JP4655717B2 - Thermal storage method, thermal storage device - Google Patents

Thermal storage method, thermal storage device Download PDF

Info

Publication number
JP4655717B2
JP4655717B2 JP2005088842A JP2005088842A JP4655717B2 JP 4655717 B2 JP4655717 B2 JP 4655717B2 JP 2005088842 A JP2005088842 A JP 2005088842A JP 2005088842 A JP2005088842 A JP 2005088842A JP 4655717 B2 JP4655717 B2 JP 4655717B2
Authority
JP
Japan
Prior art keywords
heat storage
storage agent
heat
solid phase
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005088842A
Other languages
Japanese (ja)
Other versions
JP2006266637A (en
Inventor
謙年 林
啓 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2005088842A priority Critical patent/JP4655717B2/en
Publication of JP2006266637A publication Critical patent/JP2006266637A/en
Application granted granted Critical
Publication of JP4655717B2 publication Critical patent/JP4655717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Heating Systems (AREA)

Description

本発明は、蓄熱方法および蓄熱装置に関する。さらに具体的には、蓄熱剤の相変化に伴う潜熱を利用する蓄熱方法と装置に関する。   The present invention relates to a heat storage method and a heat storage device. More specifically, the present invention relates to a heat storage method and apparatus that uses latent heat accompanying the phase change of the heat storage agent.

従来から、二成分からなる共晶系の混合物を蓄熱剤として用い、当該蓄熱剤の相変化に伴う潜熱を利用した蓄熱方法が知られている。   Conventionally, a heat storage method using a eutectic mixture composed of two components as a heat storage agent and utilizing latent heat associated with a phase change of the heat storage agent is known.

当該方法において共晶を生じる組成比(共晶組成)で蓄熱剤が形成された場合には、蓄熱剤を形成する二成分が共に液体の状態から温度を徐々に下げ、温度がついに共晶点に達しても相変化が生じない(結晶が生じない)現象、いわゆる過冷却が起こる場合があり、蓄熱効率の観点から問題である。   When the heat storage agent is formed at a composition ratio (eutectic composition) that causes eutectic in this method, the two components that form the heat storage agent gradually lower the temperature from the liquid state, and the temperature finally reaches the eutectic point. The phenomenon that no phase change occurs (crystals do not occur) even when the temperature reaches 1 so-called supercooling may occur, which is a problem from the viewpoint of heat storage efficiency.

この過冷却の問題を解決する方法として、蓄熱剤の中に核形成材を添加する方法が知られている(特許文献1)。この方法によれば、蓄熱剤の温度が共晶点に達すると、この核形成材が結晶化の核となって蓄熱剤が液相から固相へ変化していくので、過冷却を抑制する事ができる。   As a method for solving this problem of supercooling, a method of adding a nucleation material into a heat storage agent is known (Patent Document 1). According to this method, when the temperature of the heat storage agent reaches the eutectic point, this nucleation material becomes the nucleus of crystallization, and the heat storage agent changes from the liquid phase to the solid phase, thereby suppressing supercooling. I can do things.

しかしながら、当該方法は、核形成材として蓄熱剤中に共晶系の二成分とは全く異なる物質を添加することが必要であるため、蓄熱剤の生成プロセスが煩雑となり、またさらに、この核形成材を添加した分だけ蓄熱剤自体の容量が低減してしまうことに起因して、蓄熱剤全体としての蓄熱容量が低減してしまうという問題がある。さらに、過冷却を抑制できるとは言え、完全に防止する事は難しい。   However, in this method, it is necessary to add a material completely different from the eutectic two-component to the heat storage agent as a nucleation material, so that the process of generating the heat storage agent becomes complicated, and furthermore, this nucleation Due to the fact that the capacity of the heat storage agent itself is reduced by the amount of the added material, there is a problem that the heat storage capacity of the entire heat storage agent is reduced. Furthermore, although supercooling can be suppressed, it is difficult to completely prevent it.

ところで、近年は、蓄熱剤を形成する二成分の組成比を共晶点が生じる組成比(共晶組成)からずらした組成として蓄熱剤を形成することが行われているが(例えば、特許文献2)、このように共晶組成からずれた組成を有する蓄熱剤を用いた場合であっても、前記過冷却の問題は生じ得る。
特開昭56−84784号公報 特開平11−257885号公報
By the way, in recent years, the heat storage agent is formed as a composition in which the composition ratio of the two components forming the heat storage agent is shifted from the composition ratio (eutectic composition) at which the eutectic point is generated (for example, patent document). 2) Even when a heat storage agent having a composition deviating from the eutectic composition is used, the problem of supercooling can occur.
JP-A-56-84784 Japanese Patent Application Laid-Open No. 11-257885

本発明はこのような状況に鑑みなされたものであり、蓄熱剤の相変化に伴う潜熱を利用して蓄熱するにあたり、凝固点以下の温度になっても液相から固相への相変化が生じない現象、いわゆる過冷却現象が生じることがなく、従って従来よりも効率がよい蓄熱方法、および装置を提供することを主たる目的とする。   The present invention has been made in view of such a situation, and in storing heat using latent heat accompanying the phase change of the heat storage agent, a phase change from a liquid phase to a solid phase occurs even at a temperature below the freezing point. The main object is to provide a heat storage method and apparatus that do not cause a so-called supercooling phenomenon, and thus are more efficient than conventional ones.

上記課題を解決するための、本願発明は、複数の成分からなる共晶系の混合物を、共晶が生じる共晶組成からずらした組成に形成して蓄熱剤とし、当該蓄熱剤を熱媒体と熱交換させ、蓄熱剤の相状態に応じて変化する状態値もしくは物性値を計測し、計測された状態値もしくは物性値に基づき、前記蓄熱剤を構成する成分のうち先行して固相を晶出する一方の成分の固相分率を算出し、前記熱媒体の流量を制御して、前記一方の成分のすべてを液相とすることなく、常に固相残存させ当該残存する固相を前記一方の成分が凝固するときの核として機能させるように固相分率制御を行いながら、前記一方の成分を連続的に融解および凝固させることを特徴とする蓄熱方法に関する。 In order to solve the above problems, the present invention provides a heat storage agent by forming a eutectic mixture composed of a plurality of components into a composition shifted from the eutectic composition in which the eutectic is generated , and the heat storage agent is used as a heat medium. Heat exchange is performed, and a state value or a physical property value that changes according to the phase state of the heat storage agent is measured, and based on the measured state value or physical property value, the solid phase is crystallized in advance among the components constituting the heat storage agent. The solid phase fraction of one component to be discharged is calculated, the flow rate of the heating medium is controlled, and the solid phase is always left without changing all of the one component to the liquid phase. The present invention relates to a heat storage method, wherein the one component is continuously melted and solidified while performing solid phase fraction control so that the one component functions as a nucleus when solidifying .

また、本願発明は、複数の成分からなる共晶系の混合物を、共晶が生じる共晶組成からずらした組成に形成した蓄熱剤が収容された蓄熱槽と、前記蓄熱槽に収容されている蓄熱剤と熱媒体とを熱交換させる熱交換手段と、前記蓄熱槽に収容されている蓄熱剤の相状態に応じて変化する状態値もしくは物性値を計測する計測手段と、前記計測手段により計測された状態値もしくは物性値に基づき、前記蓄熱剤を構成する成分のうち先行して固相を晶出する一方の成分の固相割合を算出し、当該固相割合が0(ゼロ)とならないようにし常に固相を残存させ当該残存する固相を前記一方の成分が凝固するときの核として機能させるように固相分率を制御する固相分率制御手段と、から構成され、当該固相分率制御手段が熱媒体の流量を調整する熱媒体流量調整手段を有することを特徴とする蓄熱装置に関する。 Moreover, this invention is accommodated in the thermal storage tank in which the thermal storage agent in which the eutectic mixture which consists of a several component was formed in the composition shifted from the eutectic composition in which a eutectic produces was accommodated, and the said thermal storage tank Measured by the heat exchanging means for exchanging heat between the heat accumulating agent and the heat medium, the measuring means for measuring the state value or the physical property value changing according to the phase state of the heat accumulating agent accommodated in the heat accumulating tank, and the measuring means Based on the obtained state value or physical property value, the solid phase ratio of one component that crystallizes the solid phase in advance among the components constituting the heat storage agent is calculated, and the solid phase ratio does not become 0 (zero) Solid phase fraction control means for controlling the solid phase fraction so that the solid phase always remains and the remaining solid phase functions as a nucleus when the one component coagulates , Heat whose solid fraction fraction control means adjusts the flow rate of the heat medium About the heat storage apparatus characterized by having a body flow rate adjusting means.

さらに、前記蓄熱装置にあっては、前記計測手段により計測する状態値もしくは物性値が、温度、液相導電率、混合相導電率、粘度、pH、音速のいずれかであってもよい。   Further, in the heat storage device, the state value or physical property value measured by the measuring means may be any of temperature, liquid phase conductivity, mixed phase conductivity, viscosity, pH, and sound velocity.

上記本願発明の方法によれば、まず第一に、蓄熱剤の組成を共晶が生じる共晶組成からずらした組成としているので(つまり、共晶点を利用することがないため)、固相が晶出する温度を、蓄熱剤の組成によりコントロールすることができる。   According to the method of the present invention, first of all, since the composition of the heat storage agent is shifted from the eutectic composition in which the eutectic is generated (that is, the eutectic point is not used), the solid phase Can be controlled by the composition of the heat storage agent.

また第二に、共晶組成からずらした組成としていることから、先行して固相を晶出する成分の凝固開始温度(液相線)と共晶温度との間の温度では、温度が下がるに従い、当該成分が晶出(凝固)しながら温度も低下することとなる。その結果、見かけ上の比熱が「液相の比熱×液相の割合+固相の比熱×固相の割合+先行して晶出する成分の凝固潜熱×相変化量」となり、液相線以下の温度域において単純な顕熱利用の場合に比べて蓄熱容量を増加することができる。   Second, since the composition is shifted from the eutectic composition, the temperature falls between the eutectic temperature and the solidification start temperature (liquidus) of the component that crystallizes the solid phase in advance. Accordingly, the temperature also decreases while the component crystallizes (solidifies). As a result, the apparent specific heat becomes "liquid phase specific heat x liquid phase ratio + solid phase specific heat x solid phase ratio + solidification latent heat of components to be crystallized in advance x phase change amount" and below the liquidus line Compared to simple sensible heat utilization, the heat storage capacity can be increased.

さらに本願発明の方法によれば、第三に、先行して固相を晶出する一方の成分のすべてを液相とすることなく、常に固相が残存する状態となるように固相分率制御を行いながら、当該一方の成分を連続的に融解および凝固させているので、常に残存する固相(つまり固体)が、当該成分が凝固するときの核として機能し、従って、凝固開始温度(液相線)に達しても固相が生じない現象、つまり過冷却を完全に防止することができる。換言すれば、本願発明の方法は、前記特許文献1に開示されている発明のようにわざわざ核形成材を用いる必要がなく、従来からの蓄熱剤そのままを用い、固相分率制御をすることのみで従来からの課題である過冷却を防止することができるのである。   Furthermore, according to the method of the present invention, thirdly, the solid phase fraction is always maintained so that the solid phase always remains without making all of one of the components that crystallize the solid phase in advance as a liquid phase. Since one of the components is continuously melted and solidified while controlling, the solid phase (that is, the solid) that always remains functions as a nucleus when the component solidifies, and thus the solidification start temperature ( A phenomenon in which a solid phase does not occur even when reaching the liquidus), that is, supercooling can be completely prevented. In other words, the method of the present invention does not require the use of a nucleation material as in the invention disclosed in Patent Document 1, and uses a conventional heat storage agent as it is to control the solid phase fraction. Therefore, it is possible to prevent overcooling, which is a conventional problem.

また、上記本願発明の装置によっても前記本願発明の方法と同様の作用効果を得ることができる。   The same effect as the method of the present invention can be obtained by the apparatus of the present invention.

以下に、本願発明の蓄熱方法および蓄熱装置について図面を用いて詳細に説明する。   Hereinafter, a heat storage method and a heat storage device of the present invention will be described in detail with reference to the drawings.

(1)蓄熱方法
図1は、本願発明の蓄熱方法に用いる蓄熱剤の状態図である。なお、この図の横軸は成分bのモル分率を、縦軸は温度を示す。
(1) Heat storage method FIG. 1 is a state diagram of a heat storage agent used in the heat storage method of the present invention. In addition, the horizontal axis | shaft of this figure shows the mole fraction of the component b, and a vertical axis | shaft shows temperature.

本願発明に用いられる蓄熱剤をなす二成分a、bは、互いに液相状態で溶け合い、固相状態では混ざり合わない二つの固相に分れて混合晶出するものであり、両者を所定の共晶組成とした際には、融点の極小値となる共晶点であたかも純粋液体のように溶液全体が同時に固相に変移する共晶反応を起こし、しかも、溶液全体が全て固相に変移するまで温度が一定に保たれるという特性を有している。   The two components a and b constituting the heat storage agent used in the present invention are dissolved in a liquid phase state and separated into two solid phases which are not mixed in a solid phase state, and mixed crystallization is performed. When the eutectic composition is used, the eutectic point at which the melting point becomes the minimum value causes a eutectic reaction in which the entire solution simultaneously changes to the solid phase as if it were a pure liquid, and the entire solution changes to the solid phase. Until the temperature is kept constant.

つまり、図1に示す状態図にあっては、図中の液相線Aは、成分aの晶出温度(凝固点)を示し、図中の液相線Bは、成分bの晶出温度(凝固点)を示している。また、図中の符号Iの領域は、成分a、bともに液相状態の領域であり、符号IIは、液相(成分a+成分b)と成分aの固相との混合状態の領域であり、符号IIIは、液相(成分a+成分b)と成分bの固相との混合状態の領域であり、符号IVの領域は、成分a、bともに固相状態の領域を示す。そして、図中の符号Xは共晶点を、Xは共晶組成を示している。 That is, in the state diagram shown in FIG. 1, the liquidus line A in the figure shows the crystallization temperature (freezing point) of component a, and the liquidus line B in the figure shows the crystallization temperature of component b ( Freezing point). Moreover, the area | region of the code | symbol I in a figure is an area | region of a liquid phase state of the components a and b, and the code | symbol II is an area | region of the mixed state of the liquid phase (component a + component b) and the solid phase of the component a. Symbol III is a region in the mixed state of the liquid phase (component a + component b) and the solid phase of component b, and the region of symbol IV indicates a region in the solid phase state for both components a and b. The symbol X in the figure the eutectic point, X 0 represents the eutectic composition.

本願発明の方法は、例えば図1に示すような状態図を示す蓄熱剤を用いるにあたり、共晶点Xが生じる共晶組成からずらした組成(例えば、Xの組成)とすることに特徴を有している。 The method of the present invention, for example Upon using the heat storage agent that shows a state diagram as shown in FIG. 1, characterized in that the composition shifted from the eutectic composition occurs eutectic point X (e.g., the composition of X 1) Have.

従って、共晶組成XからずれたX組成を有する蓄熱剤にあっては、前述の通り、図1の温度Tから温度を徐々に下げると、温度TからTに至るまでは液相状態であり(領域I)、温度がTに達すると成分bは晶出し始めるが、成分aについては液相のままである(領域II)。さらに温度を下げて温度がTに達すると成分bのみならず成分aも晶出しはじめ、成分aおよび成分bが全て晶出し終えるまで温度はTに保たれる。成分aおよび成分bが全て固相となった後さらに冷却すると固相状態のまま温度が低下する。温度Tではa、bともに固相となっている。 Therefore, in the heat storage agent having a X 1 composition deviated from eutectic composition X 0, as described above, from the temperature T 1 of the Figure 1 lowering the temperature gradually until the temperatures T 1 to T 2 are a liquid phase (region I), component when the temperature reaches T 2 b is started to crystallize and remain in the liquid phase for component a (region II). When the temperature is further lowered and the temperature reaches T 3 , not only component b but also component a starts to crystallize, and the temperature is maintained at T 3 until all of component a and component b are completely crystallized. When the component a and the component b are all in a solid phase and then further cooled, the temperature decreases in the solid state. In the temperature T 4 a, b are both a solid phase.

図2は、前記蓄熱剤を構成する二成分aとbが共に液相をなす温度Tから二成分a,bが共に固相をなす温度Tまで温度降下させた場合の熱量のエンタルピーカーブを示す図である。 FIG. 2 shows an enthalpy curve of the amount of heat when the temperature is lowered from a temperature T 1 at which the two components a and b constituting the heat storage agent together form a liquid phase to a temperature T 4 at which the two components a and b both form a solid phase. FIG.

本発明においては、このエンタルピーカーブにおける温度T未満の熱量を利用するものであり、例えば利用温度範囲がT以上T未満の場合にはT’〜Tの間の熱量、利用温度範囲がT以上T未満の場合にはT〜Tの間の熱量が、それぞれ当該蓄熱剤の蓄熱可能な熱容量ということになる。 In the present invention, the amount of heat less than the temperature T 2 in this enthalpy curve is used. For example, when the use temperature range is T 3 or more and less than T 2 , the amount of heat between T 3 ′ and T 2 and the use temperature. When the range is T 4 or more and less than T 2, the amount of heat between T 4 and T 2 is the heat capacity capable of storing the heat storage agent.

ここで、本願発明の方法にあっては、前述のように、共晶が生じる共晶組成からずらした組成からなる蓄熱剤を用いることのみならず、先行して固相を晶出する一方の成分、つまり図1に示す組成Xの蓄熱剤の場合には成分b、のすべてを液相とすることなく、常に固相が残存する状態となるように固相分率制御を行いながら、具体的には、図1に示す組成Xの蓄熱剤の場合かつ計測対象が温度の場合には、温度をT未満で制御しながら、成分bを連続的に融解および凝固させることを特徴としている。 Here, in the method of the present invention, as described above, not only the heat storage agent having a composition shifted from the eutectic composition in which the eutectic is generated, but also one of the crystallization of the solid phase in advance. components, i.e. without all components b, the liquid phase in the case of the heat storage agent composition X 1 shown in FIG. 1, always solid phase while the solid phase fraction controller so that the state remains, Specifically, characterized in that in the case where the heat storage agent and measuring target composition X 1 shown in FIG. 1 is a temperature, which while controlling the temperature below T 2, is continuously melting and solidifying the component b It is said.

温度をT未満(つまり温度をTまで上げないよう)に制御することにより、必ず成分bの固相を蓄熱剤中に残存せしめることができ、その結果、過冷却を防止することができるのである。ここで敢えて温度T未満(Tを含まない)としているのは、温度Tは組成Xにおける液相線温度(成分bの融点)であるため、当該温度Tに達すると固相がすべてなくなってしまい、この後、冷却した場合に成分bが晶出するための核がなくなってしまい、過冷却が生じてしまうからである。 By controlling the temperature below T 2 (that is, not raising the temperature to T 2 ), the solid phase of component b can always remain in the heat storage agent, and as a result, supercooling can be prevented. It is. Here, the temperature T 2 is lower than T 2 (not including T 2 ) because the temperature T 2 is the liquidus temperature (melting point of the component b) in the composition X 1 , and the solid phase is reached when the temperature T 2 is reached. This is because all the nuclei for crystallization of the component b disappear when cooling, and supercooling occurs.

ここで、本発明の方法を実施するためには、蓄熱剤の固相分率をほぼリアルタイムで知る必要があるが、この方法は特に限定することはなく、上記に示した蓄熱剤の温度の他、蓄熱剤の固相分率に応じて変化する物性、例えば、蓄熱剤の液相の導電率、蓄熱剤の混合相(液相と固相の混合物)の導電率、蓄熱剤の粘度やpH、蓄熱剤を伝わる音の速度(音速)などから、蓄熱剤の固相分率を知ってもよい。   Here, in order to carry out the method of the present invention, it is necessary to know the solid fraction of the heat storage agent in almost real time, but this method is not particularly limited, and the temperature of the heat storage agent shown above is not limited. Other properties that change according to the solid phase fraction of the heat storage agent, such as the conductivity of the liquid phase of the heat storage agent, the conductivity of the mixed phase of the heat storage agent (mixture of liquid phase and solid phase), the viscosity of the heat storage agent, The solid phase fraction of the heat storage agent may be known from pH, the speed of sound transmitted through the heat storage agent (sound speed), and the like.

また、本願発明の方法において、前述するように蓄熱剤の固相分率を所定の範囲内に制御する手段については特に限定されることはなく、例えば、当該蓄熱方法を、排ガスや温排水などの約100〜200℃程度の熱媒体から温熱を回収する際に用いる場合には、熱媒体の流量や蓄熱剤自体の流量を制御することにより、その結果として蓄熱剤の固相分率を制御することができる(詳細は以下の本発明の装置で説明する)。   In the method of the present invention, the means for controlling the solid phase fraction of the heat storage agent within a predetermined range as described above is not particularly limited. For example, the heat storage method is used for exhaust gas, hot drainage, etc. When the heat is recovered from the heat medium of about 100 to 200 ° C., by controlling the flow rate of the heat medium and the heat storage agent itself, the solid phase fraction of the heat storage agent is controlled as a result. (Details are described in the apparatus of the present invention below).

また、本願発明の方法で用いられる蓄熱剤を構成する成分についても、特に限定されることはなく、例えば、成分aを塩化マグネシウム・六水和物(MgCl・6HO)とし成分bを硝酸マグネシウム・六水和物(Mg(NO・6HO)とした組合わせ(共晶点59.1℃)、成分aを塩化アンモニウム(AlCl3)とし成分bを塩化ナトリウム(NaCl)とした組合せ(共晶点93℃)、成分aをビスマス(Bi)とし成分bを鉛(Pb)とした組合わせ(共晶点125℃)、などを挙げることができ、これらの蓄熱剤は、排ガスや温排水などの約100〜200℃程度の熱媒体から温熱を回収する際に好適に用いることができる。 Further, the component constituting the heat storage agent used in the method of the present invention is not particularly limited. For example, component a is magnesium chloride hexahydrate (MgCl 2 · 6H 2 O) and component b is A combination of magnesium nitrate hexahydrate (Mg (NO 3 ) 2 .6H 2 O) (eutectic point 59.1 ° C.), component a as ammonium chloride (AlCl 3), component b as sodium chloride (NaCl) (Eutectic point 93 ° C.), component a as bismuth (Bi) and component b as lead (Pb) (eutectic point 125 ° C.), and the like. It can be suitably used when recovering warm heat from a heat medium of about 100 to 200 ° C. such as exhaust gas and warm waste water.

そして、本願発明の方法は、前述のように、蓄熱剤を構成する成分のすべてが液相とならないように固相分率制御することにより過冷却が生じることを完全に防止することができるので、蓄熱剤を構成する成分を選択する場合に、「過冷却のし易さ」について考慮する必要がなく、従って「蓄熱容量」について考慮するのみで成分の選択をすることができる。つまり、蓄熱剤の設計の自由度を向上することができる。具体的には、例えば、成分aを塩化マグネシウム・六水和物(MgCl・6HO)とし成分bを硝酸マグネシウム・六水和物(Mg(NO・6HO)とした蓄熱剤は、蓄熱容量は大きいが、過冷却も大きかったため蓄熱剤としては使用し難かったが、本願発明の方法においては、何らの問題もなく使用することができる。 And, as described above, the method of the present invention can completely prevent the occurrence of supercooling by controlling the solid phase fraction so that not all of the components constituting the heat storage agent become a liquid phase. When selecting the components constituting the heat storage agent, it is not necessary to consider “easiness of supercooling”, and therefore the components can be selected only by considering “heat storage capacity”. That is, the degree of freedom in designing the heat storage agent can be improved. Specifically, for example, as components a magnesium chloride hexahydrate (MgCl 2 · 6H 2 O) and a component b of magnesium nitrate hexahydrate (Mg (NO 3) 2 · 6H 2 O) Although the heat storage agent has a large heat storage capacity but is also supercooled, it is difficult to use it as a heat storage agent. However, in the method of the present invention, it can be used without any problems.

(2)蓄熱装置
次に本願発明の装置について説明する。
(2) Heat storage device Next, the device of the present invention will be described.

図3は、本願発明の装置の構成を示す概略図である。   FIG. 3 is a schematic diagram showing the configuration of the apparatus of the present invention.

図3に示すように、本願の装置30は、複数の成分からなる共晶系の混合物を、共晶が生じる共晶組成からずらした組成して形成した蓄熱剤が収容された蓄熱槽31と、前記蓄熱槽31に収容されている蓄熱剤と熱交換をするための熱交換手段32と、前記蓄熱槽に収容されている蓄熱剤の相状態に応じて変化する状態値もしくは物性値を計測するための計測手段33と、前記計測手段33により計測された状態値もしくは物性値に基づき、前記蓄熱剤を構成する成分のうちで先行して固相を晶出する一方の成分の固相の割合を算出し、当該割合が0(ゼロ)とならないように蓄熱剤の固相分率を制御する制御手段34(固相の割合を算出するパーソナルコンピュータ(PC)34aと、熱媒体の流量を調整する熱媒体流量調整手段34bと、蓄熱剤の流量を調整する蓄熱剤流量調整手段34c)と、から構成されている。   As shown in FIG. 3, the device 30 of the present application includes a heat storage tank 31 in which a heat storage agent formed by shifting a eutectic mixture composed of a plurality of components from a eutectic composition in which a eutectic is generated is contained. The heat exchange means 32 for exchanging heat with the heat storage agent accommodated in the heat storage tank 31 and the state value or physical property value that changes according to the phase state of the heat storage agent accommodated in the heat storage tank are measured. Of the solid phase of one component that crystallizes the solid phase in advance among the components constituting the heat storage agent based on the state value or the physical property value measured by the measurement unit 33 The control means 34 (the personal computer (PC) 34a for calculating the ratio of the solid phase and the flow rate of the heat medium) for controlling the solid phase fraction of the heat storage agent so that the ratio does not become 0 (zero). Heat medium flow rate adjusting means 34b to adjust; A heat storage agent flow controller 34c) for adjusting the flow rate of the heat storage agent, and an.

また、前記蓄熱槽31には、これに収容されている蓄熱剤が蓄熱槽31と熱交換手段32との間を循環するための蓄熱剤用配管35が設けられており、当該配管35上には蓄熱剤を循環流通せしめるための蓄熱剤用ポンプ36が設けられている。一方で、前記熱交換手段32には、前記蓄熱剤と熱交換を行う物質(熱媒体)が循環する熱媒体用配管37も配設されており、熱媒体循環手段(図示せず)により熱媒体を循環せしめるようになっている。なお、図3には、蓄熱剤および熱媒体の流れを矢印で示してあるので参照されたい。   The heat storage tank 31 is provided with a heat storage agent pipe 35 for circulating the heat storage agent accommodated between the heat storage tank 31 and the heat exchange means 32. Is provided with a heat storage agent pump 36 for circulating the heat storage agent. On the other hand, the heat exchange means 32 is also provided with a heat medium pipe 37 through which a substance (heat medium) that exchanges heat with the heat storage agent is circulated. The heat medium circulation means (not shown) generates heat. The medium is circulated. In addition, in FIG. 3, since the flow of a thermal storage agent and a heat medium is shown by the arrow, please refer.

当該装置によれば、蓄熱剤槽31内の蓄熱剤に蓄熱する場合には、熱媒体用配管37中を流通する熱媒体の温度を蓄熱剤の融点より高温とすることにより(具体的には、例えば、熱媒体が排ガスや温排水などの約100〜200℃程度の熱媒体を用いることにより)、熱交換手段32で蓄熱剤と熱媒体とが熱交換され(熱媒体の温度が低下して、蓄熱剤の温度が上昇する)、蓄熱槽31内の蓄熱剤に熱が蓄えられる。この場合、蓄熱槽31内の蓄熱剤は温度の上昇に伴い固相の割合が徐々に低下し液相の割合が増加する。   According to the apparatus, when the heat storage agent in the heat storage agent tank 31 stores heat, the temperature of the heat medium flowing through the heat medium pipe 37 is set to be higher than the melting point of the heat storage agent (specifically, For example, when the heat medium uses a heat medium of about 100 to 200 ° C. such as exhaust gas or warm waste water, the heat storage means 32 exchanges heat with the heat storage agent 32 (the temperature of the heat medium decreases). The temperature of the heat storage agent rises), and heat is stored in the heat storage agent in the heat storage tank 31. In this case, the ratio of the solid phase of the heat storage agent in the heat storage tank 31 gradually decreases and the ratio of the liquid phase increases as the temperature increases.

ここで、本願発明の装置30は、蓄熱剤が流通する蓄熱剤用配管35上に計測手段33が設けられているので、当該計測手段33により蓄熱剤の状態値もしくは物性値(例えば、蓄熱剤の温度など)を逐次計測することができ、さらに、当該計測手段33に接続されている制御手段34のPC34aにより前記計測値から当該蓄熱剤の固相の割合を算出することができる。本願発明の装置は、このように逐次蓄熱剤の固相の割合を監視できるので、固相の割合が0(ゼロ)になりそうな場合、当該PC34aに接続されており、制御手段34としての熱媒体流量調整手段34bと蓄熱剤流量調整手段34cとを用いて、熱媒体の流量および蓄熱剤の流量をコントロールすることができる。そして、このようなコントロールにより、蓄熱剤の全てが液相となってしまうことを防止し、これにより過冷却を防止することができる。   Here, in the apparatus 30 of the present invention, since the measuring means 33 is provided on the heat storage agent pipe 35 through which the heat storage agent flows, the state value or physical property value (for example, the heat storage agent) of the heat storage agent is measured by the measurement means 33. And the like, and the ratio of the solid phase of the heat storage agent can be calculated from the measured value by the PC 34a of the control means 34 connected to the measurement means 33. Since the apparatus of the present invention can monitor the ratio of the solid phase of the heat storage agent in this way, when the ratio of the solid phase is likely to be 0 (zero), it is connected to the PC 34a and is used as the control means 34. The flow rate of the heat medium and the flow rate of the heat storage agent can be controlled using the heat medium flow rate adjustment unit 34b and the heat storage agent flow rate adjustment unit 34c. And by such control, it can prevent that all of a thermal storage agent turns into a liquid phase, and can prevent supercooling by this.

なお、当該装置30において、蓄熱剤から放熱する場合には、蓄熱剤の温度よりも低い温度の熱媒体を熱媒体用配管37中に流通せしめればよい。   In the device 30, when heat is radiated from the heat storage agent, a heat medium having a temperature lower than the temperature of the heat storage agent may be circulated in the heat medium pipe 37.

本願発明の装置30における蓄熱槽31は、蓄熱剤を収容しておく容器として機能するものであれば特に限定されることはない。この蓄熱槽31の内部には、蓄熱剤の状態を均一に保つための攪拌・混合手段31aが設置されていてもよい。   The heat storage tank 31 in the device 30 of the present invention is not particularly limited as long as it functions as a container for storing a heat storage agent. Inside the heat storage tank 31, stirring / mixing means 31a for keeping the state of the heat storage agent uniform may be installed.

また、熱交換手段32についても、蓄熱槽31内の蓄熱剤と熱媒体との間で熱交換を行うことができれば特に限定されることはなく、従来公知の熱交換装置を適宜選択してもちいればよい。なお、図3においては、蓄熱剤への蓄熱と放熱とが同一の熱交換手段32で行われるようになっているが、熱交換手段を2つ設け、蓄熱と放熱をそれぞれ別の熱交換手段により行うようにしてもよい。   The heat exchange means 32 is not particularly limited as long as heat exchange can be performed between the heat storage agent in the heat storage tank 31 and the heat medium, and a conventionally known heat exchange device may be appropriately selected. It only has to be. In FIG. 3, heat storage and heat dissipation to the heat storage agent are performed by the same heat exchanging means 32, but two heat exchanging means are provided, and heat storage and heat dissipation are respectively different heat exchanging means. You may make it carry out by.

本願発明の装置30における計測手段33は、前記蓄熱槽に収容されている蓄熱剤の相状態に応じて変化する状態値もしくは物性値を計測するため手段であり、実際に計測する状態値もしくは物性値に応じて適宜選択して用いることができる。   The measuring means 33 in the device 30 of the present invention is a means for measuring a state value or a physical property value that changes in accordance with the phase state of the heat storage agent accommodated in the heat storage tank, and the actual measured state value or physical property. It can be appropriately selected and used according to the value.

当該手段により計測する物性については、蓄熱剤の状態値である温度のみならず、蓄熱剤の物性値である、液相の導電率、蓄熱剤の混合相(液相と固相)の導電率、蓄熱剤の粘度やpH、蓄熱剤を伝わる音の速度(音速)などを挙げることができる。すなわち蓄熱剤の固相分率によって変化する物性値であればその種類は問わない。特に本発明では蓄熱剤の組成が共晶を生じる組成からずらした組成としているので、図1の領域IIや領域IIIにおいては液相と固相が共存した状態となる。この液相部分の組成は、固相分率の変化に応じて変化するため、液相の組成によって変化する物性値も上記計測対象とすることが可能である。   Regarding the physical properties measured by the means, not only the temperature that is the state value of the heat storage agent, but also the electrical conductivity of the liquid phase, which is the physical property value of the heat storage agent, and the conductivity of the mixed phase (liquid phase and solid phase) of the heat storage agent. , Viscosity and pH of the heat storage agent, speed of sound transmitted through the heat storage agent (sound speed), and the like. In other words, any physical property value can be used as long as it changes depending on the solid phase fraction of the heat storage agent. In particular, in the present invention, the composition of the heat storage agent is shifted from the composition causing the eutectic, so that the liquid phase and the solid phase coexist in the regions II and III of FIG. Since the composition of the liquid phase portion changes according to the change in the solid phase fraction, the physical property value that changes depending on the composition of the liquid phase can also be set as the measurement target.

計測手段33の具体例としては、計測する物性が温度の場合には、各種温度計や熱電対などを挙げることができ、計測する物性が液相や混合相の導電率の場合には導電率計を、計測する物性が粘度の場合には、撹拌機の動力を計測する装置を、計測する物性がpHの場合にはpHメータを、計測する物性が音速の場合には音速計を、それぞれ挙げることができる。   Specific examples of the measuring means 33 include various thermometers and thermocouples when the physical property to be measured is temperature, and the electrical conductivity when the physical property to be measured is a liquid phase or mixed phase conductivity. When the physical property to be measured is viscosity, a device that measures the power of the stirrer, a pH meter if the physical property to be measured is pH, and a sonic meter if the physical property to be measured is sound velocity, Can be mentioned.

また、これらの計測手段33を設置する位置については、本発明の装置は特に限定することはないが、熱交換手段の影響を受けにくい場所が望ましく、例えば、図3に示すように、蓄熱槽31から熱交換手段32への配管35上に設置するのが良い。   Further, the position of installing the measuring means 33 is not particularly limited as long as the apparatus of the present invention is used, but a place that is not easily affected by the heat exchanging means is desirable. For example, as shown in FIG. It is good to install on the piping 35 from 31 to the heat exchange means 32.

本願発明の装置30における制御手段34は、上記計測手段33により計測された物性値に基づき、蓄熱槽31内の蓄熱剤の固相の割合を算出し、この割合が0(ゼロ)とならないように制御することができる手段であれば特に限定されることはない。   The control means 34 in the apparatus 30 of the present invention calculates the ratio of the solid phase of the heat storage agent in the heat storage tank 31 based on the physical property value measured by the measurement means 33 so that this ratio does not become 0 (zero). There is no particular limitation as long as it is a means that can be controlled.

例えば、図3に示すように、蓄熱剤の固相の割合を算出する手段としてPCを用い、当該割合を制御する手段として、熱媒体の流量を調整する熱媒体流量調整手段34bと、蓄熱剤の流量を調整する蓄熱剤流量調整手段34cを用いた場合、当該PCにおいて、計測手段の計測値(Z)を固相割合(Y)に変換し、この数値を基に、固相割合Yが0(ゼロ)にならないように熱媒体の流量を調整する熱媒体流量調整手段34bと、蓄熱剤の流量を調整する蓄熱剤流量調整手段34cを制御する。   For example, as shown in FIG. 3, a PC is used as a means for calculating the solid phase ratio of the heat storage agent, and a heat medium flow adjusting means 34b for adjusting the flow rate of the heat medium is used as means for controlling the ratio, and the heat storage agent. When the heat storage agent flow rate adjusting means 34c for adjusting the flow rate of the gas is used, in the PC, the measured value (Z) of the measuring means is converted into the solid phase ratio (Y), and the solid phase ratio Y is calculated based on this numerical value. The heat medium flow rate adjusting means 34b for adjusting the flow rate of the heat medium so as not to become 0 (zero) and the heat storage agent flow rate adjusting means 34c for adjusting the flow rate of the heat storage agent are controlled.

ここで、計測手段33からの信号から固相割合への変換は、蓄熱剤組成に基づき決定される変換に従う。例えば、図4のような共晶状態図を示す2物質が混合された蓄熱剤において、計測手段により計測される対象が温度である場合を例に挙げる。当該状態図をあらかじめ制御手段のPC34aに入力しておく事により、蓄熱剤組成X、計測温度がT(=Z)の場合の図4中の線分αおよび線分βのそれぞれの長さを求める事ができ、固相割合Yは、Y=α/(α+β)となる。 Here, the conversion from the signal from the measuring means 33 to the solid phase ratio follows the conversion determined based on the heat storage agent composition. For example, in the heat storage agent in which two substances having a eutectic state diagram as shown in FIG. 4 are mixed, a case where the target to be measured by the measuring means is a temperature will be described as an example. By inputting the state diagram into the PC 34a of the control means in advance, the lengths of the heat storage agent composition X 1 and the line segments α and β in FIG. 4 when the measured temperature is T (= Z). The solid phase ratio Y is Y = α / (α + β).

また、あらかじめ蓄熱剤組成Xから液相線(固相が晶出してくる点)における計測対象物性値(Zcr)を求めておき、計測手段33からの信号を固相割合Yに変換することなく、直接、計測値が(Zcr)にならないように制御手段34を用いて制御することも可能である。例えば、図4において蓄熱剤組成Xの条件では温度がTcr(=Zcr)より小さくなるように制御すればよい。 Further, the conversion from pre-heat storage agent composition X 1 to previously obtain the target object property values in liquidus (that solid phase come crystallized) a (Zcr), the signal from the measuring means 33 to the solid phase ratio Y It is also possible to directly control using the control means 34 so that the measured value does not become (Zcr). For example, it may be controlled so that the temperature is less than the Tcr (= Zcr) under the conditions of the heat storage agent composition X 1 in FIG. 4.

熱媒体流量調整手段34bと蓄熱剤流量調整手段34cについては、例えば流量調節弁などを用いればよい。   As the heat medium flow rate adjusting unit 34b and the heat storage agent flow rate adjusting unit 34c, for example, a flow rate adjusting valve or the like may be used.

なお、図3に示した構成は、蓄熱剤が常時流動性を示す場合において用いることが可能な構成である。   The configuration shown in FIG. 3 is a configuration that can be used when the heat storage agent always exhibits fluidity.

図5は、本願発明の装置の別例の構成を示す概略図である。蓄熱剤が流動性を示さない状態が生じる場合には、図5に示すように、本願発明の装置50にあっては、蓄熱槽51と熱交換手段52とを同一装置とし、熱媒体のみを循環させてもよい。また、蓄熱槽51に攪拌・混合手段51aを設置し、蓄熱槽51内の蓄熱剤が流動を示す状態のときだけ作動させてもよい。なお、当該装置50における他の手段(計測手段53、制御手段54としてのパーソナルコンピュータ54a、熱媒体流量調整手段54b、熱媒体用配管57)については、図3に示す本願発明の装置30と同一であるためここでの説明は省略する。   FIG. 5 is a schematic view showing the configuration of another example of the apparatus of the present invention. When a state in which the heat storage agent does not exhibit fluidity occurs, as shown in FIG. 5, in the device 50 of the present invention, the heat storage tank 51 and the heat exchanging means 52 are the same device, and only the heat medium is used. It may be circulated. Further, the agitation / mixing means 51a may be installed in the heat storage tank 51 and operated only when the heat storage agent in the heat storage tank 51 shows a flow. The other means in the apparatus 50 (the measuring means 53, the personal computer 54a as the control means 54, the heat medium flow rate adjusting means 54b, and the heat medium pipe 57) are the same as those in the apparatus 30 of the present invention shown in FIG. Therefore, the description here is omitted.

本願発明の蓄熱方法に用いる蓄熱剤の状態図である。It is a state figure of the thermal storage agent used for the thermal storage method of this invention. 図1に示す蓄熱剤を構成する二成分aとbが共に液相をなす温度Tから二成分a,bが共に固相をなす温度Tまで温度降下させた場合の熱量のエンタルピーカーブを示す図である。Temperatures T 1 bicomponent a the secondary components a and b constituting the heat storage agent forms together liquid phase shown in FIG. 1, the enthalpy curve of heat when b is allowed to temperature drop to a temperature T 4 which forms together solid phase FIG. 本願発明の装置の構成を示す概略図である。It is the schematic which shows the structure of the apparatus of this invention. 本願発明の装置における制御を説明する図である。It is a figure explaining the control in the apparatus of this invention. 本願発明の装置の別例の構成を示す概略図である。It is the schematic which shows the structure of another example of the apparatus of this invention.

符号の説明Explanation of symbols

30、50 … 蓄熱装置
31、51 … 蓄熱槽
32、52 … 熱交換手段
33、53 … 計測手段
34、54 … 制御手段
34a、54a … パーソナルコンピュータ(PC)
34b、54b … 熱媒体流量調整手段
34c … 蓄熱剤流量調整手段
35 … 蓄熱剤用配管
36 … 蓄熱剤用ポンプ
37、57 … 熱媒体用配管
30, 50 ... Thermal storage device 31, 51 ... Thermal storage tank 32, 52 ... Heat exchange means 33, 53 ... Measuring means 34, 54 ... Control means 34a, 54a ... Personal computer (PC)
34b, 54b ... Heat medium flow rate adjusting means 34c ... Heat storage agent flow rate adjusting means 35 ... Heat storage agent piping 36 ... Heat storage agent pumps 37, 57 ... Heat medium piping

Claims (4)

複数の成分からなる共晶系の混合物を、共晶が生じる共晶組成からずらした組成に形成して蓄熱剤とし、当該蓄熱剤を熱媒体と熱交換させ、蓄熱剤の相状態に応じて変化する状態値もしくは物性値を計測し、計測された状態値もしくは物性値に基づき、前記蓄熱剤を構成する成分のうち先行して固相を晶出する一方の成分の固相分率を算出し、前記熱媒体の流量を制御して、前記一方の成分のすべてを液相とすることなく、常に固相残存させ当該残存する固相を前記一方の成分が凝固するときの核として機能させるように固相分率制御を行いながら、前記一方の成分を連続的に融解および凝固させることを特徴とする蓄熱方法。 A eutectic mixture composed of a plurality of components is formed into a composition deviated from the eutectic composition in which the eutectic is generated to form a heat storage agent, the heat storage agent is heat exchanged with a heat medium, and the phase state of the heat storage agent Measures the changing state value or physical property value, and calculates the solid fraction of one component that crystallizes the solid phase ahead of the components constituting the heat storage agent based on the measured state value or physical property value and, by controlling the flow rate of the heat medium, without all of the one component and the liquid phase, always functions as a nucleus when the solid phase one component is solidified to the remaining is left a solid phase while the solid phase fraction controller as make, thermal storage method which comprises causing a continuous melting and solidifying said one component. 前記蓄熱剤が、塩化マグネシウム・六水和物と硝酸マグネシウム・六水和物の混合物、塩化アンモニウムと塩化ナトリウムの混合物及びビスマスと鉛の混合物のいずれかであることを特徴とする請求項1に記載の蓄熱方法。The heat storage agent is any one of a mixture of magnesium chloride hexahydrate and magnesium nitrate hexahydrate, a mixture of ammonium chloride and sodium chloride, and a mixture of bismuth and lead. The described heat storage method. 複数の成分からなる共晶系の混合物を、共晶が生じる共晶組成からずらした組成に形成した蓄熱剤が収容された蓄熱槽と、
前記蓄熱槽に収容されている蓄熱剤と熱媒体とを熱交換させる熱交換手段と、
前記蓄熱槽に収容されている蓄熱剤の相状態に応じて変化する状態値もしくは物性値を計測する計測手段と、
前記計測手段により計測された状態値もしくは物性値に基づき、前記蓄熱剤を構成する成分のうち先行して固相を晶出する一方の成分の固相割合を算出し、当該固相割合が0(ゼロ)とならないようにし常に固相を残存させ当該残存する固相を前記一方の成分が凝固するときの核として機能させるように固相分率を制御する固相分率制御手段と、
から構成され
当該固相分率制御手段が熱媒体の流量を調整する熱媒体流量調整手段を有することを特徴とする蓄熱装置。
A heat storage tank containing a heat storage agent formed in a composition shifted from the eutectic composition in which the eutectic mixture of the plurality of components is formed;
Heat exchange means for causing heat exchange between the heat storage agent and the heat medium stored in the heat storage tank,
Measuring means for measuring a state value or a physical property value that changes according to the phase state of the heat storage agent accommodated in the heat storage tank;
Based on the state value or property value measured by the measuring means, wherein to calculate the solid fraction of one component to crystallize prior to the solid phase of the components constituting the heat storage agent, the solid phase ratio is 0 A solid phase fraction control means for controlling the solid fraction so that the solid phase always remains so that it does not become (zero), and the remaining solid phase functions as a nucleus when the one component coagulates ;
Consisting of
The heat storage device, wherein the solid phase fraction control means has a heat medium flow rate adjusting means for adjusting the flow rate of the heat medium .
前記計測手段により計測する状態値もしくは物性値が、温度、液相導電率、混合相導電率、粘度、pH、音速のいずれかであることを特徴とする請求項3に記載の蓄熱装置。The heat storage device according to claim 3, wherein the state value or physical property value measured by the measuring means is any one of temperature, liquid phase conductivity, mixed phase conductivity, viscosity, pH, and sound velocity.
JP2005088842A 2005-03-25 2005-03-25 Thermal storage method, thermal storage device Active JP4655717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088842A JP4655717B2 (en) 2005-03-25 2005-03-25 Thermal storage method, thermal storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088842A JP4655717B2 (en) 2005-03-25 2005-03-25 Thermal storage method, thermal storage device

Publications (2)

Publication Number Publication Date
JP2006266637A JP2006266637A (en) 2006-10-05
JP4655717B2 true JP4655717B2 (en) 2011-03-23

Family

ID=37202808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088842A Active JP4655717B2 (en) 2005-03-25 2005-03-25 Thermal storage method, thermal storage device

Country Status (1)

Country Link
JP (1) JP4655717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173242A (en) * 2017-03-31 2018-11-08 東邦瓦斯株式会社 Overcooling prevention method of latent heat storage material, and latent heat storage tank

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224343A (en) * 2012-04-19 2013-10-31 Ihi Corp Heat storage material, and heat storage system
JP2013224344A (en) * 2012-04-19 2013-10-31 Ihi Corp Method for selecting heat storage material
CN110945101A (en) * 2017-07-31 2020-03-31 夏普株式会社 Latent heat storage material, cold insulation device, refrigerator, logistics packaging container, and cold insulation unit
JP7276711B2 (en) * 2019-07-18 2023-05-18 マツダ株式会社 Vehicle battery cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257885A (en) * 1998-03-10 1999-09-24 Ishikawajima Harima Heavy Ind Co Ltd Heat-storing method
JP2000096041A (en) * 1998-09-22 2000-04-04 Nkk Corp Method and apparatus for transporting hydrate slurry
JP2002311014A (en) * 2001-04-17 2002-10-23 Nkk Corp Method and device for measuring characteristic of hydrate slurry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257885A (en) * 1998-03-10 1999-09-24 Ishikawajima Harima Heavy Ind Co Ltd Heat-storing method
JP2000096041A (en) * 1998-09-22 2000-04-04 Nkk Corp Method and apparatus for transporting hydrate slurry
JP2002311014A (en) * 2001-04-17 2002-10-23 Nkk Corp Method and device for measuring characteristic of hydrate slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173242A (en) * 2017-03-31 2018-11-08 東邦瓦斯株式会社 Overcooling prevention method of latent heat storage material, and latent heat storage tank

Also Published As

Publication number Publication date
JP2006266637A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP4655717B2 (en) Thermal storage method, thermal storage device
JP2007107773A (en) Heat accumulator, heat pump system and solar system
US20050247906A1 (en) Heat-storage means
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
JP4853851B2 (en) High-temperature cooling device using latent heat transport inorganic hydrate slurry
US4689164A (en) Eutectoid salt composition for coolness storage
Yan et al. Optimizing supercooling and phase stability by additives in calcium chloride hexahydrate for cyclical latent heat storage
US4415465A (en) Heat-storing composition
JP2000044939A (en) Heat storage apparatus
JP2020020497A (en) Latent heat storage material composition
JPH0860141A (en) Thermal storage medium
He High-capacity cool thermal energy storage for peak shaving-A solution for energy challenges in the 21st century
JP4779591B2 (en) Water heater
WO2014068628A1 (en) Heat storage system and power generation system
JP2013224343A (en) Heat storage material, and heat storage system
JP2008215655A (en) Heat storage device and its operation method
JP2004003718A (en) Hydrate slurry preparing device
Singh et al. Some physicochemical and thermal studies on organic analog of a nonmetal-nonmetal monotectic alloy; 2-cyanoacetamide–4-chloronitrobenzene system
JP2015183973A (en) Supercooling-type latent heat storage material composition and heat storage system
JP2017187181A (en) Heat exchanger and water heater
Yu et al. Melting and solidification characteristic of mixture of two types of latent heat storage material in direct contact heat exchanger
NAING et al. Reduction of the solidification height of phase-change material in direct-contact latent heat storage vessel
RADHAKRISHNAN* et al. Kinetics of melt crystallization in falling films
JP2000111282A (en) Heat storage device and heat control in heat storage device
JP6588492B2 (en) Method for preventing overcooling of latent heat storage material and latent heat storage tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350