JP4656567B2 - Preliminary temperature control die used for preliminary temperature control in blow molding molding process - Google Patents

Preliminary temperature control die used for preliminary temperature control in blow molding molding process Download PDF

Info

Publication number
JP4656567B2
JP4656567B2 JP2005185220A JP2005185220A JP4656567B2 JP 4656567 B2 JP4656567 B2 JP 4656567B2 JP 2005185220 A JP2005185220 A JP 2005185220A JP 2005185220 A JP2005185220 A JP 2005185220A JP 4656567 B2 JP4656567 B2 JP 4656567B2
Authority
JP
Japan
Prior art keywords
wall portion
diameter side
mold
temperature control
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005185220A
Other languages
Japanese (ja)
Other versions
JP2007001187A (en
Inventor
啓二 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Kako Co Ltd
Original Assignee
Taisei Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Kako Co Ltd filed Critical Taisei Kako Co Ltd
Priority to JP2005185220A priority Critical patent/JP4656567B2/en
Publication of JP2007001187A publication Critical patent/JP2007001187A/en
Application granted granted Critical
Publication of JP4656567B2 publication Critical patent/JP4656567B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

本発明は、中空成形品の周方向に対する壁肉厚を均一化したり、あるいは、周方向の所望の範囲を他とは異なる肉厚にしたり、というように、周方向に対する壁肉厚を要求に応じて修正又は調整した中空成形品をブロー成形により製造する製造方法において用いられる予備温調金型に関する。より詳しくは、ブロー成形において中空成形品の周方向の肉厚を自由に調整し得る肉厚調整方法又は肉厚調整技術に係る。 The present invention requires a wall thickness in the circumferential direction, such as making the wall thickness in the circumferential direction of the hollow molded product uniform, or making the desired range in the circumferential direction different from others. pre備温tone mold about that used in the manufacturing method of manufacturing by blow molding the modified or adjusted hollow molded article according. More specifically, the present invention relates to a thickness adjusting method or a thickness adjusting technique capable of freely adjusting the thickness in the circumferential direction of a hollow molded product in blow molding.

従来、ブロー成形法としては、パリソン形成をブロー成形と完全に切り離し冷却・固化したパリソンをブロー成形前に加熱温調するというコールドパリソン方式と、パリソン形成に引き続いて温調しブロー成形を連続して行うというホットパリソン方式とが知られている。   Conventional blow molding methods include the cold parison method in which parison formation is completely separated from blow molding and the cooled and solidified parison is heated and temperature-controlled before blow molding, and temperature control is continued following parison formation and blow molding is continued. The hot parison method is known.

ホットパリソン方式を用いたものにおいて、射出成形型内のプリフォーム(有底のパリソン)を高温のまま温調ポットに入れ替え、プリフォーム内にエアブローしてプリフォームの外表面を温調ポットのキャビティを構成する内壁面に密着させることにより冷却温調し、冷却時間の短縮化を図ることが提案されている(例えば特許文献1参照)。その際、上記冷却対象のプリフォームに対し上記温調ポットにより部分的冷却を施すには、その温調ポットの内壁面に対し断熱塗料を部分的に塗布することにより、塗布部分に接触する部位の冷却を塗布部分以外に接触する部位よりも弱くすればよいことが、同特許文献では提案されている。   In the hot parison method, replace the preform (bottomed parison) in the injection mold with a temperature control pot while keeping the temperature high, and blow the air into the preform to make the outer surface of the preform the cavity of the temperature control pot. It has been proposed to adjust the cooling temperature by bringing it into close contact with the inner wall surface constituting the material to shorten the cooling time (see, for example, Patent Document 1). At that time, in order to partially cool the preform to be cooled by the temperature control pot, a part contacting the application part by partially applying a heat insulating paint to the inner wall surface of the temperature control pot In this patent document, it has been proposed that the cooling should be made weaker than the part that contacts the part other than the application part.

又、上記温調ポットのキャビティを構成する内壁面をプリフォームの上下方向に対し部分的に大径にしたり逆に小径にしたりしておき、この温調ポットに入れたプリフォーム内にエアブローして上記内壁面に密着させることにより、ブロー成形する前のプリフォームを部分的に薄肉にしたり厚肉にしたりするという偏肉化を実施しておくことも、特許文献2において提案されている。   In addition, the inner wall surface constituting the cavity of the temperature control pot is partially made large in diameter with respect to the vertical direction of the preform or conversely made small in diameter, and air is blown into the preform placed in the temperature control pot. It is also proposed in Patent Document 2 that the preform before blow molding is partially thinned or thickened by bringing it into close contact with the inner wall surface.

さらに、本出願人は、コールドパリソン方式を用いて特に扁平形ボトルの周方向に対する壁肉厚の均一化を図るために、冷却・固化後のプリフォーム(コールドパリソン)を加熱温調する際に、上記扁平形の長径方向に延伸される部分よりも短径方向に延伸される部分の方が高温になるように加熱することを、特許文献3において提案している。   Furthermore, the present applicant uses the cold parison method to heat and regulate the preform (cold parison) after cooling and solidification, in particular, in order to achieve uniform wall thickness in the circumferential direction of the flat bottle. Patent Document 3 proposes heating the portion of the flat shape that extends in the minor axis direction to a higher temperature than the portion that extends in the major axis direction.

特開昭57−103821号公報JP-A-57-103821 特開昭59−115816号公報JP 59-115816 A 特開2000−127230号公報JP 2000-127230 A

ところで、射出成形されるプリフォーム又は押出成形されるパリソンはその断面が円形であるため、ブロー成形により扁平形ボトル(平面方向の断面が長円形、楕円形あるいは長方形等)を成形すると、その扁平形状の短径方向と長径方向とで互いのブロー比(膨脹比)が異なり、短径方向に比して長径方向のブロー比が大きくなる結果、ブロー成形後の長径側部分の壁肉厚は薄く短径側部分の壁肉厚は厚くなってしまい、偏肉を生じることになる。かかる偏肉は、軽量化を阻害したり、材料消費の損失、長径側部分の強度不足、あるいは、特に点眼ボトルの場合にはスクイズ性能の悪化等を招いたりすることから、周方向における壁肉厚の均一化が要請されている。特に長径/短径の比が1.6〜4超の扁平形ボトルにおける上記均一化の要請は極めて強い。   By the way, the injection molded preform or the extrusion molded parison has a circular cross section. Therefore, when a flat bottle (a cross section in the plane direction is oval, elliptical, or rectangular) is formed by blow molding, the flat shape is flat. The blow ratio (expansion ratio) differs between the minor axis direction and the major axis direction of the shape, and the blow ratio in the major axis direction is larger than the minor axis direction. As a result, the wall thickness of the major axis side part after blow molding is The wall thickness of the thin and short diameter side portion becomes thick, resulting in uneven thickness. Such uneven thickness hinders weight reduction, loss of material consumption, insufficient strength of the long diameter side portion, or deterioration of squeeze performance particularly in the case of eye drops bottles. There is a demand for uniform thickness. In particular, there is an extremely strong demand for uniformization in flat bottles having a major axis / minor axis ratio of 1.6 to more than 4.

あるいは、上記の円形断面のプリフォーム又はパリソンを用いて円形断面のボトルをブロー成形により製造する場合には、通常は周方向における壁肉厚は均一になる筈であるが、製造されるボトルの利用形態や使用目的等によっては周方向の特定部位の壁肉厚を他の部位よりも意図的に分厚く形成したいという要請が、ボトル設計者から製造現場において投げかけられる場合もあり得る。   Alternatively, when a circular cross-section bottle is manufactured by blow molding using the above-mentioned circular cross-section preform or parison, the wall thickness in the circumferential direction should normally be uniform. Depending on the form of use, purpose of use, etc., there may be a request from the bottle designer at the manufacturing site that the wall thickness of a specific part in the circumferential direction should be intentionally made thicker than other parts.

ところが、これらの要請に応える上で、上記の従来の方法を用いたとしても、次のような不都合を招くことになる。すなわち、特許文献1での提案技術の適用を考えると、温調ポットの内壁面に部分的に断熱層を形成するということは、その断熱層の存在によりプリフォームの外表面を部分的に冷却され難くする又は緩やかな勾配で冷却されるようにすることに他ならず、そのような冷却され難い部分も最低限離型可能な程度まで冷却されるのを待つ必要から本来の目的である冷却時間の短縮化を図ることができなくなってしまう。あるいは、断熱塗料の塗布により形成される断熱層と、金属製金型である温調ポッドとの間には極端な熱伝導性の相違が存在するため、離型可能な程度までに冷却するという温調ポットが果たすべき機能を担保するには上記の断熱層を極端な薄肉とせざるを得なくなる。断熱層を極端な薄肉に設定すると、それが断熱塗料の塗布により形成されていることとも相まって耐久性に欠けることになり、安定的な量産への適用が困難になってしまうことになる。しかも、プリフォーム等の外表面が断熱塗料の塗布面に密着される結果、その塗布面の模様がプリフォーム外表面に転写されてしまい、外観品質の劣化を招くことにもなる。   However, in response to these demands, even if the above-described conventional method is used, the following disadvantages are caused. In other words, considering the application of the proposed technique in Patent Document 1, the partial formation of a heat insulating layer on the inner wall surface of the temperature control pot means that the outer surface of the preform is partially cooled due to the presence of the heat insulating layer. Cooling that is the original purpose because it is necessary to wait until the part that is difficult to be cooled is cooled to the minimum that it can be released from the mold. It becomes impossible to shorten the time. Or, there is an extreme difference in thermal conductivity between the heat-insulating layer formed by application of the heat-insulating paint and the temperature control pod that is a metal mold, so that it is cooled to the extent that it can be released. In order to secure the function that the temperature control pot should perform, the above heat insulating layer must be made extremely thin. When the heat insulating layer is set to an extremely thin wall, it is not durable because it is formed by application of a heat insulating paint, which makes it difficult to apply to stable mass production. In addition, as a result of the outer surface of the preform or the like being in close contact with the application surface of the heat insulating paint, the pattern of the application surface is transferred to the outer surface of the preform, leading to deterioration of the appearance quality.

又、特許文献2での提案技術の適用を考えると、点眼ボトルの如く口内径が極めて小さくかつ短径側部分のブロー比そのものが極めて小さい扁平形状のボトルを対象とする場合には、形状的制限を受けて温調ポットに形成する必要のある部分的な凹凸自体を形成し得ず、本提案技術における温調ポットを用いた予備ブロー成形により偏肉化させる手段を採り得ないおそれがある。さらに、温調ポットに凹凸が形成されていてもその温度は全体に均一であって予備ブロー成形時の冷却速度もプリフォーム全体に亘り均一となるため、上記の肉厚変化自体も得られないおそれがある。   Considering the application of the proposed technique in Patent Document 2, when a bottle with a flat shape such as an eye drop bottle with a very small inner diameter of the mouth and a very small blow ratio of the short diameter side portion is targeted, There is a possibility that the partial unevenness itself that needs to be formed in the temperature control pot due to restrictions cannot be formed, and it is not possible to adopt a means for uneven thickness by preliminary blow molding using the temperature control pot in the proposed technique. . Furthermore, even if unevenness is formed in the temperature control pot, the temperature is uniform throughout, and the cooling rate at the time of preliminary blow molding is also uniform throughout the preform, so the above-mentioned wall thickness change itself cannot be obtained. There is a fear.

さらに、特許文献3での提案技術の適用を考えると、コールドパリソン方式は射出成形したプリフォームを室温まで冷却した後にブロー成形温度まで再度加熱するものであるため、熱エネルギー消費が多大になる上に、パリソン形成工程とブロー成形工程との間にパリソン保管のための設備が必要になる。このため、安定量産の効率性という観点からは改良の余地がある。   Furthermore, considering the application of the proposed technique in Patent Document 3, the cold parison method is such that the injection-molded preform is cooled to room temperature and then heated again to the blow molding temperature. In addition, equipment for parison storage is required between the parison forming process and the blow molding process. For this reason, there is room for improvement from the viewpoint of the efficiency of stable mass production.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、中空成形品の周方向に対する壁肉厚を要求に応じて自由に修正又は調整した中空成形品をブロー成形により製造し得る製造方法であって、しかも、より安定的な量産に適した製造方法を実現するために予備温調で用いる予備温調金型を提供することにある。上記の壁肉厚の調整とは、より具体的には、扁平形状の中空成形品の周方向に対する壁肉厚を均一化することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to blow a hollow molded product whose wall thickness in the circumferential direction of the hollow molded product is freely corrected or adjusted as required. Another object of the present invention is to provide a preliminary temperature control mold that can be manufactured by molding and used for preliminary temperature control in order to realize a manufacturing method suitable for more stable mass production. The adjustment of the wall thickness of the above, more specifically, is to equalize the wall thickness in the circumferential direction of the hollow molded article of a flat shape.

課題を解決する手段を説明する前に、特許請求の範囲には含まれないが、製造方法に係る第1の参考発明について説明する。第1の参考発明は、樹脂成形材料として熱可塑性樹脂を用い押出成形又は射出成形により円筒状樹脂溶融体である出発成形体を成形し、この成形に続いて出発成形体に対し予備温調を施した上で、最終成形体の外面形状に対応するキャビティ面を有する本ブロー成形金型に収容して本ブロー成形を施すことにより最終成形体を得る中空成形品の製造方法を対象にして次の特定事項を備えるものである。すなわち、上記予備温調として、所定の予備温調金型内に上記出発成形体を収容し予備ブロー成形して外表面をキャビティ面と接触させて熱交換させることにより偏温化した状態に温調された予備成形体に成形するようにする。その際、上記予備温調金型のキャビティ面の内、上記最終成形体において本来肉厚よりも薄肉化させたい周壁部位と周方向において対応する予備成形体の第1特定周壁部位が接触することになるキャビティ面を構成する第1金型壁部分の接触熱交換による熱収奪量を小設定にすることにより、上記予備成形体の第1特定周壁部位の外表面に薄皮固化層を形成しつつこの薄皮固化層を除く残りの肉部分の樹脂成形材料を上記本ブロー成形による内圧を受けたとき周方向に流動し得る程度に高温で低粘度の溶融状態に維持されるように予備温調する一方、上記最終成形体において本来肉厚よりも厚肉化させたい周壁部位と周方向に対応する上記予備成形体の第2特定周壁部位が接触することになるキャビティ面を構成する第2金型壁部分の接触熱交換による熱収奪量を大設定にすることにより、その予備成形体の第2特定周壁部位を構成する樹脂成形材料を低温で高粘度の溶融状態まで冷却するように予備温調することとするものである Before describing the means for solving the problem, the first reference invention related to the manufacturing method, which is not included in the claims, will be described. In the first reference invention , a thermoplastic resin is used as a resin molding material, a starting molded body that is a cylindrical resin melt is molded by extrusion molding or injection molding, and a preliminary temperature control is performed on the starting molded body following this molding. Next, a hollow molded product manufacturing method for obtaining a final molded body by accommodating the blow molded mold having a cavity surface corresponding to the outer surface shape of the final molded body and performing the final blow molding will be described below. It is equipped with the specific matter. That is, as the preliminary temperature control, the starting molded body is accommodated in a predetermined preliminary temperature control mold, subjected to preliminary blow molding, and the outer surface is brought into contact with the cavity surface to perform heat exchange so that the temperature is kept in a deviated temperature state. Mold into a prepared preform. At that time, of the cavity surface of the preliminary temperature control die, the peripheral wall portion to be made thinner than the original thickness in the final molded body and the first specific peripheral wall portion of the corresponding preformed body in the circumferential direction are in contact with each other. While forming a thin skin solidified layer on the outer surface of the first specific peripheral wall portion of the preform, by reducing the amount of heat absorbed by contact heat exchange of the first mold wall portion constituting the cavity surface to become Preliminary temperature control is performed so that the resin molding material of the remaining meat portion excluding the thinned solidified layer is maintained in a molten state having a high temperature and low viscosity to such an extent that it can flow in the circumferential direction when subjected to the internal pressure by the main blow molding. On the other hand, in the final molded body, a second mold that forms a cavity surface in which the peripheral wall portion that is originally desired to be thicker than the wall thickness and the second specific peripheral wall portion of the preform corresponding to the circumferential direction are in contact with each other. Wall part contact heat By heat exploitation amount of conversion in a large set shall be the be pre temperature control to cool the resin molding material constituting the second specific peripheral wall portion of the preform to a molten state of high viscosity at low temperatures Is .

上記第1の参考発明の場合、予備温調後の予備成形体の第1特定周壁部位が薄皮固化層を除き高温で低粘度の溶融状態とされ、第2特定周壁部位が低温で高粘度の溶融状態とされるため、本ブロー成形時には第1特定周壁部位を構成する樹脂成形材料が周方向、つまり第2特定周壁部位の側に流動しながら延伸されることになる。この結果、第1特定周壁部位に対応する最終成形体の周壁部位は相対的に薄肉に成形され、第2特定周壁部位に対応する最終成形体の周壁部位は相対的に厚肉に成形されることになる。これにより、最終成形体の外周面は真円形状であっても、その周壁の肉厚分布を周方向に対し自由に修正したり調整したりし得るようになる。 In the case of the first reference invention, the first specific peripheral wall portion of the preform after the preliminary temperature adjustment is in a molten state having a low viscosity at a high temperature except for the thinned solidified layer, and the second specific peripheral wall portion is a high viscosity at a low temperature. Since it is in a molten state, the resin molding material constituting the first specific peripheral wall portion is stretched while flowing in the circumferential direction, that is, on the second specific peripheral wall portion side during the blow molding. As a result, the peripheral wall portion of the final molded body corresponding to the first specific peripheral wall portion is formed relatively thin, and the peripheral wall portion of the final molded body corresponding to the second specific peripheral wall portion is formed relatively thick. It will be. Thereby, even if the outer peripheral surface of the final molded body is a perfect circle, the thickness distribution of the peripheral wall can be freely corrected or adjusted in the circumferential direction.

又、製造方法に係る第2の参考は、樹脂成形材料として熱可塑性樹脂を用い押出成形又は射出成形により円筒状樹脂溶融体である出発成形体を成形し、この成形に続いて出発成形体に対し予備温調を施した上で、最終成形体の外面形状に対応するキャビティ面を有する本ブロー成形金型に収容して本ブロー成形を施すことにより横断面が短径側と長径側とよりなる扁平形状の最終成形体を得る中空成形品の製造方法を対象として次の特定事項を備えるものである。すなわち、上記予備温調として、上記出発成形体と最終成形体との中間形状を有する予備成形体の外面形状に対応するキャビティ面を有する所定の予備温調金型内に上記出発成形体を収容し予備ブロー成形して外表面をキャビティ面と接触させて熱交換させることにより短径側と長径側とで偏温化した状態に温調された予備成形体に成形するようにする。その際、上記予備温調金型のキャビティ面の内、上記最終成形体において短径側となる周壁部位と対応する予備成形体の短径側周壁部位に接触することになるキャビティ面を構成する第1金型壁部分の熱交換による熱収奪量を小設定にすることにより、上記予備成形体の短径側周壁部位の外表面に薄皮固化層を形成しつつこの薄皮固化層を除く残りの肉部分の樹脂成形材料を上記本ブロー成形による内圧を受けたとき周方向に流動し得る程度に高温で低粘度の溶融状態に維持されるように予備温調する一方、上記最終成形体において長径側となる周壁部位と対応する上記予備成形体の長径側周壁部位に接触することになるキャビティ面を構成する第2金型壁部分の熱交換による熱収奪量を大設定にすることにより、その予備成形体の長径側周壁部位を構成する樹脂成形材料を低温で高粘度の溶融状態まで冷却するように予備温調することとしたものである Also, the second reference onset bright according to the manufacturing method, by extrusion or injection molding using a thermoplastic resin is a cylindrical resin melt molding the starting molded body as the resin molding material, the starting molded Following this molding Preliminary temperature control is applied to the body, and then stored in a blow mold having a cavity surface corresponding to the outer shape of the final molded body and subjected to the blow molding, so that the cross section is shorter and longer. When those having the following specific features as an object a hollow molded article manufacturing method of obtaining a more becomes final form of flat shape. That is, as the preliminary temperature control, the starting molded body is accommodated in a predetermined preliminary temperature control mold having a cavity surface corresponding to the outer surface shape of the preliminary molded body having an intermediate shape between the starting molded body and the final molded body. Then, preliminary blow molding is performed, and the outer surface is brought into contact with the cavity surface to perform heat exchange, thereby forming a preform that is temperature-controlled so that the temperature is deviated between the short diameter side and the long diameter side. In that case, the cavity surface which contacts the short diameter side peripheral wall part of the preformed body corresponding to the peripheral wall part which becomes a short diameter side in the final molded body among the cavity surfaces of the preliminary temperature control mold is constituted. By reducing the amount of heat absorbed by heat exchange of the first mold wall portion, a thin skin solidified layer is formed on the outer surface of the short-diameter side peripheral wall portion of the preform, and the rest of the thin mold solidified layer is removed. While the temperature of the resin molding material of the meat part is preliminarily adjusted so as to be able to flow in the circumferential direction when subjected to the internal pressure by the main blow molding, it is preliminarily adjusted while the long diameter of the final molded body is By setting a large amount of heat absorption by heat exchange of the second mold wall portion that constitutes the cavity surface that contacts the long-diameter side peripheral wall portion of the preform corresponding to the peripheral wall portion that becomes the side, Long diameter side circumference of preform The resin molding material constituting the site in which it was decided to reserve temperature control to cool at low temperature to a molten state of high viscosity.

上記第2の参考発明の場合、上記の予備温調をせずに、そのままブロー成形してしまうと、扁平形状であるが故に、最終成形体の短径側周壁部位が厚肉になり、長径側周壁部位が薄肉になるというように偏肉化してしまうという不都合の発生を回避することができるようになり、上記の如き予備温調を施した上で本ブロー成形することにより、最終成形体が扁平形状であっても短径側周壁部位の厚肉化を抑制すると同時に長径側周壁部位の薄肉化を抑制し、周方向に対する肉厚の均一化が図られることになる。すなわち、出発成形体内に予備ブローして周壁が外周側に膨らんで短径側周壁部位が予備温調型のキャビティ面に接触すると、接触熱交換によりその短径側周壁部位の外表面が冷却されて固化傾向となるものの、熱収奪量が小設定であるため早期に熱平衡に達してしまいそれ以上の冷却能が失われることになる。このため、予備成形体の短径側周壁部位では外表面側に薄皮の固化層が形成されるものの、残部は出発成形体の溶融状態に近い高温で低粘度の溶融状態に維持されることになる。その一方、短径側周壁部位がキャビティ面に接触してもなお延伸される予備成形体の長径側周壁部位は薄肉傾向となる上に、ついに接触したキャビティ面から大設定の熱収奪量を有する接触熱交換による冷却を受けて樹脂成形材料は低温で高粘度の溶融状態になる。このような予備成形体に対し本ブロー成形を施すと、内部から圧力を受けて外周側に膨らみ短径側周壁部位が本ブロー成形金型のキャビティ面に接触すると、高温で低粘度の樹脂成形材料が周方向両側、つまり長径側周壁部位の側に流動し始め、長径側周壁部位の樹脂成形材料として補給されることになる。これにより、周方向に対する肉厚の均一化が図られることになる。又、キャビティ面が第1金型壁部分又は第2金型壁部分により形成されているため、その壁部分を構成する金型形成金属材料を磨いてキャビティ面を平滑にすれば、鏡面転写も可能であり、透明で平滑な表面を有する中空成形品の製造も担保し得る。 In the case of the second reference invention, if the blow molding is performed as it is without performing the preliminary temperature control, the short diameter side peripheral wall portion of the final molded body becomes thick due to the flat shape, and the long diameter It is possible to avoid the occurrence of inconvenience that the side peripheral wall portion is thinned so that it becomes thin, and the final molded body is obtained by performing the preliminary temperature control as described above and then performing the main blow molding. Even if it is flat, the thickness of the short-diameter side peripheral wall portion is suppressed, and at the same time, the thinning of the long-diameter side peripheral wall portion is suppressed, so that the thickness is uniform in the circumferential direction. That is, when the preliminary blow is blown into the starting molded body, the peripheral wall expands to the outer peripheral side, and the short diameter side peripheral wall part contacts the cavity surface of the preliminary temperature control mold, the outer surface of the short diameter side peripheral wall part is cooled by contact heat exchange. Although it tends to solidify, since the amount of heat absorbed is small, heat equilibrium is reached early and further cooling capacity is lost. For this reason, although a thin solidified layer is formed on the outer surface side of the short diameter side peripheral wall portion of the preform, the remainder is maintained in a low viscosity molten state at a high temperature close to the molten state of the starting molded body. Become. On the other hand, the long-diameter side peripheral wall portion of the preform, which is still stretched even if the short-diameter side peripheral wall portion contacts the cavity surface, tends to be thin, and finally has a large amount of heat absorbed from the contacted cavity surface. Upon being cooled by contact heat exchange, the resin molding material is in a molten state having a high viscosity at a low temperature. When this blow molding is applied to such a preform, it is bulged toward the outer periphery under pressure from the inside, and when the short-diameter side peripheral wall portion contacts the cavity surface of the blow molding die, a high-viscosity resin molding is performed. The material starts to flow to both sides in the circumferential direction, that is, to the side of the long-diameter side peripheral wall portion, and is supplied as a resin molding material for the long-diameter side peripheral wall portion. Thereby, the thickness in the circumferential direction is made uniform. Further, since the cavity surface is formed by the first mold wall portion or the second mold wall portion, if the mold surface forming the wall portion is polished to smooth the cavity surface, mirror transfer is also possible. It is possible to secure the production of a hollow molded article having a transparent and smooth surface.

以上の製造方法にあっては、第1金型壁部分と、第2金型壁部分との接触熱交換による熱収奪量の大小設定を、第1金型壁部分に接触する予備成形体の特定周壁部位と、第2金型壁部分に接触する予備成形体の特定周壁部位との予備温調後における溶融状態での両樹脂成形材料の互いの温度差が10℃以上になるように設定することができ。これにより、本ブロー成形時に短径側周壁部位から長径側周壁部位への樹脂成形材料の流動化を実現させ得る、第1及び第2の金型壁部分の条件設定を、より具体的に設定し得ることになる。 In the above manufacturing method, the magnitude of the amount of heat absorbed by the contact heat exchange between the first mold wall part and the second mold wall part is set to the size of the preform that is in contact with the first mold wall part. Set so that the temperature difference between the two resin molding materials in the molten state after the preliminary temperature adjustment between the specific peripheral wall portion and the specific peripheral wall portion of the preform that is in contact with the second mold wall portion is 10 ° C. or more. it is Ru can be. Thereby, the condition setting of the first and second mold wall portions that can realize the fluidization of the resin molding material from the short diameter side peripheral wall portion to the long diameter side peripheral wall portion at the time of the main blow molding is set more specifically. Will be able to.

そして、課題を解決する手段として、上記の目的を達成するために、本発明では、樹脂成形材料として熱可塑性樹脂を用い押出成形又は射出成形により円筒状樹脂溶融体である出発成形体を成形し、この成形に続いて出発成形体に対し予備温調を施した上で、最終成形体の外面形状に対応するキャビティ面を有する本ブロー成形金型に収容して本ブロー成形を施すことにより横断面が短径側と長径側とよりなる扁平形状の最終成形体を得る中空成形品の製造方法における予備温調に用いる予備温調金型を対象にして次の特定事項を備えることとした。すなわち、上記出発成形体と最終成形体との中間形状を有する予備成形体の外面形状に対応する形状に形成されたキャビティ面であって、上記出発成形体の内部に予備ブローすることにより成形される予備成形体の外表面が接触し熱交換によりその樹脂成形材料から熱収奪することで予備成形体を短径側と長径側とで互いに異なる温調状態に偏温化させるキャビティ面を有するものとする。そして、上記キャビティ面の内、上記最終成形体において短径側となる周壁部位と対応する予備成形体の短径側周壁部位に接触することになるキャビティ面を構成する第1金型壁部分の接触熱交換による熱収奪量として、その接触熱交換によって上記予備成形体の短径側周壁部位の外表面に薄皮固化層が形成されつつこの薄皮固化層を除く残りの肉部分の樹脂成形材料が上記本ブロー成形による内圧を受けたとき周方向に流動し得る程度に高温で低粘度の溶融状態に維持されるように小設定とする一方、上記最終成形体において長径側となる周壁部位と対応する上記予備成形体の長径側周壁部位に接触することになるキャビティ面を構成する第2金型壁部分の接触熱交換による熱収奪量として、その接触熱交換によって上記予備成形体の長径側周壁部位を構成する樹脂成形材料が低温で高粘度の溶融状態まで冷却されるように大設定として、短径側と長径側とで互いに異なる温調状態に偏温化した温調状態の予備成形体に対し上記本ブロー成形を行うことで短径側周壁部位の厚肉化を抑制すると同時に長径側周壁部位の薄肉化を抑制して周方向に対する肉厚の均一化を図る構成とする As a means for solving the problem, in order to achieve the above object, in the present invention, a thermoplastic resin is used as a resin molding material, and a starting molded body that is a cylindrical resin melt is formed by extrusion molding or injection molding. After the molding, the starting molded body is preliminarily adjusted, and then stored in a blow mold having a cavity surface corresponding to the outer surface shape of the final molded body, and then subjected to the blow molding. The following specific matters were provided for a preliminary temperature control die used for preliminary temperature control in a manufacturing method of a hollow molded product that obtains a flat shaped final molded body having a short diameter side and a long diameter side. That is, it is a cavity surface formed in a shape corresponding to the outer surface shape of a preformed body having an intermediate shape between the starting molded body and the final molded body, and is molded by pre-blowing into the starting molded body. With a cavity surface that causes the pre-molded body to deviate to a different temperature control state on the short-diameter side and the long-diameter side by contacting the outer surface of the pre-molded body and taking heat away from the resin molding material by heat exchange And Of the cavity surfaces, the first mold wall portion constituting the cavity surface that comes into contact with the short-diameter side peripheral wall portion of the preform corresponding to the short-wall side peripheral wall portion in the final molded body. As the amount of heat absorbed by contact heat exchange, the resin molding material of the remaining meat portion excluding this thin skin solidified layer is formed while the thin skin solidified layer is formed on the outer surface of the short peripheral side wall portion of the preform by the contact heat exchange. Corresponding to the peripheral wall portion on the long diameter side in the final molded body while maintaining a low-viscosity molten state at a high temperature so that it can flow in the circumferential direction when subjected to internal pressure by the blow molding As the amount of heat absorbed by the contact heat exchange of the second mold wall portion that constitutes the cavity surface that comes into contact with the long-diameter side peripheral wall portion of the preform, the long diameter of the preform by the contact heat exchange Resin molding material constituting the wall site with a large set to be cooled to a molten state of a high viscosity at low temperatures, the temperature control state of polarization Yutakaka different temperature control states to each other in the minor axis and the major axis side By performing the main blow molding on the preform, the thickness of the short-diameter side peripheral wall portion is suppressed, and at the same time, the thinning of the long-diameter side peripheral wall portion is suppressed to achieve a uniform thickness in the circumferential direction. .

以上の発明特定事項の場合、上記出発成形体と最終成形体との中間形状を有する予備成形体の外面形状に対応するキャビティ面を有する本発明に係る予備温調金型内に上記出発成形体を収容し予備ブロー成形して外表面をキャビティ面と接触させて熱交換させることにより短径側と長径側とで偏温化した状態に温調された予備成形体に成形するようにするという予備温調を行うことで、このような予備温調をせずに、そのままブロー成形してしまうと、扁平形状であるが故に、最終成形体の短径側周壁部位が厚肉になり、長径側周壁部位が薄肉になるというように偏肉化してしまうという不都合の発生を回避することができるようになり、上記の如き予備温調金型を用いて予備温調を施した上で本ブロー成形することにより、最終成形体が扁平形状であっても短径側周壁部位の厚肉化を抑制すると同時に長径側周壁部位の薄肉化を抑制し、周方向に対する肉厚の均一化が図られることになる。すなわち、出発成形体内に予備ブローして周壁が外周側に膨らんで短径側周壁部位が予備温調型のキャビティ面に接触すると、接触熱交換によりその短径側周壁部位の外表面が冷却されて固化傾向となるものの、熱収奪量が小設定であるため早期に熱平衡に達してしまいそれ以上の冷却能が失われることになる。このため、予備成形体の短径側周壁部位では外表面側に薄皮の固化層が形成されるものの、残部は出発成形体の溶融状態に近い高温で低粘度の溶融状態に維持されることになる。その一方、短径側周壁部位がキャビティ面に接触してもなお延伸される予備成形体の長径側周壁部位は薄肉傾向となる上に、ついに接触したキャビティ面から大設定の熱収奪量を有する接触熱交換による冷却を受けて樹脂成形材料は低温で高粘度の溶融状態になる。このような予備成形体に対し本ブロー成形を施すと、内部から圧力を受けて外周側に膨らみ短径側周壁部位が本ブロー成形金型のキャビティ面に接触すると、高温で低粘度の樹脂成形材料が周方向両側、つまり長径側周壁部位の側に流動し始め、長径側周壁部位の樹脂成形材料として補給されることになる。これにより、周方向に対する肉厚の均一化が図られることになる。又、キャビティ面が第1金型壁部分又は第2金型壁部分により形成されているため、その壁部分を構成する金型形成金属材料を磨いてキャビティ面を平滑にすれば、鏡面転写も可能であり、透明で平滑な表面を有する中空成形品の製造も担保し得る。 In the case of the above invention specific matters , the starting molded body is included in the preliminary temperature control mold according to the present invention having a cavity surface corresponding to the outer surface shape of the preformed body having an intermediate shape between the starting molded body and the final molded body. Is preliminarily blow molded, and the outer surface is brought into contact with the cavity surface and heat exchange is performed, so that the preform is temperature-controlled in a state where the temperature is deviated between the short diameter side and the long diameter side. By performing preliminary temperature control, if it is blow molded as it is without such preliminary temperature control, the short diameter side peripheral wall part of the final molded body becomes thick due to the flat shape, and the long diameter It is possible to avoid the occurrence of inconvenience that the side wall portion becomes thin as the side wall portion becomes thin, and after the preliminary temperature control is performed using the preliminary temperature control mold as described above, the main blow is performed. By molding, the final molded body is flattened. A shape also suppress thinning of long diameter side wall portion and simultaneously suppress the thickening of the short diameter side wall portion, so that the uniformity of the thickness in the circumferential direction can be achieved. That is, when the preliminary blow is blown into the starting molded body, the peripheral wall expands to the outer peripheral side, and the short diameter side peripheral wall part contacts the cavity surface of the preliminary temperature control mold, the outer surface of the short diameter side peripheral wall part is cooled by contact heat exchange. Although it tends to solidify, since the amount of heat absorbed is small, heat equilibrium is reached early and further cooling capacity is lost. For this reason, although a thin solidified layer is formed on the outer surface side of the short diameter side peripheral wall portion of the preform, the remainder is maintained in a low viscosity molten state at a high temperature close to the molten state of the starting molded body. Become. On the other hand, the long-diameter side peripheral wall portion of the preform, which is still stretched even if the short-diameter side peripheral wall portion contacts the cavity surface, tends to be thin, and finally has a large amount of heat absorbed from the contacted cavity surface. Upon being cooled by contact heat exchange, the resin molding material is in a molten state having a high viscosity at a low temperature. When this blow molding is applied to such a preform, it is bulged toward the outer periphery under pressure from the inside, and when the short-diameter side peripheral wall portion contacts the cavity surface of the blow molding die, a high-viscosity resin molding is performed. The material starts to flow to both sides in the circumferential direction, that is, to the side of the long-diameter side peripheral wall portion, and is supplied as a resin molding material for the long-diameter side peripheral wall portion. Thereby, the thickness in the circumferential direction is made uniform. Further, since the cavity surface is formed by the first mold wall portion or the second mold wall portion, if the mold surface forming the wall portion is polished to smooth the cavity surface, mirror transfer is also possible. It is possible to secure the production of a hollow molded article having a transparent and smooth surface.

上記の発明特定事項に加え、本発明においては、上記キャビティ面を構成する第1金型壁部分及び第2金型壁部分として互いに同じ金型形成材料を用いて一体に形成するとともに、上記熱交換による熱収奪量の設定にそれぞれ対応するように第1金型壁部分を薄肉に、上記第2金型壁部分を厚肉に形成することとする。上記の接触熱交換による熱収奪量の大小設定を肉厚の大小により実現させ得ることになる。 In addition to the above subject matter, in the present invention, with integrally formed using the same mold-forming material to each other as a first mold wall part and a second mold wall portion constituting the cavity surface, the upper Symbol a first mold wall portion thinner so as to correspond to the setting of the thermal exploitation amount of heat exchange, and forming the second mold wall portion thicker. Ing to be the magnitude set of heat exploitation amount according to the above contact heat exchange is achieved by the magnitude of the wall thickness.

さらに、上記の発明特定事項に加え、第1金型壁部分と、第2金型壁部分との熱交換による熱収奪量の大小設定を、第1金型壁部分に接触する予備成形体の短径側周壁部位と、第2金型壁部分に接触する予備成形体の長径側周壁部位との予備温調後における溶融状態での両樹脂成形材料の互いの温度差が10℃以上になるように設定した(請求項)。このようにすることにより、本ブロー成形時に短径側周壁部位から長径側周壁部位への樹脂成形材料の流動化を実現させ得る、第1及び第2の金型壁部分の条件設定を、より具体的に設定し得ることになり、予備温調を施した予備成形体の短径側周壁部位の薄皮固化層を除く樹脂成形材料部分を、本ブローを受ければ確実に流動し得る状態にすることが可能になる。 Furthermore, in addition to the above-mentioned invention specific matters, the magnitude setting of the amount of heat absorbed by the heat exchange between the first mold wall part and the second mold wall part can be set by the pre-molded body in contact with the first mold wall part. The temperature difference between the two resin molding materials in the molten state after the preliminary temperature control between the short-diameter side peripheral wall portion and the long-diameter side peripheral wall portion of the preform that is in contact with the second mold wall portion is 10 ° C. or more. It was set to (claim 1). Ri by the so doing, at the time of the blow molding capable of realizing a flow of the resin molding material to the major axis side wall portion from the short diameter side wall portion, the condition setting of the first and second mold wall portion , will be capable of setting more specifically, the resin molding material portion except for the thin skin solidified layer of short diameter side wall portion of the preform which has been subjected to pre備温tone can reliably flow if Ukere this blow It becomes possible to be in a state.

そして、第1金型壁部分の肉厚を0.5cmよりも薄肉範囲に設定することにより、上記の高温で低粘度下での流動の確実な実現や、上記の10℃以上の温度差の実現が図られる(請求項)。 And by setting the wall thickness of the first mold wall part to be less than 0.5 cm, the flow can be reliably realized at a high temperature and a low viscosity, and the temperature difference of 10 ° C. or more can be achieved. Realization is achieved (Claim 2 ).

さらに、第1金型壁部分のキャビティ面とは反対側に、断熱性を有する材料により形成されて第1金型壁部分を背後から補強する補強部材を一体に備えるようにしてもよい(請求項)。これにより、予備ブローのエア圧等に耐えて長期間に亘る量産に適した予備温調金型を実現し得る。 Furthermore, a reinforcing member that is formed of a heat-insulating material and reinforces the first mold wall portion from the back side may be integrally provided on the opposite side of the cavity surface of the first mold wall portion. Item 3 ). As a result, it is possible to realize a preliminary temperature adjustment die that can withstand the air pressure of the preliminary blow and is suitable for mass production over a long period of time.

以上、説明したように、請求項〜請求項のいずれかのブロー成形による中空成形品の製造方法における予備温調に用いる予備温調金型によれば、出発成形体の成形に引き続いて予備温調金型を用いた予備温調の実行によって、本ブロー成形を偏温化させた温調状態で行うことができるようになり、これにより、最終成形体が扁平形状であっても短径側周壁部位の厚肉化を抑制すると同時に長径側周壁部位の薄肉化を抑制することができ、周方向に対する肉厚の均一化を図ることができるようになる。これにより、扁平形状であるが故に、従来、最終成形体の短径側周壁部位が厚肉になり、長径側周壁部位が薄肉になるというように偏肉化してしまうという不都合の発生を確実に回避することができる。その上に、本ブロー成形前に予備温調金型を用いて予備ブローするだけという予備温調工程を介在させるだけで、従来の不都合の発生もなく安定的な量産体制に適した製造方法を実現させることができる。 As described above, according to the pre備温tone mold used for the preliminary temperature control in Motomeko 1 to any of the manufacturing method of hollow molded articles according to the blow molding of claim 3, the forming of the starting molded body Subsequently, by performing preliminary temperature control using the preliminary temperature control mold, it becomes possible to perform the blow molding in a temperature controlled state in which the temperature is deviated, so that the final molded body has a flat shape. In addition, it is possible to suppress the increase in the thickness of the short-diameter side peripheral wall portion and at the same time to suppress the thinning of the long-diameter side peripheral wall portion, and to achieve a uniform thickness in the circumferential direction. As a result, because of the flat shape, it has hitherto been ensured that the short diameter side peripheral wall portion of the final molded body becomes thick and the long diameter side peripheral wall portion becomes thin so that the inconvenience of being unbalanced is generated. It can be avoided. In addition, a production method suitable for a stable mass production system without the occurrence of conventional inconveniences can be obtained simply by interposing a preliminary temperature adjustment process in which preliminary blow using a preliminary temperature adjustment mold is performed prior to this blow molding. Can be realized.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2は、本発明の実施形態に係る予備温調金型を用いた製造方法において順次成形されて形状を変化させることになる各成形段階での成形体を示す。本実施形態においては、中空成形品(後述の最終成形体3)として扁平形状の点眼ボトルをブロー成形により製造する場合であって、その最終成形体3として周方向の壁肉厚が均一なものを製造する場合を示している。同図において、符号1は出発成形体としての円筒状樹脂溶融体であるプリフォーム(有底のパリソン)を、2は予備成形体を、3は最終成形体をそれぞれ示し、それぞれ上側の縦断面図と下側の横断面図とで対にして示している。 1 and 2 show a molded body in each molding step which would cause are sequentially molded change shape in manufacturing method using the engagement Ru preliminary temperature control mold to an embodiment of the present invention. In the present embodiment, a flat eye drop bottle is manufactured by blow molding as a hollow molded article (final molded body 3 described later), and the wall thickness in the circumferential direction is uniform as the final molded body 3 The case of manufacturing is shown. In the figure, reference numeral 1 denotes a preform (bottomed parison) which is a cylindrical resin melt as a starting molded body, 2 denotes a preformed body, and 3 denotes a final molded body. The figure and the lower cross-sectional view are shown as a pair.

上記プリフォーム1は横断面形状が真円の円筒状に形成され、最終成形体3は長径側周壁31,31間と短径側周壁32,32間との寸法比(長径/短径比)がほぼ2.5の長円状の扁平形状に形成され、予備成形体2は上記プリフォーム1と最終成形体3との間の中間形状(中間的な横断面形状)、例えば楕円形状に形成される。本製造方法においては、上記最終成形体3の長径側周壁31も短径側周壁32も共に同じ壁肉厚に形成することができ、上記予備成形体2の長径側周壁21,21は薄肉に、短径側周壁22,22は厚肉に形成されるようになっている。   The preform 1 is formed in a cylindrical shape having a perfect cross-sectional shape, and the final molded body 3 has a dimensional ratio (major axis / minor axis ratio) between the long diameter side peripheral walls 31 and 31 and the short diameter side peripheral walls 32 and 32. Is formed in an oblong flat shape of approximately 2.5, and the preform 2 is formed in an intermediate shape (intermediate cross-sectional shape) between the preform 1 and the final molded body 3, for example, an elliptical shape. Is done. In this manufacturing method, both the long-diameter side peripheral wall 31 and the short-diameter side peripheral wall 32 of the final molded body 3 can be formed with the same wall thickness, and the long-diameter side peripheral walls 21 and 21 of the preform 2 are thin. The short diameter side peripheral walls 22, 22 are formed to be thick.

本製造方法は、射出成形型を用いてプリフォーム1を成形する射出成形工程と、予備温調金型を用いて上記プリフォーム1を所定の状態に温調しつつ予備成形体2に成形する予備温調工程と、本ブロー成形型を用いて予備成形体2を最終成形体3に成形する本ブロー成形工程とからなる。以下、射出ステーション(図3)、温調予備ブローステーション(図4)、本ブローステーション(図5)及び取り出しステーション(図6)の各図例に示される4ステーション式のインジェクションブロー設備を参照しつつ上記の各工程を説明する。   In this manufacturing method, the preform 1 is molded using the injection mold, and the preform 1 is molded into the preform 2 while the preform 1 is temperature-controlled using the preliminary temperature control mold. It consists of a preliminary temperature control step and a main blow molding step in which the preform 2 is molded into the final molded body 3 using the blow mold. Refer to the 4-station type injection blow equipment shown in each example of the injection station (FIG. 3), temperature control preliminary blow station (FIG. 4), main blow station (FIG. 5) and take-out station (FIG. 6). The above steps will be described below.

射出成形工程は図3に示す射出ステーションにおいて実施される。まず、射出成形型を構成するキャビティ金型101、リップ型102及びコア103を互いに嵌め合わせて型締めする(ステップa)。次に、図外において熱可塑性樹脂材料を混練・溶融し、溶融樹脂をホットランナーノズル104から型締めされたキャビティ内に射出してプリフォーム1(図1,図2参照)を形成する(ステップb)。そして、上記のキャビティ金型101、リップ型102及びコア103を型開きすると、プリフォーム1がその口部11(図1参照)においてリップ型102により保持された状態で取り出される(ステップc)。このリップ型102は、例えば回転作動により上記の4つのステーション間を移動可能となっており、上記口部11を保持したままリップ型102を移動させることにより、射出成形工程から、予備温調工程、本ブロー成形工程及び最後の取り出しに至るまでの各工程を連続して実行し得るようになっている。   The injection molding process is performed at the injection station shown in FIG. First, the cavity mold 101, the lip mold 102, and the core 103 constituting the injection mold are fitted together and clamped (step a). Next, the thermoplastic resin material is kneaded and melted outside the figure, and the molten resin is injected from the hot runner nozzle 104 into the cavity that is clamped to form the preform 1 (see FIGS. 1 and 2) (step) b). When the cavity mold 101, the lip mold 102, and the core 103 are opened, the preform 1 is taken out while being held by the lip mold 102 at the mouth portion 11 (see FIG. 1) (step c). The lip mold 102 can be moved between the above four stations by, for example, rotating operation. By moving the lip mold 102 while holding the mouth portion 11, the lip mold 102 can be changed from an injection molding process to a preliminary temperature control process. The blow molding process and the processes up to the final take-out can be performed continuously.

上記の熱可塑性樹脂材料としては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、低密度ポリエチレン(PE−LD)、高密度ポリエチレン(PE−HD)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、又は、シクロオレフィンポリマー(COP)等が用いられる。   Examples of the thermoplastic resin material include polyethylene terephthalate (PET), polypropylene (PP), low density polyethylene (PE-LD), high density polyethylene (PE-HD), polyarylate (PAR), polycarbonate (PC), polyethylene Naphthalate (PEN) or cycloolefin polymer (COP) is used.

予備温調工程は、図4に示すように上記の射出成形工程終了後のリップ型102を移動させることにより、プリフォーム1を温調予備ブローステーションまで移動させた上で実行される。まず、左右に分割されて型開き状態の予備温調金型201のキャビティ内に上記プリフォーム1を収容し、エア吹き込み管を兼ねる延伸ロッド202をプリフォーム1内に挿入して型締めを行う(ステップd,e)。なお、上記予備温調金型201については後に詳細に説明する。次に、上記延伸ロッド202を下降させてプリフォーム1の内部底面を押して下方に予備延伸してそのまま押さえ込むか、又は、予備延伸が不要の場合にはプリフォーム1の内部底面を押さえ込んで保持した状態で(ステップf)、延伸ロッド202の周囲からエアをプリフォーム1内に吹き込んで予備ブロー成形を行う(ステップg)。この予備ブローにより、プリフォーム1の周壁12(図1参照)が外周側に膨出されて予備温調金型201のキャビティ面に密着し、所定の温調が行われ、予備成形体2が成形される。そして、上記予備温調金型201を左右に開いて型開きし、リップ型102を予備温調金型201から分離させることにより、予備成形体2を離型させる(ステップh)。この予備温調工程では、射出成形工程から高温のまま移送したプリフォーム1に対し上記の予備温調金型201を用いて熱交換による冷却温調を施して、次工程の本ブロー成形工程のための所定の偏温化した状態の温調を行うようにしている。   As shown in FIG. 4, the preliminary temperature adjustment step is performed after the preform 1 is moved to the temperature adjustment preliminary blow station by moving the lip mold 102 after completion of the injection molding step. First, the preform 1 is accommodated in the cavity of the pre-temperature regulating mold 201 that is divided into left and right and is in an opened state, and a drawing rod 202 that also serves as an air blowing tube is inserted into the preform 1 to perform mold clamping. (Steps d and e). The preliminary temperature adjustment mold 201 will be described in detail later. Next, the stretching rod 202 is lowered and the inner bottom surface of the preform 1 is pushed and preliminarily stretched downward and pressed as it is, or when the prestretching is unnecessary, the inner bottom surface of the preform 1 is pressed and held. In the state (step f), air is blown into the preform 1 from the periphery of the stretching rod 202 to perform preliminary blow molding (step g). By this preliminary blow, the peripheral wall 12 (see FIG. 1) of the preform 1 is bulged to the outer peripheral side and is brought into close contact with the cavity surface of the preliminary temperature adjustment mold 201, and a predetermined temperature control is performed. Molded. Then, the preliminary temperature control mold 201 is opened to the left and right to open the mold, and the lip mold 102 is separated from the preliminary temperature control mold 201 to release the preliminary molded body 2 (step h). In this preliminary temperature adjustment process, the preform 1 transferred at a high temperature from the injection molding process is subjected to a cooling temperature adjustment by heat exchange using the above-mentioned preliminary temperature adjustment mold 201, and in the next blow molding process of the next process. Therefore, the temperature is adjusted in a predetermined uneven temperature state.

本ブロー成形工程は、図5に示すように上記の終了後のリップ型102を移動させることにより、予備成形体2を本ブローステーションまで移動させた上で実行される。まず、左右に分割されて型開き状態の本ブロー成形金型301のキャビティ内に上記予備成形体2を収容し、エア吹き込み管を兼ねる延伸ロッド302を予備成形体2内に挿入して型締めを行う(ステップi,j)。上記延伸ロッド302を下降させて予備成形体2の内部底面を押して下方に底壁20(図1参照)を延伸させてそのまま押し付ける(ステップk)。その状態で延伸ロッド302の周囲からエアを予備成形体2内に吹き込んで本ブロー成形を行う(ステップl)。この本ブロー成形により、予備成形体2の周壁部分21,22(図1参照)が外周側に膨出されて本ブロー成形金型301のキャビティ面に密着し、これにより、最終成形体3の成形が行われる。そして、上記の本ブロー成形金型301を左右に開いて型開きし、リップ型102を本ブロー成形金型301から分離させることにより、最終成形体3を本ブロー成形金型301から離型させる(ステップm)。   As shown in FIG. 5, the final blow molding step is performed after moving the preform 2 to the main blow station by moving the lip mold 102 after the completion. First, the preform 2 is accommodated in the cavity of the blow molding die 301 that is divided into left and right and is in an open state, and a drawing rod 302 that also serves as an air blowing tube is inserted into the preform 2 and clamped. (Steps i and j). The extending rod 302 is lowered to push the inner bottom surface of the preform 2 to extend the bottom wall 20 (see FIG. 1) downward and press it as it is (step k). In this state, air is blown from the periphery of the stretching rod 302 into the preform 2 to perform the main blow molding (step l). By this main blow molding, the peripheral wall portions 21 and 22 (see FIG. 1) of the preform 2 are bulged to the outer peripheral side and are brought into close contact with the cavity surface of the main blow molding die 301. Molding is performed. The final blow molded mold 301 is opened from the left and right, and the mold is opened, and the lip mold 102 is separated from the main blow mold 301, thereby releasing the final molded body 3 from the blow mold 301. (Step m).

この最終成形体3を把持したリップ型102を図6に示すように取り出しステーションまで移動させ、この取り出しステーションにおいて、リップ型102を左右に開き押し杆401を下降させて押し出すことにより最終成形体3を製品として取り出す(ステップn,p)。   The lip mold 102 holding the final molded body 3 is moved to the take-out station as shown in FIG. 6, and the final molded body 3 is opened by opening the lip mold 102 to the left and right and lowering the push rod 401 at the take-out station. Is taken out as a product (steps n, p).

なお、図4又は図5においては、上記の予備温調金型201や本ブロー成形金型301が型開きする分割方向について、図示の関係上、実際とは90度異なる方向に分割されて型開きするように図示しているが、実際には予備成形体2又は最終成形体3の短径方向を横切るように分割されて型開きするようになっている。   In FIG. 4 or FIG. 5, the dividing direction in which the preliminary temperature adjusting mold 201 or the main blow molding mold 301 is opened is divided into directions different from the actual 90 degrees due to the illustrated relationship. Although shown so as to open, in practice, the mold is opened by being divided so as to cross the minor axis direction of the preform 2 or the final molded body 3.

次に、上記の予備温調工程において用いる予備温調金型201について図7及び図8を参照しつつ詳細に説明する。予備温調金型201は一対の半割金型203,203を備え、一対の半割金型203,203の相対向面204,204にそれぞれ形成された凹所によって予備成形体2の外面形状を定義するキャビティ面205が構成されている。このキャビティ面205はその全面が上記半割金型203,203を構成する金属材料により形成されたもので比較的良好な熱伝導性を有している。そして、上記キャビティ面205の短径側の領域を構成する短径側壁部分(第1金型壁部分)206,206が所定の薄肉厚(例えばt=1.5mm)に形成される一方、長径側の領域を構成する長径側壁部分(第2金型壁部分)207,207,…が厚肉に形成されかつその壁部分207に金型冷却用の温調回路208,208,…が配設されて各温調回路208に冷却温調用の媒体が通されるようになっている。上記の短径側壁部分206,206のキャビティ面205とは反対側には、その短径側壁部分206,206を補強するための補強部材210,210が密着して固定されている。この補強部材210は、上記の短径側壁部分206がかなり薄肉のものとなるため、その短径側壁部分206を背後から支持して剛性を補うために固定されるものではあり、上記短径側壁部分206,206の剛性がもてば、上記の補強部材210,210を省略することができる。又、後述の如く熱収奪量を低く抑制するために短径側壁部分206を薄肉に設定しているのであり、このため、上記補強部材210を設置する場合には、その補強部材210の存在により熱収奪に影響しないように補強部材210は断熱材料により形成することが好ましい。   Next, the preliminary temperature adjustment mold 201 used in the preliminary temperature adjustment step will be described in detail with reference to FIGS. The preliminary temperature adjustment mold 201 includes a pair of half molds 203 and 203, and the outer surface shape of the preform 2 is formed by recesses formed in the opposing surfaces 204 and 204 of the pair of half molds 203 and 203, respectively. Cavity surface 205 is defined to define The cavity surface 205 is formed entirely of the metal material constituting the half molds 203, 203 and has a relatively good thermal conductivity. The short diameter side wall portions (first mold wall portions) 206 and 206 constituting the short diameter side region of the cavity surface 205 are formed to have a predetermined thin wall thickness (for example, t = 1.5 mm), while the long diameter .., 207,... Constituting the side region are formed thick, and temperature control circuits 208, 208,... For cooling the mold are disposed on the wall portion 207. Thus, a cooling temperature adjusting medium is passed through each temperature adjusting circuit 208. Reinforcing members 210 and 210 for reinforcing the short-diameter side wall portions 206 and 206 are fixed in close contact with the short-diameter side wall portions 206 and 206 on the side opposite to the cavity surface 205. Since the short diameter side wall portion 206 is considerably thin, the reinforcing member 210 is fixed so as to support the short diameter side wall portion 206 from the back side to supplement rigidity. If the portions 206 and 206 are rigid, the reinforcing members 210 and 210 can be omitted. Also, as will be described later, the short-diameter side wall portion 206 is set to be thin in order to suppress the amount of heat sequestration low. For this reason, when the reinforcing member 210 is installed, the presence of the reinforcing member 210 The reinforcing member 210 is preferably formed of a heat insulating material so as not to affect heat absorption.

要するに、上記の予備温調工程においては、かかる予備温調金型201を用いることにより、扁平形状であるが故に最終成形体3において壁肉厚が厚肉化傾向となる短径側周壁32,32(図2(a)参照)を形成することになる予備成形体2の短径側周壁22,22を高温に維持して低粘度溶融状態にする一方、最終成形体3において壁肉厚が薄肉化傾向となる長径側周壁31,31を形成することになる予備成形体2の長径側周壁21,21を低温に温調して高粘度溶融状態にするようにしている。これを実現させるために、予備温調金型201において短径側周壁22,22を成形するキャビティ面205を構成する短径側壁部分206,206を薄肉にしてプリフォーム1の周壁部分12aからの熱交換による熱収奪を低く抑制する一方、長径側周壁21,21を成形するキャビティ面205を構成する長径側壁部分207,207,…を厚肉にしかつ金型冷却用の温調回路208を配設して熱交換による熱収奪が高くなるようにしている。   In short, in the preliminary temperature adjustment process, by using the preliminary temperature adjustment mold 201, the short-diameter side peripheral wall 32 whose wall thickness tends to increase in the final molded body 3 because of the flat shape, 32 (see FIG. 2A), the short-diameter side peripheral walls 22 and 22 of the preform 2 to be formed into a low-viscosity melt state while maintaining the high temperature, while the wall thickness of the final molded body 3 is The long-diameter side peripheral walls 21 and 21 of the preform 2 that will form the long-diameter peripheral walls 31 and 31 that tend to be thin are temperature-controlled to a high viscosity melt state. In order to realize this, the short-diameter side wall portions 206 and 206 constituting the cavity surface 205 for forming the short-diameter side peripheral walls 22 and 22 in the preliminary temperature adjustment mold 201 are thinned to reduce the thickness from the peripheral wall portion 12a of the preform 1. The heat sink by heat exchange is suppressed to a low level, while the long diameter side wall portions 207, 207,... Constituting the cavity surface 205 for forming the long diameter side peripheral walls 21, 21 are made thick and a temperature control circuit 208 for cooling the mold is provided. Installed to increase the heat seizure by heat exchange.

そして、予備ブロー(延伸ロッド202からのエアブロー)の実施により内圧を受けたプリフォーム1が外周側に均等に膨出していくと、まず、上記短径側壁部分206,206に臨む側のプリフォーム1の外周面がその壁部分206に接触して押し付けられ、この短径側壁部分206との熱交換により接触したプリフォーム1の周壁部分12aの外周面が冷却される。この周壁部分12aは予備ブロー開始後早期に、つまり極めて小さいブロー比範囲で短径側壁部分206,206に接触することになるため、予備成形体2の短径側周壁22,22は上記の周壁12aに近い比較的厚肉のまま残ることになる。一方、周壁部分12aが接触した後も、長径側壁部分207,207,…に臨む側のプリフォーム1の周壁部分12bは肉厚を減じながらさらに膨出していき、ついにその外周面が長径側壁部分207,207,…に接触して押し付けられて熱交換により冷却されることになる。このため、予備成形体2の長径側周壁21,21はかなり大きいブロー比範囲で延ばされるため、上記短径側周壁22,22と比してかなり薄肉となって冷却温調を受けることになる。   Then, when the preform 1 subjected to the internal pressure by the preliminary blow (air blow from the stretching rod 202) is uniformly expanded toward the outer peripheral side, first, the preform on the side facing the short-diameter side wall portions 206 and 206 is firstly formed. The outer peripheral surface of 1 is brought into contact with and pressed against the wall portion 206, and the outer peripheral surface of the peripheral wall portion 12a of the preform 1 in contact with the short-diameter side wall portion 206 is cooled. Since the peripheral wall portion 12a comes into contact with the short-diameter side wall portions 206 and 206 early after the start of preliminary blow, that is, within a very small blow ratio range, the short-diameter side peripheral walls 22 and 22 of the preform 2 are the above-mentioned peripheral walls. It will remain relatively thick near 12a. On the other hand, even after the peripheral wall portion 12a comes into contact, the peripheral wall portion 12b of the preform 1 on the side facing the long diameter side wall portions 207, 207,... 207, 207,... Are pressed against and cooled by heat exchange. For this reason, since the long diameter side peripheral walls 21 and 21 of the preform 2 are extended in a considerably large blow ratio range, they are considerably thinner than the short diameter side peripheral walls 22 and 22 and are subjected to cooling temperature control. .

他方、短径側壁部分206,206との接触により成形される短径側周壁22,22は上記の接触による熱交換により冷却されてその外表面から固化が始まるものの、短径側壁部分206,206が薄肉厚であるため、熱交換による熱収奪が早期に飽和に達してしまい、つまり熱交換による熱収奪量が薄肉厚に対応して少ないため短径側壁部分206,206によるそれ以上の冷却能はもはやなくなる。このため、上記の予備温調金型201を用いたの実行により成形される予備成形体2において、その周方向に対し次のような偏温化を実現させることができる。上記の短径側周壁22,22は、その外表面に薄皮の固化層が形成された状態で厚肉のまま残るものの、その厚肉の内の薄皮固化層を除いた他の部分は上記の如く高い保有熱を維持して低粘度の溶融状態に維持される。その一方、上記の長径側周壁21,21は、延伸により短径側周壁22,22に比してかなり薄肉となり、かつ、冷却温調により低温状態(保有熱が低く下げられた状態)になって薄肉厚の長径側周壁21,21の全体が高粘度の溶融状態となる。   On the other hand, the short-diameter side peripheral walls 22 and 22 formed by contact with the short-diameter side wall portions 206 and 206 are cooled by heat exchange by the above-described contact and solidification starts from the outer surface, but the short-diameter side wall portions 206 and 206 Since the heat absorption by heat exchange reaches saturation early, that is, the amount of heat absorption by heat exchange is small corresponding to the thin wall thickness, the cooling capacity by the short-diameter side wall portions 206 and 206 is further increased. Will no longer exist. For this reason, in the preformed body 2 molded by executing the above-described preliminary temperature adjustment mold 201, the following temperature deviation can be realized in the circumferential direction. Although the short-diameter side peripheral walls 22 and 22 remain thick with a thin solidified layer formed on their outer surfaces, the other parts of the thick wall except the thin solidified layer are the same as those described above. In this way, a high retained heat is maintained and a low-viscosity molten state is maintained. On the other hand, the long-diameter side peripheral walls 21 and 21 are considerably thinner than the short-diameter side peripheral walls 22 and 22 due to stretching, and are in a low temperature state (state where the retained heat is lowered) due to cooling temperature control. The entire thin-walled long-diameter side peripheral walls 21 and 21 are in a high-viscosity molten state.

そして、このような予備成形体2が本ブロー成形金型301(図2(b)参照)のキャビティ303内に収容されて本ブロー成形(予備成形体2内へのエアブロー)が実施されると、まず、短径側周壁22,22の外表面が本ブロー成形金型301のキャビティ面304,304に接触してその薄皮固化層側から内側に冷却が進む一方、内側の厚肉の高い保有熱を維持して低粘度溶融状態にある肉部分が両側の長径側に流動する。そして、長径側周壁21,21がなおもエアブローを受けて長径側に延伸されその外表面が長径側のキャビティ面305,305に接触することになる。この際、図2(b)に本ブロー成形により周方向に延伸途中の成形体5の横断面形状を実線で示すように、長径側周壁21,21の延伸に伴い長径側周壁21,21は薄肉化傾向となりつつも(同図の符号501,501参照)、上記の短径側からの肉部分の流動を連続して受けて材料が補填される(同図の符号502,502,…参照)。以上により、最終成形体3の短径側周壁32,32は上記の薄皮固化層に加えて冷却の進行により残った肉部分との肉厚となる一方、長径側周壁31,31は上記の肉(樹脂材料)の補填を受けてさほどの薄肉にはならない肉厚となり、短径側周壁32,32と長径側周壁31,31との間の肉厚差を可及的に少なくして両者の肉厚をほぼ均一化させた最終成形体3を成形することができる。   And when such a preforming body 2 is accommodated in the cavity 303 of this blow molding die 301 (refer FIG.2 (b)) and this blow molding (air blow into the preforming body 2) is implemented. First, the outer surfaces of the short-diameter side peripheral walls 22, 22 come into contact with the cavity surfaces 304, 304 of the blow molding die 301, and cooling proceeds from the thinned solidified layer side to the inside, while the inner thick and thick wall is retained. The meat portion that is in a low-viscosity molten state while maintaining heat flows to the major axis on both sides. And the long diameter side peripheral walls 21 and 21 still receive air blow and are extended to the long diameter side, and the outer surfaces thereof come into contact with the long diameter side cavity surfaces 305 and 305. At this time, as shown by the solid line in FIG. 2B, the cross-sectional shape of the molded body 5 being stretched in the circumferential direction by the main blow molding is indicated by a solid line. Even though it tends to be thin (see reference numerals 501 and 501 in the figure), the material is compensated by continuously receiving the flow of the meat part from the short diameter side (see reference numerals 502, 502, ... in the figure). ). As described above, the short-diameter side peripheral walls 32 and 32 of the final molded body 3 have a thickness with the thinned solidified layer and the remaining meat portion due to the progress of cooling, while the long-diameter side peripheral walls 31 and 31 have the above-described thickness. (Resin material) compensates for the thickness so that it does not become so thin, and the difference in thickness between the short diameter side peripheral walls 32, 32 and the long diameter side peripheral walls 31, 31 is reduced as much as possible. The final molded body 3 having a substantially uniform thickness can be molded.

次に、以上のような本発明における温調・予備ブロー成形のための金型や、その短径側壁部分206,206として、本発明による作用効果を得るに必要な仕様について、より定量的な指標を得るべく検討する。この検討として、図7及び図8の予備ブロー成形型の予備温調金型201(以下のシミュレーションにおいて単に「金型」という)を用いて予備温調工程を実施してプリフォーム1から予備成形体2を成形した時点での短径側壁部分206,206と、長径側壁部分207,207との両者の温度差がどのような状況になるかについて、各壁部分206,207の肉厚を変化させてシミュレーションした。ここで、上記の温度差とは、熱交換により平衡に達した両温度の差であり、予備成形体2の短径側周壁22,22と、長径側周壁21,21との両者の温度差を表すものといえる。   Next, as the above-described mold for temperature control / pre-blow molding in the present invention and the short diameter side wall portions 206 and 206, specifications necessary for obtaining the effects of the present invention are more quantitative. Consider to get an indicator. As a study, a preliminary temperature adjustment process is performed using the preliminary temperature control mold 201 of the preliminary blow molding mold of FIG. 7 and FIG. The wall thickness of each of the wall portions 206 and 207 is changed with respect to what kind of situation the temperature difference between the short diameter side wall portions 206 and 206 and the long diameter side wall portions 207 and 207 becomes when the body 2 is formed. And simulated. Here, the above temperature difference is a difference between both temperatures that have reached equilibrium by heat exchange, and the temperature difference between the short diameter side peripheral walls 22 and 22 and the long diameter side peripheral walls 21 and 21 of the preform 2. It can be said that represents.

上記シミュレーションの前提条件として、樹脂成形材料をPET(ポリエチレンテレフタレート)とし、この樹脂成形材料、金型形成材料、及び、予備ブロー成形条件を次のように設定した。   As a precondition for the simulation, the resin molding material was PET (polyethylene terephthalate), and the resin molding material, the mold forming material, and the preliminary blow molding conditions were set as follows.

樹脂成形材料:PET(ポリエチレンテレフタレート)
比熱Xp=0.40(cal/g・℃),密度Yp=1.40(g/cm
単位体積当たりの比熱XYp=Xp×Yp=0.560(cal/ cm・℃)
金型形成材料:Fe
比熱Xk=0.12(cal/g・℃),密度Yk=7.85(g/cm
単位体積当たりの比熱XYk=Xk×Yk=0.942(cal/ cm・℃)
樹脂成形材料(PET)から金型形成材料(Fe)への熱伝導率:λ=0.3(J/sec)
予備ブロー成形直前のプリフォーム2の周壁厚さ:0.25(cm)
予備ブロー成形直前のプリフォーム2の温度:200(℃)
予備ブロー成形直前の金型201の温度:60(℃)
金型の短径側壁部分206の肉厚:Bs=0.1,0.15,0.2,0.3,…以下0.1刻みで3.0(cm)まで変化
金型の長径側壁部分207の肉厚:Bc=1.0,1.5,2.0,2.5,…以下0.5刻みで16.0(cm)まで変化
予備ブローの時間:t=3(sec)
以上の前提条件下で、予備ブロー成形の実行によりプリフォーム1が予備成形体2に成形され、この予備ブロー後の予備成形体2から金型201へ移行する熱量(金型201により収奪される熱量)Htをまず求めると、樹脂成形材料の熱伝導率λと予備ブロー時間tとから、
Ht=λ×t=0.3×3=0.9(J)
1(J;ジュール)=4.2(cal)であるため、単位を変換すると、
Ht=0.9×4.2=3.78(cal)
この熱量Htが移動による金型201の短径側壁部分206と長径側壁部分207とのそれぞれの温度上昇Zs,Zcは、上記の単位単位体積当たりの比熱XYkと、それぞれの肉厚Bs,Bcとに基づいて、
Zs=Ht/(XYk・Bs) …(1)
Zc=Ht/(XYk・Bc) …(2)
により得られる。ここで、Bs<Bcであるため、Zs>Zcとなる。
Resin molding material: PET (polyethylene terephthalate)
Specific heat Xp = 0.40 (cal / g · ° C.), density Yp = 1.40 (g / cm 3 )
Specific heat per unit volume XYp = Xp × Yp = 0.560 (cal / cm 3 ° C.)
Mold forming material: Fe
Specific heat Xk = 0.12 (cal / g. ° C.), density Yk = 7.85 (g / cm 3 )
Specific heat per unit volume XYk = Xk x Yk = 0.942 (cal / cm 3 · ° C)
Thermal conductivity from resin molding material (PET) to mold forming material (Fe): λ = 0.3 (J / sec)
The peripheral wall thickness of the preform 2 immediately before the preliminary blow molding: 0.25 (cm)
Preform 2 temperature just prior to preliminary blow molding: 200 (° C)
Temperature of the mold 201 immediately before preliminary blow molding: 60 (° C)
Thickness of the short-side wall portion 206 of the mold: Bs = 0.1, 0.15, 0.2, 0.3,... Thickness of the portion 207: Bc = 1.0, 1.5, 2.0, 2.5,..., Then changed to 16.0 (cm) in 0.5 increments Pre-blowing time: t = 3 (sec)
Under the above preconditions, the preform 1 is formed into the preform 2 by performing the preliminary blow molding, and the amount of heat transferred from the preform 2 after the preliminary blow to the mold 201 (taken by the mold 201). First, the amount of heat (Ht) is obtained from the thermal conductivity λ of the resin molding material and the preliminary blow time t.
Ht = λ × t = 0.3 × 3 = 0.9 (J)
Since 1 (J; Joule) = 4.2 (cal), when the unit is converted,
Ht = 0.9 × 4.2 = 3.78 (cal)
The temperature rises Zs and Zc of the short diameter side wall portion 206 and the long diameter side wall portion 207 of the mold 201 due to the movement of the heat quantity Ht are the specific heat XYk per unit unit volume and the thicknesses Bs and Bc, respectively. On the basis of the,
Zs = Ht / (XYk · Bs) (1)
Zc = Ht / (XYk · Bc) (2)
Is obtained. Here, since Bs <Bc, Zs> Zc.

例えば、Bs=0.15(cm),Bc=3.0(cm)とすると 、(1)式よりZs=26.75(℃/cm)となり、同様に(2)式よりZc=1.34(℃/cm)となって、その温度差は25.41(℃/cm2)となる。そして、元々の金型温度は60℃であるため、短径側壁部分206は86.75(℃/cm)、長径側壁部分207は61.34(℃/cm)となる。これは、予備ブロー成形によって、短径側壁部分206に接触している予備成形体2の短径側周壁22が86.75(℃/cm)と高温溶融状態(高い保有熱)に温調される一方、長径側壁部分207に接触している長径側周壁21が61.34(℃/cm)と低温溶融状態(低い保有熱)に温調されたことを表している。 For example, when Bs = 0.15 (cm) and Bc = 3.0 (cm), Zs = 26.75 (° C./cm 2 ) from the equation (1), and similarly, Zc = 1 from the equation (2). .34 (° C./cm 2 ), and the temperature difference is 25.41 (° C./cm 2). Since the original mold temperature is 60 ° C., the short diameter side wall portion 206 is 86.75 (° C./cm 2 ), and the long diameter side wall portion 207 is 61.34 (° C./cm 2 ). This is because the temperature of the short-diameter side peripheral wall 22 of the preform 2 in contact with the short-side wall portion 206 is controlled to 86.75 (° C./cm 2 ) and a high-temperature molten state (high retained heat). On the other hand, it shows that the long-diameter side peripheral wall 21 in contact with the long-diameter side wall portion 207 is temperature-controlled to 61.34 (° C./cm 2 ) and a low-temperature molten state (low retained heat).

上記の(1)式及び(2)式を用いて、短径側壁部分206と長径側壁部分207との温度差Tは、
T=Zs−Zc=(Ht/XYk)・{(1/Bs)−(1/Bc)} …(3)
により表されることになる。
Using the above equations (1) and (2), the temperature difference T between the short diameter side wall portion 206 and the long diameter side wall portion 207 is
T = Zs-Zc = (Ht / XYk). {(1 / Bs)-(1 / Bc)} (3)
It will be represented by

図9には(3)式を用いて金型の長径側壁部分207の肉厚Bcを3.0(cm)に固定し短径側壁部分206の肉厚Bsを上記の前提条件の如く変化させた場合の上記温度差Tの変化状況を、図10には同様に(3)式を用いて金型の短径側壁部分206の肉厚Bsを0.15(cm)に固定し長径側壁部分20の肉厚Bcを上記の前提条件の如く変化させた場合の上記温度差Tの変化状況を、それぞれ示している。   In FIG. 9, using equation (3), the thickness Bc of the long-side wall portion 207 of the mold is fixed to 3.0 (cm), and the thickness Bs of the short-side wall portion 206 is changed as described above. FIG. 10 shows the change of the temperature difference T in the case where the thickness Bs of the short side wall portion 206 of the mold is fixed to 0.15 (cm) using the equation (3). The change state of the temperature difference T when the thickness Bc of 20 is changed as in the above preconditions is shown.

図9を見ると、短径側壁部分206の肉厚Bsが1cmよりも薄肉側、中でも0.5cmよりも薄肉側の範囲ではほぼ6℃〜40℃程度の大きな温度差を生じかつ僅かな薄肉側への変化が極めて大きな温度差の変化となって表れるものの、1cmよりも厚肉側の範囲ではほぼ2.5℃よりも小さな温度差に止まりかつその温度差の変化も乏しいものになっている。他方、図10の長径側壁部分207の肉厚Bcについては1.0cm〜16.0cmと大きく変化させても、温度差はほぼ23℃〜26℃の範囲で変化し、3.0cm程度よりも分厚い範囲ではいくら分厚くしても温度差の変化としてはほぼ1℃程度と殆ど変化しないものになっている。   Referring to FIG. 9, a large temperature difference of about 6 ° C. to 40 ° C. is caused in the range where the wall thickness Bs of the short-diameter side wall portion 206 is thinner than 1 cm, particularly, thinner than 0.5 cm, and slightly thin. Although the change to the side appears as a very large change in temperature difference, the temperature difference is less than 2.5 ° C in the range of thicker than 1 cm, and the change in temperature difference is poor. Yes. On the other hand, even if the wall thickness Bc of the long-diameter side wall portion 207 in FIG. 10 is changed greatly from 1.0 cm to 16.0 cm, the temperature difference changes in the range of approximately 23 ° C. to 26 ° C., which is more than about 3.0 cm. In the thick range, no matter how much the thickness is increased, the change in temperature difference is almost 1 ° C. and hardly changes.

ここで、図11の樹脂成形材料であるPETの引張降伏強度の温度依存性についての関係図において、ブロー成形(延伸ブロー成形)における樹脂成形材料を流動させる温度としては80℃〜110℃が採用されることになる。かかる温度依存性を見ると、例えば10℃の温度差があると、その温度差を有する両温度値での樹脂成形材料の伸び特性(粘度)が変わりその流動性に差が生じる筈である。   Here, in the relational diagram about the temperature dependence of the tensile yield strength of PET, which is the resin molding material of FIG. 11, 80 ° C. to 110 ° C. is adopted as the temperature at which the resin molding material flows in blow molding (stretch blow molding). Will be. Looking at such temperature dependence, for example, if there is a temperature difference of 10 ° C., the elongation characteristics (viscosity) of the resin molding material at both temperature values having the temperature difference will change, and a difference in fluidity should occur.

そこで、によってその終了段階で予備成形体2の短径側周壁22と、長径側周壁21との両者間に10℃の温度差がつくように温調(偏温化温調)することができれば、つまり短径側周壁22が長径側周壁21よりも10℃高いという温度差に相当する保有熱を有し粘度に差が生じるように偏温化温調することができれば、本ブロー成形工程において短径側周壁22から長径側周壁21への肉部分の流動により最終成形体3の長径側周壁31の薄肉化を抑制して短径側周壁32とほぼ均一な肉厚にすることができると考えられる。   Therefore, if the temperature can be adjusted (biased temperature adjustment) so that a temperature difference of 10 ° C. is established between the short diameter side peripheral wall 22 and the long diameter side peripheral wall 21 of the preform 2 at the end stage. In other words, if the temperature of the short diameter side peripheral wall 22 has a retained heat corresponding to a temperature difference of 10 ° C. higher than the long diameter side peripheral wall 21 and the temperature can be adjusted so that a difference in viscosity is generated, When the thin portion of the long-diameter side peripheral wall 31 of the final molded body 3 is suppressed by the flow of the meat portion from the short-diameter side peripheral wall 22 to the long-diameter side peripheral wall 21, the thickness can be made substantially uniform with the short-diameter side peripheral wall 32. Conceivable.

上記の如き10℃の温度差を実現し得る肉厚設定としては、上記金型の長径側壁部分207の肉厚を3.0cmに設定すると、短径側壁部分206の肉厚は図9よりほぼ0.4cmとなる。このため、短径側壁部分206の肉厚を0.4cm以下に設定すれば、10℃以上の温度差を実現させることができ、本発明の作用効果を得ることができると言える。このような10℃の温度差を実現させ得る短径側壁部分206の肉厚としては0.4cmとなるものの、これは特定の樹脂成形材料(PET)を前提として導いたものであり、他の樹脂成形材料をも含めて考慮すれば、短径側壁部分206の肉厚は0.5cm以下に設定すればよいと考えられる。   As the thickness setting capable of realizing the temperature difference of 10 ° C. as described above, when the thickness of the long-side wall portion 207 of the mold is set to 3.0 cm, the thickness of the short-side wall portion 206 is almost as shown in FIG. 0.4cm. For this reason, if the thickness of the short side wall portion 206 is set to 0.4 cm or less, it can be said that a temperature difference of 10 ° C. or more can be realized, and the effects of the present invention can be obtained. Although the thickness of the short-diameter side wall portion 206 capable of realizing such a temperature difference of 10 ° C. is 0.4 cm, this is derived on the assumption of a specific resin molding material (PET). Considering including the resin molding material, the thickness of the short-diameter side wall portion 206 may be set to 0.5 cm or less.

<他の実施形態>
なお、本発明は上記実施形態に限定されるものではなく、その他種々の実施形態を包含するものである。、上記実施形態では、横断面形状が扁平形状のボトルにおいて厚肉傾向となる短径側を薄肉化させ薄肉傾向となる長径側を厚肉化させるための手段として本発明を適用し、これにより、扁平形状のボトルにおいてその周壁を均肉化(肉厚の均一化)させるようにしているが、例えば横断面形状が真円形状であって本来は周壁に肉厚の不均一は生じないようなボトル、つまり本来肉厚は周方向に対し均一になるようなブロー成形ボトルを対象にして、周方向の所望の部位を他の部位よりも厚肉にしたり逆に薄肉にしたりするために本発明を応用することも可能である
<Other embodiments>
In addition, this invention is not limited to the said embodiment, Various other embodiments are included. Further , in the above embodiment, the present invention is applied as means for thinning the short diameter side that tends to be thick in the bottle having a flat cross-sectional shape and thickening the long diameter side that tends to be thin. Accordingly, although so as to Hitoshiniku of the peripheral wall in the bottles of flat shape (uniform in thickness), originally if example embodiment cross-sectional shape is a true circle is uneven wall thickness in the peripheral wall occurs In order to make a desired bottle in the circumferential direction thicker than other parts, or conversely, in a blow molded bottle whose thickness is essentially uniform in the circumferential direction The present invention can also be applied to.

例えば図12に示すように外周面が真円形状の最終成形体5として、周方向の領域R1,R3に対応する周壁部分501,501を薄肉にし、領域R2,R4に対応する周壁部分502,502を厚肉にしたものを得るために、本発明を応用することも可能である。
For example, as shown in FIG. 12, as the final molded body 5 whose outer peripheral surface is a perfect circle shape, the peripheral wall portions 501 and 501 corresponding to the circumferential regions R1 and R3 are thinned, and the peripheral wall portions 502 and 502 corresponding to the regions R2 and R4 are formed. The present invention can be applied to obtain a thicker 502 .

又、上記実施形態では射出成形したプリフォームを出発成形体としているが、これに限らず、押出成形により形成したパリソンを出発成形体として本発明を適用してもよい。   Moreover, in the said embodiment, although the injection-molded preform is used as the starting molded object, it is not restricted to this, You may apply this invention by using the parison formed by extrusion molding as a starting molded object.

上記実施形態では延伸ロッドにより底壁の下方への延伸を行う場合について説明したが、かかる底壁の延伸を伴わないブロー成形に本発明を適用してもよい。   In the above-described embodiment, the case where the bottom wall is stretched downward by the stretching rod has been described. However, the present invention may be applied to blow molding that does not involve stretching of the bottom wall.

さらに、上記実施形態では予備成形体2及び予備温調金型のキャビティ形状として楕円状のものを示したが、これに限らず、プリフォーム1の円形と、最終成形体3の扁平形状との間の中間形状であればよく、例えば矩形状のものや、長円形状のものでもよい。   Furthermore, in the said embodiment, although the elliptical thing was shown as the cavity shape of the preforming body 2 and a preliminary temperature control metal mold | die, not only this but the circular shape of the preform 1 and the flat shape of the final molding body 3 are shown. An intermediate shape between them may be used, and for example, a rectangular shape or an oval shape may be used.

図1〜図8に示す実施形態によって成形されたボトル(本実施形態による最終成形体)と、図7及び図8に示す予備温調金型201,201ではなくて、その補強部材210が配設された部分の全てを短径側壁部分206,206と一体の短径側壁部分にしたものを用いて単なる予備温調を施した上で本ブロー成形したボトル(比較成形法による最終成形体)とについて、両者の周壁の肉厚を測定してその肉厚分布を比較した。本実施形態によるボトル及び比較成形法によるボトルとして、それぞれナンバー1〜5の5検体ずつ成形して、比較した。予備温調金型が異なる点を除き、その他の成形条件(プリフォーム成形、予備ブロー成形及び本ブロー成形のそれぞれの型温度や、エアブロー時間・圧力等)は同一に設定した。つまり、本発明による予備温調金型を用いて偏温化温調したボトルと、偏温化温調を行わない比較成形法によるボトルとの対比を行った。以下、本実施形態による場合を「偏温化温調有り」とも言い、比較成形法による場合を「偏温化温調無し」とも言うものとする。   The bottle formed by the embodiment shown in FIGS. 1 to 8 (final molded body according to this embodiment) and the reinforcing member 210 are arranged instead of the preliminary temperature adjustment dies 201 and 201 shown in FIGS. A bottle made by blow molding after a simple preliminary temperature control using a short-diameter side wall portion integrated with the short-diameter side wall portions 206 and 206 (final molded body by a comparative molding method). The thickness distribution of both peripheral walls was measured and the thickness distribution was compared. As the bottle according to the present embodiment and the bottle according to the comparative molding method, five samples Nos. 1 to 5 were respectively molded and compared. Other molding conditions (preform molding, preliminary blow molding and main blow molding, mold temperature, air blow time, pressure, etc.) were set to be the same except that the preliminary temperature control mold was different. That is, a comparison was made between a bottle whose temperature was adjusted using the preliminary temperature adjustment mold according to the present invention and a bottle formed by a comparative molding method where temperature adjustment was not performed. Hereinafter, the case according to the present embodiment is also referred to as “with temperature regulation temperature control”, and the case according to the comparative molding method is also referred to as “without temperature regulation temperature control”.

上記ボトルの短径部位での縦断面寸法を図13(a)に、横断面での12カ所の肉厚測定ポイントt1〜t12の位置を図13(b)にそれぞれ示す。図13(a)及び図13(b)に表示した数字はそれぞれ寸法値を示し、その単位はmmである。   FIG. 13 (a) shows the longitudinal cross-sectional dimensions of the bottle in the short diameter region, and FIG. 13 (b) shows the positions of twelve thickness measurement points t1 to t12 in the transverse cross section. The numbers displayed in FIGS. 13 (a) and 13 (b) indicate dimensional values, and the unit is mm.

比較成形法による5検体の各最終成形体における測定ポイントt1〜t12の肉厚測定結果を図14に、本実施形態による5検体の各最終成形体における測定ポイントt1〜t12の肉厚測定結果を図15に、各測定ポイントt1〜t12での肉厚平均値の分布をグラフにより比較表示したものを図16にそれぞれ示す。   FIG. 14 shows the thickness measurement results at the measurement points t1 to t12 in each final molded body of five specimens by the comparative molding method, and FIG. 14 shows the thickness measurement results at the measurement points t1 to t12 in each final molding body of the five specimens according to this embodiment. FIG. 15 shows the comparison of the distribution of the average thickness values at the measurement points t1 to t12 with a graph in FIG.

以上の肉厚分布の比較は図16を見れば明らかなように、本実施形態の予備ブロー成形型を用いて偏温化温調を施す場合には、短径側肉厚t1,t2,t6〜t8,t12と、長径側肉厚t3〜t5,t9〜t11との肉厚差が0.1mm程度に収まっているのに対し、上記の如き偏温化温調を施さない比較成形法の場合には、同肉厚差が1.0mm以上(最大で1.3mm程度)と極めて大きいものであった。これにより、本実施形態の偏温化温調を施すことにより、扁平形状のボトルにおいてその短径側周壁と長径側周壁との肉厚差の発生をほぼなくすことができ、その周壁の肉厚をほぼ均一化することができる。   As is apparent from FIG. 16, the comparison of the above wall thickness distributions shows that when the temperature control is performed using the pre-blow mold of this embodiment, the short diameter side wall thickness t1, t2, t6. Although the difference in thickness between ~ t8, t12 and the major diameter side wall thickness t3 ~ t5, t9 ~ t11 is about 0.1mm, In some cases, the difference in wall thickness was 1.0 mm or more (about 1.3 mm at the maximum). As a result, by applying the uneven temperature control of this embodiment, the occurrence of a difference in thickness between the short diameter side peripheral wall and the long diameter side peripheral wall in the flat bottle can be almost eliminated, and the thickness of the peripheral wall Can be made substantially uniform.

上記の本実施形態による5つの検体と、比較成形法による5つの検体とを用い、内部に密封状態で充填した液体から壁を透過して外部へ蒸散される水蒸気透過量について測定・比較を行った。これは、最終成形体であるボトルを例えば内部に点眼薬が充填される点眼容器として用いる場合のバリア性能を検証するものである。   Using the five specimens according to the present embodiment and the five specimens by the comparative molding method, the water vapor permeation amount permeated through the wall from the liquid filled in a sealed state and evaporated to the outside is measured and compared. It was. This is to verify the barrier performance when the bottle as the final molded body is used as, for example, an eye drop container filled with eye drops.

図17に偏温化温調を施す本実施形態により成形された検体の場合の測定結果を、図18に偏温化温調を施さない比較成形法により成形された検体の場合の測定結果を、図19に偏温化温調有りと偏温化温調無しの両ケースの平均値を用いて比較結果をグラフにより表したものを、それぞれ示す。図17又は図18において、上半部に、液体を充填した状態での検体の初期重量、及び、1,2,3,4週間経過後の重量を表示し、下半部に、同時期における減量分の重量(蒸散減量重量)、すなわち、水蒸気透過量を表示している。   FIG. 17 shows the measurement result in the case of the specimen molded according to the present embodiment to which the temperature variation is controlled, and FIG. 18 shows the measurement result in the case of the specimen molded by the comparative molding method without performing the temperature regulation. FIG. 19 is a graph showing the comparison results using the average values of both cases with and without temperature regulation. In FIG. 17 or FIG. 18, the upper half shows the initial weight of the specimen in a state filled with liquid and the weight after 1, 2, 3, 4 weeks, and the lower half shows the same period. The weight of the weight loss (transpiration weight loss), that is, the water vapor transmission amount is displayed.

以上の測定結果及び比較結果を見れば、当初の1週間経過時点では偏温化温調を施した本実施形態によるボトルの水蒸気透過量は偏温化温調を施していないボトルに比べ5%減となり、徐々にその減分が増加して4週間経過時点では10%以上の減となっている。つまり、偏温化温調を施した本実施形態によるボトルの方が水蒸気透過量を減らすことができ、バリア性能を向上させることができる。   From the above measurement results and comparison results, the water vapor permeation amount of the bottle according to the present embodiment that has been subjected to the temperature-unevening temperature adjustment at the time of the first week is 5% compared to the bottle that has not been subjected to the temperature-unevening temperature adjustment. The decrement gradually increased and decreased by more than 10% after 4 weeks. That is, the bottle according to the present embodiment that has been subjected to uneven temperature control can reduce the amount of water vapor permeated and improve the barrier performance.

本発明の実施形態の各成形段階で成形されるプリフォーム、予備成形体及び最終成形体の縦断面形状及び横断面形状を対にして示す断面説明図である。FIG. 3 is an explanatory cross-sectional view showing a pair of a longitudinal cross-sectional shape and a cross-sectional shape of a preform, a preformed body, and a final molded body that are molded in each molding stage of the embodiment of the present invention. 同じく各成形段階での横断面形状の変化の状況を示す断面説明図であり、図2(a)はプリフォーム、予備成形体及び最終成形体を示し、図2(b)は予備成形体、本ブロー成形途中段階の成形体及び最終成形体を示す。FIG. 2 (a) shows a preform, a preformed body, and a final molded body, and FIG. 2 (b) shows a preformed body. The molded body and final molded body in the middle of the blow molding are shown. 射出ステーションでの射出成形工程の各ステップを示す断面説明図である。It is sectional explanatory drawing which shows each step of the injection molding process in an injection station. 温調予備ブローステーションでの各ステップを示す断面説明図である。It is sectional explanatory drawing which shows each step in a temperature control preliminary | backup blow station. 本ブローステーションでの本ブロー成形工程の各ステップを示す断面説明図である。It is sectional explanatory drawing which shows each step of this blow molding process in this blow station. 取り出しステーションでの最終成形体の取り出し工程の各ステップを示す断面説明図である。It is sectional explanatory drawing which shows each step of the taking-out process of the final molded object in a taking-out station. 予備温調金型の縦断面説明図である。It is a longitudinal cross-sectional explanatory drawing of a preliminary temperature control metal mold | die. 図7のA−A線における拡大断面説明図である。It is an expanded sectional explanatory view in the AA line of FIG. 短径側壁部分の肉厚と、温度差との関係図である。It is a related figure of the thickness of a short diameter side wall part, and a temperature difference. 長径側壁部分の肉厚と、温度差との関係図である。It is a related figure of the thickness of a long diameter side wall part, and a temperature difference. 樹脂成形材料(PET)における引張降伏強度と温度の関係図である。It is a relationship figure of tensile yield strength and temperature in a resin molding material (PET). 他の実施形態により成形された最終成形体の横断面形状を示す断面説明図である。It is sectional explanatory drawing which shows the cross-sectional shape of the final molded object shape | molded by other embodiment. 肉厚分布について比較測定試験を行った対象のボトル形状・寸法や測定位置を示す図であり、図13(a)は短径方向の縦断面説明図を示し、図13(b)は横断面説明図を示す。It is a figure which shows the bottle shape and dimension of the object which performed the comparative measurement test about thickness distribution, and a measurement position, Fig.13 (a) shows the longitudinal cross-sectional explanatory drawing of a minor axis direction, FIG.13 (b) is a cross section. An explanatory diagram is shown. 比較成形法による最終成形体の肉厚測定結果を示す表である。It is a table | surface which shows the thickness measurement result of the final molded object by a comparative shaping | molding method. 本実施形態による最終成形体の肉厚測定結果を示す表である。It is a table | surface which shows the thickness measurement result of the final molded object by this embodiment. 図14及び図15の肉厚測定結果の平均値を用いて測定ポイント毎に対比して示すグラフである。It is a graph shown by contrast for every measurement point using the average value of the thickness measurement result of FIG.14 and FIG.15. 本実施形態による最終成形体(ボトル)の水蒸気透過量測定結果を示す表である。It is a table | surface which shows the water-vapor-permeation amount measurement result of the final molded object (bottle) by this embodiment. 比較成形法による最終成形体(ボトル)の水蒸気透過量測定結果を示す表である。It is a table | surface which shows the water-vapor-permeation amount measurement result of the last molded object (bottle) by a comparative shaping | molding method. 図17及び図18の水蒸気透過量測定結果の平均値を用いて期間経過時点毎に対比して示すグラフである。It is a graph shown by contrast for every time passage period using the average value of the water vapor permeation amount measurement results of FIGS.

符号の説明Explanation of symbols

1 プリフォーム(出発成形体)
2 予備成形体
3 最終成形体
21 予備成形体の長径側周壁
22 予備成形体の短径側周壁
201 予備温調金型
205 予備温調金型のキャビティ面
206 短径側壁部分(第1金型壁部分)
207 長径側壁部分(第2金型壁部分)
210 補強部材
Bs 短径側壁部分の肉厚
1 Preform (starting molded body)
2 Preliminary body 3 Final molded body 21 Long-diameter side peripheral wall 22 of pre-molded body Short-diameter side peripheral wall 201 of pre-molded body Preliminary temperature control mold 205 Preliminary temperature control mold cavity surface 206 Short-diameter side wall portion (first mold) Wall part)
207 Long-diameter side wall (second mold wall)
210 Reinforcing member Bs Wall thickness of short side wall

Claims (3)

樹脂成形材料として熱可塑性樹脂を用い押出成形又は射出成形により円筒状樹脂溶融体である出発成形体を成形し、この成形に続いて出発成形体に対し予備温調を施した上で、最終成形体の外面形状に対応するキャビティ面を有する本ブロー成形金型に収容して本ブロー成形を施すことにより横断面が短径側と長径側とよりなる扁平形状の最終成形体を得る中空成形品の製造方法における予備温調に用いる予備温調金型であって、
上記出発成形体と最終成形体との中間形状を有する予備成形体の外面形状に対応する形状に形成されたキャビティ面であって、上記出発成形体の内部に予備ブローすることにより成形される予備成形体の外表面が接触し熱交換によりその樹脂成形材料から熱収奪することで予備成形体を短径側と長径側とで互いに異なる温調状態に偏温化させるキャビティ面を有し、
上記キャビティ面の内、上記最終成形体において短径側となる周壁部位と対応する予備成形体の短径側周壁部位が接触することになるキャビティ面を構成する第1金型壁部分の接触熱交換による熱収奪量として、その接触熱交換によって上記予備成形体の短径側周壁部位の外表面に薄皮固化層が形成されつつこの薄皮固化層を除く残りの肉部分の樹脂成形材料が上記本ブロー成形による内圧を受けたとき周方向に流動し得る程度に高温で低粘度の溶融状態に維持されるように小設定とされる一方、上記最終成形体において長径側となる周壁部位と対応する上記予備成形体の長径側周壁部位が接触することになるキャビティ面を構成する第2金型壁部分の接触熱交換による熱収奪量として、その接触熱交換によって上記予備成形体の長径側周壁部位を構成する樹脂成形材料が低温で高粘度の溶融状態まで冷却されるように大設定とされて、短径側と長径側とで互いに異なる温調状態に偏温化した温調状態の予備成形体に対し上記本ブロー成形を行うことで短径側周壁部位の厚肉化を抑制すると同時に長径側周壁部位の薄肉化を抑制して周方向に対する肉厚の均一化を図るように構成され、
上記キャビティ面を構成する第1金型壁部分及び第2金型壁部分は互いに同じ金型形成材料を用いて一体に形成されるとともに、上記熱交換による熱収奪量の設定にそれぞれ対応するように第1金型壁部分が薄肉に、上記第2金型壁部分が厚肉に形成され、かつ、
上記第1金型壁部分と、第2金型壁部分との熱交換による熱収奪量の大小設定は、第1金型壁部分に接触する予備成形体の短径側周壁部位と、第2金型壁部分に接触する予備成形体の長径側周壁部位との予備温調後における溶融状態での両樹脂成形材料の互いの温度差が10℃以上になるように設定されてい
ことを特徴とするブロー成形による中空成形品の製造方法における予備温調に用いる予備温調金型。
A thermoplastic resin is used as a resin molding material to form a starting molded body, which is a cylindrical resin melt, by extrusion molding or injection molding, and after this molding, the starting molded body is preliminarily adjusted and then final molded. A hollow molded product that obtains a flat shaped final molded body having a short cross section and a long diameter side by being housed in a blow mold having a cavity surface corresponding to the outer shape of the body and subjected to the blow molding A preliminary temperature control mold used for preliminary temperature control in the manufacturing method of
A cavity surface formed in a shape corresponding to the outer surface shape of a preformed body having an intermediate shape between the starting molded body and the final molded body, and being preformed by pre-blowing into the starting molded body The outer surface of the molded body is in contact and has a cavity surface that deviates the temperature of the preform from the resin molding material by heat exchange to different temperature control states on the short diameter side and the long diameter side,
Of the cavity surface, the contact heat of the first mold wall portion constituting the cavity surface that contacts the peripheral wall portion on the short diameter side of the final molded body and the short diameter side peripheral wall portion of the corresponding preform. As the amount of heat absorbed by the exchange, the resin molding material of the remaining meat portion excluding the thinned solidified layer is formed on the outer surface of the short peripheral side wall portion of the preform by the contact heat exchange. While it is set to a small size so that it can be kept in a molten state at a high temperature and low viscosity to the extent that it can flow in the circumferential direction when subjected to internal pressure due to blow molding, it corresponds to the peripheral wall portion on the long diameter side in the final molded body. As the amount of heat absorbed by the contact heat exchange of the second mold wall part constituting the cavity surface with which the long-diameter side peripheral wall portion of the preform is in contact, the long-diameter side peripheral wall of the preform is obtained by contact heat exchange. Preliminary temperature control state in which the temperature is set to be large so that the resin molding material constituting the position is cooled to a molten state with a high viscosity at a low temperature, and the temperature is shifted to different temperature control states on the short diameter side and the long diameter side. By performing the above blow molding on the molded body, the thickness of the short-diameter side peripheral wall portion is suppressed, and at the same time, the thinning of the long-diameter side peripheral wall portion is suppressed, and the thickness in the circumferential direction is made uniform. ,
The first mold wall portion and the second mold wall portion constituting the cavity surface are integrally formed using the same mold forming material, and correspond to the setting of the amount of heat absorbed by the heat exchange. The first mold wall portion is thin, the second mold wall portion is thick, and
The magnitude of the amount of heat absorbed by heat exchange between the first mold wall portion and the second mold wall portion is determined by the short diameter side peripheral wall portion of the preform that is in contact with the first mold wall portion, temperature difference of each other in both the resin molding material that is set to be equal to or greater than 10 ° C. in the melt after the preliminary temperature regulation of the major axis side wall portion of the preform in contact with the mold wall portion
Preliminary temperature control mold used for the preliminary temperature control in the method for manufacturing a hollow molded article by blanking rows molding, characterized in that.
請求項に記載のブロー成形による中空成形品の製造方法における予備温調に用いる予備温調金型であって、
第1金型壁部分の肉厚が0.5cmよりも薄肉範囲に設定されている、ブロー成形による中空成形品の製造方法における予備温調に用いる予備温調金型。
A preliminary temperature control die used for preliminary temperature control in a method for producing a hollow molded article by blow molding according to claim 1 ,
A preliminary temperature control die used for preliminary temperature control in a method of manufacturing a hollow molded product by blow molding, wherein the wall thickness of the first mold wall portion is set to be thinner than 0.5 cm.
請求項1又は請求項に記載のブロー成形による中空成形品の製造方法における予備温調に用いる予備温調金型であって、
第1金型壁部分のキャビティ面とは反対側には、断熱性を有する材料により形成されて第1金型壁部分を背後から補強する補強部材を一体に備えている、ブロー成形による中空成形品の製造方法における予備温調に用いる予備温調金型。
A preliminary temperature adjustment die used for preliminary temperature adjustment in the method for producing a hollow molded article by blow molding according to claim 1 or 2 ,
On the side opposite to the cavity surface of the first mold wall part, a hollow molding by blow molding is integrally provided with a reinforcing member that is formed of a heat-insulating material and reinforces the first mold wall part from behind. Preliminary temperature control mold used for preliminary temperature control in the manufacturing method of goods.
JP2005185220A 2005-06-24 2005-06-24 Preliminary temperature control die used for preliminary temperature control in blow molding molding process Expired - Fee Related JP4656567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005185220A JP4656567B2 (en) 2005-06-24 2005-06-24 Preliminary temperature control die used for preliminary temperature control in blow molding molding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005185220A JP4656567B2 (en) 2005-06-24 2005-06-24 Preliminary temperature control die used for preliminary temperature control in blow molding molding process

Publications (2)

Publication Number Publication Date
JP2007001187A JP2007001187A (en) 2007-01-11
JP4656567B2 true JP4656567B2 (en) 2011-03-23

Family

ID=37687208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005185220A Expired - Fee Related JP4656567B2 (en) 2005-06-24 2005-06-24 Preliminary temperature control die used for preliminary temperature control in blow molding molding process

Country Status (1)

Country Link
JP (1) JP4656567B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953174B2 (en) * 2007-02-27 2012-06-13 株式会社吉野工業所 Plastic container
JP6006721B2 (en) * 2011-07-20 2016-10-12 日精エー・エス・ビー機械株式会社 Preform temperature adjusting device, preform temperature adjusting method, resin container, and resin container manufacturing method
WO2020204040A1 (en) * 2019-04-04 2020-10-08 日精エー・エス・ビー機械株式会社 Method for producing resin container, injection core mold, mold for injection molding, and device for producing resin container
JP7281328B2 (en) * 2019-04-12 2023-05-25 日東電工株式会社 Manufacturing method of plastic optical fiber
JPWO2021029372A1 (en) * 2019-08-09 2021-02-18
CN111391276A (en) * 2020-03-25 2020-07-10 四川科伦药业股份有限公司 Pre-blowing mold for intermediate body of blow molding vertical bag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207629A (en) * 1987-02-25 1988-08-29 Toyo Seikan Kaisha Ltd Method and device for thickness control in circumferential direction of bottle
JPS63207630A (en) * 1987-02-25 1988-08-29 Toyo Seikan Kaisha Ltd Method and device for thickness control in circumferential direction of bottle
JPH06198719A (en) * 1992-09-25 1994-07-19 Nissei Asb Mach Co Ltd Biaxial stretching blow molding method for self-standing bottle and preform used therefor
JP2000127230A (en) * 1998-10-22 2000-05-09 Taisei Kako Kk Production of flat bottle by cold parison blow molding method and parison for cold parison blow molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207629A (en) * 1987-02-25 1988-08-29 Toyo Seikan Kaisha Ltd Method and device for thickness control in circumferential direction of bottle
JPS63207630A (en) * 1987-02-25 1988-08-29 Toyo Seikan Kaisha Ltd Method and device for thickness control in circumferential direction of bottle
JPH06198719A (en) * 1992-09-25 1994-07-19 Nissei Asb Mach Co Ltd Biaxial stretching blow molding method for self-standing bottle and preform used therefor
JP2000127230A (en) * 1998-10-22 2000-05-09 Taisei Kako Kk Production of flat bottle by cold parison blow molding method and parison for cold parison blow molding

Also Published As

Publication number Publication date
JP2007001187A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
KR102097674B1 (en) Manufacturing method of resin container, mold unit and molding machine
JP4656567B2 (en) Preliminary temperature control die used for preliminary temperature control in blow molding molding process
US5364585A (en) Injection orientation blow molding method
RU2627858C2 (en) Method and device for optimized bottom contour manufacture on workpiece
JPH07117112A (en) Preform molding method in injection orientation blow molding
JP7395453B2 (en) Manufacturing equipment and manufacturing method for resin containers
JP3953521B2 (en) Improvement of method and equipment for manufacturing thermoplastic resin parison
US5620650A (en) Method for injection stretch blow molding of polyethylene
JP6770666B1 (en) Resin container manufacturing equipment and manufacturing method
JP5567310B2 (en) Blow molding method for flat containers
WO2020209308A1 (en) Resin container manufacturing method
JP3255485B2 (en) Blow molding machine
JP6727604B1 (en) Injection stretch blow molding machine and method for molding polyethylene container
US20230072051A1 (en) Method of Forming an Article
US11958230B2 (en) Method for producing resin container and device for producing resin container
JP2021008124A (en) Method for manufacturing resin container and blow molding device
JP3330677B2 (en) Molding method and molding apparatus
US20240123670A1 (en) Temperature adjustment mold, and device and method for manufacturing resin container
JP6126616B2 (en) Container formed through multiple blow molding processes
US12042974B2 (en) Production device and production method for resin containers
JP2963644B2 (en) Molding method of plastic bottle having constricted shape
US20240123671A1 (en) Temperature adjustment mold and apparatus and method for producing resin container
JP3316511B2 (en) Injection stretch blow molding method for polyethylene
JPS5954522A (en) Temperature-controlling method for parison in injection stretch blow molding method
MXPA98007591A (en) Improvement in the method and plant to manufacture resin preforms termoplast

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees