JP4655635B2 - Hydraulic control device with opposed connection of oil flow control valve - Google Patents

Hydraulic control device with opposed connection of oil flow control valve Download PDF

Info

Publication number
JP4655635B2
JP4655635B2 JP2005008519A JP2005008519A JP4655635B2 JP 4655635 B2 JP4655635 B2 JP 4655635B2 JP 2005008519 A JP2005008519 A JP 2005008519A JP 2005008519 A JP2005008519 A JP 2005008519A JP 4655635 B2 JP4655635 B2 JP 4655635B2
Authority
JP
Japan
Prior art keywords
oil
port
control valve
flow control
oil flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005008519A
Other languages
Japanese (ja)
Other versions
JP2006194391A (en
Inventor
雄二 岩瀬
正美 菅谷
直人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005008519A priority Critical patent/JP4655635B2/en
Publication of JP2006194391A publication Critical patent/JP2006194391A/en
Application granted granted Critical
Publication of JP4655635B2 publication Critical patent/JP4655635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Control Of Transmission Device (AREA)

Description

本発明は、油圧制御装置に係り、特に第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,第二のポートから油が供給され第一のポートから油が排出されるとき第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置に係る。   The present invention relates to a hydraulic control device, and in particular, when oil is supplied from a first port and oil is discharged from a second port, the operating state is changed in a first direction, and oil is supplied from a second port. The present invention relates to a hydraulic control device for a hydraulic servo device that changes an operating state in a second direction opposite to the first direction when oil is discharged from the first port.

第一および第二のポートを備え、第一のポートから油が供給され、第二のポートから油が排出されるとき第一の方向に作動状態が変わり、逆に第二のポートから油が供給され、第一のポートから油が排出されるとき第一の方向とは逆の第二の方向に作動状態が変わるサーボ機構は、例えば車輌技術の分野に於いては、変速機、特にトロイダル式或はベルト式無段変速機に於ける如く、多くの機械装置の構成に於いて知られている。   When the oil is supplied from the first port and the oil is discharged from the second port, the operating state is changed in the first direction, and conversely, the oil is supplied from the second port. A servomechanism that changes its operating state in a second direction opposite to the first direction when oil is supplied and discharged from the first port is, for example, in the field of vehicle technology a transmission, particularly a toroidal It is known in many machine configurations, such as in a type or belt type continuously variable transmission.

上記の如きサーボ機構を作動させるためには、圧油源からの油の供給を第一と第二のポートの間に切り換え、また同時に第二と第一のポートの排油路への接続を切り換えるサーボ弁を備えた油圧回路装置が設けられる。このような油圧回路装置に於けるサーボ弁は、一般に弁スプールの切り換え移動に応じて何れか一方が圧油供給通路に接続される2つの油圧供給ポートと、何れか一方が排油通路に接続される2つのドレーンポートとを備えた所謂4ポート型のサーボ弁である。トロイダル型無段変速装置に対するそのような4ポート型のサーボ弁を含む油圧回路の一例は下記の特許文献1および2に示されている。
特開2002-276786 特開平10-252878
In order to operate the servo mechanism as described above, the oil supply from the pressure oil source is switched between the first and second ports, and at the same time, the second and first ports are connected to the oil drain passage. A hydraulic circuit device having a servo valve for switching is provided. The servo valve in such a hydraulic circuit device generally has two hydraulic supply ports, one of which is connected to the pressure oil supply passage according to the switching movement of the valve spool, and one of them connected to the oil discharge passage. This is a so-called 4-port type servo valve having two drain ports. Examples of a hydraulic circuit including such a 4-port servo valve for a toroidal-type continuously variable transmission are shown in Patent Documents 1 and 2 below.
JP2002-276786 JP-A-10-252878

上記の如くサーボ機構の作動が4ポート型のサーボ弁により制御される構造に於いては、サーボ弁にスティック等が生じ、一方のポートへの油圧の供給が止まらなくなると、サーボ機構の一方向への作動が止まらなくなり、サーボ機構を組み込んだ装置が車輌の変速装置である場合、そのことによって変速比の制御が困難となり、変速装置が高い変速比若しくは低い変速比に固定されたままとなるような不都合が生ずる恐れがある。   In the structure in which the operation of the servo mechanism is controlled by the 4-port type servo valve as described above, if a stick or the like is generated in the servo valve and the supply of hydraulic pressure to one port does not stop, one direction of the servo mechanism If the device incorporating the servo mechanism is a vehicle transmission, it becomes difficult to control the transmission ratio, and the transmission remains fixed at a high transmission ratio or a low transmission ratio. Such inconvenience may occur.

かかる問題に対処し、特願2003−276598により、第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,前記第二のポートから油が供給され前記第一のポートから油が排出されるとき前記第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置にして、それぞれが圧油源からの油の供給を制御する油供給制御部と排油通路への導通を制御する油排出制御部とを有する第一および第二の油流制御弁と、前記第一および第二の油流制御弁の作動を制御する制御弁作動制御手段とを有し、前記第一のポートは前記第一の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第二の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記第二のポートは前記第二の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第一の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記制御弁作動制御手段による前記第一および第二の油流制御弁の作動制御により前記油圧サーボ装置の作動状態を制御するようになっていることを特徴とする油圧制御装置が提案された。   In response to such a problem, according to Japanese Patent Application No. 2003-276598, when the oil is supplied from the first port and the oil is discharged from the second port, the operating state is changed in the first direction, and the oil is supplied from the second port. And a hydraulic control device for a hydraulic servo device that changes an operating state in a second direction opposite to the first direction when oil is supplied and discharged from the first port. First and second oil flow control valves having an oil supply control unit for controlling the supply of oil from the oil and an oil discharge control unit for controlling conduction to the oil discharge passage, and the first and second oil flows Control valve operation control means for controlling the operation of the control valve, wherein the first port can be supplied with oil from the oil supply control unit of the first oil flow control valve and Oil is discharged through the oil discharge control part of the second oil flow control valve. The second port can be supplied with oil from the oil supply control unit of the second oil flow control valve and the oil of the first oil flow control valve. Oil can be discharged through a discharge control unit, and the operation state of the hydraulic servo device is controlled by the operation control of the first and second oil flow control valves by the control valve operation control means. A hydraulic control device is proposed which is characterized by

上記の如き第一および第二の油流制御弁を有する油圧制御装置によれば、これら第一および第二の油流制御弁が正常に作動している限り、油圧サーボ装置の作動状態を前記第一の方向に変えるべきときには、第二の油流制御弁を圧油源からの油の供給を遮断し且つ排油通路への導通を遮断した状態にして、第一の油流制御弁のみを操作してそれを行い、油圧サーボ装置の作動状態を前記第二の方向に変えるべきときには、第一の油流制御弁を圧油源からの油の供給を遮断し且つ排油通路への導通を遮断した状態にして、第二の油流制御弁のみを操作してそれを行うことができ、また第一または第二の油流制御弁に油流の供給が止まらない障害が生じたときには、第二または第一の油流制御弁の作動により第一または第二の油流制御弁からの過剰な油の供給を逃がすことができる。しかし、第一または第二の油流制御弁に油流の供給が止まらない障害が生じたときとは、同時に第一または第二の油流制御弁に排油通路への導通が止まらない障害が生じたときでもある。そのため、第一または第二の油流制御弁に油流の供給が止まらない障害が生じたとき、障害が生じた油流制御弁から送られる油を障害が生じていない他方の油流制御弁により逃がすことはできても、障害が生じていない油流制御弁から送られる油は障害が生じた油流制御弁により逃がされ、結局、互いに他からの油を逃がし合うだけで、サーボ装置に於ける油圧の制御はできないという問題がある。油圧サーボ装置には、変速機の変速制御装置の場合に於ける駆動力の如く、その作動中それにその作動状態を一方の方向に偏倚させようとする荷重が作用する場合が多く、その場合、油圧が制御されなくなると、油圧サーボ装置の作動状態は一方の方向にその終端まで偏倚する虞れがある。   According to the hydraulic control device having the first and second oil flow control valves as described above, as long as the first and second oil flow control valves are operating normally, the operating state of the hydraulic servo device is When changing to the first direction, set the second oil flow control valve to the state where the supply of oil from the pressure oil source is shut off and the conduction to the drain oil passage is shut off, and only the first oil flow control valve When the hydraulic servo device operating state should be changed to the second direction, the first oil flow control valve shuts off the oil supply from the pressure oil source and supplies the oil to the oil discharge passage. It is possible to do so by operating only the second oil flow control valve with the continuity cut off, and the first or second oil flow control valve has failed to stop supplying oil flow Occasionally, the operation of the second or first oil flow control valve causes the excess from the first or second oil flow control valve. You can escape the supply of such oil. However, when there is a failure that does not stop the supply of oil flow to the first or second oil flow control valve, at the same time, a failure that does not stop the conduction to the oil discharge passage from the first or second oil flow control valve. It is also when this happens. Therefore, when a failure that does not stop the supply of oil flow occurs in the first or second oil flow control valve, the other oil flow control valve in which the failure is not caused to flow from the oil flow control valve in which the failure has occurred However, the oil sent from the oil flow control valve which has not failed is released by the oil flow control valve in which the failure has occurred. There is a problem that the hydraulic pressure cannot be controlled. In many cases, the hydraulic servo device is acted upon by a load that tends to bias its operating state in one direction during its operation, such as the driving force in the case of a transmission control device for a transmission. If the hydraulic pressure is no longer controlled, the operating state of the hydraulic servo device may deviate in one direction to its end.

本発明は、この問題に対処し、第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,前記第二のポートから油が供給され前記第一のポートから油が排出されるとき前記第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置にして、それぞれが圧油源からの油の供給を制御する油供給制御部と排油通路への導通を制御する油排出制御部とを有する第一および第二の油流制御弁と、前記第一および第二の油流制御弁の作動を制御する制御弁作動制御手段とを有し、前記第一のポートは前記第一の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第二の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記第二のポートは前記第二の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第一の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記制御弁作動制御手段による前記第一および第二の油流制御弁の作動制御により前記油圧サーボ装置の作動状態を制御するようになっている油圧制御装置を、その第一および第二の油流制御弁の一方に排油通路への導通が止まらない障害が生じたとき、油圧サーボ装置の作動状態を前記第一または第二の方向にその終端まで変化させてしまうことのないよう改良することを課題としている。   The present invention addresses this problem and changes the operating state in the first direction when oil is supplied from the first port and discharged from the second port, and oil is supplied from the second port. When oil is discharged from the first port, a hydraulic control device for a hydraulic servo device that changes its operating state in a second direction opposite to the first direction, each of which is supplied with oil from a pressure oil source First and second oil flow control valves each having an oil supply control unit that controls supply of oil and an oil discharge control unit that controls conduction to the oil discharge passage, and the first and second oil flow control valves Control valve operation control means for controlling the operation, wherein the first port can be supplied with oil from the oil supply control unit of the first oil flow control valve and the second port. Oil can be discharged through the oil discharge control part of the oil flow control valve, The second port can be supplied with oil from the oil supply control unit of the second oil flow control valve, and the oil is discharged through the oil discharge control unit of the first oil flow control valve. A hydraulic control device configured to control an operating state of the hydraulic servo device by operating control of the first and second oil flow control valves by the control valve operation control means; When one of the first and second oil flow control valves fails to stop being connected to the oil discharge passage, the operating state of the hydraulic servo device is changed in the first or second direction to its end. The problem is to improve the system so that it will not end up.

上記の課題を解決するものとして、本発明は、第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,前記第二のポートから油が供給され前記第一のポートから油が排出されるとき前記第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置にして、それぞれが圧油源からの油の供給を制御する油供給制御部と排油通路への導通を制御する油排出制御部とを有する第一および第二の油流制御弁と、前記第一および第二の油流制御弁の作動を制御する制御弁作動制御手段とを有し、前記第一のポートは前記第一の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第二の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記第二のポートは前記第二の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第一の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記制御弁作動制御手段による前記第一および第二の油流制御弁の作動制御により前記油圧サーボ装置の作動状態を制御するようになっており、更に前記第一のポートからの前記第二の油流制御弁の前記油排出制御部を経る油の排出を前記第二の油流制御弁の作動とは独立して選択的に阻止し得る臨時油流阻止手段を有していることを特徴とする油圧制御装置を提供するものである。尚、本発明は、更に前記第二のポートからの前記第一の油流制御弁の前記油排出制御部を経る油の排出を前記第一の油流制御弁の作動とは独立して選択的に阻止し得る臨時油流阻止手段を同時に設けることを排除するものではない。   In order to solve the above problems, the present invention changes the operating state in the first direction when oil is supplied from the first port and discharged from the second port, and the oil is supplied from the second port. And a hydraulic control device for a hydraulic servo device that changes an operating state in a second direction opposite to the first direction when oil is supplied and discharged from the first port. First and second oil flow control valves having an oil supply control unit for controlling the supply of oil from the oil and an oil discharge control unit for controlling conduction to the oil discharge passage, and the first and second oil flows Control valve operation control means for controlling the operation of the control valve, wherein the first port can be supplied with oil from the oil supply control unit of the first oil flow control valve and The oil can be discharged through the oil discharge control unit of the second oil flow control valve. And the second port is adapted to be supplied with oil from the oil supply control unit of the second oil flow control valve, and the oil discharge control unit of the first oil flow control valve. Through which oil can be discharged, the operation state of the hydraulic servo device is controlled by the operation control of the first and second oil flow control valves by the control valve operation control means, Further, the temporary discharge that can selectively prevent the oil discharge from the first port through the oil discharge control unit of the second oil flow control valve independently of the operation of the second oil flow control valve. The present invention provides a hydraulic control device having oil flow blocking means. In the present invention, the oil discharge from the second port through the oil discharge control unit of the first oil flow control valve is selected independently of the operation of the first oil flow control valve. It is not excluded to simultaneously provide a temporary oil flow blocking means capable of blocking.

上記の如き油圧制御装置に於いて、前記制御弁作動制御手段は、前記油圧サーボ装置の作動状態を前記第一の方向に変えるべきときには、前記第二の油流制御弁を前記圧油源からの油の供給を遮断し且つ前記排油通路への導通を遮断した状態にして、前記第一の油流制御弁のみを操作してそれを行うようになっており、その際前記第二の油流制御弁が何らかの故障により前記排油通路への導通を遮断しないときには、前記臨時油流阻止手段がそれを遮断するようになっていてよい。また、前記臨時油流阻止手段をバイパスする絞り通路が設けられてもよい。   In the hydraulic control apparatus as described above, when the operation state of the hydraulic servo apparatus is to be changed to the first direction, the control valve operation control means moves the second oil flow control valve from the pressure oil source. This is done by operating only the first oil flow control valve in a state in which the oil supply is shut off and the conduction to the drainage passage is shut off. When the oil flow control valve does not cut off the conduction to the oil discharge passage due to some failure, the temporary oil flow blocking means may cut off the passage. Further, a throttle passage that bypasses the temporary oil flow blocking means may be provided.

また、油圧制御装置には、前記臨時油流阻止手段により前記第一のポートからの前記第二の油流制御弁の前記油排出制御部を経る油の排出を阻止されるとき前記第一の油流制御弁の前記油供給制御部を経ることなく前記第一のポートへ油圧を供給する臨時油供給手段が設けられてもよい。かかる臨時油供給手段が作動されるときには、該臨時油供給手段から供給される油圧に応じて油圧サーボ装置へ入力されるトルク等の負荷荷重が制御されるようになっていてよい。   Further, the hydraulic control device includes the first oil flow prevention means that prevents the first oil from being discharged from the first port through the oil discharge control portion of the second oil flow control valve. Temporary oil supply means for supplying hydraulic pressure to the first port without passing through the oil supply control unit of the oil flow control valve may be provided. When such a temporary oil supply means is operated, a load such as a torque input to the hydraulic servo device may be controlled in accordance with the hydraulic pressure supplied from the temporary oil supply means.

油圧サーボ装置は車輌用変速装置であり、前記第一のポートは前記車輌用変速装置の作動状態をアップシフト側へ変化させるとき油圧が供給されるポートであってよく、また車輌用変速装置はトロイダル式無段変速機であってよい。   The hydraulic servo device may be a vehicle transmission, and the first port may be a port to which hydraulic pressure is supplied when the operating state of the vehicle transmission is changed to the upshift side, and the vehicle transmission is It may be a toroidal continuously variable transmission.

或はまた、上記の課題は、本発明によれば、第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,前記第二のポートから油が供給され前記第一のポートから油が排出されるとき前記第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置にして、それぞれが圧油源からの油の供給を制御する油供給制御部と排油通路への導通を制御する油排出制御部とを有する第一および第二の油流制御弁と、前記第一および第二の油流制御弁の作動を制御する制御弁作動制御手段とを有し、前記第一のポートは前記第一の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第二の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記第二のポートは前記第二の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第一の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記制御弁作動制御手段による前記第一および第二の油流制御弁の作動制御により前記油圧サーボ装置の作動状態を制御するようになっており、更に前記第二の油流制御弁の前記油供給制御部を経る前記第二のポートへの油の供給を前記第二の油流制御弁の作動とは独立して選択的に阻止し得る臨時油流阻止手段を有していることを特徴とする油圧制御装置によっても達成される。   Alternatively, according to the present invention, when the oil is supplied from the first port and the oil is discharged from the second port, the operating state is changed in the first direction, and the second port When the oil is supplied from the first port and discharged from the first port, the hydraulic control device for the hydraulic servo device changes the operating state in the second direction opposite to the first direction. First and second oil flow control valves each having an oil supply control unit that controls supply of oil from an oil source and an oil discharge control unit that controls conduction to an oil discharge passage; and Control valve operation control means for controlling the operation of the oil flow control valve, and the first port can be supplied with oil from the oil supply control unit of the first oil flow control valve. In addition, the oil can be discharged through the oil discharge control unit of the second oil flow control valve. The second port can be supplied with oil from the oil supply control unit of the second oil flow control valve and passes through the oil discharge control unit of the first oil flow control valve. The oil can be discharged, and the operation state of the hydraulic servo device is controlled by the operation control of the first and second oil flow control valves by the control valve operation control means, and Temporary oil capable of selectively blocking the supply of oil to the second port via the oil supply control unit of the second oil flow control valve independently of the operation of the second oil flow control valve It is also achieved by a hydraulic control device characterized by having a flow blocking means.

この場合にも、前記制御弁作動制御手段は、前記油圧サーボ装置の作動状態を前記第一の方向に変えるべきときには、前記第二の油流制御弁を前記圧油源からの油の供給を遮断し且つ前記排油通路への導通を遮断した状態にして、前記第一の油流制御弁のみを操作してそれを行うようになっており、その際前記第二の油流制御弁が何らかの故障により前記圧油源からの油の供給を遮断しないときには、前記臨時油流阻止手段がそれを遮断するようになっていてよい。また、前記臨時油流阻止手段をバイパスする絞り通路が設けられてもよい。   Also in this case, when the operating state of the hydraulic servo device is to be changed to the first direction, the control valve operation control means causes the second oil flow control valve to supply oil from the pressure oil source. It is in a state where it is shut off and the conduction to the oil drainage passage is shut off, and only the first oil flow control valve is operated to do so. In this case, the second oil flow control valve is When the supply of oil from the pressure oil source is not cut off due to some failure, the temporary oil flow blocking means may block it. Further, a throttle passage that bypasses the temporary oil flow blocking means may be provided.

上記の如く、第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,前記第二のポートから油が供給され前記第一のポートから油が排出されるとき前記第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置において、それぞれが圧油源からの油の供給を制御する油供給制御部と排油通路への導通を制御する油排出制御部とを有する第一および第二の油流制御弁と、前記第一および第二の油流制御弁の作動を制御する制御弁作動制御手段とが設けられ、前記第一のポートは前記第一の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第二の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記第二のポートは前記第二の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第一の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記制御弁作動制御手段による前記第一および第二の油流制御弁の作動制御により前記油圧サーボ装置の作動状態を制御するようになっており、更に前記第一のポートからの前記第二の油流制御弁の前記油排出制御部を経る油の排出を前記第二の油流制御弁の作動とは独立して選択的に阻止し得る臨時油流阻止手段が設けられていれば、第一および第二の油流制御弁が正常に作動しているときには、第一または第二の油流制御弁のみを作動させて油圧サーボ装置の作動状態を第一の方向または第二の方向に変えることができ、また油圧サーボ装置の作動状態を前記第一の方向に変えるべきとき、或は油圧サーボ装置の作動状態が前記第二の方向に過度に変化するのを阻止すべきときに、前記第二の油流制御弁が何らかの故障により前記第一のポートの前記排油通路への導通を遮断しないとき、前記臨時油流阻止手段によりそれを遮断することにより油圧サーボ装置の作動状態が前記第二の方向へ異常に偏倚することを阻止し、或は更に前記第一の方向へ偏倚させることができる。   As described above, when the oil is supplied from the first port and the oil is discharged from the second port, the operating state is changed in the first direction, the oil is supplied from the second port, and the oil is supplied from the first port. In a hydraulic control device for a hydraulic servo device that changes an operating state in a second direction opposite to the first direction when oil is discharged, each oil supply controls oil supply from a pressure oil source First and second oil flow control valves having a control unit and an oil discharge control unit for controlling conduction to the oil discharge passage, and control valve operation for controlling the operation of the first and second oil flow control valves Control means, wherein the first port can be supplied with oil from the oil supply control section of the first oil flow control valve and the oil of the second oil flow control valve. The oil can be discharged through the discharge control unit, and the second port Is configured such that oil can be supplied from the oil supply control unit of the second oil flow control valve, and oil can be discharged through the oil discharge control unit of the first oil flow control valve. The operation state of the hydraulic servo device is controlled by the operation control of the first and second oil flow control valves by the control valve operation control means, and further from the first port. Temporary oil flow blocking means capable of selectively blocking oil discharge through the oil discharge control unit of the second oil flow control valve independently of the operation of the second oil flow control valve is provided. Therefore, when the first and second oil flow control valves are operating normally, only the first or second oil flow control valve is operated to change the operating state of the hydraulic servo device in the first direction or the second direction. It can be changed in two directions, and the operating state of the hydraulic servo When the second oil flow control valve is to be changed in the first direction, or when the operating state of the hydraulic servo device should be prevented from excessively changing in the second direction, the second oil flow control valve is When the continuity of one port to the oil drain passage is not cut off, the temporary oil flow blocking means cuts it off, thereby preventing the operating state of the hydraulic servo device from being abnormally biased in the second direction. Or can be further biased in the first direction.

即ち、第一および第二の油流制御弁が正常に作動しているときには、油圧サーボ装置の作動状態を第一の方向に変えるべきときには、第二の油流制御弁は圧油源からの油の供給を遮断し且つ排油通路への導通を遮断した状態とし、第一の油流制御弁のみを制御してそれを行い、油圧サーボ装置の作動状態を第二の方向に変えるべきときには、第一の油流制御弁は圧油源からの油の供給を遮断し且つ排油通路への導通を遮断した状態とし、第二の油流制御弁のみを制御してそれを行うよう、油圧サーボ装置の全ての作動状態に対し、その都度一時に一つの油流制御弁を作動させた制御により対応することができ、一つの4ポート型制御弁が2つに分けて設けられても制御上何らの複雑化は生じない。   That is, when the first and second oil flow control valves are operating normally, the second oil flow control valve is supplied from the pressure oil source when the operating state of the hydraulic servo device is to be changed to the first direction. When the oil supply is cut off and the conduction to the oil discharge passage is cut off, only the first oil flow control valve is controlled to do so, and the operating state of the hydraulic servo device should be changed to the second direction The first oil flow control valve shuts off the supply of oil from the pressure oil source and shuts off the conduction to the drain oil passage, and controls only the second oil flow control valve to perform it. All the operating states of the hydraulic servo device can be dealt with by controlling one oil flow control valve at a time each time, even if one 4-port control valve is divided into two. There is no complication in control.

その上で、基本的には、第一の油流制御弁にスティックが生じて第一の油流制御弁からの油の供給が止まらなくなったときには、第二の油流制御弁を開方向に作動させれば、第一の油流制御弁からの油を適宜排油通路へ逃がすことにより油圧サーボ装置が第一の方向へ所定の目標位置を越えて行き過ぎてしまうことを阻止することができ、また油圧サーボ装置の第一の方向への行き過ぎを元の位置へ向けて戻すことも可能である。この場合、第一の油流制御弁からの止まらなくなった油の供給が弁の全開に当る量でない限り、第二の油流制御弁の開度を適宜増大させることにより第一の油流制御弁からの止まらなくなった油の供給に打ち勝って油圧サーボ装置を第二の方向へ状態変化させる機能も失わないようにすることができる。第二の油流制御弁にスティックが生じて第二の油流制御弁からの油の供給が止まらなくなったときには、第一の油流制御弁により同様の補助制御が得られる。   In addition, basically, when a stick occurs in the first oil flow control valve and the supply of oil from the first oil flow control valve does not stop, the second oil flow control valve is opened in the opening direction. When operated, the hydraulic servo device can be prevented from going beyond a predetermined target position in the first direction by appropriately releasing oil from the first oil flow control valve to the oil discharge passage. It is also possible to return the overshoot in the first direction of the hydraulic servo device to the original position. In this case, the first oil flow control is performed by appropriately increasing the opening of the second oil flow control valve unless the supply of oil from the first oil flow control valve does not stop fully opening. The function of changing the state of the hydraulic servo device in the second direction by overcoming the supply of oil that has stopped from the valve can be prevented from being lost. When a stick occurs in the second oil flow control valve and the supply of oil from the second oil flow control valve cannot be stopped, the same auxiliary control is obtained by the first oil flow control valve.

しかし、油圧サーボ装置が車輌用トロイダル型無段変速装置の変速制御装置の如く、その作動中油圧サーボ装置の作動状態を一方の方向に偏倚させる大きな負荷荷重を受けるような場合には、その負荷荷重を受けるポートからの油の排出を止める油流制御弁の油排出制御部が閉じなくなると、他方の油流制御弁の油供給制御部より該ポートへ油を補給しても油圧サーボ装置は負荷荷重に押されて該一方の方向に偏倚してしまう虞れがある。この場合、そのようなポートを前記第一のポートとし、該第一のポートより油を排出する油排出部を与える油流制御弁を前記第二の油流制御弁とし、該第一のポートから該第二の油流制御弁の油排出制御部を経る油の排出を該第二の油流制御弁の作動とは独立に選択的に停止し得る臨時油阻止手段が設けられていれば、それを作動させることにより大きな負荷荷重の作用の下に於いても油圧サーボ装置が該一方の方向へ偏倚することを確実に阻止することができる。   However, when the hydraulic servo device receives a large load load that biases the operating state of the hydraulic servo device in one direction during operation, such as a shift control device of a toroidal type continuously variable transmission for a vehicle, the load If the oil discharge control part of the oil flow control valve that stops discharging oil from the port that receives the load does not close, the hydraulic servo unit will be able to supply oil to the port from the oil supply control part of the other oil flow control valve. There is a risk of being biased in the one direction by being pushed by the load. In this case, such a port is used as the first port, and an oil flow control valve that provides an oil discharge unit that discharges oil from the first port is used as the second oil flow control valve. Provided with temporary oil blocking means capable of selectively stopping oil discharge through the oil discharge control section of the second oil flow control valve independently of the operation of the second oil flow control valve. By operating it, it is possible to reliably prevent the hydraulic servo apparatus from being biased in the one direction even under the action of a large load.

更に、前記臨時油流阻止手段をバイパスする絞り通路が設けられていれば、第二の油流制御弁に開状態のスティックが生じ、前記臨時油流阻止手段が作動した状態でも、該第一のポートからは該絞り通路を経て油が連続して徐々に抜ける状態が得られるので、開状態にスティックした第二の油流制御弁より他方の第二のポートに油が供給されつつある状態にあっても、他方の第一の油流制御弁を開いて第一のポートへ油を補給すると同時に第二のポートより油を排出する状態と、第一の油流制御弁を閉じて第一のポートへの油の補給を停止すると同時に第二のポートよりの油の排出も停止する状態の実行時間の比(デューティ比)を制御することにより、第一のポートに於ける油圧を油圧サーボ装置の有効な作動に必要な圧力に保ちつつ油圧サーボ装置の第一および第二の方向への作動状態を変えることができる。   Further, if a throttle passage that bypasses the temporary oil flow blocking means is provided, an open stick is generated in the second oil flow control valve, and the first oil flow blocking means is activated even when the temporary oil flow blocking means is activated. Since a state in which oil is gradually and gradually removed from the port through the throttle passage is obtained, oil is being supplied to the other second port from the second oil flow control valve stuck in the open state In this case, the other first oil flow control valve is opened to supply oil to the first port, and at the same time the oil is discharged from the second port, and the first oil flow control valve is closed and the second oil flow control valve is closed. The oil pressure at the first port is controlled by controlling the execution time ratio (duty ratio) when oil supply to one port is stopped and oil discharge from the second port is stopped at the same time. Hydraulic pressure while maintaining the pressure required for effective operation of the servo device It is possible to change the operating states of the first and second directions of the turbo device.

また、前記臨時油流阻止手段により第一のポートからの第二の油流制御弁の油排出制御部を経る油の排出を阻止したとき、第一の油流制御弁の油供給制御部を経ることなく第一のポートへ圧油源からの油圧を供給する臨時油供給手段が設けられていれば、かかる臨時油供給手段からの油圧により第一のポートの油圧を適当に維持し、第一のポートに於ける油圧を油圧サーボ装置の有効な作動に必要な圧力に保つことができる。この場合、臨時油供給手段から供給される油圧に応じて油圧サーボ装置へ入力されるトルク等の負荷荷重が制御されれば、油圧サーボ装置への制御された入力負荷加重と臨時油供給手段から供給される油圧との釣合いによっても油圧サーボ装置の第一および第二の方向への作動状態を変えることができる。   When the temporary oil flow blocking means prevents the oil from being discharged from the first port through the oil discharge control unit of the second oil flow control valve, the oil supply control unit of the first oil flow control valve is If the temporary oil supply means for supplying the hydraulic pressure from the pressure oil source to the first port without passing through is provided, the hydraulic pressure from the temporary oil supply means appropriately maintains the hydraulic pressure of the first port, and The hydraulic pressure at one port can be maintained at a pressure required for effective operation of the hydraulic servo device. In this case, if the load load such as torque input to the hydraulic servo device is controlled according to the hydraulic pressure supplied from the temporary oil supply means, the controlled input load load to the hydraulic servo device and the temporary oil supply means The operating state of the hydraulic servo device in the first and second directions can also be changed by balancing with the supplied hydraulic pressure.

油圧サーボ装置が車輌用変速装置であり、前記第一のポートが車輌用変速装置の作動状態をアップシフト側へ変化させるとき油圧が供給されるポートであれば、かかる第一のポートに油圧が得られなくなることによって変速装置が最低速段までダウンシフトされることが回避され、変速制御性が確保される。   If the hydraulic servo device is a vehicle transmission and the first port is a port to which hydraulic pressure is supplied when the operating state of the vehicle transmission is changed to the upshift side, the hydraulic pressure is applied to the first port. Since the transmission cannot be obtained, it is avoided that the transmission is downshifted to the lowest speed, and shift controllability is ensured.

油圧サーボ装置がトロイダル型無段変速機の変速制御装置であるときには、制御油圧は変速装置をアップシフトすべきとき或いはダウンシフトをすべきときに限って個別の油圧として供給されることが求められるので、個別の油圧を個別の油流制御弁により制御する本発明はこれによく適したものである。   When the hydraulic servo device is a shift control device for a toroidal-type continuously variable transmission, the control hydraulic pressure is required to be supplied as an individual hydraulic pressure only when the transmission is to be upshifted or downshifted. Therefore, the present invention in which individual hydraulic pressures are controlled by individual oil flow control valves is well suited for this.

また、第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,前記第二のポートから油が供給され前記第一のポートから油が排出されるとき前記第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置に於いて、それぞれが圧油源からの油の供給を制御する油供給制御部と排油通路への導通を制御する油排出制御部とを有する第一および第二の油流制御弁と、前記第一および第二の油流制御弁の作動を制御する制御弁作動制御手段とを有し、前記第一のポートは前記第一の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第二の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記第二のポートは前記第二の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第一の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記制御弁作動制御手段による前記第一および第二の油流制御弁の作動制御により前記油圧サーボ装置の作動状態を制御するようになっており、更に前記第二の油流制御弁の前記油供給制御部を経る前記第二のポートへの油の供給を前記第二の油流制御弁の作動とは独立して選択的に阻止し得る臨時油流阻止手段が設けられていれば、第一および第二の油流制御弁が正常に作動しているときには、第一または第二の油流制御弁のみを作動させて油圧サーボ装置の作動状態を第一の方向または第二の方向に変えることができ、また油圧サーボ装置の作動状態を前記第一の方向に変えるべきとき、或は油圧サーボ装置の作動状態が前記第二の方向に過度に変化するのを阻止すべきときに、前記第二の油流制御弁が何らかの故障により前記第二のポートへの油の供給を停止しないとき、前記臨時油流阻止手段によりそれを阻止し、前記第一の油流制御弁による前記第一のポートへの油の供給がその効果を有効に発揮できるようにすることにより油圧サーボ装置の作動状態が前記第二の方向へ異常に偏倚することを阻止し、或は更に前記第一の方向へ偏倚させることができる。   Further, when oil is supplied from the first port and oil is discharged from the second port, the operating state is changed in the first direction, oil is supplied from the second port, and oil is supplied from the first port. In a hydraulic control device for a hydraulic servo device that changes its operating state in a second direction opposite to the first direction when discharged, each oil supply controls the supply of oil from a pressure oil source First and second oil flow control valves having a control unit and an oil discharge control unit for controlling conduction to the oil discharge passage, and control valve operation for controlling the operation of the first and second oil flow control valves Control means, and the first port can be supplied with oil from the oil supply control section of the first oil flow control valve, and the oil of the second oil flow control valve. Oil can be discharged through a discharge control unit, and the second port is connected to the second port. The oil can be supplied from the oil supply control unit of the oil flow control valve and the oil can be discharged through the oil discharge control unit of the first oil flow control valve, The operation state of the hydraulic servo device is controlled by the operation control of the first and second oil flow control valves by the control valve operation control means, and the oil of the second oil flow control valve is further controlled. If temporary oil flow blocking means capable of selectively blocking the supply of oil to the second port via the supply control unit independently of the operation of the second oil flow control valve is provided, When the first and second oil flow control valves are operating normally, only the first or second oil flow control valve is operated to change the operating state of the hydraulic servo device in the first direction or the second direction. Can change the operating state of the hydraulic servo device in the first direction. When it is to be changed, or when the operating state of the hydraulic servo device is to be prevented from excessively changing in the second direction, the second oil flow control valve may be brought into the second port due to some failure. When the supply of oil is not stopped, the temporary oil flow prevention means prevents the oil supply, and the supply of oil to the first port by the first oil flow control valve can effectively exert its effect. As a result, it is possible to prevent the operating state of the hydraulic servo device from being abnormally biased in the second direction, or to further bias it in the first direction.

またこの場合にも、前記臨時油流阻止手段をバイパスする絞り通路が設けられていれば、前記臨時油流阻止手段により第二のポートへの油の供給は阻止されていても、絞り通路を経て第二のポートへの緩やかな油の供給が行われるので、この絞り通路を通る第二のポートへの油の供給に対向して、前記第一の油流制御弁により第一のポートへの油の供給を制御することにより、第一のポートに於ける油圧を油圧サーボ装置の有効な作動に必要な圧力に保ちつつ油圧サーボ装置の第一および第二の方向への作動状態を変えることができる。   Also in this case, if a throttle passage that bypasses the temporary oil flow blocking means is provided, even if the supply of oil to the second port is blocked by the temporary oil flow blocking means, After that, since the gradual oil supply to the second port is performed, the first oil flow control valve faces the first port by facing the oil supply to the second port passing through the throttle passage. By controlling the oil supply, the operating state of the hydraulic servo device in the first and second directions is changed while maintaining the hydraulic pressure at the first port at a pressure necessary for effective operation of the hydraulic servo device. be able to.

添付の図1は本発明をトロイダル型無段変速機の変速制御用油圧制御装置に適用した一つの実施の形態を示す概略図である。図に於いて、10はトロイダル型無段変速機としては周知の構造に於けるパワーローラであり、トラニオン12より偏心軸14を経て支持されて図には示されていない一対のディスクの間に挾圧された状態に配置され、一対のディスクに対する傾動角を変えることにより一対のディスク間に伝達される回転動力の変速比を変更するようになっている。一対のディスクに対するパワーローラの傾動角の変更は、トラニオン12が油圧アクチュエータ16により図にて上下に一時的に変位されることによりもたらされる。   FIG. 1 attached herewith is a schematic diagram showing one embodiment in which the present invention is applied to a hydraulic control device for shift control of a toroidal-type continuously variable transmission. In the figure, reference numeral 10 denotes a power roller having a well-known structure as a toroidal-type continuously variable transmission, which is supported by a trunnion 12 via an eccentric shaft 14 between a pair of disks not shown in the figure. It is arranged in a state of being crushed and changes the gear ratio of the rotational power transmitted between the pair of disks by changing the tilt angle with respect to the pair of disks. The change of the tilt angle of the power roller with respect to the pair of disks is brought about by the trunnion 12 being temporarily displaced up and down in the drawing by the hydraulic actuator 16.

即ち、パワーローラの中心軸線がディスクの中心軸線に交差しているときには、パワーローラがディスクに対し如何なる傾動角にあっても、駆動側ディスクがパワーローラとの接触点に於いてパワーローラに及ぼす力はパワーローラの傾動軸線に平行に作用し、従ってパワーローラには傾動角を変更させる力は作用しないが、パワーローラの中心軸線がディスクの中心軸線に対し上下何れか一方に変位されると、パワーローラと駆動側ディスクとの接点で見て、変位方向がディスクの回転方向に沿う方向であれば、パワーローラにはそれを駆動側ディスクの中心へ向かわせる方向の力が作用することから、パワーローラは変速比を増大させる方向(即ちダウンシフト方向)に傾動され、また逆に、変位方向がディスクの回転方向に逆らう方向であれば、パワーローラにはそれを駆動側ディスクの中心より遠ざける方向の力が作用することから、パワーローラは変速比を減小させる方向(即ちアップシフト方向)に傾動される。   That is, when the central axis of the power roller intersects the central axis of the disk, the driving disk exerts an influence on the power roller at the contact point with the power roller regardless of the tilt angle of the power roller with respect to the disk. The force acts parallel to the tilting axis of the power roller, and therefore the force that changes the tilting angle does not act on the power roller, but when the center axis of the power roller is displaced either up or down with respect to the center axis of the disc. If the displacement direction is a direction along the rotation direction of the disk as seen from the contact point between the power roller and the driving disk, a force in the direction of moving the power roller toward the center of the driving disk acts on the power roller. The power roller is tilted in the direction that increases the gear ratio (ie, the downshift direction), and conversely, the displacement direction is opposite to the disc rotation direction. If, in the power roller from acting the direction of the force away from the center of the drive-side disk it, the power roller is tilted in a direction to decrease small gear ratio (i.e. upshift direction).

かくして変速比を一定に保つべきときには、駆動側ディスクよりパワーローラに及ぼされる駆動力に抗するだけの力をトラニオンに与えてパワーローラをその中心軸線が駆動ディスク(従ってまた被駆動ディスク)の中心軸線に交差する位置に維持し、変速比を変更すべきときには、随時パワーローラの中心軸線をディスクの中心軸線に対し一時変位させることにより変速比を増減させることができる。図示の実施の形態に於いては、パワーローラ10は図には示されていない駆動ディスクとの接触点に於いて下向きに駆動されるようになっており、パワーローラ10がその中心軸線を駆動ディスクの中心軸線に交差させる中立位置より下方へ変位されると変速比は増大側に変更され(即ちダウンシフトされ)、パワーローラ10がその中立位置より上方へ変位されると変速比は減小側に変更される(即ちアップシフトされる)ようになっている。   Thus, when the speed ratio should be kept constant, the trunnion is given a force that resists the driving force exerted on the power roller from the driving side disk, and the center axis of the power roller is the center of the driving disk (and hence the driven disk). When the gear ratio should be changed while maintaining the position intersecting the axis, the gear ratio can be increased or decreased by temporarily displacing the center axis of the power roller with respect to the center axis of the disk as needed. In the illustrated embodiment, the power roller 10 is driven downward at a contact point with a drive disk (not shown), and the power roller 10 drives its central axis. The gear ratio is changed to an increase side (i.e., downshifted) when displaced downward from a neutral position intersecting the central axis of the disk, and the gear ratio decreases when the power roller 10 is displaced upward from the neutral position. It is changed to the side (that is, upshifted).

油圧アクチュエータ16はトラニオン12の下端と連結されたピストン18と、該ピストンの下方に形成された油圧室20と、該ピストンの上方に形成された油圧室22とを有しており、ポート24より油圧室20内へ油が給入され、ポート26より油圧室22内の油が排出されることによりピストン18が上向きに変位されてアップシフトを生じ、逆にポート26より油圧室22内へ油が給入され、ポートを24より油圧室20内の油が排出されることによりピストン18が下向きに変位されてダウンシフトを生ずるようになっている。   The hydraulic actuator 16 has a piston 18 connected to the lower end of the trunnion 12, a hydraulic chamber 20 formed below the piston, and a hydraulic chamber 22 formed above the piston. Oil is supplied into the hydraulic chamber 20, and the oil in the hydraulic chamber 22 is discharged from the port 26, so that the piston 18 is displaced upward to cause an upshift, and conversely the oil from the port 26 into the hydraulic chamber 22. Is supplied, and the oil in the hydraulic chamber 20 is discharged from the port 24, whereby the piston 18 is displaced downward to cause a downshift.

パワーローラと駆動ディスクおよび被駆動ディスクの間には必要な回転動力を伝達するに足る摩擦力を発生させるべく強い押圧力が作用されている。パワーローラ10には上記の通り駆動側ディスクより下向きの駆動力が及ぼされており、またピストン18にはトラニオンその他の重力が作用しているので、トラニオン12を上向きに変位させるにはこれらの力に抗する力が必要である。トラニオンを上下に偏倚させるための油の処理は所謂油圧制御であるが、トロイダル型無段変速機に於ける変速制御は、本質的にはパワーローラの上下変位の制御であり、油は非圧縮性であるので、本発明の対象である油圧制御装置の作動は、本質的には油圧室20および22に対する油の出し入れの量の制御である。   A strong pressing force is applied between the power roller, the drive disk, and the driven disk so as to generate a frictional force sufficient to transmit the necessary rotational power. As described above, the power roller 10 is applied with a downward driving force from the drive side disk, and the trunnion and other gravitational forces are acting on the piston 18, so that these forces are required to displace the trunnion 12 upward. The power to resist is necessary. Oil treatment to bias the trunnion up and down is a so-called hydraulic control, but the shift control in the toroidal continuously variable transmission is essentially a control of the vertical displacement of the power roller, and the oil is not compressed. Therefore, the operation of the hydraulic control device that is the subject of the present invention is essentially the control of the amount of oil withdrawn into and out of the hydraulic chambers 20 and 22.

油圧室20および22に対する油の給排制御のための図示の油圧制御装置は、油圧ポンプ等よりなる圧油源28と、2つの油流制御弁30および32と、排油溜34とを含んでいる。油流制御弁30は、給油取入れポート36、給油取出しポート38、排油取入れポート40、排油取出しポート42を備えた弁ハウジング44と、ポート36と38の間の連通または遮断およびポート40と42の間の連通または遮断を制御する弁スプール46と、該弁スプールをポート36と38の間を遮断しまたポート40と42の間を遮断する位置へ付勢する圧縮コイルばね48と、弁スプール46を圧縮コイルばね48のばね力に抗してポート36と38の間を連通しまたポート40と42の間を連通する位置へ駆動する電磁駆動装置50とを含んでいる。   The illustrated hydraulic control device for controlling oil supply / discharge to the hydraulic chambers 20 and 22 includes a pressure oil source 28 composed of a hydraulic pump or the like, two oil flow control valves 30 and 32, and a drain oil reservoir 34. It is out. The oil flow control valve 30 includes a valve housing 44 having an oil supply intake port 36, an oil supply extraction port 38, an oil discharge intake port 40, and an oil discharge port 42, and communication or blocking between the ports 36 and 38 and the port 40. A valve spool 46 that controls the communication or blocking between 42, a compression coil spring 48 that biases the valve spool to a position that blocks between ports 36 and 38 and between ports 40 and 42; An electromagnetic driving device 50 is included which drives the spool 46 to a position where it communicates between the ports 36 and 38 and between the ports 40 and 42 against the spring force of the compression coil spring 48.

同様に、油流制御弁32は、給油取入れポート52、給油取出しポート54、排油取入れポート56、排油取出しポート58を備えた弁ハウジング60と、ポート52と54の間の連通または遮断およびポート56と58の間の連通または遮断を制御する弁スプール62と、該スプールをポート52と54の間を遮断しまたポート56と58の間を遮断する位置へ付勢する圧縮コイルばね64と、弁スプール62を圧縮コイルばね64のばね力に抗してポート52と54の間を連通しまたポート56と58の間を連通する位置へ駆動する電磁駆動装置66とを含んでいる。   Similarly, the oil flow control valve 32 communicates or shuts off between the valve housing 60 including the oil supply intake port 52, the oil supply extraction port 54, the oil discharge intake port 56, and the oil discharge port 58, and the ports 52 and 54. A valve spool 62 that controls communication between the ports 56 and 58, and a compression coil spring 64 that biases the spool to a position that blocks between the ports 52 and 54 and blocks between the ports 56 and 58; And an electromagnetic drive device 66 for driving the valve spool 62 to a position where it communicates between the ports 52 and 54 and communicates between the ports 56 and 58 against the spring force of the compression coil spring 64.

圧油源28は、一方では、油路68と70を経て油流制御弁30の給油取入れポート36に接続され、これに対応する給油取出しポート38は油路72と74を経てトロイダル型無段変速機のポート24に接続されている。かかる給油経路に対応して、トロイダル型無段変速機のポート26は油路76と78を経て油流制御弁30の排油取入れポート40に接続され、これに対応する排油取出しポート42は油路80と82を経て排油溜34に接続されている。   On the one hand, the pressure oil source 28 is connected to the oil supply intake port 36 of the oil flow control valve 30 through the oil passages 68 and 70, and the corresponding oil supply outlet port 38 is connected to the oil passages 72 and 74 through the toroidal type continuously variable. It is connected to the port 24 of the transmission. Corresponding to the oil supply path, the port 26 of the toroidal type continuously variable transmission is connected to the oil intake port 40 of the oil flow control valve 30 through the oil paths 76 and 78, and the oil discharge port 42 corresponding thereto is It is connected to the oil sump 34 through oil passages 80 and 82.

また、圧油源28は、他方では、油路68と84を経て油流制御弁32の給油取入れポート52に接続され、これに対応する給油取出しポート54は油路86と76を経てトロイダル型無段変速機のポート26に接続されている。かかる給油経路に対応して、トロイダル型無段変速機のポート24は、油路74と88を経て油流制御弁32の排油取入れポート56に接続され、これに対応する排油取出しポート58は油路90と82を経て排油溜34に接続されている。油流制御弁30および32の電磁駆動装置50および66への通電は、マイクロコンピュータを備えた制御弁作動制御手段92により制御されるようになっている。   On the other hand, the pressure oil source 28 is connected to the oil supply intake port 52 of the oil flow control valve 32 through the oil passages 68 and 84, and the corresponding oil supply outlet port 54 is connected to the toroidal type through the oil passages 86 and 76. It is connected to the port 26 of the continuously variable transmission. Corresponding to such an oil supply path, the port 24 of the toroidal-type continuously variable transmission is connected to an oil intake port 56 of the oil flow control valve 32 via oil paths 74 and 88, and a corresponding oil discharge port 58 corresponding thereto. Is connected to the oil sump 34 through oil passages 90 and 82. Energization of the oil flow control valves 30 and 32 to the electromagnetic driving devices 50 and 66 is controlled by a control valve operation control means 92 having a microcomputer.

油路90の途中には、常時は図1に示されている如き切換え状態にあって油路90を連通させ、これより切換え状態が反転されると油路90の途中を遮断する切換弁94が設けられている。尚、切換弁94は図中仮想線にて示されている如く油路88の途中に設けられていてもよい。切換弁94の遮断位置への切換えは、油圧室20内の油圧が所定の低下速度を越える速さで低下したときそれをポート24からの油を排出する通路74,88に於ける油圧の低下率から検知する油圧低下率センサ96、トラニオン12が下方への終端位置まで下がったことを検知する終端位置センサ98、図には示されていないパワーローラ偏向角度センサ、その他の油流制御弁32が開位置でスティックしたことを感知する任意のセンサの作動に応答して行われてよい。   In the middle of the oil passage 90, the oil passage 90 is normally in a switching state as shown in FIG. 1, and the oil passage 90 is communicated. When the switching state is reversed, the switching valve 94 that shuts off the oil passage 90 is cut off. Is provided. Note that the switching valve 94 may be provided in the middle of the oil passage 88 as indicated by a virtual line in the drawing. The switching of the switching valve 94 to the shut-off position is a reduction in the hydraulic pressure in the passages 74 and 88 for discharging the oil from the port 24 when the hydraulic pressure in the hydraulic chamber 20 drops at a speed exceeding a predetermined reduction speed. The hydraulic pressure drop rate sensor 96 detects from the rate, the end position sensor 98 detects that the trunnion 12 is lowered to the lower end position, the power roller deflection angle sensor not shown in the figure, and the other oil flow control valve 32. May be performed in response to actuation of any sensor that senses that the user has stuck in the open position.

上記の如き構成に於いて、任意の変速比を所定の目標値まで減小させるべきときには、制御弁作動制御手段92の制御により、先ず、油流制御弁30の電磁駆動装置50のみに電流Iuが供給される。図2のAに示す如く電流値がIuo以上となったところで給油取入れポート36と給油取出し38の間の連通が始まり、トロイダル型無段変速機のピストン室20に対する供給油圧は、最大油圧Pu1まで急速に増大する。しかし、隣接するポート36と38の間には幾分かの油漏れがあるので、トロイダル型無段変速機のピストン室20へ供給される油量Q(L/min)は、図2のBに示す如く電流Iuの大きさに略比例して増大する。また油流制御弁の電磁駆動装置50および66への電流の供給は或る比較的短い周期でオンオフを繰り返す所謂デューティ制御により行われてよく、その場合Iuはデューティ比に比例するので、いずれにしてもトロイダル型無段変速機のピストン室20へ供給される油量Qは電流Iuに応じて制御される。このとき反対側のポート26は排油取入れポート40と排油取出しポート42の連通により排油溜り34に連通される。尚、図2のAおよびBに於けるIdおよびそれに対応するPdやQの値は、油流制御弁32の電磁駆動装置66に電流を供給してその給油取入れポート52と給油取出し54の間を連通させることに対する電流と供給油圧と油量の関係を示す。   In the above-described configuration, when an arbitrary speed change ratio should be reduced to a predetermined target value, the current Iu is first supplied only to the electromagnetic drive device 50 of the oil flow control valve 30 under the control of the control valve operation control means 92. Is supplied. As shown in FIG. 2A, when the current value becomes equal to or greater than Iuo, communication between the oil supply intake port 36 and the oil supply extraction 38 starts, and the supply hydraulic pressure to the piston chamber 20 of the toroidal continuously variable transmission reaches the maximum hydraulic pressure Pu1. Increases rapidly. However, since there is some oil leakage between the adjacent ports 36 and 38, the amount of oil Q (L / min) supplied to the piston chamber 20 of the toroidal continuously variable transmission is B in FIG. As shown in FIG. 6, the current Iu increases in proportion to the magnitude of the current Iu. In addition, the current supply to the electromagnetic drive devices 50 and 66 of the oil flow control valve may be performed by so-called duty control that repeats on / off at a relatively short cycle. In this case, Iu is proportional to the duty ratio, so in any case. Even so, the amount of oil Q supplied to the piston chamber 20 of the toroidal type continuously variable transmission is controlled in accordance with the current Iu. At this time, the port 26 on the opposite side is communicated with the oil sump 34 by communication between the oil removal port 40 and the oil removal port 42. The values of Id and the corresponding values of Pd and Q in A and B of FIG. 2 are supplied between the oil supply intake port 52 and the oil supply extraction 54 by supplying current to the electromagnetic drive device 66 of the oil flow control valve 32. The relationship between the electric current, the supply hydraulic pressure, and the oil amount with respect to the communication of.

こうしてピストン18が上方へ変位されると、パワーローラは変速比を減小させる方向(アップシフト方向)に偏向されるので、その結果生じた変速比の変化が図には示されていないパワーローラの偏向角度を検出するセンサ等により検出され、その信号が制御弁作動制御手段92へ送られる。変速比の変化につれて制御弁作動制御手段92は適当なフィードバック制御を実行し、パワーローラ10に所望の傾動が生じ或いは生ずる見通しが立ったところで、電磁駆動装置50への供給電流を停止する。次いで油流制御弁32の電磁駆動装置66のみへ電流Idを供給してピストン18を中立位置まで戻すことが行なわれる。このときには、油圧Pdは電流IdがIdoを越えたところから急速に最大値Pd1まで上昇する。トロイダル型無段変速機のピストン室22には電流Idに応じた油量Q(L/min)(但し流れ方向を考慮すれば−Q(L/min)))が供給される。またこのとき反対側のポート24は排油取入れポート56と排油取出しポート58の連通により排油溜り34に連通される。   When the piston 18 is displaced upward in this manner, the power roller is deflected in a direction (upshift direction) to reduce the transmission gear ratio, and the resulting change in the transmission gear ratio is not shown in the figure. Is detected by a sensor or the like that detects the deflection angle, and the signal is sent to the control valve operation control means 92. As the speed ratio changes, the control valve operation control means 92 executes appropriate feedback control, and stops the supply current to the electromagnetic drive device 50 when a desired tilting occurs or is expected to occur in the power roller 10. Next, the current Id is supplied only to the electromagnetic drive device 66 of the oil flow control valve 32 to return the piston 18 to the neutral position. At this time, the hydraulic pressure Pd rapidly rises to the maximum value Pd1 when the current Id exceeds Ido. The piston chamber 22 of the toroidal type continuously variable transmission is supplied with an oil amount Q (L / min) corresponding to the current Id (however, considering the flow direction -Q (L / min)). Further, at this time, the port 24 on the opposite side is communicated with the oil sump 34 by the communication of the oil removal port 56 and the oil removal port 58.

無段変速機の変速比を増大させるダウンシフト制御は、上記と逆に、先ず油流制御弁32のみを作動させてパワーローラ10を下方へ変位させ、次いで油流制御弁30のみを作動させてパワーロータ10を上方へ変位させて元の中立位置に戻す要領にて行われる。   In the downshift control for increasing the transmission ratio of the continuously variable transmission, in contrast to the above, only the oil flow control valve 32 is first operated to displace the power roller 10 downward, and then only the oil flow control valve 30 is operated. The power rotor 10 is displaced upward and returned to the original neutral position.

かかる構成に於いて、今、油流制御弁32を作動させて無段変速機の変速比を増大させるダウンシフト制御を行っている最中に油流制御弁32に異物の噛込み等によるスティックが生じ、電磁駆動装置66への通電を切っても弁スプール62が全閉位置まで戻らなくなったとする。この場合、ダウンシフトが継続し、最大変速比に固定される不具合が生じる虞れがある。   In such a configuration, during the downshift control in which the oil flow control valve 32 is operated to increase the transmission ratio of the continuously variable transmission, a stick caused by a foreign matter biting into the oil flow control valve 32 is being performed. Suppose that the valve spool 62 does not return to the fully closed position even when the electromagnetic drive device 66 is turned off. In this case, downshifting may continue and there may be a problem of being fixed at the maximum gear ratio.

そこで、そのような油流制御弁32の開状態でのスティックが生じ、そのことが油圧低下率センサ96、トラニオン終端位置センサ98、或は図には示されていないパワーローラ偏向角度センサにより検知されたときには、切換弁94を遮断位置へ切り換えてポート24からの油の排出を阻止すれば、油流制御弁32の給油取出しポート54に現れる油圧Pd1に対向する油圧(図2のBにおける−Pd1)とトラニオン12に掛かる図にて下向きの負荷荷重に対応する油圧の和に相当する油圧を油圧室20内に発生させることができ、無段変速機の異常な変速比増大を直ちに停止させることができる。尚、油流制御弁32が開位置にスティックし、油路74,88内の油圧が急落したり、それに応じてトラニオン12が下方の終端位置まで下がり、それによってパワーローラ10が変速比増大方向に偏向するには時間遅れがあるので、油圧低下率センサ96やトラニオン終端位置センサ98の作動に応答して直ちに切換弁94が切り換えられ、また必要なら油流制御弁30を開く制御が行われれば、変速比の急増を阻止することができる。   Therefore, such a stick in the open state of the oil flow control valve 32 is generated, which is detected by the oil pressure decrease rate sensor 96, the trunnion end position sensor 98, or a power roller deflection angle sensor not shown in the drawing. In this case, if the switching valve 94 is switched to the shut-off position to prevent the oil from being discharged from the port 24, the oil pressure opposite to the oil pressure Pd1 appearing at the oil supply take-out port 54 of the oil flow control valve 32 (-in FIG. The hydraulic pressure corresponding to the sum of the hydraulic pressure corresponding to the downward load load can be generated in the hydraulic chamber 20 in the diagram of Pd1) and the trunnion 12, and the abnormal speed ratio increase of the continuously variable transmission is immediately stopped. be able to. The oil flow control valve 32 sticks to the open position, and the oil pressure in the oil passages 74 and 88 drops suddenly. Accordingly, the trunnion 12 falls to the lower end position, thereby causing the power roller 10 to increase the speed ratio. Therefore, the switching valve 94 is immediately switched in response to the operation of the hydraulic pressure drop rate sensor 96 and the trunnion end position sensor 98, and the oil flow control valve 30 is controlled to open if necessary. Thus, a rapid increase in the gear ratio can be prevented.

尚、油流制御弁30を作動させて無段変速機の変速比を減小させるアップシフト制御を行っている最中に油流制御弁30に異物の噛込み等によるスティックが生じ、電磁駆動装置50への通電を切っても弁スプール46が全閉位置まで戻らなくなった場合、無段変速機の油圧室20への油の供給が続けられると、トラニオン12はそれに掛かる図にて下向きの負荷荷重に抗して上昇し、無段変速機が最小変速比に固定された状態となる虞れがある。変速機が最小変速比に固定されると、車輌の再発進ができなくなる虞れはあるが、走行中の発生による危険性はない。この場合には、車輌の再発進に先立って油流制御弁32を適当に開いて油圧室22へ油を供給すると同時に油圧室20より油を逃がしてやれば、一時的に対処することができる。   In addition, during the upshift control in which the oil flow control valve 30 is operated to reduce the gear ratio of the continuously variable transmission, a stick due to foreign matter biting or the like occurs in the oil flow control valve 30 and electromagnetic drive is performed. If the valve spool 46 does not return to the fully closed position even when the power to the device 50 is cut off, the trunnion 12 will face downward in the drawing applied to the hydraulic chamber 20 of the continuously variable transmission. There is a fear that the continuously variable transmission will be in a state of being fixed at the minimum gear ratio by rising against the load. If the transmission is fixed to the minimum transmission ratio, there is a possibility that the vehicle cannot be restarted, but there is no danger due to the occurrence during running. In this case, if the oil flow control valve 32 is appropriately opened to supply oil to the hydraulic chamber 22 and the oil is allowed to escape from the hydraulic chamber 20 before the vehicle restarts, it can be temporarily dealt with. .

また、油流制御弁30および32には、電磁駆動装置50または66に係る電気系統の故障または弁座部に於ける異物の噛込み等により、電磁駆動装置50または66に通電を行っても弁スプールに所期の変位が生ぜず、それらの給油取出しポート38または54に所期の圧油が現れないという障害が生ずる恐れもある。   Further, the oil flow control valves 30 and 32 may be energized to the electromagnetic drive device 50 or 66 due to a failure of the electrical system related to the electromagnetic drive device 50 or 66 or the entry of foreign matter in the valve seat. There is also a possibility that the intended displacement of the valve spool does not occur, and the desired pressure oil does not appear at the oil supply outlet port 38 or 54.

油流制御弁30が開かなければ、アップシフトはできず、トラニオン12には図にて下向きの負荷荷重が掛かることにより、無段変速機は最終的に最大減速比までダウンシフトされることになるが、油流制御弁32が開かない場合には、トラニオン12に図にて下向きに掛かる負荷荷重の作用を利用して油流制御弁30により変速制御を行うことは可能である。   If the oil flow control valve 30 is not opened, the upshift cannot be performed, and the continuously variable transmission is finally downshifted to the maximum reduction ratio by applying a downward load to the trunnion 12 in the figure. However, when the oil flow control valve 32 does not open, it is possible to perform shift control by the oil flow control valve 30 using the action of a load applied to the trunnion 12 downward in the drawing.

図3は図1に示した実施の形態に於ける切換弁94にこれをバイパスする絞り100を備えたバイパス通路102を設けた実施の形態を示す図1と同様の図である。かかる絞りバイパス通路が設けられていれば、油流制御弁32に開状態のスティックが生じ、切換弁94が閉じられた状態でも、ポート24からは絞り通路を経て油が連続して徐々に抜ける状態が得られるので、開状態にスティックした油流制御弁32よりポート22に油が供給されつつある状態にあっても、油流制御弁30を開いてポート24へ油を補給すると同時にポート26より油を排出する状態と、油流制御弁30を閉じてポート24への油の補給を停止すると同時にポート26よりの油の排出も停止する状態の作動時間比(デューティ比)を制御することにより、ポート24に於ける油圧をトラニオンに作用する負荷荷重を支えるに必要な圧力に保ちつつ、変速比をアップシフト方向またはダウンシフト方向へ変えることができる。   FIG. 3 is a view similar to FIG. 1 showing an embodiment in which a bypass passage 102 having a restriction 100 for bypassing the switching valve 94 in the embodiment shown in FIG. 1 is provided. If such a throttle bypass passage is provided, an open stick is generated in the oil flow control valve 32, and even when the switching valve 94 is closed, the oil is gradually discharged from the port 24 through the throttle passage. Therefore, even when oil is being supplied to the port 22 from the oil flow control valve 32 that is stuck in the open state, the oil flow control valve 30 is opened and oil is supplied to the port 24 at the same time. Controlling the operating time ratio (duty ratio) in a state in which more oil is discharged and in a state in which oil supply to the port 24 is stopped by closing the oil flow control valve 30 and oil discharge from the port 26 is also stopped. Thus, the gear ratio can be changed in the upshift direction or the downshift direction while maintaining the hydraulic pressure at the port 24 at a pressure necessary to support the load applied to the trunnion.

図4は、図1に示した実施の形態に於ける切換弁94に代えて、油流制御弁32に開状態のスティックが生じたとき、油流制御弁32の排出ポート56,58を経るポート24の排油通路を遮断すると共に、別の油圧源より適当な油圧Pmをポート24へ向けて供給することができる切換弁104を設けた実施の形態を示す図1と同様の図である。このようにポート24から油流制御弁32の排出ポート56,58を経る油の排出を阻止したとき、ポート24へ別の圧油源からの油を供給する臨時油供給手段が設けられれば、かかる臨時油供給手段からの油圧によりポート24の油圧を適当に維持し、ポート24に於ける油圧をトラニオンに作用する負荷荷重を支えるに必要な圧力に保ちつつ、変速比をアップシフト方向またはダウンシフト方向へ変えることをより適切に行うことができる。この場合、臨時油供給手段より供給される油圧Pmに対応して変速装置に作用する荷重トルクを制御すれば、このことによってもアップシフトまたはダウンシフトを制御することができる。   FIG. 4 shows that when an open stick is generated in the oil flow control valve 32 in place of the switching valve 94 in the embodiment shown in FIG. 1, the oil flow control valve 32 passes through the discharge ports 56 and 58. FIG. 2 is a view similar to FIG. 1 showing an embodiment in which a switching valve 104 is provided that can shut off an oil discharge passage of the port 24 and supply an appropriate hydraulic pressure Pm from another hydraulic source toward the port 24. . In this way, when the oil is prevented from being discharged from the port 24 through the discharge ports 56 and 58 of the oil flow control valve 32, if temporary oil supply means for supplying oil from another pressure oil source to the port 24 is provided, The hydraulic pressure at the port 24 is appropriately maintained by the hydraulic pressure from the temporary oil supply means, and the gear ratio is increased or decreased in the upshift direction while maintaining the hydraulic pressure at the port 24 at a pressure necessary to support the load applied to the trunnion. Changing to the shift direction can be performed more appropriately. In this case, if the load torque acting on the transmission is controlled in accordance with the hydraulic pressure Pm supplied from the temporary oil supply means, it is possible to control the upshift or the downshift.

図5は図4に示した実施の形態に於ける切換弁104にこれをバイパスする絞り100を備えたバイパス通路102を設けた実施の形態を示す図4と同様の図である。切換弁104による臨時油供給手段が設けられている場合にも、切換弁104に対し絞りバイパス通路が設けられていれば、油流制御弁32に開状態のスティックが生じ、臨時油供給手段が作動されているとき、ポート24からは絞り通路を経て油が連続して徐々に抜ける状態が得られるので、開状態にスティックした油流制御弁32よりポート22に油が供給されつつある状態にあっても、臨時油供給手段によりポート24へ油を補給しつつ油流制御弁30を開いてポート24へ油を補給すると同時にポート22より油を排出する状態と、油流制御弁30を閉じてポート24への油の供給を停止するが、ポート26よりの油の排出も停止する状態のデューティ比を制御することにより、ポート24に於ける油圧をトラニオンに作用する負荷荷重を支えるに必要な圧力に保ちつつ、変速比をアップシフト方向またはダウンシフト方向へ変えることを適当に行うことができる。   FIG. 5 is a view similar to FIG. 4 showing an embodiment in which a bypass passage 102 including a throttle 100 for bypassing the switching valve 104 in the embodiment shown in FIG. 4 is provided. Even when the temporary oil supply means by the switching valve 104 is provided, if the throttle bypass passage is provided for the switching valve 104, an open stick is generated in the oil flow control valve 32, and the temporary oil supply means is When in operation, a state is obtained in which the oil is continuously and gradually discharged from the port 24 through the throttle passage, so that the oil is being supplied to the port 22 from the oil flow control valve 32 that is stuck in the open state. Even if there is, the oil flow control valve 30 is opened while the oil is supplied to the port 24 by the temporary oil supply means, the oil is supplied to the port 24 and at the same time the oil is discharged from the port 22, and the oil flow control valve 30 is closed. By controlling the duty ratio in a state where the oil supply to the port 24 is stopped but the oil discharge from the port 26 is also stopped, the hydraulic pressure at the port 24 is applied to the trunnion. While maintaining the pressure required to support the weight, it is possible to suitably perform varying the gear ratio to the upshift direction or downshift direction.

図6は、図1に示した実施の形態に於ける切換弁94に代えて、油流制御弁32に開状態のスティックが生じたとき、油流制御弁32の給油ポート52,54を経るポート26の油の供給を阻止することができる切換弁106を油路86の途中に設けた実施の形態を示す図1と同様の図である。このように油流制御弁32に開状態のスティックが生じたとき、その給油ポート52,54を経る油圧アクチュエータ16のポート26への油の供給が阻止されれば、油流制御弁30を制御して油圧アクチュエータ16のポート24へ油圧を供給することにより、油流制御弁32の開状態スティックによりピストン18が下方へ下がり過ぎることを阻止し、また必要ならピストン18を上方へ押し戻すこともできる。これはピストン18にローラ10より駆動トルクによる図にて下向きの力が作用している状態の下に於いても可能である。切換弁106は図中仮想線にて示されている如く油路84の途中に設けられていてもよい。   6 is replaced with the switching valve 94 in the embodiment shown in FIG. 1, and passes through the oil supply ports 52 and 54 of the oil flow control valve 32 when an open stick is generated in the oil flow control valve 32. FIG. 2 is a view similar to FIG. 1 showing an embodiment in which a switching valve 106 capable of blocking oil supply from a port 26 is provided in the middle of an oil passage 86. In this way, when an open stick is generated in the oil flow control valve 32, if the oil supply to the port 26 of the hydraulic actuator 16 through the oil supply ports 52 and 54 is blocked, the oil flow control valve 30 is controlled. Thus, by supplying hydraulic pressure to the port 24 of the hydraulic actuator 16, the piston 18 can be prevented from being lowered too much by the open state stick of the oil flow control valve 32, and the piston 18 can be pushed back upward if necessary. . This is possible even when the downward force is applied to the piston 18 by the driving torque from the roller 10 in the figure. The switching valve 106 may be provided in the middle of the oil passage 84 as indicated by a virtual line in the drawing.

図7は図6に示した実施の形態に於ける切換弁106にこれをバイパスする絞り108を備えたバイパス通路110を設けた実施の形態を示す図6と同様の図である。かかる絞りバイパス通路が設けられていれば、油流制御弁32に開状態のスティックが生じ、切換弁106が閉じられた状態でも、ポート26へは絞り通路を経て油が連続して徐々に供給されるので、開状態にスティックした油流制御弁32よりポート26に油が供給されつつある状態にあっても、油流制御弁30を開いてポート24へ油を補給すると同時にポート26より油を排出する状態と、油流制御弁30を閉じてポート24への油の補給を停止すると同時にポート26よりの油の排出も停止する状態の作動時間比(デューティ比)を制御することにより、ポート24に於ける油圧をトラニオンに作用する負荷荷重を支えるに必要な圧力に保ちつつ、変速比をアップシフト方向またはダウンシフト方向へ変えることができる。   FIG. 7 is a view similar to FIG. 6 showing an embodiment in which a bypass passage 110 provided with a throttle 108 for bypassing the switching valve 106 in the embodiment shown in FIG. 6 is provided. If such a throttle bypass passage is provided, an open stick is generated in the oil flow control valve 32 and oil is continuously supplied to the port 26 through the throttle passage even when the switching valve 106 is closed. Therefore, even when oil is being supplied to the port 26 from the oil flow control valve 32 that is stuck in the open state, the oil flow control valve 30 is opened and oil is supplied to the port 24, and at the same time, the oil is supplied from the port 26. By controlling the operating time ratio (duty ratio) in a state in which the oil flow control valve 30 is closed and the oil supply to the port 24 is stopped, and the oil discharge from the port 26 is stopped at the same time, The gear ratio can be changed in the upshift direction or the downshift direction while maintaining the hydraulic pressure at the port 24 at a pressure necessary to support the load applied to the trunnion.

以上に於いては本発明をいくつかの実施の形態について詳細に説明したが、これらの実施の形態について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。   While the present invention has been described in detail with respect to several embodiments thereof, it will be apparent to those skilled in the art that various modifications can be made to these embodiments within the scope of the present invention. .

本発明をトロイダル型無段変速機の変速制御用油圧制御装置に適用した一つの実施の形態を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows one embodiment which applied this invention to the hydraulic control apparatus for shift control of a toroidal type continuously variable transmission. 図1に示す油圧制御装置の作動を示すグラフであり、図Aは油流制御弁30、32の電磁駆動装置50、66への供給電流Iu、Idと油圧室20、22へ供給される圧油の流量Qとの関係を示し、図Bは電流Iu、Idと油圧室20、22へ供給される圧油の圧力Pu、Pdの関係を示す。2 is a graph showing the operation of the hydraulic control device shown in FIG. 1, and FIG. A shows the supply currents Iu and Id to the electromagnetic drive devices 50 and 66 of the oil flow control valves 30 and 32 and the pressure supplied to the hydraulic chambers 20 and 22. FIG. B shows the relationship between the currents Iu and Id and the pressures Pu and Pd of the pressure oil supplied to the hydraulic chambers 20 and 22. 図1に示す油圧制御装置の切換弁94に絞りバイパス通路102を設けた他の一つの実施の形態を示す概略図。FIG. 3 is a schematic view showing another embodiment in which a throttle bypass passage 102 is provided in the switching valve 94 of the hydraulic control device shown in FIG. 1. 図1に示す油圧制御装置の切換弁94に代えて切換弁104を設けた他の一つの実施の形態を示す概略図。Schematic which shows another one Embodiment which replaced with the switching valve 94 of the hydraulic control apparatus shown in FIG. 1, and provided the switching valve 104. FIG. 図4に示す油圧制御装置の切換弁104に絞りバイパス通路102を設けた他の一つの実施の形態を示す概略図。FIG. 6 is a schematic view showing another embodiment in which a throttle bypass passage 102 is provided in the switching valve 104 of the hydraulic control device shown in FIG. 4. 図1に示す油圧制御装置の切換弁94に代えて切換弁106を設けた他の一つの実施の形態を示す概略図。Schematic which shows another one Embodiment which replaced with the switching valve 94 of the hydraulic control apparatus shown in FIG. 1, and provided the switching valve 106. FIG. 図6に示す油圧制御装置の切換弁106に絞りバイパス通路110を設けた他の一つの実施の形態を示す概略図。FIG. 7 is a schematic view showing another embodiment in which a throttle bypass passage 110 is provided in the switching valve 106 of the hydraulic control device shown in FIG. 6.

符号の説明Explanation of symbols

10…パワーローラ、12…トラニオン、14…偏心軸、16…油圧アクチュエータ、18…ピストン、20,22…油圧室、24,26…ポート、28…圧油源、30,32…油流制御弁、34…排油溜、36…給油取入れポート、38…給油取出しポート、40…排油取入れポート、42…排油取出しポート、44…弁ハウジング、46…弁スプール、48…圧縮コイルばね、50…電磁駆動装置、52…給油取入れポート、54…給油取出しポート、56…排油取入れポート、58…排油取出しポート、60…弁ハウジング、62…弁スプール、64…圧縮コイルばね、66…電磁駆動装置、68〜90…油路、92…制御弁作動制御手段、94…切換弁、96…油圧低下率センサ、98…トラニオン終端位置センサ、100…絞り、102…バイパス通路、104,106…切換弁、108…絞り、110…バイパス通路   DESCRIPTION OF SYMBOLS 10 ... Power roller, 12 ... Trunnion, 14 ... Eccentric shaft, 16 ... Hydraulic actuator, 18 ... Piston, 20, 22 ... Hydraulic chamber, 24, 26 ... Port, 28 ... Pressure oil source, 30, 32 ... Oil flow control valve , 34 ... Oil reservoir, 36 ... Oil supply port, 38 ... Oil supply port, 40 ... Oil supply port, 42 ... Oil discharge port, 44 ... Valve housing, 46 ... Valve spool, 48 ... Compression coil spring, 50 ... Electromagnetic drive device, 52 ... Oil supply port, 54 ... Oil supply port, 56 ... Oil supply port, 58 ... Oil extraction port, 60 ... Valve housing, 62 ... Valve spool, 64 ... Compression coil spring, 66 ... Electromagnetic Drive device, 68 to 90 ... oil passage, 92 ... control valve operation control means, 94 ... switching valve, 96 ... hydraulic pressure drop rate sensor, 98 ... trunnion end position sensor, 100 ... throttle, 02 ... bypass passage, 104, 106 ... switching valve, 108 ... aperture, 110 ... bypass passage

Claims (5)

第一のポートから油が供給され第二のポートから油が排出されるとき第一の方向に作動状態を変え,前記第二のポートから油が供給され前記第一のポートから油が排出されるとき前記第一の方向とは逆の第二の方向に作動状態を変える油圧サーボ装置のための油圧制御装置にして、それぞれが圧油源からの油の供給を制御する油供給制御部と排油通路への導通を制御する油排出制御部とを有する第一および第二の油流制御弁と、前記第一および第二の油流制御弁の作動を制御する制御弁作動制御手段とを有し、前記第一のポートは前記第一の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第二の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記第二のポートは前記第二の油流制御弁の前記油供給制御部より油を供給され得るようになっていると共に前記第一の油流制御弁の前記油排出制御部を経て油を排出され得るようになっており、前記制御弁作動制御手段による前記第一および第二の油流制御弁の作動制御により前記油圧サーボ装置の作動状態を制御するようになっており、更に前記第一のポートからの前記第二の油流制御弁の前記油排出制御部を経る油の排出を前記第二の油流制御弁の作動とは独立して選択的に阻止し得る臨時油流阻止手段を有し、更に前記臨時油流阻止手段により前記第一のポートからの前記第二の油流制御弁の前記油排出制御部を経る油の排出が阻止されるとき前記第一の油流制御弁の前記油供給制御部を経ることなく前記第一のポートへ油圧を供給する臨時油供給手段を有していることを特徴とする油圧制御装置。 When the oil is supplied from the first port and the oil is discharged from the second port, the operating state is changed in the first direction, the oil is supplied from the second port, and the oil is discharged from the first port. An oil supply control unit for a hydraulic servo device that changes an operating state in a second direction opposite to the first direction, each of which controls an oil supply from a pressure oil source; A first and second oil flow control valve having an oil discharge control unit for controlling conduction to the oil drain passage, and a control valve operation control means for controlling the operation of the first and second oil flow control valves; The first port can be supplied with oil from the oil supply control unit of the first oil flow control valve and the oil discharge control unit of the second oil flow control valve Oil can be discharged via the second port and the second port is connected to the second oil stream. Oil can be supplied from the oil supply control unit of the control valve, and oil can be discharged through the oil discharge control unit of the first oil flow control valve. The operation state of the hydraulic servo device is controlled by the operation control of the first and second oil flow control valves by the operation control means, and further the second oil flow control from the first port. A temporary oil flow blocking means capable of selectively blocking oil discharge through the oil discharge control section of the valve independently of the operation of the second oil flow control valve; and the temporary oil flow blocking means Without passing through the oil supply control unit of the first oil flow control valve when the oil discharge from the first port through the oil discharge control unit of the second oil flow control valve is blocked. this has a temporary oil supply means for supplying hydraulic pressure to the first port Hydraulic control device according to claim. 前記制御弁作動制御手段は、前記油圧サーボ装置の作動状態を前記第一の方向に変えるべきときには、前記第二の油流制御弁を前記圧油源からの油の供給を遮断し且つ前記排油通路への導通を遮断した状態にして、前記第一の油流制御弁のみを操作してそれを行うようになっており、その際前記第二の油流制御弁が何らかの故障により前記排油通路への導通を遮断しないときには、前記臨時油流阻止手段がそれを遮断するようになっていることを特徴とする請求項1に記載の油圧制御装置。   The control valve operation control means shuts off the supply of oil from the pressure oil source and discharges the second oil flow control valve when the operating state of the hydraulic servo device is to be changed to the first direction. This is done by operating only the first oil flow control valve in a state in which conduction to the oil passage is cut off, and at this time, the second oil flow control valve is not discharged due to some failure. 2. The hydraulic control device according to claim 1, wherein when the conduction to the oil passage is not cut off, the temporary oil flow blocking means cuts off the passage. 前記臨時油流阻止手段をバイパスする絞り通路が設けられていることを特徴とする請求項1または2に記載の油圧制御装置。   3. The hydraulic control apparatus according to claim 1, further comprising a throttle passage that bypasses the temporary oil flow blocking means. 前記油圧サーボ装置は車輛用変速装置であり、前記第一のポートは前記車輛用変速装置の作動状態をアップシフト側へ変化させるとき油圧が供給されるポートであることを特徴とする請求項1〜3のいずれかに記載の油圧制御装置。   The hydraulic servo device is a vehicle transmission, and the first port is a port to which hydraulic pressure is supplied when the operating state of the vehicle transmission is changed to the upshift side. The hydraulic control apparatus in any one of -3. 前記車輛用変速装置はトロイダル式無段変速機であることを特徴とする請求項4に記載の油圧制御装置。   5. The hydraulic control apparatus according to claim 4, wherein the vehicle transmission is a toroidal continuously variable transmission.
JP2005008519A 2005-01-17 2005-01-17 Hydraulic control device with opposed connection of oil flow control valve Expired - Fee Related JP4655635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008519A JP4655635B2 (en) 2005-01-17 2005-01-17 Hydraulic control device with opposed connection of oil flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008519A JP4655635B2 (en) 2005-01-17 2005-01-17 Hydraulic control device with opposed connection of oil flow control valve

Publications (2)

Publication Number Publication Date
JP2006194391A JP2006194391A (en) 2006-07-27
JP4655635B2 true JP4655635B2 (en) 2011-03-23

Family

ID=36800635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008519A Expired - Fee Related JP4655635B2 (en) 2005-01-17 2005-01-17 Hydraulic control device with opposed connection of oil flow control valve

Country Status (1)

Country Link
JP (1) JP4655635B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176745B2 (en) * 2008-07-22 2013-04-03 トヨタ自動車株式会社 Hydraulic control device for toroidal continuously variable transmission
JP6015253B2 (en) * 2012-09-03 2016-10-26 日本精工株式会社 Toroidal continuously variable transmission
JP6505477B2 (en) * 2015-03-13 2019-04-24 川崎重工業株式会社 Transmission and power generation system provided with the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174943A (en) * 1984-09-14 1986-04-17 Nippon Seiko Kk Speed change control device of stepless speed change gear
JPS61143296A (en) * 1984-12-18 1986-06-30 Mitsubishi Heavy Ind Ltd Hydraulic circuit for driving steering engine
JP2002181185A (en) * 2000-12-14 2002-06-26 Honda Motor Co Ltd Clutch controller in continuously variable transmission for vehicle
JP2003130164A (en) * 2001-10-19 2003-05-08 Koyo Seiko Co Ltd Toroidal infinite variable-speed machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174943A (en) * 1984-09-14 1986-04-17 Nippon Seiko Kk Speed change control device of stepless speed change gear
JPS61143296A (en) * 1984-12-18 1986-06-30 Mitsubishi Heavy Ind Ltd Hydraulic circuit for driving steering engine
JP2002181185A (en) * 2000-12-14 2002-06-26 Honda Motor Co Ltd Clutch controller in continuously variable transmission for vehicle
JP2003130164A (en) * 2001-10-19 2003-05-08 Koyo Seiko Co Ltd Toroidal infinite variable-speed machine

Also Published As

Publication number Publication date
JP2006194391A (en) 2006-07-27

Similar Documents

Publication Publication Date Title
JP4151500B2 (en) Hydraulic control device with opposed connection of oil flow control valve
JP3955330B2 (en) Hydraulic emergency control device with pre-switching valve for stepless gearing
JP2009236316A (en) Hydraulic motor
EP1707691B1 (en) Driving motor controlling device of construction machine
JP4655635B2 (en) Hydraulic control device with opposed connection of oil flow control valve
JPH04136507A (en) Hydraulic circuit
JP4962393B2 (en) Hydraulic control device with opposed connection of oil flow control valve
KR101323861B1 (en) A hydraulic motor
JP4325851B2 (en) HST travel drive device
JP3978292B2 (en) Travel drive device
JP3603007B2 (en) Variable displacement hydraulic motor displacement control device
JP3534319B2 (en) Unloading device used for hydraulic circuit
JP3265882B2 (en) Transmission control device for belt type CVT
JPH044304A (en) Hydraulic control circuit
JP4710324B2 (en) Hydraulic control device for hydraulic servo device with failure judging means
JP4649998B2 (en) Shift control device with pressure-receiving surface difference of continuously variable transmission
JPH09119404A (en) Hydraulic drive device of cooling fan
JP7271643B2 (en) hydraulic system
JP3585294B2 (en) Hydraulic pilot circuit for construction machinery
JPH03290532A (en) Hydraulic drive unit for civil engineering and building equipment
JP3864595B2 (en) Relief pressure control device for relief valve
JP2006194392A (en) Transmission control device with input torque control of disk/roller type continuously variable transmission
JPH04136506A (en) Hydraulic circuit
JPS6151701B2 (en)
JPH03267425A (en) Control circuit for hydraulic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4655635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees