JP4656370B2 - Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell - Google Patents

Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4656370B2
JP4656370B2 JP2004021281A JP2004021281A JP4656370B2 JP 4656370 B2 JP4656370 B2 JP 4656370B2 JP 2004021281 A JP2004021281 A JP 2004021281A JP 2004021281 A JP2004021281 A JP 2004021281A JP 4656370 B2 JP4656370 B2 JP 4656370B2
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
separator
electrolyte fuel
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004021281A
Other languages
Japanese (ja)
Other versions
JP2005216656A (en
JP2005216656A5 (en
Inventor
健一 濱田
剛 山崎
正男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2004021281A priority Critical patent/JP4656370B2/en
Publication of JP2005216656A publication Critical patent/JP2005216656A/en
Publication of JP2005216656A5 publication Critical patent/JP2005216656A5/ja
Application granted granted Critical
Publication of JP4656370B2 publication Critical patent/JP4656370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池用セパレータの製造方法及び固体高分子型燃料電池に関するものである。 The present invention relates to a method for producing a polymer electrolyte fuel cell separator and a polymer electrolyte fuel cell.

燃料電池は、電解質、燃料、酸化剤などの種類により種々の型があり、中でも電解質に固体高分子電解質膜、燃料に水素ガス、酸化剤に空気を用いる固体高分子型燃料電池や、燃料電池内部で直接メタノールから水素を取り出し燃料とするメタノール直接型燃料電池は、発電時の作動温度が200℃以下の比較的低温で効率的発電が可能である。   There are various types of fuel cells depending on the type of electrolyte, fuel, oxidant, etc. Among them, solid polymer electrolyte membranes that use solid polymer electrolyte membrane as electrolyte, hydrogen gas as fuel, and air as oxidant, and fuel cells A methanol direct fuel cell that directly extracts hydrogen from methanol and uses it as fuel can efficiently generate power at a relatively low temperature of 200 ° C. or lower during operation.

固体高分子型燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する燃料ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。その構造は、まず、水素イオンを選択的に輸送する高分子電解質膜の両面に、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒反応層を形成する。次に、この触媒反応層の外面に、燃料ガスの通気性と、電子導電性を併せ持つ拡散層を形成し、この拡散層と触媒反応層とを合わせて電極とする。   A polymer electrolyte fuel cell generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen and a fuel gas containing oxygen such as air. In the structure, first, a catalytic reaction layer composed mainly of carbon powder carrying a platinum-based metal catalyst is formed on both surfaces of a polymer electrolyte membrane that selectively transports hydrogen ions. Next, a diffusion layer having both fuel gas permeability and electronic conductivity is formed on the outer surface of the catalytic reaction layer, and the diffusion layer and the catalytic reaction layer are combined to form an electrode.

次に、供給する燃料ガスが外にリークしたり、二種類の燃料ガスが互いに混合しないように、電極の周囲には高分子電解質膜を挟んでガスシール材やガスケットを配置する。このシール材やガスケットは、電極及び高分子電解質膜と一体化してあらかじめ組み立て、これを、電極電解質膜接合体(MEA)と呼ぶ。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性のセパレータ板を配置する。セパレータ板のMEAと接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。ガス流路はセパレータ板と別に設けることもできるが、セパレータ表面に溝を設けてガス流路とする方式が一般的である。このような固体高分子型の燃料電池では、セパレータは導電性が高く、更に水素/酸素を酸化還元する際の反応に対して高い耐食性を持つ必要がある。   Next, a gas seal material or a gasket is disposed around the electrode with a polymer electrolyte membrane interposed so that the fuel gas to be supplied leaks outside or the two kinds of fuel gases are not mixed with each other. This sealing material or gasket is integrated with an electrode and a polymer electrolyte membrane and assembled in advance, and this is called an electrode electrolyte membrane assembly (MEA). On the outside of the MEA, a conductive separator plate for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is disposed. In the portion of the separator plate that contacts the MEA, a reaction gas is supplied to the electrode surface, and a gas flow path for carrying away the generated gas and surplus gas is formed. Although the gas flow path can be provided separately from the separator plate, a method of providing a gas flow path by providing a groove on the separator surface is general. In such a polymer electrolyte fuel cell, the separator is required to have high conductivity, and to have high corrosion resistance against the reaction during oxidation / reduction of hydrogen / oxygen.

これら固体高分子型燃料電池を構成するセパレータは、燃料電池セルへ流入する反応ガスの供給路を確保すると共に、燃料電池セルで発電した電気を外部へ伝達するという役割を担っており、従って燃料電池におけるこのセパレータには上記役割を充分に果たす為に、表面方向、および厚み方向における高い導電性が要求されるばかりでなく、電極部との接触抵抗を低減させることが要望されている。   The separators constituting these polymer electrolyte fuel cells have a role of ensuring the supply path for the reaction gas flowing into the fuel cells and transmitting the electricity generated by the fuel cells to the outside. In order to sufficiently fulfill the above role, the separator in the battery is required not only to have high conductivity in the surface direction and thickness direction, but also to reduce the contact resistance with the electrode portion.

この要望に対し、電極部との接触抵抗が低いセパレータおよびその製造方法が提案されている(例えば特許文献1参照)。このセパレータは導電材料と熱可塑性樹脂および熱硬化性樹脂との混合物を成形するとともに、セパレータ表面の表面粗さを研磨により1.5μm〜9μmに制御するものである。
しかしながら前記のセパレータは、表面が粗く電極部との接触抵抗が十分低減されているものではない。
特開2002−270203号公報
In response to this demand, a separator having a low contact resistance with an electrode portion and a manufacturing method thereof have been proposed (see, for example, Patent Document 1). This separator forms a mixture of a conductive material, a thermoplastic resin, and a thermosetting resin, and controls the surface roughness of the separator surface to 1.5 μm to 9 μm by polishing.
However, the separator has a rough surface and the contact resistance with the electrode part is not sufficiently reduced.
JP 2002-270203 A

本発明は、導電性材料と樹脂との混合物を成形したセパレータにおいて、電極部との接触抵抗の低い固体高分子型燃料電池用セパレータの製造方法及び固体高分子型燃料電池を提供することを目的とする。 It is an object of the present invention to provide a method for producing a polymer electrolyte fuel cell separator having a low contact resistance with an electrode portion and a polymer electrolyte fuel cell in a separator formed by molding a mixture of a conductive material and a resin. And

上記課題を解決する為に、電極部と接触するセパレータの面の状態が接触抵抗に及ぼす影響について検討した結果、電極部との接触抵抗は、セパレータ表面の表面粗さに関係し、特定の表面粗さであれば、接触抵抗が低く、高い導電性を有することを見いだした。   In order to solve the above problems, the influence of the state of the separator surface in contact with the electrode part on the contact resistance has been examined. It was found that the roughness is low, the contact resistance is low, and the conductivity is high.

すなわち本発明は、(A)導電性材料95〜50重量%とビニルエステル樹脂5〜50重量%とを含む組成物を所望の形に成形し、
(B)得られた成形体の表面をブラスト処理法により、40μm以下の平均粒子径を有する球状研磨材を含有する研磨物質で4μmの正面末端直径プローブを用いて測定したときの表面粗さが1.5μm未満に研磨し、
(C)次いで粗化された表面を洗浄することを特徴とする固体高分子型燃料電池用セパレータの製造方法を提供するものである。
さらに本発明は、電解質膜の両面に電極が配置され、前記電極が配置された電解質が燃料電池セパレータで狭持された積層構造を有してなる固体高分子型燃料電池において、前記セパレータが、導電性材料95〜50重量%とビニルエステル樹脂5〜50重量%とを含む組成物を成形してなり、成形品の表面が樹脂層の除去によりビニルエステル樹脂の膜を有しておらず、かつ4μmの正面末端直径プローブを用いて測定したときの表面粗さが1.5μm未満であることを特徴とする固体高分子型燃料電池を提供するものである。
さらに本発明は、導電性材料95〜50重量%とビニルエステル樹脂5〜50重量%とを含む組成物を成形してなり、成形品の表面が樹脂層の除去によりビニルエステル樹脂の膜を有しておらず、かつ4μmの正面末端直径プローブを用いて測定したときの表面粗さが1.5μm未満であることを特徴とする固体高分子型燃料電池用セパレータを提供するものである。
That is, the present invention forms a composition containing (A) conductive material 95 to 50% by weight and vinyl ester resin 5 to 50% by weight into a desired shape,
(B) Surface roughness when the surface of the obtained molded body was measured by a blasting method using a 4 μm front end diameter probe with a polishing substance containing a spherical abrasive having an average particle diameter of 40 μm or less. Polished to less than 1.5 μm,
(C) Next, a method for producing a separator for a polymer electrolyte fuel cell is provided, wherein the roughened surface is washed.
Furthermore, the present invention provides a polymer electrolyte fuel cell having a laminated structure in which electrodes are disposed on both surfaces of an electrolyte membrane, and the electrolyte in which the electrodes are disposed is sandwiched between fuel cell separators . be by molding a composition containing a conductive material 95 to 50 wt% and 5 to 50 wt% vinyl ester resin, does not have a film of a vinyl ester resin surface of the molded article by the removal of the resin layer, In addition, the present invention provides a polymer electrolyte fuel cell having a surface roughness of less than 1.5 μm when measured using a 4 μm front end diameter probe.
Furthermore, the present invention is a molding comprising a composition containing 95 to 50% by weight of a conductive material and 5 to 50% by weight of a vinyl ester resin, and the surface of the molded product has a vinyl ester resin film by removing the resin layer. In addition, the present invention provides a separator for a polymer electrolyte fuel cell, which has a surface roughness of less than 1.5 μm when measured using a 4 μm front end diameter probe.

本発明の製造方法で得られる固体高分子型燃料電池用セパレータは、接触抵抗が低く、高い導電性を有する燃料電池を得ることができる。 The polymer electrolyte fuel cell separator obtained by the production method of the present invention has a low contact resistance and can provide a fuel cell having high conductivity.

以下に本発明の実施形態について説明する。   Embodiments of the present invention will be described below.

本発明に使用する導電性材料としては、特に限定されるものではないが、例えば炭素材料、金属、金属化合物を挙げることができ、これらの導電性材料の1種または2種以上を組み合わせて使用できる。また不導体材料と導電性材料の複合材料を使用してもよい。   Although it does not specifically limit as an electroconductive material used for this invention, For example, a carbon material, a metal, a metal compound can be mentioned, and it uses combining 1 type, or 2 or more types of these electroconductive materials. it can. Further, a composite material of a non-conductive material and a conductive material may be used.

前記炭素材料しては、例えば、人造黒鉛、天然黒鉛、ガラス状カーボン、カーボンブラック、アセチレンブラック、ケッチェンブラックなどの粒子状、粉末状物を挙げることができる。粒子、粉末の形状等に特に制限はなく、繊維状、粒子状、箔状、鱗片状、球状、無定形の何れであってもよい。また黒鉛を化学処理して得られる膨張黒鉛も使用できる。導電性を考慮すれば、人造黒鉛、天然黒鉛、膨張黒鉛がより少量で高度の導電性が達成できる点で好ましい。繊維状の炭素材料としては、ピッチ系、PAN系、レーヨン系の炭素繊維の何れも使用することができる。導電性を考慮すれば2000℃以上の高温で炭素化、黒鉛化工程を経て製造される炭素繊維が好ましい。炭素繊維の長さ及び形態に特に制限はないが、樹脂との混練性を考慮すれば、繊維長さが1インチ以下のフィラメント、チョップドストランド、ミルドファイバーが好ましい。 Examples of the carbon material include particulates and powders such as artificial graphite, natural graphite, glassy carbon, carbon black, acetylene black, and ketjen black. There are no particular restrictions on the shape of the particles and powder, and any of fibrous, particulate, foil, scaly, spherical, and amorphous shapes may be used. Also, expanded graphite obtained by chemically treating graphite can be used. Considering conductivity, artificial graphite, natural graphite, and expanded graphite are preferable in that a high level of conductivity can be achieved with a smaller amount. As the fibrous carbon material, any of pitch-based, PAN-based, and rayon-based carbon fibers can be used. In view of conductivity, carbon fibers produced through a carbonization and graphitization process at a high temperature of 2000 ° C. or higher are preferable. Although there is no restriction | limiting in particular in the length and form of carbon fiber, If the kneadability with resin is considered, the filament whose fiber length is 1 inch or less, a chopped strand, and a milled fiber are preferable.

また、前記の金属及び金属化合物としては、例えば、アルミニウム、亜鉛、鉄、銅、ニッケル、銀、金、ステンレス、パラジウム、チタンなどの粉末、粒子状、繊維状、箔状、無定形などを挙げることが出来る。また、チタン、ジルコニウム、ハフニウムなどのホウ素化合物も使用することができる。 Examples of the metal and metal compound include powders such as aluminum, zinc, iron, copper, nickel, silver, gold, stainless steel, palladium, and titanium, particles, fibers, foils, and amorphous. I can do it. Further, boron compounds such as titanium, zirconium and hafnium can also be used.

本発明に用いる樹脂としては、熱硬化性樹脂、熱可塑性樹脂等の合成樹脂を挙げることができる。
かかる樹脂は、主原料である導電性材料および/又は導電性材料を繋ぎ止めるバインダーとして作用する必要があるだけでなく、燃料電池の運転温度および燃料電池に供給する燃料、酸化剤および水などの生成物に対して安定であることが望まれる。以上のことを考慮すれば、樹脂は耐熱性や、耐酸性がある熱硬化性樹脂が好ましい。熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ジアリルフタレート樹脂、マレイミド樹脂、ポリイミド樹脂等を挙げることができ、これらの1種類或いは2種類以上の混合物を用いることができる。
また樹脂の形態は上記導電性材料と混合、分散しうるものであれば特に制限はない。樹脂が液体である場合には、粘度はなるべく低い方が導電性材料との混合、分散が容易であるため好ましい。固体樹脂は粉末状で平均粒子径が1000μm以下であるのが好ましい。
Examples of the resin used in the present invention include synthetic resins such as thermosetting resins and thermoplastic resins.
Such a resin not only needs to act as a main raw material conductive material and / or a binder that anchors the conductive material, but also the operating temperature of the fuel cell and the fuel, oxidant, water, etc. supplied to the fuel cell. It is desired to be stable to the product. Considering the above, the resin is preferably a thermosetting resin having heat resistance and acid resistance. Examples of the thermosetting resin include phenol resin, epoxy resin, urea resin, melamine resin, unsaturated polyester resin, silicone resin, diallyl phthalate resin, maleimide resin, polyimide resin, and the like. Two or more types of mixtures can be used.
The form of the resin is not particularly limited as long as it can be mixed and dispersed with the conductive material. When the resin is a liquid, it is preferable that the viscosity is as low as possible because it is easy to mix and disperse with the conductive material. The solid resin is preferably in a powder form and has an average particle size of 1000 μm or less.

熱可塑性樹脂としては、例えばポリエチレン、ポリスチレン、ポリプロピレン、ポリメタクリル酸メチル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルフォン、ポリカーボネート、ポリオキサメチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリビニルアルコール、ポリビニルクロライド、フッ素樹脂、ポリペニースサルフォン、ポリエーテルエーテルケトン、ポリスルフォン、ポリエーテルケトン、ポリアリレート、ポリエーテルイミドやポリメチルベンデン等より選ばれた1種類又は2種類以上の混合物を挙げることができるが、特に限定はされない。 Examples of the thermoplastic resin include polyethylene, polystyrene, polypropylene, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyether sulfone, polycarbonate, polyoxamethylene, polyamide, polyimide, polyamideimide, polyvinyl alcohol, polyvinyl chloride, and fluorine resin. , One or a mixture of two or more selected from polypenissulfone, polyetheretherketone, polysulfone, polyetherketone, polyarylate, polyetherimide, polymethylbenden, etc. There is no limitation.

前記組成物中の樹脂の含有量は、5〜50重量%であることが好ましく、セパレータの強度、導電性を発現する上で10〜30重量%であることが特に好ましい。   The content of the resin in the composition is preferably 5 to 50% by weight, and particularly preferably 10 to 30% by weight in order to develop the strength and conductivity of the separator.

前記組成物を成形する方法としては、ガス流路を含み一体成形できる方法であることが好ましい。かかる成形法としては、例えばプレス成形、射出成形、トランスファー成形等が挙げられる。   The method for molding the composition is preferably a method that includes a gas flow path and can be integrally molded. Examples of such molding methods include press molding, injection molding, transfer molding, and the like.

本発明の製造方法で得られる固体高分子型燃料電池用セパレータは、樹脂の膜を有していないものである。通常導電性材料と樹脂とを含む組成物を成形して得られるセパレータは、その表面に樹脂の膜を有するものであるが、本発明のセパレータは、後記する表面研磨等の方法を用いることにより、膜を有さないものである。
また本発明の製造方法で得られる固体高分子型燃料電池用セパレータは、その表面粗さがプローブ先端径4μmの表面粗さ計により測定した値で、Ra=1.5μm未満であることに特徴がある。
The polymer electrolyte fuel cell separator obtained by the production method of the present invention does not have a resin film. Usually, a separator obtained by molding a composition containing a conductive material and a resin has a resin film on its surface. The separator of the present invention can be obtained by using a method such as surface polishing described later. It does not have a film.
Further, the polymer electrolyte fuel cell separator obtained by the production method of the present invention is characterized in that the surface roughness is a value measured by a surface roughness meter having a probe tip diameter of 4 μm and Ra is less than 1.5 μm. There is.

本発明の製造方法で得られる固体高分子型燃料電池用セパレータにおける表面粗さが、前記のように測定した値でRa=1.5μm以上である場合には、表面が粗すぎるために電極部との接触部分が少なくなり、接触電気抵抗が増大する傾向がある。

When the surface roughness in the polymer electrolyte fuel cell separator obtained by the production method of the present invention is Ra = 1.5 μm or more as measured above, the surface is too rough, so the electrode portion There is a tendency for the contact portion to decrease and the contact electrical resistance to increase.

前記プローブ先端径4μmの表面粗さ計によりセパレータの表面粗さを測定するには、JIS B 0601(1994)に準拠し行うことができる。
表面粗さを表すパラメータとしては、算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)等があるが、本発明の表面粗さとは算術平均粗さ(Ra)のことをいう。Raとは、上記JISに定義されているように基準長さl、粗さ曲線をy=f(x)で表した時に下記式にて求められる値をμmにて表したものをいうものである。
Ra=1/l×∫0 l|f(x)|dx
The surface roughness of the separator can be measured with a surface roughness meter having a probe tip diameter of 4 μm in accordance with JIS B 0601 (1994).
The parameters representing the surface roughness include arithmetic average roughness (Ra), maximum height (Ry), ten-point average roughness (Rz), etc. The surface roughness of the present invention is the arithmetic average roughness (Ra ). Ra is a value expressed in μm in terms of the standard length 1 and the roughness curve expressed as y = f (x) as defined in the above JIS. is there.
Ra = 1 / l × ∫ 0 l | f (x) | dx

前記成形方法によって、ガス流路を一体成形した成型品の表面の樹脂層を除去する方法としては、例えば酸処理法、サンドペーパー法、ブラスト処理法等の除去方法が挙げられる。これらの方法のうち、特に成型品表面の樹脂層を均一に除去するためには、ブラスト処理法が好ましい。   Examples of the method for removing the resin layer on the surface of the molded product in which the gas flow path is integrally molded by the molding method include removal methods such as an acid treatment method, a sandpaper method, and a blast treatment method. Among these methods, the blasting method is particularly preferable in order to uniformly remove the resin layer on the surface of the molded product.

酸処理法では、選択する樹脂群によっては、処理が不十分で目的とする接触抵抗の低減が発現できないばかりか、処理時間も長くなる。またサンドペーパー法では、成型品表面の樹脂層を均一に除去することが非常に困難である。   In the acid treatment method, depending on the resin group to be selected, the treatment is insufficient and the reduction in the desired contact resistance cannot be realized, and the treatment time is increased. Further, in the sandpaper method, it is very difficult to uniformly remove the resin layer on the surface of the molded product.

前記の表面粗さを得るために、ブラスト処理に用いる研磨物質としては、平均粒子径が40μm以下の球状研磨材を含有する研磨物質を使用するものである。平均粒子径が40μmを越える大きな球状研磨材を含む研磨物質を使用した場合、Raが1.5μmを越える場合があり好ましくない。   In order to obtain the above-mentioned surface roughness, an abrasive substance containing a spherical abrasive having an average particle diameter of 40 μm or less is used as an abrasive substance used for blasting. When an abrasive substance containing a large spherical abrasive having an average particle diameter exceeding 40 μm is used, Ra may exceed 1.5 μm, which is not preferable.

ブラスト処理に用いる研磨物質としては、例えば鉄、ステンレス、アルミニウム、亜鉛、銅、アルミナ、炭素珪素系、ガラス、樹脂、珪砂等が挙げられる。   Examples of the polishing substance used for the blast treatment include iron, stainless steel, aluminum, zinc, copper, alumina, carbon silicon, glass, resin, and silica sand.

前記ブラスト処理とは、砂や鉄の粉のような粒子を圧縮空気やモーターの動力を使って高速で飛ばし、製品を加工することをいう。俗にサンドブラスト、ショットブラスト、エアーブラストと呼ばれ、本発明のように研磨材の平均粒径が40μm以下である場合には圧縮空気を使って研磨材を飛ばすエアーブラストが好ましい。
このエアーブラスト、ブラストの条件、すなわち空気圧力、単位時間当たりの研磨材の吹き付け量、吹き付けノズルと成型品との距離等を調節することにより、成型品の表面粗さを任意に調整することができる。
The blasting refers to processing a product by flying particles such as sand or iron powder at high speed using compressed air or the power of a motor. Commonly called sand blasting, shot blasting, and air blasting, when the average particle size of the abrasive is 40 μm or less as in the present invention, air blasting in which the abrasive is blown using compressed air is preferred.
By adjusting the air blasting and blasting conditions, that is, air pressure, the amount of abrasive sprayed per unit time, the distance between the spray nozzle and the molded product, etc., the surface roughness of the molded product can be arbitrarily adjusted. it can.

燃料電池スタックは約80℃で運転され、冷却水を循環している場合が多い。温水中セパレータからの溶出物による固体高分子膜の汚損および冷却水による電気的短絡を防止する必要がある。微量金属イオンが高分子電解質膜を汚染して電池特性が低下し、発電効率が低下すると言われている。 The fuel cell stack is operated at about 80 ° C. and often circulates cooling water. It is necessary to prevent the solid polymer film from being soiled by the eluate from the hot water separator and from being electrically short-circuited by the cooling water. It is said that trace metal ions contaminate the polymer electrolyte membrane, resulting in a decrease in battery characteristics and a decrease in power generation efficiency.

ブラスト処理に用いられる研磨物質として例を挙げたが、金属物質が多い。これら研磨物質がセパレータ表面に残留していると上記高分子電解質膜の汚染が発生し、電池特性の低下を引き起こす。 Although an example was given as an abrasive material used for blasting, there are many metal materials. If these abrasive substances remain on the separator surface, the polymer electrolyte membrane is contaminated, causing deterioration of battery characteristics.

ブラスト処理後、電池特性の低下を引き起こさないためには、セパレータを洗浄し、残留研磨材及び研磨粉を完全に除去することが必要である。
セパレータの表面に研磨物質等が残留していると、電気的接触の妨害、燃料電池稼働時における触媒毒、および膜劣化を招き、接触抵抗の増加、燃料電池の性能低下を引き起こすのである。
In order not to cause deterioration of battery characteristics after blasting, it is necessary to clean the separator and completely remove the residual abrasive and polishing powder.
If an abrasive substance or the like remains on the surface of the separator, it causes interference with electrical contact, catalyst poison during fuel cell operation, and film deterioration, resulting in increased contact resistance and decreased fuel cell performance.

洗浄方法としては、例えばセパレータ表面に圧縮空気を吹き付ける方法、刷毛等で払う方法、蒸留水で洗浄する方法、エタノール等の有機溶剤類で洗浄する方法等の方法が挙げられる。   Examples of the cleaning method include a method of spraying compressed air on the separator surface, a method of brushing with a brush, a method of cleaning with distilled water, a method of cleaning with an organic solvent such as ethanol, and the like.

本発明の燃料電池は、電解質が電極で挟持され、さらに外側に、前記セパレータが配設された基本構成単位である単セルのみから構成されるものでもよいし、この単セルを複数積層してなるものである。
ここで、燃料電池は、燃料を改質して得られ水素を主燃料として、この水素が酸素と反応したときの化学エネルギーを電力として取り出す発電方式を利用するものであり、本発明における燃料電池は、この発電を生ぜしめる単セルを単一あるいは直列に複数重ねたスタック構造とし、スタックの両端に設けた集電板で集電することにより形成されるものである。
The fuel cell of the present invention may be composed of only a single cell, which is a basic structural unit in which an electrolyte is sandwiched between electrodes and the separator is disposed on the outside, and a plurality of such single cells are laminated. It will be.
Here, the fuel cell uses a power generation system in which hydrogen obtained by reforming the fuel is used as a main fuel, and chemical energy obtained when this hydrogen reacts with oxygen is used as electric power. Is formed by collecting a single cell, which generates power, in a single or a stacked structure in series and collecting current with current collecting plates provided at both ends of the stack.

固体高分子型燃料電池セルの構造の一例を図2に示す。燃料電池の基本構成単位である単セルは固体高分子電解質膜3、燃料極4、酸化剤極5からなる電解質膜電極接合体6の両面をセパレータ1で挟んだ構造を持つ。セパレータの表面に形成された流路7は燃料や酸化剤を電極に安定的に供給するのに好適である。また酸化剤極5に設置したセパレータの反対面に熱源として水を導入することによって、燃料電池から熱を取り出すことができる。このように構成された単セルを複数、直列に積層したセルスタック(燃料電池スタック)の一例を図3に示す。   An example of the structure of the polymer electrolyte fuel cell is shown in FIG. A single cell, which is a basic structural unit of a fuel cell, has a structure in which a separator 1 sandwiches both surfaces of an electrolyte membrane electrode assembly 6 including a solid polymer electrolyte membrane 3, a fuel electrode 4, and an oxidizer electrode 5. The flow path 7 formed on the surface of the separator is suitable for stably supplying fuel and an oxidant to the electrode. Further, by introducing water as a heat source to the opposite surface of the separator installed in the oxidizer electrode 5, heat can be taken out from the fuel cell. FIG. 3 shows an example of a cell stack (fuel cell stack) in which a plurality of single cells configured as described above are stacked in series.

以上説明した本発明の燃料電池は、例えば電気自動車電源、ポータブル電源、非常用電源等の他、人工衛生、飛行機、宇宙船等各種の移動体電源として使用できる。   The fuel cell of the present invention described above can be used as various mobile power sources such as artificial hygiene, airplanes, spacecrafts, etc. in addition to electric vehicle power supplies, portable power supplies, emergency power supplies, and the like.

以下に本発明の実施例について述べる。   Examples of the present invention will be described below.

後記実施例で得られた成形板に関し、抵抗値、表面粗さ及び金属分析の測定方法は以下のとおりである。
<抵抗値の測定>
実施例1で得られた成形板を50mm×50mmに切断したものを試験片として、その両面を同じサイズのカーボンペーパー(東レ製TGPH−120)で挟んだ状態で圧力をかけ、成形板とカーボンペーパーの抵抗値を測定した。
With respect to the molded plates obtained in the examples described later, the measurement methods of resistance value, surface roughness and metal analysis are as follows.
<Measurement of resistance value>
A test piece obtained by cutting the molded plate obtained in Example 1 into 50 mm × 50 mm was used as a test piece, and pressure was applied in a state in which both sides were sandwiched between carbon papers of the same size (Toray TGPH-120). The resistance value of the paper was measured.

抵抗値を測定した後、この成形板をエアブラストマシン(ニッチュー製、PAMD−102)にてブラスト処理した。ブラスト処理条件は圧力0.2MPa、距離150mm、ノズル移動速度20m/min、噴射量150g/minとし、研磨物質として、平均粒径40μmのガラスビーズを用いた。   After measuring the resistance value, this molded plate was blasted with an air blast machine (manufactured by Nichu, PAMD-102). The blasting conditions were a pressure of 0.2 MPa, a distance of 150 mm, a nozzle moving speed of 20 m / min, a spray amount of 150 g / min, and glass beads having an average particle size of 40 μm were used as the polishing substance.

ブラスト処理後、処理した成形板の表面に圧縮空気吹き付け、研磨物質、研磨粉を除去した後、蒸留水に2時間浸漬した。この蒸留水による洗浄を4回繰り返して洗浄終了とした。   After the blast treatment, compressed air was sprayed onto the surface of the treated molded plate to remove abrasive substances and abrasive powder, and then immersed in distilled water for 2 hours. This washing with distilled water was repeated 4 times to complete the washing.

成形板を洗浄した後、前記方法にて再度抵抗値を測定し、下記の式により抵抗減少率を測定した。抵抗減少率は、下式により算出した。
抵抗減少率=[1−(ブラスト処理前抵抗値−ブラスト処理後抵抗値)/ブラスト処理前抵抗値]×100
After washing the molded plate, the resistance value was measured again by the above method, and the resistance reduction rate was measured by the following formula. The resistance reduction rate was calculated by the following formula.
Resistance reduction rate = [1− (resistance value before blast treatment−resistance value after blast treatment) / resistance value before blast treatment] × 100

<表面粗さの測定>
前記の成形板を試験片として、プローブ先端径4μmの表面粗さ測定器(小坂研究所製 サーフコーダSE3500)を用い、JIS B0601−1994に記載された方法により測定した。
<Measurement of surface roughness>
Measurement was performed by the method described in JIS B0601-1994 using the molded plate as a test piece and using a surface roughness measuring instrument having a probe tip diameter of 4 μm (Surfcoder SE3500, manufactured by Kosaka Laboratory).

<金属分析>
前記得られた成形板と蒸留水を1対2の重量比にてテフロン(登録商標)容器に入れ、95℃の油槽に容器ごと浸し、24時間加熱した。加熱後、常温まで冷却し、外水相の金属分析を行い、珪素(Si)の分析を行った。
Siの分析はJIS K 0101に準拠し、誘導結合プラズマ(ICP)発光分光分析を実施した。ICP発光分光分析装置としてはPerkin Elmer社製 Optima3300DVを用いた。
成形板表面の洗浄が不十分であれば、ブラスト処理の研磨物質であるガラスに多く含まれる珪素が成形品表面に残留するはずである。珪素の検出の有無によって、金属溶出の無い電池性能を低下させないセパレータであるか判断した。
<Metal analysis>
The obtained molded plate and distilled water were placed in a Teflon (registered trademark) container at a weight ratio of 1: 2, immersed in a 95 ° C. oil tank, and heated for 24 hours. After heating, it was cooled to room temperature, the metal analysis of the outer water phase was performed, and the analysis of silicon (Si) was performed.
The analysis of Si was based on JIS K 0101, and inductively coupled plasma (ICP) emission spectroscopic analysis was performed. An Optima 3300 DV manufactured by Perkin Elmer was used as the ICP emission spectroscopic analyzer.
If the surface of the molding plate is not sufficiently cleaned, silicon contained in the glass, which is a polishing material for blasting, should remain on the surface of the molded product. Whether or not the separator is a separator that does not deteriorate the battery performance without metal elution is determined based on whether or not silicon is detected.

実施例1
黒鉛粒子として平均粒径が100μmの鱗片状黒鉛を使用し、樹脂としてビニルエステル系樹脂を、鱗片状黒鉛粉末75重量%、ビニルエステル系樹脂25重量%の割合でミキサーにより20分間混合し、セパレータの原料となる組成物を作製した。
Example 1
Scale-like graphite having an average particle diameter of 100 μm is used as graphite particles, and vinyl ester resin is mixed as a resin at a ratio of 75% by weight of scale-like graphite powder and 25% by weight of vinyl ester resin by a mixer for 20 minutes. The composition used as the raw material of was prepared.

この組成物を所定量計量し、金型内に充填して150℃、10MPaで10分間プレス成形して、3mm厚の成形板を作製した。   A predetermined amount of this composition was weighed, filled in a mold, and press-molded at 150 ° C. and 10 MPa for 10 minutes to produce a molded plate having a thickness of 3 mm.

実施例2
実施例1において、ブラスト処理の研磨物質の平均粒径40μmを20μmにした以外は同様にして成形板の抵抗減少率、表面粗さ、金属分析を測定した。
Example 2
In Example 1, the resistance reduction rate, the surface roughness, and the metal analysis of the molded plate were measured in the same manner except that the average particle size of 40 μm of the blasting polishing material was changed to 20 μm.

実施例3
実施例1において、ブラスト処理条件の距離150mmを200mmにした以外は同様にして成形板の抵抗減少率、表面粗さ、金属分析を測定した。
Example 3
In Example 1, the resistance reduction rate, the surface roughness, and the metal analysis of the molded plate were measured in the same manner except that the distance of 150 mm in the blasting condition was changed to 200 mm.

実施例4
実施例1において、洗浄条件の蒸留水をエタノールにした以外には同様にして成形板の減少率、表面粗さ、金属分析を測定した。上記結果を表−1に示す。
Example 4
In Example 1, the reduction rate, surface roughness, and metal analysis of the molded plate were measured in the same manner except that the distilled water under washing conditions was ethanol. The results are shown in Table-1.

比較例1
実施例1において、ブラスト処理の研磨物質の平均粒径40μmを80μmにした以外は同様にして成形板の抵抗減少率、表面粗さ、金属分析を測定した。
Comparative Example 1
In Example 1, the resistance reduction rate, the surface roughness, and the metal analysis of the molded plate were measured in the same manner except that the average particle size of 40 μm of the blasting polishing material was changed to 80 μm.

比較例2
実施例1におけるブラスト処理を30重量%の硫酸水溶液に浸す以外は同様にして成形板の抵抗減少率、表面粗さ、金属分析を測定した。硫酸水溶液には24時間浸漬した。
Comparative Example 2
The resistance reduction rate, surface roughness, and metal analysis of the molded plate were measured in the same manner except that the blast treatment in Example 1 was immersed in a 30% by weight sulfuric acid aqueous solution. It was immersed in a sulfuric acid aqueous solution for 24 hours.

比較例3
実施例1における洗浄工程を行わずに成形板の抵抗減少率、表面粗さ、金属分析を測定した。上記結果を表−2に示す。
Comparative Example 3
The resistance reduction rate, surface roughness, and metal analysis of the molded plate were measured without performing the cleaning step in Example 1. The results are shown in Table-2.

表−1および表−2の評価結果のとおり、研磨物質40μm以下の研磨材を利用してブラスト処理し、成型品表面の如何なる残留研磨材および研磨粉を除くことにより、接触抵抗が低く、かつセパレータからの溶出成分が少ない成型品を得られることが分かった。   As shown in the evaluation results in Tables 1 and 2, the contact resistance is low by blasting using an abrasive having an abrasive of 40 μm or less and removing any residual abrasive and abrasive powder on the surface of the molded product, and It was found that a molded product with less elution components from the separator can be obtained.

Figure 0004656370
Figure 0004656370

Figure 0004656370
Figure 0004656370

本発明の燃料電池用セパレータを示す斜視図である。It is a perspective view which shows the separator for fuel cells of this invention. 本発明の燃料電池セル構造を示す斜視図である。It is a perspective view which shows the fuel cell structure of this invention. 本発明の燃料電池スタック構造を示す斜視図である。It is a perspective view which shows the fuel cell stack structure of this invention.

符号の説明Explanation of symbols

1 セパレータ
2 燃料、酸化剤、冷却水流路
3 単セル
4 固体高分子型電解質膜
5 燃料極
6 酸化剤極
7 電解質膜電極接合体
8 燃料電池スタック
9 酸化剤流路
10 燃料流路
11 冷却水流路


DESCRIPTION OF SYMBOLS 1 Separator 2 Fuel, oxidant, cooling water flow path 3 Single cell 4 Solid polymer electrolyte membrane 5 Fuel electrode 6 Oxidant electrode 7 Electrolyte membrane electrode assembly 8 Fuel cell stack 9 Oxidant flow path 10 Fuel flow path 11 Cooling water flow Road


Claims (3)

(A)導電性材料95〜50重量%とビニルエステル樹脂5〜50重量%とを含む組成物を所望の形に成形し、
(B)得られた成形体の表面をブラスト処理法により、40μm以下の平均粒子径を有する球状研磨材を含有する研磨物質で4μmの正面末端直径プローブを用いて測定したときの表面粗さが1.5μm未満に研磨し、
(C)次いで粗化された表面を洗浄することを特徴とする固体高分子型燃料電池用セパレータの製造方法。
(A) A composition containing 95 to 50% by weight of a conductive material and 5 to 50% by weight of a vinyl ester resin is molded into a desired shape,
(B) Surface roughness when the surface of the obtained molded body was measured by a blasting method using a 4 μm front end diameter probe with a polishing substance containing a spherical abrasive having an average particle diameter of 40 μm or less. Polished to less than 1.5 μm,
(C) A method for producing a separator for a polymer electrolyte fuel cell, wherein the roughened surface is then washed.
電解質膜の両面に電極が配置され、前記電極が配置された電解質が燃料電池セパレータで狭持された積層構造を有してなる固体高分子型燃料電池において、前記セパレータが、導電性材料95〜50重量%とビニルエステル樹脂5〜50重量%とを含む組成物を成形してなり、成形品の表面が樹脂層の除去によりビニルエステル樹脂の膜を有しておらず、かつ4μmの正面末端直径プローブを用いて測定したときの表面粗さが1.5μm未満であることを特徴とする固体高分子型燃料電池。 In a polymer electrolyte fuel cell having a laminated structure in which electrodes are disposed on both surfaces of an electrolyte membrane, and the electrolyte in which the electrodes are disposed is sandwiched between fuel cell separators, the separator includes conductive materials 95 to 95. A composition containing 50% by weight and 5 to 50% by weight of vinyl ester resin is molded, the surface of the molded product does not have a vinyl ester resin film by removing the resin layer , and has a front end of 4 μm. A polymer electrolyte fuel cell having a surface roughness of less than 1.5 μm as measured using a diameter probe. 導電性材料95〜50重量%とビニルエステル樹脂5〜50重量%とを含む組成物を成形してなり、成形品の表面が樹脂層の除去によりビニルエステル樹脂の膜を有しておらず、かつ4μmの正面末端直径プローブを用いて測定したときの表面粗さが1.5μm未満であることを特徴とする固体高分子型燃料電池用セパレータ。A composition comprising 95 to 50% by weight of a conductive material and 5 to 50% by weight of a vinyl ester resin is molded, and the surface of the molded product does not have a vinyl ester resin film by removing the resin layer, And a separator for a polymer electrolyte fuel cell, having a surface roughness of less than 1.5 μm when measured using a 4 μm front end diameter probe.
JP2004021281A 2004-01-29 2004-01-29 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell Expired - Fee Related JP4656370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021281A JP4656370B2 (en) 2004-01-29 2004-01-29 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021281A JP4656370B2 (en) 2004-01-29 2004-01-29 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Publications (3)

Publication Number Publication Date
JP2005216656A JP2005216656A (en) 2005-08-11
JP2005216656A5 JP2005216656A5 (en) 2007-03-15
JP4656370B2 true JP4656370B2 (en) 2011-03-23

Family

ID=34904972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021281A Expired - Fee Related JP4656370B2 (en) 2004-01-29 2004-01-29 Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4656370B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164770A (en) * 2004-12-08 2006-06-22 Nichias Corp Separator for fuel cell, and manufacturing method therefor
JP4692188B2 (en) * 2005-02-23 2011-06-01 パナソニック電工株式会社 Fuel cell separator and method of manufacturing the same
JP5266304B2 (en) * 2005-02-23 2013-08-21 パナソニック株式会社 Fuel cell separator and method of manufacturing the same
JP2009099475A (en) * 2007-10-19 2009-05-07 Shin Etsu Polymer Co Ltd Separator for fuel cell and its manufacturing method
JP5601518B2 (en) * 2010-10-19 2014-10-08 東海カーボン株式会社 Manufacturing method of fuel cell separator
JP7087975B2 (en) * 2018-12-10 2022-06-21 トヨタ自動車株式会社 Separator manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297338A (en) * 1998-04-10 1999-10-29 Nisshinbo Ind Inc Separator for solid polymer type fuel cell, and manufacture thereof
WO2002035630A1 (en) * 2000-10-23 2002-05-02 Nippon Pillar Packing Co., Ltd. fUEL CELL SEPARATOR
JP2002270203A (en) * 2001-01-10 2002-09-20 Sgl Carbon Ag Bipolar pole plate for fuel cell stack
JP2002373669A (en) * 2001-06-14 2002-12-26 Honda Motor Co Ltd Manufacturing method of separator for fuel cell
JP2003022816A (en) * 2001-05-31 2003-01-24 General Motors Corp <Gm> Fiber orientation adjusted separator plate for fuel cell, and manufacturing method
JP2003068317A (en) * 2001-08-28 2003-03-07 Nissan Motor Co Ltd Fuel cell
JP2004523069A (en) * 2001-02-12 2004-07-29 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー Flow field plate geometry

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297338A (en) * 1998-04-10 1999-10-29 Nisshinbo Ind Inc Separator for solid polymer type fuel cell, and manufacture thereof
WO2002035630A1 (en) * 2000-10-23 2002-05-02 Nippon Pillar Packing Co., Ltd. fUEL CELL SEPARATOR
JP2002270203A (en) * 2001-01-10 2002-09-20 Sgl Carbon Ag Bipolar pole plate for fuel cell stack
JP2004523069A (en) * 2001-02-12 2004-07-29 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー Flow field plate geometry
JP2003022816A (en) * 2001-05-31 2003-01-24 General Motors Corp <Gm> Fiber orientation adjusted separator plate for fuel cell, and manufacturing method
JP2002373669A (en) * 2001-06-14 2002-12-26 Honda Motor Co Ltd Manufacturing method of separator for fuel cell
JP2003068317A (en) * 2001-08-28 2003-03-07 Nissan Motor Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP2005216656A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
EP0949704B1 (en) Separator for polymer electrolyte fuel cell and process for production thereof
JP5045867B2 (en) Fuel cell separator
Guo et al. Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering
US6706437B2 (en) Bipolar plates for fuel cell stacks
US20080050618A1 (en) Proton exchange membrane fuel cell bipolar plate
CN107819136A (en) A kind of stepped construction bipolar plates and preparation method thereof
JP4414631B2 (en) Manufacturing method of fuel cell separator
WO2004100296A1 (en) Method for producing separator for fuel cell, separator for fuel cell and fuel cell
JP4656370B2 (en) Separator for polymer electrolyte fuel cell, method for producing the same, and polymer electrolyte fuel cell
WO2002027844A1 (en) Fuel cell and production method therefor
Li et al. Enhancing the supercapacitor performance of flexible MXene/carbon cloth electrodes by oxygen plasma and chemistry modification
JP4642656B2 (en) Fuel cell electrode and fuel cell using the same
EP1329970A2 (en) Fuel cell separator production method, fuel cell separators, and polymer electrolyte fuel cells
JP3900947B2 (en) Manufacturing method of fuel cell separator, fuel cell separator and fuel cell
CN102230305B (en) Technique for enhancing strength of carbon fibre paper by CTBN (Carboxy Terminal Butadiene-Acrylonitrile) modified phenolic resin
JP2002008676A (en) Fuel cell separator and solid polymer type fuel cell
EP1369943A1 (en) Fuel cell separator, production method, and solid polymer fuel cells
Yang et al. Activated charcoal modified graphite felts using for positive electrodes of vanadium redox flow battery
Li et al. Effect of surface treatment of stainless steel foils in high‐performance aqueous zinc‐ion battery
JP2005149796A (en) Solid polymer electrolyte film, and solid polymer fuel cell
JP2005032569A (en) Complex of fluororesin and carbon particulate, gas diffusion electrode, and fuel cell
US7687100B2 (en) Method of dry coating flow field plates for increased durability
JP2006004867A (en) Separator for fuel cell, and fuel cell
KR101092604B1 (en) Polymer composite comprising plated carbon fiber for manufacturing bipolar plate of fuel cell
EP2091100A1 (en) Method for producing separator material for solid polymer fuel cell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees