JP4656564B2 - Manufacturing method of three-dimensional fiber structure - Google Patents

Manufacturing method of three-dimensional fiber structure Download PDF

Info

Publication number
JP4656564B2
JP4656564B2 JP2005025856A JP2005025856A JP4656564B2 JP 4656564 B2 JP4656564 B2 JP 4656564B2 JP 2005025856 A JP2005025856 A JP 2005025856A JP 2005025856 A JP2005025856 A JP 2005025856A JP 4656564 B2 JP4656564 B2 JP 4656564B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
fiber group
continuous
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005025856A
Other languages
Japanese (ja)
Other versions
JP2006214017A (en
Inventor
一幸 折原
鈴木  茂
円裕 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2005025856A priority Critical patent/JP4656564B2/en
Publication of JP2006214017A publication Critical patent/JP2006214017A/en
Application granted granted Critical
Publication of JP4656564B2 publication Critical patent/JP4656564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強化繊維を含む複合材料に用いられる三次元繊維構造体の製造方法に関するものである。   The present invention relates to a method for producing a three-dimensional fiber structure used for a composite material containing reinforcing fibers.

従来、この種の三次元繊維構造体としては、例えば特公昭62−3258号公報に記載されているものがあった。同公報に記載された構造体は、3つの系の線状物の3次編成によって作られた円筒形状の補強構造物であって、この構造体を製造するには、軸線を垂直方向とした多数の金属棒を互いに平行に且つ所定間隔で配置した後、これらの金属棒の間に水平方向の線状物を編み付けて同線状物を垂直方向に積層し、その後、金属棒と垂直方向の線状物を入れ替えるようにしていた。
特公昭62−3258号公報
Conventionally, this type of three-dimensional fiber structure has been disclosed in, for example, Japanese Patent Publication No. 62-3258. The structure described in the publication is a cylindrical reinforcing structure formed by tertiary knitting of three linear objects, and in order to manufacture this structure, the axis is set to the vertical direction. After arranging a large number of metal bars in parallel with each other at a predetermined interval, horizontal linear objects are knitted between these metal bars, and the same linear objects are stacked in a vertical direction, and then perpendicular to the metal bars. I tried to replace the linear objects in the direction.
Japanese Patent Publication No.62-3258

ところが、上記したような従来の三次元繊維構造体の製造方法では、多数の金属棒と線状物との入れ替えを行うことから、その作業に非常に多くの手間と時間がかかると共に、構造体の垂直方向の寸法が大きくなるほど入れ替え作業が難しくなるという問題点があり、製造の簡略化を図るうえでの改善が要望されていた。また、従来の製造方法では、挿入時の線状物に対して軸線方向に大きな負荷が加わり易いため、線状物として高弾性繊維を採用することが困難であるという問題点があった。   However, in the conventional method for producing a three-dimensional fiber structure as described above, since a large number of metal rods and linear objects are replaced, the work takes a great deal of labor and time, and the structure There is a problem that the replacement work becomes more difficult as the vertical dimension increases, and an improvement in simplification of manufacturing has been demanded. Further, in the conventional manufacturing method, since a large load is easily applied to the linear object at the time of insertion in the axial direction, there is a problem that it is difficult to employ a highly elastic fiber as the linear object.

本発明は、上記従来の状況に鑑みて成されたもので、工数の削減、製造時間の短縮及び低コスト化などを実現することができる三次元繊維構造体の製造方法を提供することを目的としている。   The present invention has been made in view of the above-described conventional situation, and an object of the present invention is to provide a method for manufacturing a three-dimensional fiber structure capable of realizing a reduction in man-hours, a reduction in manufacturing time, and a reduction in cost. It is said.

本発明に係わる三次元繊維構造体の製造方法は、請求項1に記載しているように、繊維を三次元的に配向させた三次元繊維構造体を製造するに際し、繊維を樹脂で棒状に成形した多数の棒材を互いに平行に且つ所定間隔で配置してZ方向の繊維群を形成した後、Z方向の繊維群に対して直交するXY平面に沿って連続繊維を編み付けるとともに同連続繊維をZ方向に積層する構成としており、上記構成をもって従来の課題を解決するための手段としている。   The manufacturing method of the three-dimensional fiber structure according to the present invention is as described in claim 1, in manufacturing a three-dimensional fiber structure in which fibers are three-dimensionally oriented, the fibers are made into rods with resin. A large number of molded bars are arranged in parallel with each other at a predetermined interval to form a Z-direction fiber group, and then continuous fibers are knitted along the XY plane orthogonal to the Z-direction fiber group. It is set as the structure which laminates | stacks a fiber in a Z direction, and it has become the means for solving the conventional subject with the said structure.

また、本発明に係わる三次元繊維構造体の製造方法は、請求項2に記載しているように、構造体が軸線方向をZ方向とする円筒形状であって、多数の棒材により概略円筒形状を成すZ方向の繊維群を形成し、この繊維群に対して、XY平面に沿う方向である周方向及び半径方向に連続繊維を編み付けることを特徴とし、さらに、請求項3に記載しているように、多数の棒材が、断面円形及び断面角形のうちから選択された断面形状を有することを特徴とし、さらに、請求項4に記載しているように、棒材が、繊維及び樹脂に加えて、ピッチ及びカーボンブラックのうちの少なくとも一方を含むことを特徴としている。   In the method for producing a three-dimensional fiber structure according to the present invention, as described in claim 2, the structure has a cylindrical shape whose axial direction is the Z direction, and is substantially cylindrical by a large number of rods. A Z-direction fiber group forming a shape is formed, and continuous fibers are knitted in the circumferential direction and the radial direction along the XY plane with respect to the fiber group, and the fiber group according to claim 3. The plurality of bars have a cross-sectional shape selected from a circular cross-section and a square cross-section, and the bar may further include fibers and In addition to the resin, at least one of pitch and carbon black is included.

本発明の請求項1に係わる三次元繊維構造体の製造方法によれば、繊維を樹脂で棒状に成形した多数の棒材から成るZ方向の繊維群を用いることから、XY平面に沿う連続繊維を編み付ける際の自動化が容易であると共に、この編み付けに用いる繊維群がそのままZ方向の繊維となるので、Z方向の寸法が大きい構造体であっても容易に製造することができ、また、Z方向の繊維群に対して軸線方向に大きな負荷が加わることもないので、Z方向に高弾性繊維を採用することができ、さらに、従来のような金属棒の除去作業が不要となって、工数の削減及び製造時間の短縮やこれに伴う低コスト化を実現することができる。   According to the method for manufacturing a three-dimensional fiber structure according to claim 1 of the present invention, since a group of fibers in the Z direction composed of a large number of rods in which fibers are molded into a rod shape using a resin is used, continuous fibers along the XY plane are used. Since the fiber group used for knitting becomes the fibers in the Z direction as they are, the structure having a large dimension in the Z direction can be easily manufactured. Since a large load is not applied in the axial direction to the Z-direction fiber group, highly elastic fibers can be employed in the Z-direction, and the conventional metal rod removal work is not required. Reduction of man-hours, shortening of manufacturing time, and cost reduction associated therewith can be realized.

そしてさらに、従来の製造方法では金属棒とZ方向の線状物とを入れ替える必要があるため、X及びY方向の繊維の投入量に一定の制限があり、これにより設定可能な繊維の緻密度に限界があったが、本発明の製造方法によれば、Z方向の寸法が大きい構造体であっても容易に製造し得るので、X及びY方向の繊維の投入量が制限されることもなく、従来のような繊維の緻密度の限界を解消することができる。   In addition, since the conventional manufacturing method requires replacement of the metal rod and the Z-direction linear object, there is a certain limit to the amount of X- and Y-direction fibers that can be set. However, according to the manufacturing method of the present invention, even a structure having a large dimension in the Z direction can be easily manufactured, so that the input amount of fibers in the X and Y directions may be limited. In addition, the limit of the density of the fiber as in the conventional case can be eliminated.

また、本発明に係る三次元繊維構造体の製造方法により得た三次元繊維構造体は、後に樹脂の含浸や硬化処理を経て繊維強化プラスチック材料(FRP材料)となり、とくに炭素繊維を用いた場合には、ピッチの含浸と焼成を繰り返す等の複合化処理を経て炭素/炭素複合材料(C/C材料)になるものであって、これらの材料のプリフォームとして用いられると共に、これらの材料の製造において時間の短縮化や低コスト化に貢献し得るものとなる。   In addition, the three-dimensional fiber structure obtained by the method for producing a three-dimensional fiber structure according to the present invention becomes a fiber-reinforced plastic material (FRP material) through resin impregnation and curing treatment later, particularly when carbon fiber is used. Is a carbon / carbon composite material (C / C material) that is subjected to a composite treatment such as repeated impregnation and firing of pitch, and is used as a preform for these materials. This can contribute to time reduction and cost reduction in manufacturing.

本発明の請求項2に係わる三次元繊維構造体の製造方法によれば、円筒形状の構造体の製造において、製造時間の短縮や低コスト化を実現することができる。このような円筒形状の構造体は、例えばロケットノズルの素材のプリフォームとして用いることができ、この場合、ロケットノズルの製造において、時間の短縮化や低コスト化に貢献し得るものとなる。   According to the method for manufacturing a three-dimensional fiber structure according to claim 2 of the present invention, the manufacturing time can be shortened and the cost can be reduced in the manufacture of the cylindrical structure. Such a cylindrical structure can be used, for example, as a preform for a rocket nozzle material, and in this case, can contribute to shortening of time and cost reduction in the manufacture of rocket nozzles.

本発明の請求項3に係わる三次元繊維構造体の製造方法によれば、目的とする三次元構造体の形状等に応じて、Z方向となる棒材の断面形状を円形及び角形のうちから選択することにより、この棒材とX及びY方向の繊維との隙間の大きさ変えて繊維の投入量を調整することができる。   According to the method for manufacturing a three-dimensional fiber structure according to claim 3 of the present invention, the cross-sectional shape of the bar material in the Z direction is selected from a circle and a square according to the shape of the target three-dimensional structure. By selecting, the input amount of the fiber can be adjusted by changing the size of the gap between the bar and the fiber in the X and Y directions.

本発明の請求項4に係わる三次元繊維構造体の製造方法によれば、繊維及び樹脂に加えてピッチ及びカーボンブラックのうちの少なくとも一方を含む棒材を用いることにより、後の複合化処理が容易で且つ確実なものとなる。すなわち、三次元構造体を例えば炭素/炭素複合材料にする場合、その構造体が大きなものであっても、構造体全体にピッチやカーボンブラックを均一に含有させておくことができるので、複合化処理において、ピッチやカーボンブラックを構造体に含浸する作業の簡略化を図ることができ、焼成の際には、全体的な緻密化を促進させることができる。   According to the method for producing a three-dimensional fiber structure according to claim 4 of the present invention, by using a bar material containing at least one of pitch and carbon black in addition to fibers and resin, a subsequent compounding treatment can be performed. Easy and reliable. That is, when a three-dimensional structure is made of, for example, a carbon / carbon composite material, even if the structure is large, the entire structure can contain pitch and carbon black uniformly. In the treatment, it is possible to simplify the work of impregnating the structure with pitch or carbon black, and it is possible to promote overall densification during firing.

以下、図面に基づいて、本発明に係る三次元繊維構造体の製造方法の一実施例を説明する。   Hereinafter, an embodiment of a method for producing a three-dimensional fiber structure according to the present invention will be described with reference to the drawings.

図2に示す三次元繊維構造体(以下、『構造体』とする)Aは、円筒形状を成すと共に、繊維を三次元的に配向したものであって、繊維F1を樹脂で棒状に成形した多数の棒材Bから成るZ方向(軸線方向L)の繊維群と、この繊維群に対して直交するXY平面に沿って編み付けるとともZ方向に積層した連続繊維すなわち半径方向R及び周方向Cの連続繊維F2,F3を備えている。各棒材Bは、例えば、炭素繊維の束を予め熱硬化性樹脂で棒状に硬化成形したものである。また、各連続繊維F2,F3は、繊維のみの束でも良いし、この繊維束に樹脂を含浸したものでも良い。   A three-dimensional fiber structure (hereinafter referred to as “structure”) A shown in FIG. 2 has a cylindrical shape and three-dimensionally oriented fibers, and the fiber F1 is formed into a rod shape with a resin. A Z-direction (axial direction L) fiber group composed of a large number of rods B, and continuous fibers knitted along an XY plane orthogonal to the fiber group and laminated in the Z direction, that is, radial direction R and circumferential direction C continuous fibers F2 and F3 are provided. Each bar B is obtained by, for example, molding a bundle of carbon fibers into a bar shape with a thermosetting resin in advance. Moreover, each continuous fiber F2, F3 may be a bundle of fibers only, or may be a fiber bundle impregnated with a resin.

ここで、棒材Bとしては、図3(a)に示すように断面円形を成すものや、図3(b)に示すように断面角形を成すものが挙げられる。この棒材Bは、目的とする構造体Aの形状等に応じて、断面円形及び断面角形のうちから選択することにより、当該棒材BとX及びY方向の連続繊維F2,F3との隙間の大きさが異なるものとなる。図3(a)に示す断面円形を選択すれば、平面上では棒材Bの四方に隙間Sが形成され、図3(b)に示す断面正方形を選択すれば、平面上では上記隙間が無いものとなる。   Here, examples of the bar B include those having a circular cross section as shown in FIG. 3 (a) and those having a square cross section as shown in FIG. 3 (b). The bar B is selected from a circular cross-section and a square cross-section according to the shape of the target structure A and the like, and thereby the gap between the bar B and the continuous fibers F2 and F3 in the X and Y directions. The size of will be different. If the cross-sectional circle shown in FIG. 3 (a) is selected, gaps S are formed on the four sides of the bar B on the plane. If the cross-sectional square shown in FIG. 3 (b) is selected, there is no gap on the plane. It will be a thing.

すなわち、棒材Bは、断面形状を選択することで、上記隙間の大きさを変えて全体の繊維の投入量を調整することができる。なお、多数の棒材Bは、全てを同一断面形状にしても良いし、繊維群中の位置に応じて断面形状が異なるものを用いても良い。また、棒材Bは、断面円形のほかに断面楕円形とすることも可能であり、断面角形には、当然のことながら図示の正方形以外の角形が含まれる。   That is, by selecting the cross-sectional shape of the bar B, it is possible to change the size of the gap and adjust the input amount of the entire fiber. In addition, all the rods B may have the same cross-sectional shape, or may have different cross-sectional shapes depending on the position in the fiber group. Further, the bar B may have an oval cross section in addition to a circular cross section, and the cross section square naturally includes a square other than the illustrated square.

さらに、棒材Bは、構造体Aの後の複合化処理に対応して、Z方向の繊維F1及び樹脂に加えて、ピッチ及びカーボンブラックのうちの少なくとも一方を含むものとすることができる。   Furthermore, the bar B may include at least one of pitch and carbon black in addition to the fibers F1 and the resin in the Z direction in response to the subsequent composite treatment.

上記構造体Aの成形装置は、例えば、垂直軸回りに回転駆動される基板と、基板の上側で上下動可能なガイドプレートを備えており、各棒材Bの下端を基板に固定すると共に、各棒材Bをガイドプレートに貫通状態にする。このとき、各棒材Bは、ガイドプレートにより互いの位置関係が維持されており、構造体Aが成す円筒形状に対応して、軸線を垂直にして互いに平行に配置され、且つ半径方向及び周方向に規則的に配置されて、図1に示す如く概略円筒形状の繊維群FFを形成する。なお、図1は棒材Bの配列等を模式的に示すもので、実際には棒材Bをより密に配置する。   The forming apparatus for the structure A includes, for example, a substrate that is driven to rotate about a vertical axis, and a guide plate that can move up and down on the upper side of the substrate, and fixes the lower end of each bar B to the substrate, Each bar B is passed through the guide plate. At this time, the rods B are maintained in a positional relationship with each other by the guide plate, and are arranged parallel to each other with the axes perpendicular to each other, corresponding to the cylindrical shape formed by the structure A, and in the radial direction and the circumferential direction. As shown in FIG. 1, the fiber group FF having a substantially cylindrical shape is regularly arranged in the direction. FIG. 1 schematically shows the arrangement and the like of the rods B. In practice, the rods B are arranged more densely.

また、成形装置は、ガイドプレートの上昇限に対応する位置に、Z方向(L方向)の繊維群FFに対して、半径方向Rの連続繊維F2を供給する第1ノズルNZ1と、周方向Cの連続繊維F3を供給する第2ノズルNZ2と、これらの連続繊維F2,F3を下方向に押圧する複数(図示の場合は4つ)のプレス治具Pを備えている。   Further, the molding apparatus includes a first nozzle NZ1 that supplies continuous fibers F2 in the radial direction R to the fiber group FF in the Z direction (L direction) at a position corresponding to the ascent limit of the guide plate, and a circumferential direction C. The second nozzle NZ2 for supplying the continuous fibers F3 and a plurality (four in the illustrated case) of pressing jigs P for pressing the continuous fibers F2 and F3 downward.

第1ノズルNZ1は、図外の繊維供給源から1本の連続繊維F2を連続的に供給するもので、繊維群FFの外周側と内周側との間で、同繊維群FFの半径方向に往復動する。第2ノズルNZ2は、図外の繊維供給源から複数本の連続繊維F3を連続的に供給するもので、半径方向の棒材B同士の間に対応して複数の供給部を備えている。また、プレス治具Pは、繊維群FFに対して半径方向に延出する楔状を成し、下降動作により編み付けた連続繊維F2,F3を加圧すると共に、繊維群FFの上方向あるいは所定の上昇位置から繊維群FFの外側方向に後退させることができる。   The first nozzle NZ1 continuously supplies one continuous fiber F2 from a fiber supply source (not shown), and the radial direction of the fiber group FF is between the outer peripheral side and the inner peripheral side of the fiber group FF. Reciprocate. The second nozzle NZ2 continuously supplies a plurality of continuous fibers F3 from a fiber supply source (not shown), and includes a plurality of supply sections corresponding to the bars B in the radial direction. Further, the press jig P has a wedge shape extending in the radial direction with respect to the fiber group FF, pressurizes the continuous fibers F2 and F3 knitted by the descending operation, and upwards the fiber group FF or a predetermined direction. The fiber group FF can be retracted from the ascending position.

上記の成形装置を用いて構造体Aを製造するには、繊維群FFをセットすると共に、ガイドプレートを上昇限に移動させた後、繊維群FFを回転させながら半径方向R及び周方向Cの連続繊維F2,F3を編み付ける。   In order to manufacture the structure A using the above molding apparatus, the fiber group FF is set and the guide plate is moved to the ascending limit, and then the fiber group FF is rotated while rotating the fiber group FF in the radial direction R and the circumferential direction C. Knit continuous fibers F2 and F3.

すなわち、第1ノズルNZ1を外周側から内周側に往動させて、各棒材Bの列間に半径方向Rの連続繊維F2を供給し、続いて、繊維群FFを各棒材列の1ピッチ分回転させた後、第1ノズルNZ1を内周側から外周側に復動させて隣の列間に連続繊維F2を供給する。このとき、半径方向Rの連続繊維F2は、開始端を予め繊維群FFに固定しておくことにより、第1ノズルNZ1の移動とともに同ノズルNZ1から導き出される。その後、繊維群FFの回転と第1ノズルNZ1の往復動を繰り返し行って、繊維群FFに半径方向Rの連続繊維F2を編み付ける。なお、繊維群FFの回転は、連続的又は間欠的のいずれでも良い。   That is, the first nozzle NZ1 is moved forward from the outer peripheral side to the inner peripheral side, the continuous fibers F2 in the radial direction R are supplied between the rows of the rods B, and subsequently, the fiber group FF is moved to each rod row. After rotating by one pitch, the first nozzle NZ1 is moved back from the inner peripheral side to the outer peripheral side to supply continuous fibers F2 between adjacent rows. At this time, the continuous fiber F2 in the radial direction R is led out from the nozzle NZ1 together with the movement of the first nozzle NZ1 by fixing the start end to the fiber group FF in advance. Thereafter, the rotation of the fiber group FF and the reciprocation of the first nozzle NZ1 are repeatedly performed, and the continuous fiber F2 in the radial direction R is knitted on the fiber group FF. The rotation of the fiber group FF may be either continuous or intermittent.

また、半径方向Rの連続繊維F2の上側には、第2ノズルNZ2の各供給部から各棒材Bの列間に周方向Cの連続繊維F3を供給する。このとき、連続繊維F3は、開始端を予め繊維群FFに固定しておくことにより、繊維群FFの回転とともに第2ノズルNZ2から導き出される。このように、繊維群FFの回転とともに半径方向Rの連続繊維F2と周方向Cの連続繊維F3の供給を行うことにより、これらの連続繊維F2,F3が軸線方向L(Z方向)に交互に積層されることとなる。   Further, on the upper side of the continuous fibers F2 in the radial direction R, the continuous fibers F3 in the circumferential direction C are supplied between the rows of the bars B from the supply units of the second nozzle NZ2. At this time, the continuous fiber F3 is led out from the second nozzle NZ2 together with the rotation of the fiber group FF by fixing the start end to the fiber group FF in advance. Thus, by supplying the continuous fibers F2 in the radial direction R and the continuous fibers F3 in the circumferential direction C with the rotation of the fiber group FF, these continuous fibers F2 and F3 are alternately arranged in the axial direction L (Z direction). It will be laminated.

さらに、成形装置は、上記の連続繊維F2,F3の積層に伴って、プレス治具Pを間欠的に駆動して、プレス治具Pとガイドプレートの間で連続繊維F2,F3を加圧すると共に、連続繊維F2,F3の供給位置が一定であるから、ガイドプレートを連続的又は間欠的に下降させる。つまり、上記した繊維群FFの回転に伴って、連続繊維F2,F3の積層とプレス治具Pによる加圧を交互に繰り返し、積層高さの増大に伴ってガイドプレートを下降させていくことにより、最終的に、繊維F1〜F3を三次元的に配向した所定の高さの構造体Aが完成する。   Further, the molding apparatus intermittently drives the press jig P as the continuous fibers F2 and F3 are stacked, and pressurizes the continuous fibers F2 and F3 between the press jig P and the guide plate. Since the supply position of the continuous fibers F2 and F3 is constant, the guide plate is lowered continuously or intermittently. That is, by repeating the lamination of the continuous fibers F2 and F3 and the pressurization by the press jig P with the rotation of the fiber group FF described above, the guide plate is lowered as the lamination height increases. Finally, a structure A having a predetermined height in which the fibers F1 to F3 are three-dimensionally oriented is completed.

上記した構造体Aの製造方法によれば、繊維F1を樹脂で棒状に成形した多数の棒材Bから成るZ方向の繊維群FFを採用し、この繊維群FFの上部が開放端となっているので、XY平面に沿った連続繊維すなわち半径方向R及び周方向Cの連続繊維F2,F3を編み付ける際の自動化が容易である。   According to the manufacturing method of the structure A described above, the Z-direction fiber group FF composed of a large number of rods B in which the fibers F1 are formed into a rod shape with resin is adopted, and the upper part of the fiber group FF becomes an open end. Therefore, it is easy to automate when knitting continuous fibers along the XY plane, that is, continuous fibers F2 and F3 in the radial direction R and the circumferential direction C.

また、編み付けに用いる繊維群FFがそのままZ方向の繊維F1であるから、Z方向の寸法に左右されることがなく、Z方向の寸法が大きい構造体Aであってもその製造が容易であり、また、Z方向の繊維群FFに対して軸線方向に大きな負荷が加わることもないので、Z方向に高弾性繊維を採用することができる。そして、従来の如き金属棒の除去作業が不要になることから、従来に比べて工数を大幅に削減して製造時間を短縮し得ることとなり、これに伴って低コスト化等を実現することができる。   Further, since the fiber group FF used for knitting is the fiber F1 in the Z direction as it is, it is not affected by the dimension in the Z direction, and even the structure A having a large dimension in the Z direction can be easily manufactured. In addition, since a large load is not applied in the axial direction to the Z-direction fiber group FF, highly elastic fibers can be employed in the Z direction. And since the conventional removal work of the metal rod is not necessary, the man-hour can be greatly reduced compared with the conventional case, and the manufacturing time can be shortened. it can.

さらに、上記実施例の構造体Aは、円筒形状であるとともに炭素繊維を用いており、例えばロケットノズル素材のプリフォームとして用いられる。つまり、構造体Aは、例えば、樹脂の含浸や硬化処理を経てFRP化され、焼成とピッチの含浸を繰り返す複合化処理を経て炭素/炭素複合材料(C/C材料)になり、さらに適宜の機械加工を施すことによりロケットノズルとなる。このため、当該製造方法は、ロケットノズルの製造時間の短縮化や低コスト化にも貢献し得るものとなる。   Furthermore, the structure A of the above embodiment has a cylindrical shape and uses carbon fiber, and is used as a preform for a rocket nozzle material, for example. That is, the structure A is, for example, made into FRP through resin impregnation and curing treatment, and becomes a carbon / carbon composite material (C / C material) through a composite treatment in which firing and pitch impregnation are repeated. By machining, it becomes a rocket nozzle. For this reason, the said manufacturing method can also contribute to shortening of the manufacturing time and cost reduction of a rocket nozzle.

ここで、上記のように複合化処理を行う場合、先述したように、Z方向の繊維F1及び樹脂に加えて、ピッチ及びカーボンブラックのうちの少なくとも一方を含む棒材Bを用いれば、複合化処理が容易で且つ確実なものとなる。   Here, when performing the composite treatment as described above, as described above, in addition to the fibers F1 in the Z direction and the resin, if the bar B containing at least one of pitch and carbon black is used, the composite treatment is performed. Processing is easy and reliable.

すなわち、複合化処理では、構造体Aに対してピッチやカーボンブラックの含浸を行うが、この際、構造体Aが大型になるほどピッチやカーボンブラックが内部に行き渡り難くなる。そこで、ピッチやカーボンブラックを含む棒材Bを用いて構造体Aを形成すれば、その構造体Aが大きなものであっても、全体にピッチやカーボンブラックが均一に行き渡ったものとなるので、複合化処理において、ピッチやカーボンブラックを構造体Aに含浸する作業が簡単になり、また、焼成の際には全体的な緻密化が促進され、高品質の複合材料を得ることができる。   That is, in the composite treatment, the structure A is impregnated with pitch or carbon black. At this time, the larger the structure A is, the more difficult it is for the pitch and carbon black to reach the inside. Therefore, if the structure A is formed by using the bar B containing pitch and carbon black, even if the structure A is large, the pitch and carbon black are uniformly distributed throughout. In the composite treatment, the work of impregnating the structure A with pitch or carbon black is simplified, and overall densification is promoted during firing, so that a high-quality composite material can be obtained.

なお、本発明に係る三次元繊維構造体の製造方法は、詳細な構成が上記実施例のみに限定されることは無く、例えば円筒形状以外の各種形状とすることも可能であり、使用する繊維や樹脂にあっても使用目的等に応じて適宜選択することができる。   In addition, as for the manufacturing method of the three-dimensional fiber structure which concerns on this invention, a detailed structure is not limited only to the said Example, For example, it can also be set as various shapes other than a cylindrical shape, The fiber to be used Even in the case of resin or resin, it can be appropriately selected according to the purpose of use.

本発明に係わる三次元繊維構造体の製造方法の一実施例を説明する平面図である。It is a top view explaining one Example of the manufacturing method of the three-dimensional fiber structure concerning this invention. 三次元繊維構造体を説明する斜視図である。It is a perspective view explaining a three-dimensional fiber structure. 断面円形の棒材と連続繊維を示す平面図(a)、及び断面角形の棒材と連続繊維を示す平面図(b)である。It is a top view (a) which shows a cross-section rod and a continuous fiber, and a top view (b) which shows a square cross-section rod and a continuous fiber.

符号の説明Explanation of symbols

A 三次元繊維構造体
B 棒材
F1 軸線方向L(Z方向)の繊維
F2 半径方向Rの連続繊維
F3 周方向Cの連続繊維
FF 繊維群
A Three-dimensional fiber structure B Bar material F1 Fiber in the axial direction L (Z direction) F2 Continuous fiber in the radial direction R F3 Continuous fiber in the circumferential direction C FF fiber group

Claims (4)

繊維を三次元的に配向させた三次元繊維構造体を製造するに際し、繊維を樹脂で棒状に成形した多数の棒材を互いに平行に且つ所定間隔で配置してZ方向の繊維群を形成した後、Z方向の繊維群に対して直交するXY平面に沿って連続繊維を編み付けるとともに同連続繊維をZ方向に積層することを特徴とする三次元繊維構造体の製造方法。   When manufacturing a three-dimensional fiber structure in which the fibers are three-dimensionally oriented, a large number of rods obtained by molding the fibers into a rod shape with a resin are arranged in parallel with each other at a predetermined interval to form a Z-direction fiber group. Then, the continuous fiber is knitted along the XY plane orthogonal to the fiber group in the Z direction, and the continuous fiber is laminated in the Z direction. 構造体が軸線方向をZ方向とする円筒形状であって、多数の棒材により概略円筒形状を成すZ方向の繊維群を形成し、この繊維群に対して周方向及び半径方向に連続繊維を編み付けることを特徴とする請求項1に記載の三次元繊維構造体の製造方法。   The structure has a cylindrical shape whose axial direction is the Z direction, and a Z-direction fiber group is formed by a large number of rods to form a substantially cylindrical shape, and continuous fibers are arranged in the circumferential direction and the radial direction with respect to this fiber group. The method for producing a three-dimensional fiber structure according to claim 1, wherein knitting is performed. 多数の棒材が、断面円形及び断面角形のうちから選択された断面形状を有することを特徴とする請求項1又は2に記載の三次元繊維構造体の製造方法。   The method for producing a three-dimensional fiber structure according to claim 1 or 2, wherein the plurality of rods have a cross-sectional shape selected from a circular cross-section and a square cross-section. 棒材が、繊維及び樹脂に加えて、ピッチ及びカーボンブラックのうちの少なくとも一方を含むことを特徴とする請求項1〜3のいずれかに記載の三次元繊維構造体の製造方法。   The method for producing a three-dimensional fiber structure according to any one of claims 1 to 3, wherein the bar material includes at least one of pitch and carbon black in addition to the fiber and the resin.
JP2005025856A 2005-02-02 2005-02-02 Manufacturing method of three-dimensional fiber structure Active JP4656564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025856A JP4656564B2 (en) 2005-02-02 2005-02-02 Manufacturing method of three-dimensional fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025856A JP4656564B2 (en) 2005-02-02 2005-02-02 Manufacturing method of three-dimensional fiber structure

Publications (2)

Publication Number Publication Date
JP2006214017A JP2006214017A (en) 2006-08-17
JP4656564B2 true JP4656564B2 (en) 2011-03-23

Family

ID=36977473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025856A Active JP4656564B2 (en) 2005-02-02 2005-02-02 Manufacturing method of three-dimensional fiber structure

Country Status (1)

Country Link
JP (1) JP4656564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000750A (en) * 2009-06-17 2011-01-06 Ihi Aerospace Co Ltd Rocket nozzle and manufacturing method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623258B2 (en) * 1982-07-02 1987-01-23 Aerosupachiaru Soc Nashionaru Ind
JPS62123917U (en) * 1986-01-31 1987-08-06
JPH0578948A (en) * 1991-06-03 1993-03-30 Three D Compo Res:Kk Production of preform of three-dimensional woven fabric for composite material
JPH05278031A (en) * 1992-03-31 1993-10-26 Toyobo Co Ltd Thermoplastic resin impreganated composite reinforcing fiber material
JPH09144017A (en) * 1995-11-21 1997-06-03 Kajima Corp Assembling method of reinforcing bar for rc-constructed circular caisson
JP2784304B2 (en) * 1992-11-13 1998-08-06 日本原子力研究所 Control rod for high temperature gas furnace made of carbon composite material and method of manufacturing the same
JPH10251984A (en) * 1997-03-07 1998-09-22 Nippon Glass Fiber Co Ltd Hollow-shaped continuous reinforcing material and anchor bolt
JP2002201551A (en) * 2000-12-27 2002-07-19 Toyota Industries Corp Three-dimensional fibrous structural form and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623258B2 (en) * 1982-07-02 1987-01-23 Aerosupachiaru Soc Nashionaru Ind
JPS62123917U (en) * 1986-01-31 1987-08-06
JPH0578948A (en) * 1991-06-03 1993-03-30 Three D Compo Res:Kk Production of preform of three-dimensional woven fabric for composite material
JPH05278031A (en) * 1992-03-31 1993-10-26 Toyobo Co Ltd Thermoplastic resin impreganated composite reinforcing fiber material
JP2784304B2 (en) * 1992-11-13 1998-08-06 日本原子力研究所 Control rod for high temperature gas furnace made of carbon composite material and method of manufacturing the same
JPH09144017A (en) * 1995-11-21 1997-06-03 Kajima Corp Assembling method of reinforcing bar for rc-constructed circular caisson
JPH10251984A (en) * 1997-03-07 1998-09-22 Nippon Glass Fiber Co Ltd Hollow-shaped continuous reinforcing material and anchor bolt
JP2002201551A (en) * 2000-12-27 2002-07-19 Toyota Industries Corp Three-dimensional fibrous structural form and method for producing the same

Also Published As

Publication number Publication date
JP2006214017A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP3182409U (en) 3D weaving and forming equipment for composite materials
CN107428033B (en) Sheet-like reinforcing fiber base material, preform, and fiber-reinforced resin molded article
EP0243119B1 (en) Complex shaped braided structures
US20190061238A1 (en) Continuous fiber-reinforced component fabrication
CN106255584B (en) It is used to form the device and method of three-dimension object
CN109518339B (en) Multi-needle weaving method for composite material three-dimensional preform
JP2006510817A (en) Apparatus and method for knitting structure
US20220161487A1 (en) Additive manufacturing method and assembly
EP2875938A1 (en) Manufacturing method and manufacturing tool for reinforced structural elements
US20140037397A1 (en) Manufacturing method of machine tool and machine tool
CN1705564A (en) Method and apparatus for Z-direction reinforcement of composite laminates
JP4656564B2 (en) Manufacturing method of three-dimensional fiber structure
CN106965425A (en) A kind of composite adaptively increases and decreases yarn three-dimensional woven method
DE102010046609A1 (en) Plastic-fiber composite component has basic fiber structure which consists of flux equitable deposited continuous filaments with respect to predetermined geometry of component
EP3426425B1 (en) Device for the additive manufacturing of a three-dimensional object
JP5922488B2 (en) Machine tool manufacturing method
KR101836584B1 (en) Composite formed through hole and manufacturing method of the same
DE102010052737B3 (en) Modular manufacturing apparatus for integral semi-finished fiber products and process for the production of continuous fiber composite components from integral fiber composite semi-finished products with a hollow body structure
KR101281185B1 (en) A method for manufacturing preform for composites having discontinuous reinforcements
JP2006056022A (en) Manufacturing method of reinforcing fiber preform for curved frp beam material
CN114197110A (en) Automatic three-dimensional weaving equipment and method for composite material
DE102010023251A1 (en) Device for manufacturing semi-finished multi-ply fabric material for glass-fiber reinforced plastic component, has changeable picture frame set that displays instructions to control robot device and laying head for arranging fibers
DE102019005478A1 (en) Tool for a handling device and method for producing a tool for a handling device
RU2712607C1 (en) Method for forming 3d frame multidimensional reinforced carbon composite material and device for its implementation
DE102015215669A1 (en) Method for producing a fiber composite component by means of impregnated fiber rovings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4656564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250