極アッセンブリは、イオン交換膜からなる電解質膜(「電解質」ともいう)11とこの電解質膜11の一面に配置された触媒層12からなる電極(アノード14、燃料極)および電解質膜11の他面に配置された触媒層15からなる電極(カソード17、空気極)とからなる。膜−電極アッセンブリとセパレータ18との間には、アノード側、カソード側にそれぞれ拡散層13、16が設けられる。セパレータ18には、アノードに燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソードに酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18には冷媒(通常、冷却水)を流すための冷媒流路26も形成されている。膜−電極アッセンブリとセパレータを重ねてセル19を構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)、ボルト・ナット25にて固定して、スタック23を構成する。   As shown in FIGS. 12 and 13, the fuel cell 10, for example, a stacked solid polymer electrolyte fuel cell, includes a unit fuel cell 19 (Membrane-Electrode Assembly) and a separator 18. “Single cell”, also referred to as “single cell”). The stacking direction is arbitrary. The membrane-electrode assembly includes an electrolyte membrane (also referred to as “electrolyte”) 11 made of an ion exchange membrane and an electrode (anode 14, fuel electrode) made up of a catalyst layer 12 disposed on one surface of the electrolyte membrane 11 and the electrolyte membrane 11. It consists of an electrode (cathode 17, air electrode) composed of the catalyst layer 15 disposed on the other surface. Between the membrane-electrode assembly and the separator 18, diffusion layers 13 and 16 are provided on the anode side and the cathode side, respectively. The separator 18 is formed with a fuel gas passage 27 for supplying fuel gas (hydrogen) to the anode, and an oxidizing gas passage 28 for supplying oxidizing gas (oxygen, usually air) to the cathode. ing. The separator 18 is also formed with a refrigerant flow path 26 for flowing a refrigerant (usually cooling water). A cell 19 is formed by stacking a membrane-electrode assembly and a separator, a module is formed from at least one cell, the modules are stacked to form a cell stack, and terminals 20 and insulators 21 are provided at both ends of the cell stack in the cell stacking direction. The end plate 22 is arranged, the cell stack is clamped in the cell stacking direction, and is fixed by a fastening member (for example, a tension plate 24) extending in the cell stacking direction outside the cell stack, bolts and nuts 25, and stacked. 23.

各セルの、アノード側では、水素を水素イオン(プロトン)と電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水を生成するつぎの反応が行われる。   In each cell, a reaction for converting hydrogen into hydrogen ions (protons) and electrons is performed on the anode side, and the hydrogen ions move through the electrolyte membrane to the cathode side. On the cathode side, oxygen, hydrogen ions, and electrons (neighboring MEA) Next, the following reaction is performed to generate water from electrons generated at the anode of the first electrode through the separator or electrons generated at the anode of the cell at one end in the cell stacking direction through the external circuit to the cathode of the other cell.

アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
セルの発電反応およびジュール熱によりセル温度が上昇するので、燃料電池は冷媒流路26を流れる冷媒により冷却される。温度が高すぎると膜11が損傷し、温度が低すぎると発電が不活発となるので、適切な温度に冷却される必要がある。冷媒は燃料電池外から入側冷媒マニホールド(「供給路」ともいう)29aに供給され、入側冷媒マニホールド29aからセル間の冷媒流路26に分配されて入り、セルと熱交換して温度上昇した冷媒は冷媒流路26から出側冷媒マニホールド(「排出路」ともいう)29bに流入して集合し、出側冷媒マニホールド29bから燃料電池外に流出する。同様に、燃料ガスは入側燃料ガスマニホールド30aから燃料ガス流路27を通って出側燃料ガスマニホールド30bに流れ、酸化ガスは入側酸化ガスマニホールド31aから酸化ガス流路28を通って出側酸化ガスマニホールド31bに流れる。
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O
Since the cell temperature rises due to the power generation reaction and Joule heat of the cell, the fuel cell is cooled by the refrigerant flowing through the refrigerant flow path 26. If the temperature is too high, the film 11 is damaged, and if the temperature is too low, the power generation becomes inactive, so it is necessary to cool to an appropriate temperature. The refrigerant is supplied from the outside of the fuel cell to the inlet-side refrigerant manifold (also referred to as “supply path”) 29a, distributed from the inlet-side refrigerant manifold 29a to the refrigerant flow path 26 between the cells, and exchanges heat with the cells to increase the temperature. The refrigerant flows into the outlet side refrigerant manifold (also referred to as “discharge path”) 29b from the refrigerant flow path 26 and collects, and flows out of the fuel cell from the outlet side refrigerant manifold 29b. Similarly, the fuel gas flows from the inlet side fuel gas manifold 30a through the fuel gas passage 27 to the outlet side fuel gas manifold 30b, and the oxidizing gas exits from the inlet side oxidizing gas manifold 31a through the oxidizing gas passage 28. It flows to the oxidizing gas manifold 31b.

従来の積層型燃料電池では、単位燃料電池積層方向端部にある単位燃料電池19Aの温度がそれより中央部側の単位燃料電池19の温度より低くなる(図11の破線)。
端部にある単位燃料電池19Aの温度を中央部側の単位燃料電池19の温度に近づけ、単位燃料電池19Aを含む全単位燃料電池の温度が均一化される(図11の実線)ように、本発明の燃料電池10は、外部より複数の単位燃料電池の積層方向へ冷媒を供給する供給路29aと、該供給路29aに接続し単位燃料電池間に冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路26と、該冷媒流路26に接続し外部へ冷媒を流出させる排出路29bとからなる第1の冷媒流路40を備えているとともに、該排出路29bから分岐(分岐部は排出路29bの端部または端部から単位燃料電池積層方向に中央側に離れた部位)して冷媒流路26から排出路29bに流入する冷媒の一部を分流し積層された単位燃料電池の積層方向の少なくとも一端部(一端部だけでもよいし、両端部でもよい)に配置された少なくとも1つ(端部にある「複数」のセルでもよい)の単位燃料電池19Aと熱交換する第2の冷媒流路50を備えている。
In the conventional stacked fuel cell, the temperature of the unit fuel cell 19A at the end of the unit fuel cell stacking direction is lower than the temperature of the unit fuel cell 19 on the center side (the broken line in FIG. 11).
The temperature of the unit fuel cell 19A at the end is brought close to the temperature of the unit fuel cell 19 on the center side, and the temperatures of all unit fuel cells including the unit fuel cell 19A are made uniform (solid line in FIG. 11). The fuel cell 10 of the present invention includes a supply path 29a for supplying a refrigerant in the stacking direction of a plurality of unit fuel cells from the outside, and connecting the refrigerant between the unit fuel cells connected to the supply path 29a. The first refrigerant flow path 40 includes a refrigerant flow path 26 that performs heat exchange and a discharge path 29b that is connected to the refrigerant flow path 26 and flows out of the refrigerant to the outside, and is branched from the discharge path 29b ( The branch portion is an end portion of the discharge passage 29b or a portion separated from the center in the unit fuel cell stacking direction from the end portion), and a part of the refrigerant flowing into the discharge passage 29b from the refrigerant passage 26 is divided and stacked. At least in the stacking direction of the fuel cell Second refrigerant flow path for exchanging heat with at least one unit fuel cell 19A (may be “a plurality of cells at the end”) arranged at the end (only one end or both ends) 50.

また、供給路29aに接続される冷媒流路26のうち、単位燃料電池の積層方向の、外部より冷媒が供給される供給路29aの入口29aiに近い冷媒流路26ほど、冷媒流路26に接続される排出路29bの外部への出口29boに近いように配置される。
外部から供給路29aへの冷媒入口と、排出路29bから外部への冷媒出口とは、スタック23の単位燃料電池積層方向同じ側に設けられる。
Further, among the refrigerant flow paths 26 connected to the supply path 29a, the refrigerant flow path 26 closer to the inlet 29ai of the supply path 29a to which the refrigerant is supplied from the outside in the stacking direction of the unit fuel cells is connected to the refrigerant flow path 26. It arrange | positions so that it may be close to the exit 29bo to the exterior of the discharge path 29b connected.
The refrigerant inlet from the outside to the supply path 29a and the refrigerant outlet from the discharge path 29b to the outside are provided on the same side of the stack 23 in the unit fuel cell stacking direction.

第2の冷媒流路50を通って冷媒の一部が流れるように、第2の冷媒流路50の排出路29bからの分岐部と、該分岐部より冷媒流れ方向下流にある、排出路29bを流れる冷媒(第2の冷媒流路50を流れる冷媒以外の冷媒)との合流部との間の、第2の冷媒流路50の圧力損失は、排出路29bを流れる冷媒(第2の冷媒流路50を流れる冷媒以外の冷媒)の、上記分岐部と上記合流部との間の圧力損失よりも小さくしてある。これは、図1の例では、図1において、副出口マニホールド50の圧力の左下がりの実線の傾斜が、出口マニホールド29bの圧力の左下がりの実線の傾斜より緩やかで、かつ、副出口マニホールド50の冷媒入口では副出口マニホールド50の圧力が出口マニホールド29bの圧力より小で、副出口マニホールド50の冷媒出口では副出口マニホールド50の圧力が出口マニホールド29bの圧力より大であることに、対応している。   A branch portion from the discharge passage 29b of the second refrigerant flow path 50 and a discharge passage 29b downstream of the branch portion in the refrigerant flow direction so that a part of the refrigerant flows through the second refrigerant flow path 50. The pressure loss of the second refrigerant flow path 50 between the refrigerant flowing through the refrigerant (the refrigerant other than the refrigerant flowing through the second refrigerant flow path 50) and the refrigerant flowing through the discharge path 29b (second refrigerant) The pressure loss between the branch portion and the junction portion of the refrigerant other than the refrigerant flowing in the flow path 50 is made smaller. In the example of FIG. 1, in FIG. 1, the slope of the lower left solid line of the pressure of the secondary outlet manifold 50 is gentler than the slope of the lower left solid line of the pressure of the outlet manifold 29 b, and the secondary outlet manifold 50. Correspondingly, the pressure of the sub-outlet manifold 50 is smaller than the pressure of the outlet manifold 29b at the refrigerant inlet, and the pressure of the sub-outlet manifold 50 is larger than the pressure of the outlet manifold 29b at the refrigerant outlet of the sub-outlet manifold 50. Yes.

また、端部単位燃料電池19Aを流れる冷媒は、中央部の単位燃料電池19の冷媒流路26を通過した後のある程度温度が高くなった冷媒であるため、単純にその冷媒を端部単位燃料電池19Aの熱交換部に通過させると、逆に端部単位燃料電池19Aの温度が中央部位単位燃料電池19の温度より高くなってしまうおそれがあるため、端部単位燃料電池19Aの冷媒流量が他の単位燃料電池19の1枚当たりの流量より多くなるように、通路断面積を他の単位燃料電池19の冷媒流路26の通路断面積より大としてある。これは、図4、図5の例では、図5の端部位単位燃料電池19Aの冷媒流路26の溝幅が,図4の中央部位単位燃料電池19の冷媒流路26の溝幅より大としてあることに対応する。図5の端部位単位燃料電池19Aの冷媒流路26の溝幅を大とすることに代えて、図5の端部位単位燃料電池19Aの冷媒流路26の溝幅を他のセルの冷媒流路26の溝幅と同じにし、かつ、端部位単位燃料電池19Aに接する燃料電池以外のプレート(たとえば、ターミナル)に冷媒流路を形成して、この冷媒流路と端部位単位燃料電池19Aの冷媒流路の和の通路断面積が他のセルの冷媒流路26の通路断面積より大としてもよい。   Further, the refrigerant flowing through the end unit fuel cell 19A is a refrigerant whose temperature has risen to some extent after passing through the refrigerant flow path 26 of the central unit fuel cell 19, so that the refrigerant is simply used as the end unit fuel cell. If it passes through the heat exchanging part of the battery 19A, the temperature of the end unit fuel cell 19A may be higher than the temperature of the central part unit fuel cell 19, so the refrigerant flow rate of the end unit fuel cell 19A is increased. The passage cross-sectional area is made larger than the passage cross-sectional area of the refrigerant flow path 26 of the other unit fuel cell 19 so as to be larger than the flow rate per other unit fuel cell 19. 4 and 5, the groove width of the refrigerant flow path 26 of the end part unit fuel cell 19 </ b> A in FIG. 5 is larger than the groove width of the refrigerant flow path 26 of the central part unit fuel cell 19 in FIG. 4. Corresponding to what is. Instead of increasing the groove width of the refrigerant flow path 26 of the end site unit fuel cell 19A of FIG. 5, the groove width of the refrigerant flow path 26 of the end site unit fuel cell 19A of FIG. A coolant channel is formed in a plate (for example, a terminal) other than the fuel cell that is the same as the groove width of the passage 26 and is in contact with the end portion unit fuel cell 19A. The sum of the passage cross-sectional areas of the refrigerant flow paths may be larger than the passage cross-sectional areas of the refrigerant flow paths 26 of other cells.

また、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池19Aには、発電する機能をもたせずに、冷媒による温度調整機能だけをもたせてもよい。   Further, at least one unit fuel cell 19A disposed at one end of the stacked unit fuel cells in the stacking direction may have only a temperature adjusting function using a refrigerant without having a function of generating power.

本発明の全実施例に共通する、または類似する上記部分の燃料電池10の作用、効果を説明する。
上記燃料電池10では、冷媒流路26から排出路29bに排出される、冷媒流路26における単位燃料電池との熱交換によってあたためられた冷媒を、第2の冷媒流路50にまわして、積層方向端部に配置される単位燃料電池19Aをあたためるので、図11に実線で示すように、端部に配置される単位燃料電池19Aの温度低下が防止される。このため、端部単位燃料電池19Aでターミナルなどに熱が伝達しても端部単位燃料電池19Aの温度が中央部の単位燃料電池19より低くなりにくく、図11の実線に示すように、端部単位燃料電池19Aの温度は中央部の単位燃料電池19の冷媒流路26の温度とほぼ同じに維持される。
この場合、冷媒流路26から排出路29bに排出される冷媒の「一部」のみを第2の冷媒流路50にまわして、積層方向端部に配置される単位燃料電池19Aをあたためるので、冷媒流路26から排出路29bに排出される冷媒の全量を利用して端部に配置される単位燃料電池19Aをあたためる場合よりも、冷媒の流れの圧損を抑制でき、冷媒循環ポンプの動力損失を低減することができる。
The operation and effect of the fuel cell 10 of the above-described part that is common to or similar to all the embodiments of the present invention will be described.
In the fuel cell 10, the refrigerant warmed up by heat exchange with the unit fuel cell in the refrigerant flow path 26 discharged from the refrigerant flow path 26 to the discharge path 29 b is routed to the second refrigerant flow path 50 to be stacked. Since the unit fuel cell 19A disposed at the end in the direction is warmed, as shown by the solid line in FIG. 11, the temperature drop of the unit fuel cell 19A disposed at the end is prevented. For this reason, even if heat is transmitted to the terminal or the like in the end unit fuel cell 19A, the temperature of the end unit fuel cell 19A is less likely to be lower than that of the unit unit fuel cell 19 in the center, and as shown by the solid line in FIG. The temperature of the unit fuel cell 19A is maintained substantially the same as the temperature of the refrigerant flow path 26 of the central unit fuel cell 19.
In this case, only a “part” of the refrigerant discharged from the refrigerant flow path 26 to the discharge path 29b is routed to the second refrigerant flow path 50 to warm the unit fuel cell 19A disposed at the end in the stacking direction. The pressure loss of the refrigerant flow can be suppressed and the power loss of the refrigerant circulation pump can be suppressed as compared with the case where the unit fuel cell 19A disposed at the end is warmed up using the total amount of refrigerant discharged from the refrigerant flow path 26 to the discharge path 29b. Can be reduced.

また、冷媒が流れ難い供給路入口29aiに近い冷媒流路26ほど、排出路の外部への出口29boに近いように配置されるので、供給路入口29aiに近い冷媒流路26の冷媒の流れを流れ易くすることができ、全単位燃料電池19、19Aにわたって、冷媒流路26を流れる冷媒の流量を均一化することができる。
冷媒の供給路入口29aiと冷媒の排出路出口29boがスタック23の単位燃料電池積層方向同じ側にあるので、排出路(出側冷媒マニホールド)29b内圧力が、図1の左下がりの実線となり、冷媒流路26の入口、出口の差圧が全単位燃料電池19、19Aにわたって均一化し、冷媒流路26を流れる冷媒の流量を均一化することができる。図1の左下がりの実線で示す本発明では、供給路入口29aiに近い冷媒流路26の出入り口間圧力差は大きく、供給路入口29aiに近い冷媒流路26には冷媒が流れやすい。これによって、燃料電池全体を適切な活性化温度に維持でき、電池性能を改善できるとともに、全単位燃料電池にわたって飽和蒸気圧を適切に保つことができフラッディングが生じにくいようにすることができる。
Further, since the refrigerant flow path 26 closer to the supply path inlet 29ai where the refrigerant hardly flows is arranged closer to the outlet 29bo to the outside of the discharge path, the refrigerant flow in the refrigerant flow path 26 close to the supply path inlet 29ai is reduced. The flow rate of the refrigerant flowing through the refrigerant flow path 26 can be made uniform over all the unit fuel cells 19, 19A.
Since the refrigerant supply passage inlet 29ai and the refrigerant discharge passage outlet 29bo are on the same side of the stack 23 in the unit fuel cell stacking direction, the internal pressure of the discharge passage (outlet refrigerant manifold) 29b becomes a solid line with a lower left in FIG. The differential pressure at the inlet and outlet of the refrigerant flow path 26 can be made uniform across all the unit fuel cells 19, 19A, and the flow rate of the refrigerant flowing through the refrigerant flow path 26 can be made uniform. In the present invention indicated by the solid line on the lower left in FIG. 1, the pressure difference between the inlet and outlet of the refrigerant channel 26 near the supply channel inlet 29ai is large, and the refrigerant easily flows into the refrigerant channel 26 near the supply channel inlet 29ai. As a result, the entire fuel cell can be maintained at an appropriate activation temperature, the cell performance can be improved, and the saturated vapor pressure can be appropriately maintained over all the unit fuel cells, so that flooding is less likely to occur.

また、端部の単位燃料電池と熱交換する流路部分が、該単位燃料電池と接触する燃料電池以外の板に形成された溝を含む場合は、端部の単位燃料電池19Aの流路構造を中央の単位燃料電池19の流路構造と同じにすることができ、圧損低下のために特別に端部単位燃料電池19Aの溝幅や溝深さを増大させる必要はない。これによって、セル構造を単純なものにすることができる。
また、端部単位燃料電池19Aを発電機能をもたされていないダミーとした場合は、端部単位燃料電池19Aの温度が逆に他のセルの温度より上昇することを防止することができる。
Further, in the case where the channel portion that exchanges heat with the unit fuel cell at the end includes a groove formed in a plate other than the fuel cell that contacts the unit fuel cell, the channel structure of the unit fuel cell 19A at the end Can be made the same as the flow path structure of the central unit fuel cell 19, and it is not necessary to increase the groove width or the groove depth of the end unit fuel cell 19A in particular to reduce the pressure loss. As a result, the cell structure can be simplified.
Further, when the end unit fuel cell 19A is a dummy having no power generation function, it is possible to prevent the temperature of the end unit fuel cell 19A from conversely rising from the temperature of other cells.

つぎに、本発明の各実施例に特有な部分の構成と作用、効果を説明する。
本発明の実施例1の燃料電池10では、図1、図4−図6に示すように、第2の冷媒流路50は、排出路29bの単位燃料電池積層方向の一端部から分岐し、排出路29bの単位燃料電池積層方向の他端部に接続している。
Next, the configuration, operation, and effects of the parts unique to each embodiment of the present invention will be described.
In the fuel cell 10 of Example 1 of the present invention, as shown in FIG. 1 and FIG. 4 to FIG. 6, the second refrigerant channel 50 branches from one end of the discharge channel 29b in the unit fuel cell stacking direction, The discharge path 29b is connected to the other end of the unit fuel cell stacking direction.

第2の冷媒流路50が、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池19Aと熱交換する第1の流路部分51と、積層された単位燃料電池の積層方向の他端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の流路部分52と、第1の流路部分51と第2の流路部分52を連通する第3の流路部分53を含んでいる。
第3の流路部分53は単位燃料電池集積体の中に形成される場合は、第3の流路部分53は、排出路26bとは別の通路で、かつ、各単位燃料電池19、19Aを貫通して単位燃料電池積層方向に延びる副出口マニホールド53からなる。
The second refrigerant flow path 50 has a first flow path portion 51 that exchanges heat with at least one unit fuel cell 19A disposed at one end in the stacking direction of the stacked unit fuel cells, and the stacked unit fuel. A second flow path portion 52 that exchanges heat with at least one unit fuel cell disposed at the other end of the battery in the stacking direction; a first flow path portion 51 that communicates with the second flow path portion 52; 3 flow path portions 53 are included.
When the third flow path portion 53 is formed in the unit fuel cell assembly, the third flow path portion 53 is a path different from the discharge path 26b and the unit fuel cells 19, 19A. And a secondary outlet manifold 53 extending in the unit fuel cell stacking direction.

図4の単位燃料電池積層方向中央部の単位燃料電池19では、副出口マニホールド53は単に単位燃料電池19を貫通しているだけで、単位燃料電池間の冷媒流路26への冷媒の流出入はない。図5の単位燃料電池積層方向端部の単位燃料電池19Aでは、供給路29aはセル面の冷媒流路26への冷媒の流出入はせず、副出口マニホールド53に接続されている。なお、図5の単位燃料電池19Aの第1、第2の流路部分51、52(他のセルの冷媒流路26に対応する流路部分)は、図4の中央部単位燃料電池19の冷媒流路26より、少ない通路抵抗になるようにしてある。たとえば、第1、第2の流路部分51、52の溝幅を中央部単位燃料電池19の冷媒流路26より大にする。   In the unit fuel cell 19 at the center of the unit fuel cell stacking direction of FIG. There is no. In the unit fuel cell 19A at the end of the unit fuel cell stacking direction in FIG. Note that the first and second flow path portions 51 and 52 (flow path portions corresponding to the refrigerant flow paths 26 of other cells) of the unit fuel cell 19A of FIG. The passage resistance is smaller than that of the refrigerant flow path 26. For example, the groove widths of the first and second flow path portions 51 and 52 are made larger than the refrigerant flow path 26 of the central unit fuel cell 19.

図6に示すように、奥側(供給路29aの入口から遠い側)の端部単位燃料電池19の外側の通路51については、冷媒は供給路29aからは入らず、排出路29bから冷媒の一部のみが通路51に流入して、通路51から副出口マニホールド53へと流れる。副出口マニホールド53から供給路29aの入口側の端部単位燃料電池19Aの外側の通路52に流入し、通路52から、排出路29bにおいて、他のセルからの冷媒と合流して、燃料電池10の外部へ流出し、循環ポンプに戻る。   As shown in FIG. 6, in the outer side passage 51 of the end unit fuel cell 19 on the far side (the side far from the inlet of the supply passage 29a), the refrigerant does not enter the supply passage 29a, but the refrigerant from the discharge passage 29b. Only a part flows into the passage 51 and flows from the passage 51 to the auxiliary outlet manifold 53. The fuel cell 10 flows from the auxiliary outlet manifold 53 into the passage 52 outside the end unit fuel cell 19A on the inlet side of the supply passage 29a, and merges with the refrigerant from other cells through the passage 52 in the discharge passage 29b. To the outside and return to the circulation pump.

本発明の実施例1の燃料電池の作用、効果について説明する。
図1の下図は、冷媒の供給路29a、排出路29bの冷媒圧力変化を模式的に示したものである。
供給路29aと排出路29bは、冷媒が流れるために圧力損失があるが、供給路29aでは、順次、各セル19に冷却水が分流するため、奥に行くにしたがい圧力が僅かに上昇する。
ここで、排出路29bの奥の冷媒を端部セル19Aに流そうとすると、排出路29bの奥はすでに供給路29aより圧力が低下しているために、別の圧損の少ないバイパス流路を通さないと外部に流れない。そこで、副出口マニホールド53を排出路29bとは別に設けて、一部の流量(したがって、全量よりは少ない流量)を、低い圧損にて、流すようにしてあるので、第2の冷媒流路50を通って冷媒が流れ、端部セル19Aを温めることができる。
The operation and effect of the fuel cell of Example 1 of the present invention will be described.
The lower diagram of FIG. 1 schematically shows changes in refrigerant pressure in the refrigerant supply passage 29a and the discharge passage 29b.
The supply path 29a and the discharge path 29b have a pressure loss due to the flow of the refrigerant. However, in the supply path 29a, the cooling water is sequentially divided into the cells 19, so that the pressure slightly increases as going deeper.
Here, if the refrigerant at the back of the discharge passage 29b is caused to flow to the end cell 19A, the pressure at the back of the discharge passage 29b is already lower than that of the supply passage 29a. If it does not pass, it will not flow outside. Therefore, the secondary outlet manifold 53 is provided separately from the discharge passage 29b, and a part of the flow rate (and therefore the flow rate smaller than the total amount) is allowed to flow with a low pressure loss. Through which the refrigerant flows, the end cell 19A can be warmed.

副出口マニホールド53から、供給路29aの入口側の端部単位燃料電池19Aに冷媒を供給するようにしてあるので、供給路29aの入口側の端部単位燃料電池19Aの温度も制御する。したがって、積層方向の両端部にある単位燃料電池19Aをあたためることができる。
また、第3の流路部分(副出口マニホールド)53が、積層された複数の単位燃料電池の中に形成された通路であるので、配管の取回しが複雑化しない。
Since the refrigerant is supplied from the sub-outlet manifold 53 to the end unit fuel cell 19A on the inlet side of the supply path 29a, the temperature of the end unit fuel cell 19A on the inlet side of the supply path 29a is also controlled. Therefore, the unit fuel cells 19A at both ends in the stacking direction can be warmed.
In addition, since the third flow path portion (sub-outlet manifold) 53 is a passage formed in the stacked unit fuel cells, the piping is not complicated.

本発明の実施例2の燃料電池10では、図7に示すように、第2の冷媒流路50が、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池19Aと熱交換する第1の流路部分51と、積層された単位燃料電池の積層方向の他端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の流路部分52と、第1の流路部分51と第2の流路部分52を連通する第3の流路部分53を含んでいる。
第3の流路部分53は単位燃料電池集積体の外に形成されており、第3の流路部分53は、排出路26bとは別の通路で、かつ、積層された複数の単位燃料電池の外に管路53として形成された通路からなる。
本発明の実施例2の燃料電池10の作用効果については、第3の流路部分53が、積層された複数の単位燃料電池の外に管路として形成された通路であるので、中央単位燃料電池のセパレータに、副流路(本発明の実施例1の副出口マニホールド)を設ける必要がなく、セパレータ18の、従来セパレータからの設計変更を最少とすることができる。
In the fuel cell 10 of Example 2 of the present invention, as shown in FIG. 7, at least one unit fuel cell in which the second refrigerant channel 50 is disposed at one end in the stacking direction of the stacked unit fuel cells. A first flow path portion 51 that exchanges heat with 19A, and a second flow path portion 52 that exchanges heat with at least one unit fuel cell disposed at the other end in the stacking direction of the stacked unit fuel cells, A third flow path portion 53 that communicates the first flow path portion 51 and the second flow path portion 52 is included.
The third flow path portion 53 is formed outside the unit fuel cell assembly, and the third flow path portion 53 is a path different from the discharge path 26b and a plurality of stacked unit fuel cells. It consists of a passage formed as a pipe line 53 outside.
Regarding the operation and effect of the fuel cell 10 according to the second embodiment of the present invention, since the third flow path portion 53 is a passage formed as a pipe line outside the plurality of stacked unit fuel cells, the central unit fuel There is no need to provide a sub-flow channel (sub-exit manifold in Example 1 of the present invention) in the battery separator, and the design change of the separator 18 from the conventional separator can be minimized.

本発明の実施例3の燃料電池10では、図8に示すように、単位燃料電池19を複数積層した燃料電池スタック23が、複数、直列に、単位燃料電池積層方向に接触されて配置されている。各スタック23の供給路29aへの冷媒の入口54および各スタックの排出路29bからの冷媒の出口55が、スタック23間のエンドプレート22に、複数のスタック23に対して共通化して、設けられている。
本発明の実施例3の燃料電池10の作用、効果については、燃料電池スタック23を、複数、直列に配置し、冷媒の出入り口54、55をスタック23間のエンドプレート22に、共通化して、設けたので、冷媒の出入り口54、55を複数のスタック23に対してそれぞえ設けた場合に比べて、冷却通路構造を単純化できる。
In the fuel cell 10 according to the third embodiment of the present invention, as shown in FIG. 8, a plurality of fuel cell stacks 23 in which a plurality of unit fuel cells 19 are stacked are arranged in contact with each other in the unit fuel cell stacking direction. Yes. A refrigerant inlet 54 to the supply path 29 a of each stack 23 and a refrigerant outlet 55 from the discharge path 29 b of each stack are provided in common to the plurality of stacks 23 on the end plate 22 between the stacks 23. ing.
Regarding the operation and effect of the fuel cell 10 according to the third embodiment of the present invention, a plurality of fuel cell stacks 23 are arranged in series, and the refrigerant inlet / outlet ports 54 and 55 are shared by the end plate 22 between the stacks 23. Since it is provided, the cooling passage structure can be simplified as compared with the case where the refrigerant outlets 54 and 55 are provided for the plurality of stacks 23, respectively.

本発明の実施例4の燃料電池10では、図9に示すように、単位燃料電池19を複数積層した燃料電池スタック23が、複数、直列に、単位燃料電池積層方向に接触されて配置されている。各スタック23の、スタック間側の端部単位燃料電池19Aには、第2の冷媒流路50を通さないようにした。
本発明の実施例4の燃料電池10の作用、効果については、燃料電池スタック23を、複数、直列に配置したので、スタック23間のエンドプレート22側は外部への熱の逃げ場がなく、したがって、スタック23間側の端部単位燃料電池19をあたためなくてよく、スタック間側の端部単位燃料電池19Aには、第2の冷媒流路50を通さずに省略することができ、それだけ冷却通路構造を単純化できる。
In the fuel cell 10 according to the fourth embodiment of the present invention, as shown in FIG. 9, a plurality of fuel cell stacks 23 in which a plurality of unit fuel cells 19 are stacked are arranged in contact with each other in the unit fuel cell stacking direction. Yes. The second refrigerant flow path 50 is not passed through the end unit fuel cell 19A on the inter-stack side of each stack 23.
Regarding the operation and effect of the fuel cell 10 of Example 4 of the present invention, since a plurality of fuel cell stacks 23 are arranged in series, the end plate 22 side between the stacks 23 has no heat escape space to the outside. The end unit fuel cell 19 between the stacks 23 does not need to be warmed, and the end unit fuel cell 19A between the stacks can be omitted without passing through the second refrigerant flow path 50. The passage structure can be simplified.

本発明の実施例5の燃料電池10では、図10に示すように、第2の冷媒流路50が、排出路29bの、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池19Aとそれに隣接する単位燃料電池19との間の冷媒流路26の出口より、単位燃料電池積層方向中央部側に隔たった部位から分岐している。
本発明の実施例5の燃料電池10の作用、効果については、第2の冷媒流路50が、排出路29bの、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池19Aとそれに隣接する単位燃料電池19との間の冷媒流路26の出口より、単位燃料電池積層方向中央部側に隔たった部位から分岐しているので、排出路29bの、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池19Aとそれに隣接する単位燃料電池19との間の冷媒流路26の出口で分岐する場合より温度の高い冷媒を第2の冷媒流路50に分流させることができ、端部単位燃料電池19Aの温度低下を効果的に防止することができる。
In the fuel cell 10 of Example 5 of the present invention, as shown in FIG. 10, the second refrigerant flow path 50 includes at least one unit fuel cell 19A at one end of the discharge path 29b in the unit fuel cell stacking direction. It branches off from the part separated from the outlet of the refrigerant flow path 26 between the unit fuel cells 19 adjacent to the unit fuel cell 19 toward the central portion side in the unit fuel cell stacking direction.
Regarding the operation and effect of the fuel cell 10 of Example 5 of the present invention, the second refrigerant channel 50 is adjacent to at least one unit fuel cell 19A at one end of the unit fuel cell stacking direction of the discharge channel 29b. Branching from the outlet of the refrigerant flow path 26 between the unit fuel cell 19 and the unit fuel cell 19 in the unit fuel cell stacking direction at one end of the discharge path 29b. A refrigerant having a higher temperature than when branched at the outlet of the refrigerant flow path 26 between at least one unit fuel cell 19A and the unit fuel cell 19 adjacent thereto can be divided into the second refrigerant flow path 50, The temperature drop of the unit fuel cell 19A can be effectively prevented.

(A)は本発明の実施例1の燃料電池の冷媒(冷却水)通路模式図であり、(B)はその冷媒(冷却水)通路内圧力模式図である。(A) is a refrigerant | coolant (cooling water) channel | path schematic diagram of the fuel cell of Example 1 of this invention, (B) is the refrigerant | coolant (cooling water) channel | path internal pressure schematic diagram. (A)は従来の燃料電池の冷媒(冷却水)通路模式図であり、(B)はその冷媒(冷却水)通路内圧力模式図である。(A) is a schematic diagram of a refrigerant (cooling water) passage of a conventional fuel cell, and (B) is a schematic diagram of the pressure in the refrigerant (cooling water) passage. 従来の燃料電池の単位燃料電池の冷媒(冷却水)マニホールドと冷媒(冷却水)流路の正面図である。It is a front view of the refrigerant | coolant (cooling water) manifold and refrigerant | coolant (cooling water) flow path of the unit fuel cell of the conventional fuel cell. 本発明の実施例1の燃料電池の中央部単位燃料電池の冷媒(冷却水)マニホールドと冷媒(冷却水)流路の正面図である。It is a front view of the refrigerant | coolant (cooling water) manifold and refrigerant | coolant (cooling water) flow path of the center part unit fuel cell of the fuel cell of Example 1 of this invention. 本発明の実施例1の燃料電池の端部単位燃料電池の冷媒(冷却水)マニホールドと冷媒(冷却水)流路の正面図である。It is a front view of the refrigerant | coolant (cooling water) manifold and refrigerant | coolant (cooling water) flow path of the edge part unit fuel cell of the fuel cell of Example 1 of this invention. 本発明の実施例1の、図4と図5の単位燃料電池を組付けた燃料電池の分解斜視図である。It is a disassembled perspective view of the fuel cell which assembled | attached the unit fuel cell of FIG. 4 and FIG. 5 of Example 1 of this invention. 本発明の実施例2の燃料電池の冷媒(冷却水)通路模式図である。It is a refrigerant | coolant (cooling water) channel | path schematic diagram of the fuel cell of Example 2 of this invention. 本発明の実施例3の燃料電池の冷媒(冷却水)通路模式図である。It is a refrigerant | coolant (cooling water) channel | path schematic diagram of the fuel cell of Example 3 of this invention. 本発明の実施例4の燃料電池の冷媒(冷却水)通路模式図である。It is a refrigerant | coolant (cooling water) channel | path schematic diagram of the fuel cell of Example 4 of this invention. 本発明の実施例5の燃料電池の冷媒(冷却水)通路模式図である。It is a refrigerant | coolant (cooling water) channel | path schematic diagram of the fuel cell of Example 5 of this invention. 本発明の燃料電池と従来の燃料電池の単位燃料電池積層方向の温度分布図である。It is a temperature distribution figure of the unit fuel cell lamination direction of the fuel cell of this invention, and the conventional fuel cell. 本発明の燃料電池のスタックの側面図である。It is a side view of the stack of the fuel cell of the present invention. 図11の燃料電池の一部の拡大断面図である。FIG. 12 is an enlarged sectional view of a part of the fuel cell of FIG. 11.

符号の説明Explanation of symbols

10 燃料電池
11 電解質膜
12 (アノード側)触媒層
13 拡散層
14 アノード
15 (カソード側)触媒層
16 拡散層
17 カソード
18 セパレータ
19 単位燃料電池
19A 端部単位燃料電池
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 テンションプレート
25 ボルト・ナット
26 冷媒流路
27 燃料ガス流路
28 酸化ガス流路
29a 供給路(入側冷媒マニホールド)
29ai 供給路への冷媒入口
29b 排出路(出側冷媒マニホールド)
29bo 排出路の外部への出口
30a 入側燃料ガスマニホールド
30b 出側燃料ガスマニホールド
31a 入側酸化ガスマニホールド
31b 出側酸化ガスマニホールド
40 第1の冷媒流路
50 第2の冷媒流路 51 第1の流路部分
52 第2の流路部分
53 第3の流路部分(副出口マニホールド、または外の管路)
54 冷媒入口
55 冷媒出口
DESCRIPTION OF SYMBOLS 10 Fuel cell 11 Electrolyte membrane 12 (Anode side) Catalyst layer 13 Diffusion layer 14 Anode 15 (Cathode side) Catalyst layer 16 Diffusion layer 17 Cathode 18 Separator 19 Unit fuel cell 19A End unit fuel cell 20 Terminal 21 Insulator 22 End plate 23 Stack 24 Tension plate 25 Bolt / nut 26 Refrigerant flow path 27 Fuel gas flow path 28 Oxidizing gas flow path 29a Supply path (incoming refrigerant manifold)
29ai Refrigerant inlet 29b discharge path (outlet refrigerant manifold) to supply path
29bo Outlet to the outside of the discharge path 30a Inlet side fuel gas manifold 30b Outlet side fuel gas manifold 31a Inlet side oxidizing gas manifold 31b Outlet side oxidizing gas manifold 40 First refrigerant channel 50 Second refrigerant channel 51 First Channel portion 52 Second channel portion 53 Third channel portion (sub-outlet manifold or external pipe line)
54 Refrigerant inlet 55 Refrigerant outlet

Claims (15)

電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記供給路に接続される前記冷媒流路のうち、前記単位燃料電池の積層方向の、外部より冷媒が供給される前記供給路の入口に近い冷媒流路ほど、前記冷媒流路に接続される前記排出路の外部への出口に近いように配置した燃料電池。 A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant in the stacking direction of the plurality of unit fuel cells from the outside, and a connection to the supply path A refrigerant flow path for passing the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and branching from the discharge path Then, a part of the refrigerant flowing from the refrigerant flow path into the discharge path is diverted to exchange heat with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells. Among the refrigerant flow paths connected to the supply path, the refrigerant flow paths closer to the inlet of the supply path to which refrigerant is supplied from the outside in the stacking direction of the unit fuel cells. Connected to the refrigerant flow path The arrangement was fuel cell as close to the exit to the outside of the exhaust passage that. 前記第2の冷媒流路の、前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する流路部分は、単位燃料電池積層方向の少なくとも一端部に位置する燃料電池と接触する燃料電池以外の板に形成された溝を含む請求項1記載の燃料電池。 The flow path portion for exchanging heat with at least one unit fuel cell disposed in at least one end in the stacking direction of the stacked unit fuel cells of the second refrigerant channel is at least one end in the unit fuel cell stacking direction. the fuel cell of claim 1 Symbol mounting comprises a plate in which is formed a groove other than the fuel cell in contact with the fuel cell located in the part. 積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池には、発電する機能をもたせずに、冷媒による温度調整機能だけをもたせた請求項1記載の燃料電池。 At least one unit fuel cell disposed at one end of the stacking direction of the stacked unit fuel cells, without remembering function of power generation, according to claim 1 Symbol placement of the fuel cell remembering only the temperature adjustment function by the refrigerant . 前記第2の冷媒流路は、前記排出路の単位燃料電池積層方向一端部から分岐し、前記排出路の単位燃料電池積層方向他端部に接続している請求項1記載の燃料電池。 It said second coolant channel, the branches from the unit fuel cell stacking direction end portion of the discharge passage, a fuel cell connected and claim 1 Symbol mounting the unit fuel cell stacking direction other end portion of the discharge passage. 前記第2の冷媒流路が、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池と熱交換する第1の流路部分と、積層された単位燃料電池の積層方向の他端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の流路部分と、前記第1の流路部分と前記第2の流路部分を連通する第3の流路部分を含んでおり、前記第3の流路部分は、前記排出路とは別の通路でかつ前記積層された複数の単位燃料電池の中に形成された通路である請求項記載の燃料電池。 The second refrigerant flow path includes a first flow path portion for exchanging heat with at least one unit fuel cell disposed at one end in the stacking direction of the stacked unit fuel cells, and the stacked unit fuel cells. A second flow path portion that exchanges heat with at least one unit fuel cell disposed at the other end in the stacking direction, and a third flow that communicates the first flow path portion and the second flow path portion. 5. The fuel according to claim 4 , further comprising a passage portion, wherein the third flow passage portion is a passage different from the discharge passage and formed in the plurality of unit fuel cells stacked. battery. 前記第2の冷媒流路が、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池と熱交換する第1の流路部分と、積層された単位燃料電池の積層方向の他端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の流路部分と、前記第1の流路部分と前記第2の流路部分を連通する第3の流路部分を含んでおり、前記第3の流路部分は、前記排出路とは別の通路でかつ前記積層された複数の単位燃料電池の外に管路として形成された通路である請求項記載の燃料電池。 The second refrigerant flow path includes a first flow path portion for exchanging heat with at least one unit fuel cell disposed at one end in the stacking direction of the stacked unit fuel cells, and the stacked unit fuel cells. A second flow path portion that exchanges heat with at least one unit fuel cell disposed at the other end in the stacking direction, and a third flow that communicates the first flow path portion and the second flow path portion. includes a road section, the third channel section of said a discharge path is passage formed as a conduit to the outside of a plurality of unit fuel cells are and the laminated another passage claim 4 The fuel cell as described. 単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの供給路への冷媒の入口および各スタックの排出路からの冷媒の出口を、複数のスタックに対して共通化した請求項1または請求項4記載の燃料電池。 A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked are arranged in series in contact with each other in the unit fuel cell stacking direction, and a refrigerant inlet to a supply path of each stack and a refrigerant outlet from a discharge path of each stack a common claims 1 or claim 4 Symbol mounting the fuel cell to a plurality of stacks. 単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの、スタック間側の端部燃料電池には第2の冷媒流路を通さないようにした請求項1記載の燃料電池。 A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked are arranged in series and in contact with each other in the unit fuel cell stacking direction, and a second refrigerant flow path is provided at the end fuel cell on the inter-stack side of each stack. the fuel cell of claim 1 Symbol placement was impervious. 前記第2の冷媒流路は、前記排出路の、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池とそれに隣接する単位燃料電池との間の冷媒流路の出口より、単位燃料電池積層方向中央部側に隔たった部位から分岐している請求項1記載の燃料電池。 The second refrigerant flow path is a unit fuel cell from an outlet of the refrigerant flow path between at least one unit fuel cell at one end of the discharge path in the unit fuel cell stacking direction and an adjacent unit fuel cell. the fuel cell of claim 1 Symbol placement branches from spaced sites in the stacking direction central portion side. 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記第2の冷媒流路の、前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する流路部分は、単位燃料電池積層方向の少なくとも一端部に位置する燃料電池と接触する燃料電池以外の板に形成された溝を含む燃料電池。A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant in the stacking direction of the plurality of unit fuel cells from the outside, and a connection to the supply path A refrigerant flow path for passing the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and branching from the discharge path Then, a part of the refrigerant flowing from the refrigerant flow path into the discharge path is diverted to exchange heat with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells. And a flow path portion for exchanging heat with at least one unit fuel cell disposed at least at one end in the stacking direction of the stacked unit fuel cells of the second refrigerant flow path. , Unit fuel cell Fuel cell comprising a fuel cell that is formed in a plate other than the fuel cells in contact groove located at at least one end of the layer direction. 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、積層された単位燃料電池の積層方向の一端部に配置された少なくとも1つの単位燃料電池には、発電する機能をもたせずに、冷媒による温度調整機能だけをもたせた燃料電池。A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant in the stacking direction of the plurality of unit fuel cells from the outside, and a connection to the supply path A refrigerant flow path for passing the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and branching from the discharge path Then, a part of the refrigerant flowing from the refrigerant flow path into the discharge path is diverted to exchange heat with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells. And at least one unit fuel cell disposed at one end in the stacking direction of the stacked unit fuel cells is not provided with a function of generating electric power but only provided with a temperature adjustment function using the refrigerant. Fuel Pond. 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記第2の冷媒流路は、前記排出路の単位燃料電池積層方向一端部から分岐し、前記排出路の単位燃料電池積層方向他端部に接続している燃料電池。A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant in the stacking direction of the plurality of unit fuel cells from the outside, and a connection to the supply path A refrigerant flow path for passing the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and branching from the discharge path Then, a part of the refrigerant flowing from the refrigerant flow path into the discharge path is diverted to exchange heat with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells. And the second refrigerant channel branches off from one end of the discharge path in the unit fuel cell stacking direction and is connected to the other end of the discharge path in the unit fuel cell stacking direction. Fuel cell. 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの供給路への冷媒の入口および各スタックの排出路からの冷媒の出口を、複数のスタックに対して共通化した燃料電池。A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant in the stacking direction of the plurality of unit fuel cells from the outside, and a connection to the supply path A refrigerant flow path for passing the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and branching from the discharge path Then, a part of the refrigerant flowing from the refrigerant flow path into the discharge path is diverted to exchange heat with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells. A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked in series, in contact with each other in the unit fuel cell stacking direction, and the refrigerant inlet to each stack supply path and each Stack exhaust The outlet of the refrigerant from the road, common fuel cell for a plurality of stacks. 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、単位燃料電池を複数積層した燃料電池スタックを、複数、直列に、単位燃料電池積層方向に接触させて配置し、各スタックの、スタック間側の端部燃料電池には第2の冷媒流路を通さないようにした燃料電池。A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant in the stacking direction of the plurality of unit fuel cells from the outside, and a connection to the supply path A refrigerant flow path for passing the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and branching from the discharge path Then, a part of the refrigerant flowing from the refrigerant flow path into the discharge path is diverted to exchange heat with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells. A plurality of fuel cell stacks in which a plurality of unit fuel cells are stacked, arranged in series in contact with each other in the unit fuel cell stacking direction, and an end fuel cell on the inter-stack side of each stack The second cold The fuel cell, which was not allowed to pass through the channel. 電解質を挟持した一対の電極とセパレータとを有する単位燃料電池を複数積層した燃料電池であって、外部より前記複数の単位燃料電池の積層方向へ冷媒を供給する供給路と、該供給路に接続し前記単位燃料電池間に前記冷媒を通し冷媒と単位燃料電池との熱交換を行う冷媒流路と、該冷媒流路に接続し外部へ前記冷媒を流出させる排出路と、該排出路から分岐して前記冷媒流路から前記排出路に流入する冷媒の一部を分流し前記積層された単位燃料電池の積層方向の少なくとも一端部に配置された少なくとも1つの単位燃料電池と熱交換する第2の冷媒流路と、を備え、前記第2の冷媒流路は、前記排出路の、単位燃料電池積層方向一端部にある少なくとも1つの単位燃料電池とそれに隣接する単位燃料電池との間の冷媒流路の出口より、単位燃料電池積層方向中央部側に隔たった部位から分岐している燃料電池。A fuel cell in which a plurality of unit fuel cells having a pair of electrodes sandwiching an electrolyte and a separator are stacked, a supply path for supplying a refrigerant in the stacking direction of the plurality of unit fuel cells from the outside, and a connection to the supply path A refrigerant flow path for passing the refrigerant between the unit fuel cells and exchanging heat between the refrigerant and the unit fuel cell; a discharge path connected to the refrigerant flow path for allowing the refrigerant to flow out; and branching from the discharge path Then, a part of the refrigerant flowing from the refrigerant flow path into the discharge path is diverted to exchange heat with at least one unit fuel cell arranged at least at one end in the stacking direction of the stacked unit fuel cells. The second refrigerant channel is a refrigerant between at least one unit fuel cell at one end of the discharge channel in the unit fuel cell stacking direction and a unit fuel cell adjacent thereto. From the outlet of the channel Fuel cell is branched from the portion to position spaced in the fuel cell stacking direction central portion side.
JP2003315624A 2003-09-08 2003-09-08 Fuel cell Expired - Fee Related JP4656826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315624A JP4656826B2 (en) 2003-09-08 2003-09-08 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315624A JP4656826B2 (en) 2003-09-08 2003-09-08 Fuel cell

Publications (2)

Publication Number Publication Date
JP2005085573A JP2005085573A (en) 2005-03-31
JP4656826B2 true JP4656826B2 (en) 2011-03-23

Family

ID=34415827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315624A Expired - Fee Related JP4656826B2 (en) 2003-09-08 2003-09-08 Fuel cell

Country Status (1)

Country Link
JP (1) JP4656826B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171047B2 (en) * 2006-01-25 2013-03-27 キヤノン株式会社 Fuel cell device
KR100813274B1 (en) 2007-01-23 2008-03-13 삼성전자주식회사 Method of starting the fuel cell stack
KR101173057B1 (en) 2010-09-29 2012-08-13 현대자동차주식회사 Fuel cell stack having enhanced uniformity of temperature distribution
KR101372203B1 (en) * 2012-12-24 2014-03-07 현대자동차주식회사 Thermal management system for fuel cell stack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233978A (en) * 1985-04-10 1986-10-18 Fuji Electric Co Ltd Air cooling type fuel cell
JPH10308229A (en) * 1997-05-07 1998-11-17 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell

Also Published As

Publication number Publication date
JP2005085573A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
RU2269842C2 (en) Fuel-cell module using solid polymeric electrolyte, fuel cell pile, and method for feeding chemically active gas to fuel cell
JP3801096B2 (en) Fuel cell having a stack structure
JP3530054B2 (en) Fuel cell
JP3956864B2 (en) Fuel cell separator having flow channel structure
US20020071981A1 (en) Fuel cell
JP5180484B2 (en) Fuel cell stack
KR100798451B1 (en) Fuel cell separator and fuel cell stack and reactant gas control method thereof
JP4880836B2 (en) Fuel cell stack and reaction gas supply method
JP3972832B2 (en) Fuel cell
JP4447204B2 (en) Fuel cell with metal separator
JP4507451B2 (en) Fuel cell manifold
JP4259041B2 (en) Fuel cell
JP5042507B2 (en) Fuel cell
JPWO2010067453A1 (en) Fuel cell
US6723463B2 (en) Fuel cell stack having terminal element located at specified location
JP4656826B2 (en) Fuel cell
JP4345265B2 (en) Fuel cell
JP4507453B2 (en) Fuel cell manifold
JP2005056671A (en) Fuel cell
JP2004055481A (en) Separator for fuel cell
CA2491866C (en) Fuel cell stack comprising a counterflowing cooling system and a plurality of coolant-collecting ducts located parallel to the axis of the stack
JP4967199B2 (en) Fuel cell piping structure
JP5186845B2 (en) Fuel cell
JP5366999B2 (en) Fuel cell system
JP4925078B2 (en) Polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4656826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees