JP4654432B2 - Inhibitors of activation of StretchActivated channel - Google Patents
Inhibitors of activation of StretchActivated channel Download PDFInfo
- Publication number
- JP4654432B2 JP4654432B2 JP2004323916A JP2004323916A JP4654432B2 JP 4654432 B2 JP4654432 B2 JP 4654432B2 JP 2004323916 A JP2004323916 A JP 2004323916A JP 2004323916 A JP2004323916 A JP 2004323916A JP 4654432 B2 JP4654432 B2 JP 4654432B2
- Authority
- JP
- Japan
- Prior art keywords
- channel
- peptide
- strex
- protein
- lerafpl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Description
本発明は、機械受容(Stretch Activated;SA)チャネルの活性化を抑制するペプチドや、該ペプチド又は該ペプチドをコードするDNAを有効成分とするSAチャネルの活性化抑制剤や循環器病疾患の治療薬、前記ペプチドを標的とした循環器病疾患の判定方法、SAチャネルの活性化抑制剤のスクリーニング方法に関する。 The present invention relates to a peptide that suppresses activation of a mechanosensitive (Stretch Activated; SA) channel, an SA channel activation inhibitor containing the peptide or DNA encoding the peptide as an active ingredient, and a treatment for cardiovascular disease. The present invention relates to a drug, a method for determining cardiovascular disease targeting the peptide, and a method for screening an SA channel activation inhibitor.
あらゆる細胞は多様な機械刺激(張力、圧力、ズリ応力など)に対して様々な応答を示すが、その仕組みにはよく分かっていない。その最大の理由は、機械刺激の受容体(センサー)の分子実体や作動原理が不明な点にある。機械受容(Stretch Activated:SA)チャネルは、細胞膜の伸展で活性化されるイオンチャネルの総称であり、1984年に発見された新しい型のイオンチャネル(例えば、非特許文献1参照)で、電位依存性チャネル、受容体型チャネルに次いで第3のグループを作るものと予想されている。ただし広範なイオン選択性と被刺激性(電位、リガンド刺激にも応じるものがある)を併せ持つので、遺伝子レベルでファミリーを構成するとは考えにくい。これ以外に膜伸展で不活性化されるSI(Stretch Inactivated)チャネルや、膜が凹む刺激にのみ応じるPS(Pressure Sensitive)チャネル、あるいはズリ応力で活性化するものもあり、これらはあわせてMS(mechano−sensitive)チャネルあるいはMG(Mechano-gated)チャネルと呼ばれている。 Every cell shows various responses to various mechanical stimuli (tension, pressure, shear stress, etc.), but the mechanism is not well understood. The biggest reason is that the molecular entity and the principle of operation of the receptor (sensor) for mechanical stimulation are unknown. Stretch activated (SA) channel is a general term for ion channels activated by cell membrane extension, and is a new type of ion channel discovered in 1984 (see Non-Patent Document 1, for example). It is expected to form a third group after sex channels and receptor channels. However, since it has both a wide range of ion selectivity and stimuli (some respond to potential and ligand stimulation), it is unlikely that it will constitute a family at the gene level. Other than this, there are SI (Stretch Inactivated) channels that are inactivated by membrane extension, PS (Pressure Sensitive) channels that respond only to stimuli in which the membrane is recessed, or those that are activated by shear stress, and these are also MS ( It is called mechano-sensitive channel or MG (Mechano-gated) channel.
これらのチャネルのうち、現在高次構造が分かっているのは細菌のMscL(閉構造)(例えば、非特許文献2参照)とMscSチャネル(開構造)(例えば、非特許文献3参照)のみであるが、点突然変異体とパッチクランプ法、あるいは分子動力学によるメカノゲーティング機構の詳細な研究が進行中である。細菌のMSチャネルは脂質2重膜上に再構成された状態でも伸展感受性を失わないので、膜伸展で増加する膜張力を直接感じて開口するものと考えられており、張力感知部位の同定も行われている(例えば、非特許文献4参照)(図1)。一方真核生物のMSチャネルとしては、酵母由来のMid1チャネル(例えば、非特許文献5参照)をはじめとして、MEC/DEGファミリーあるいはTRPファミリーに属するチャネルが、MSチャネル候補として数多く報告されている。例えば、線虫の機械受容に関連するMEC/DEGファミリーに属する膜2回貫通型イオンチャネル(例えば、非特許文献6参照)、BNC1(Brain Sodium Channel 1)と皮膚毛包受容器の関連(例えば、非特許文献7参照)、TRPチャネルファミリーに属するNOPMC(no mechanreceptor potential C)とショウジョウバエの機械感覚毛との関連(例えば、非特許文献8参照)、あるいはVR−OAC(vanilloid receptor−related osmotically activated channel)と呼ばれる浸透圧感受性チャネルと皮膚や聴器における機械受容との関連などが指摘されている(例えば、非特許文献9参照)。ごく最近では、ショウジョウバエ聴覚器におけるDm CG5842(TRPVのメンバー)(例えば、非特許文献10参照)、あるいはマウス心筋のTRPV2(例えば、非特許文献11参照)、さらには、マウス痛覚器(高閥値機械受容器)とTRPV4の関連(例えば、非特許文献12参照)など、TRPVサブファミリーとMSチャネルの密接な関連を指摘する報告が増えている。 Among these channels, the higher-order structure is currently known only in bacterial MscL (closed structure) (for example, see Non-Patent Document 2) and MscS channel (open structure) (for example, see Non-Patent Document 3). However, detailed studies of mechanogating mechanisms using point mutants and patch clamp methods or molecular dynamics are ongoing. Bacterial MS channels do not lose their stretch sensitivity even when reconstituted on lipid bilayers, and are thought to open by directly feeling the membrane tension that increases with membrane stretch. (For example, refer nonpatent literature 4) (FIG. 1). On the other hand, as eukaryotic MS channels, many channels belonging to the MEC / DEG family or TRP family, including the Mid1 channel derived from yeast (see, for example, Non-Patent Document 5), have been reported as MS channel candidates. For example, the membrane-penetrating ion channel belonging to the MEC / DEG family related to mechanoreception of nematodes (for example, see Non-Patent Document 6), the relationship between BNC1 (Brain Sodium Channel 1) and skin hair follicle receptors (for example, Non-patent document 7), NOPMC (no mechanreceptor potential C) belonging to TRP channel family and Drosophila mechanosensory hair (for example, refer to non-patent document 8), or VR-OAC (vanilloid receptor-related osmotically activated) The relationship between an osmotic pressure-sensitive channel called “channel” and mechano-reception in the skin and the hearing instrument has been pointed out (see, for example, Non-Patent Document 9). Most recently, Dm CG5842 (a member of TRPV) in the Drosophila auditory organ (see, for example, Non-Patent Document 10), TRPV2 in the mouse myocardium (see, for example, Non-Patent Document 11), and a mouse pain sensation device (high threshold value). There are an increasing number of reports pointing out the close association between the TRPV subfamily and MS channels, such as the association between mechanoreceptors and TRPV4 (see, for example, Non-Patent Document 12).
しかしながら報告されている電気生理学のデータや個人的情報によれば、これらのチャネルの異所的発現効率が良好でないため、まだ詳細な電気生理学的解析に耐えうる状況にはないようである。これまでしばしば指摘されているように、これらのチャネルの膜での発現や機能の発揮には細胞膜裏打ち骨格や骨格関連タンパク質の協力が必要なのかもしれない(例えば、非特許文献13,14参照)。事実TRPV4のCHO細胞での機能的発現量はマイクロフィラメント会合タンパク質MAP7によって著しく増大するという報告がある(例えば、非特許文献15参照)。これらに比較して、高等生物の各種臓器に発現する2P(ポア)ドメインKチャネル(TREK/TRAAKファミリー)(例えば、非特許文献16参照)や本発明者らが最近クローニングした心筋や血管平滑筋に発現するbigKcaチャネル型のSAKCA(例えば、特許文献1、非特許文献17,18参照)は、発現効率が高く安定した伸展感受性を示すので、ほぼ間違いなくMSチャネルであると断言できる。 However, according to the reported electrophysiological data and personal information, it seems that the ectopic expression efficiency of these channels is not good, and it is not yet in a situation that can withstand detailed electrophysiological analysis. As often pointed out so far, the expression of these channels in the membrane and the exertion of functions may require the cooperation of cell membrane-backed scaffolds and scaffold-related proteins (for example, see Non-Patent Documents 13 and 14). . In fact, there is a report that the functional expression level of TRPV4 in CHO cells is markedly increased by the microfilament-associated protein MAP7 (see, for example, Non-Patent Document 15). Compared with these, 2P (pore) domain K channel (TREK / TRAAK family) (see, for example, Non-Patent Document 16) expressed in various organs of higher organisms, myocardium and vascular smooth muscle recently cloned by the present inventors. The bigKca channel type SAKCA expressed in (see, for example, Patent Document 1 and Non-Patent Documents 17 and 18) has a high expression efficiency and shows a stable stretch sensitivity, so it can be definitely said that it is an MS channel.
心臓に対する過度の伸展刺激は自動能の亢進、不整脈・細動の誘発、ANP、BNP分泌亢進、あるいは肥大などの様々な応答を引き起こす。心肥大については、これまでに多くの研究がなされており、PKCの下流でのERKの活性化や、Ca2+流入などの関与が言われてきたが、ごく最近アンジオテンシンIIとは無関係にAT1受容体が機械刺激で活性化され、その下流でERKの活性化が起こることが示された(例えば、非特許文献19参照)。しかし肝心の機械受容体はまだ謎である。一方HansenらはSAチャネルと伸展誘発性不整脈の関係について興味深い結果を報告している(例えば、非特許文献20参照)。彼らはイヌ摘出心室を用いて伸展依存性不整脈を再現性よく誘発できるモデルを調整し、その不整脈がSAチャネルのブロッカーであるガドリニウム(Gd3+)でほぼ完全に抑えられることを示した。彼らはこの結果から、不整脈の発生機序(SAチャネルの活性化による脱分極で説明可能)もGd3+による抑制も、陽イオン選択性のSAチャネルによって統一的に説明できるとしている。確かに心筋細胞には120pSの陽イオン選択性のSAチャネルが報告されている(例えば、非特許文献21参照)。しかしその後、心筋には数種類のカリウム選択性や陰イオン選択性のSAチャネルも見つかっているので(例えば、非特許文献22〜24参照)このように単純に割り切れるか否かは慎重な検討が必要である。また後述するように最近発見された蜘蛛毒由来のMSチャネルブロッカーGsMTx−4が伸展誘発性の心房細動に抑制効果があることが報告され注目されている(例えば、非特許文献25参照)。心臓には伸展刺激以外にズリ応力、経壁圧力も負荷されているがその効果については研究が進んでいない。また前述したように岩田ら(例えば、非特許文献11参照)はマウス心筋にMSチャネルとして働くと思われるTRPV2の発現を報告しているが、成体の正常心筋細胞膜での発現やその機能については今後の課題である。心筋と並んで最もよく研究されてきたのは、血管内皮細胞とメカニカルストレスの関係である。内皮細胞には陽イオン選択性のSAチャネル(約35pS)活性が報告されており(例えば、非特許文献26参照)、このチャネルの活性化による細胞内Ca2+濃度の上昇が確認されている(例えば、非特許文献27参照)。拍動による血管の周期的伸展がこのチャネルを活性化して細胞形態のリモデリングや接着力の強化に寄与するという報告がある(例えば、非特許文献28,29参照)。血管平滑筋にも同様なSAチャネルが発現しており、伸展誘発性の収縮に寄与するらしい。血管内皮細胞のSAチャネルの分子実体の解明は多くの研究者が待ち望んでいるがいまだに謎である。また、ズリ応力に応答するKチャネルがずいぶん以前に報告されているが(例えば、非特許文献30参照)、その後目覚しい進展はない。 Excessive stretch stimulation to the heart causes various responses such as increased automatic ability, induction of arrhythmia / fibrillation, increased ANP, BNP secretion, or hypertrophy. Many studies have been conducted on cardiac hypertrophy, and it has been said that ERK activation downstream of PKC and Ca 2+ influx are involved. Recently, however, AT1 receptor is independent of angiotensin II. It has been shown that the body is activated by mechanical stimulation, and ERK activation occurs downstream thereof (see, for example, Non-Patent Document 19). But the essential mechanoreceptor is still a mystery. On the other hand, Hansen et al. Reported an interesting result on the relationship between SA channel and stretch-induced arrhythmia (see, for example, Non-Patent Document 20). They prepared a model that can reproducibly induce stretch-dependent arrhythmia using a canine isolated ventricle, and showed that the arrhythmia is almost completely suppressed by gadolinium (Gd 3+ ), a blocker of the SA channel. From these results, they argue that the mechanism of arrhythmia (which can be explained by depolarization by SA channel activation) and suppression by Gd 3+ can be explained uniformly by the cation-selective SA channel. Certainly, a 120 pS cation-selective SA channel has been reported in cardiomyocytes (see, for example, Non-Patent Document 21). However, since several types of potassium-selective and anion-selective SA channels have been found in the myocardium afterwards (see, for example, Non-Patent Documents 22 to 24), it is necessary to carefully consider whether or not this is simply divisible. It is. In addition, as described later, it has been reported that a recently discovered MS channel blocker GsMTx-4 derived from sputum has an inhibitory effect on stretch-induced atrial fibrillation (for example, see Non-Patent Document 25). The heart is loaded with shear stress and transmural pressure in addition to the extension stimulus, but research on its effects has not progressed. As described above, Iwata et al. (For example, see Non-Patent Document 11) have reported the expression of TRPV2 that seems to work as an MS channel in mouse myocardium. This is an issue for the future. Alongside myocardium, the best studied is the relationship between vascular endothelial cells and mechanical stress. Endothelial cells have been reported to have a cation-selective SA channel (about 35 pS) activity (see, for example, Non-Patent Document 26), and an increase in intracellular Ca 2+ concentration due to activation of this channel has been confirmed ( For example, refer nonpatent literature 27). There is a report that periodic stretching of blood vessels by pulsation activates this channel and contributes to remodeling of cell morphology and enhancement of adhesion (for example, see Non-Patent Documents 28 and 29). A similar SA channel is also expressed in vascular smooth muscle and seems to contribute to stretch-induced contraction. The elucidation of the molecular entity of SA channels in vascular endothelial cells is a mystery that many researchers have been waiting for. Moreover, although the K channel which responds to shear stress has been reported long ago (for example, refer nonpatent literature 30), there is no remarkable progress after that.
心臓は体内の中で最も活発に収縮−弛緩を繰り返す臓器で、その機能にはmechano-electric-feedbackが重要なことは以前から指摘されている。ところが肝心の機械センサーについては何も分かっていない。そこで機械センサーとして最も可能性の高いMSチャネルのパッチクランプ法によるスクリーニングが鶏胚から単離した培養心筋細胞を使って行われた(例えば、非特許文献22参照)。その後我々も同様の標本を使って再スクリーニングを行い、1種類の陽イオンチャネルと4種類のKチャネルの計5種類のMSチャネルを同定するとともに、最も観測頻度が高い大きなコンダクタンスのKチャネルがカルシウム依存性BigK(BK)チャネルに一致することを発見した。このチャネルはBKチャネルの特徴である(細胞内)Ca2+依存性と電位依存性に加えて、伸展依存性と細胞内ATP依存性を併せ持っているので当初、SAKca、ATPチャネルと命名した(例えば、非特許文献23参照)。これは心筋における最初のBKチャネルの報告である。BKチャネルはsiolと呼ばれる遺伝子によってコードされるタンパク質であることが分かっているので(例えば、非特許文献31参照)、本発明者らは、BKチャネルに対するdegenerate primersを用いて鶏胚心筋細胞から調製したライブラリーを元にSAKca、ATPチャネルの遺伝子クローニングを試みた。その結果、既知のBKチャネルと非常に高い相同性を持ちC末に59アミノ酸残基から成るSTREX(Stress-Axis-Regulated-Exon)(例えば、非特許文献32参照)と呼ばれる特異的配列が挿入されたsplicing variant(1172残基)の同定に成功し、改めてSAKCAと命名した(Fig.2a)。ここでいうstressは機械的なそれではなく、生理的・心理的ストレスの意味であり、そのようなストレスが負荷されるとこの挿入配列をもつBKチャネルがアップレギュレーションされることが知られている(例えば、非特許文献33参照)。この遺伝子をCHO細胞に一過性に発現すると、心筋細胞と同様の、280pS(140mM K)のコンダクタンスをもつSABKcaチャネルが再現性よく観測された。また、STREX配列に対する抗体を作成し、免疫組織学を行ったところ心筋や血管平滑筋に強い発現が認められた。 It has long been pointed out that mechano-electric-feedback is important for the function of the heart because it is the organ that repeatedly contracts and relaxes most actively in the body. However, nothing is known about the essential mechanical sensor. Therefore, the most probable MS channel screening as a mechanical sensor was performed using cultured cardiomyocytes isolated from chicken embryos (see, for example, Non-Patent Document 22). After that, we re-screened using the same specimen and identified five types of MS channels, one cation channel and four types of K channel, and the K channel with the highest conductance with the highest observation frequency was calcium. It was found to match a dependent BigK (BK) channel. In addition to Ca 2+ dependence and voltage dependence, which are the characteristics of BK channel (intracellular), this channel has both extension dependence and intracellular ATP dependence, so it was initially named SAKca and ATP channel (for example, And non-patent document 23). This is a report of the first BK channel in the myocardium. Since it is known that the BK channel is a protein encoded by a gene called siol (see, for example, Non-Patent Document 31), the present inventors prepared from chicken embryo cardiomyocytes using degenerate primers for the BK channel. Based on the obtained library, gene cloning of SAKca and ATP channels was attempted. As a result, a specific sequence called STREX (Stress-Axis-Regulated-Exon) (for example, see Non-patent Document 32) having very high homology with a known BK channel and consisting of 59 amino acid residues at the C-terminal is inserted. Was successfully identified as SAKCA (FIG. 2a). The stress here is not a mechanical stress but a physiological / psychological stress, and it is known that a BK channel having this insertion sequence is up-regulated when such stress is applied ( For example, refer nonpatent literature 33). When this gene was transiently expressed in CHO cells, a SABKca channel having a conductance of 280 pS (140 mM K) similar to that of cardiomyocytes was observed with good reproducibility. Moreover, when an antibody against the STREX sequence was prepared and immunohistology was performed, strong expression was observed in the myocardium and vascular smooth muscle.
BKチャネルは一般的にチャネルの基本特性を総て備えたαサブユニットとそのゲーティング特性を修飾するβサブユニットからなり、我々がクローニングしたのは前者である。両サブユニットの共発現の結果などから、αサブユニットのみで、天然のSAKcaチャネルのほぼ総ての性質を再現できた。ここではαサブユニットのみの結果を紹介する(例えば、非特許文献17参照)。これまでに、幾つかの細胞・組織において伸展刺激依存性のBKチャネルが報告されている。多くの場合、パッチ膜に共存するカルシウム透過性SAチャネルの活性化に伴うカルシウム上昇で間接的にBKチャネルが活性化されるようであるが(例えば、非特許文献34参照)、中には膜伸展が直接活性化するという報告もある(例えば、非特許文献35参照)。一方、数多くの種・細胞からBKチャネル及びそのsplicing variant(STREX挿入も含む)がクローン化されているが(例えば、非特許文献36参照)、伸展感受性と分子構造の関連に関しての報告は全くない。 The BK channel generally consists of an α subunit that has all the basic characteristics of the channel and a β subunit that modifies its gating properties, and we have cloned the former. From the results of co-expression of both subunits, almost all properties of the natural SAKca channel could be reproduced with only the α subunit. Here, the result of only the α subunit is introduced (for example, see Non-Patent Document 17). So far, stretch stimulation-dependent BK channels have been reported in several cells and tissues. In many cases, the BK channel seems to be indirectly activated by the increase in calcium accompanying the activation of the calcium permeable SA channel coexisting in the patch membrane (see, for example, Non-Patent Document 34). There is also a report that extension is directly activated (see, for example, Non-Patent Document 35). On the other hand, BK channels and their splicing variants (including STREX insertion) have been cloned from many species and cells (see, for example, Non-Patent Document 36), but there is no report regarding the relationship between stretch sensitivity and molecular structure. .
前記のように、本発明者らは、上記特許文献1において、細胞膜伸展刺激に対して活性化するカルシウム依存性カリウム透過性機械受容(SAKCA)チャネルタンパク質の遺伝子を新規にクローニングし、その発現によって1172個のアミノ酸からなるSAチャネルタンパク質(図1参照)を取得し、このSAKCAチャネルがSTREX配列を含むこと、STREX配列が伸展感受性に重要であることを明らかにしている。 As described above, the present inventors newly cloned a gene of calcium-dependent potassium permeable mechanoreceptor (SAKCA) channel protein that activates against cell membrane stretch stimulation in Patent Document 1 described above, An SA channel protein consisting of 1172 amino acids (see FIG. 1) was obtained, and it was revealed that this SAKCA channel contains a STREX sequence and that the STREX sequence is important for stretch sensitivity.
本発明の課題は、SAチャネルの活性化を抑制するペプチドや、該ペプチド又は該ペプチドをコードするDNAを有効成分とするSAチャネルの活性化抑制剤や循環器病疾患の治療薬、前記ペプチドを標的とした循環器病疾患の判定方法、SAチャネルの活性化抑制剤のスクリーニング方法を提供することにある。 An object of the present invention is to provide a peptide that suppresses SA channel activation, an SA channel activation inhibitor comprising the peptide or DNA encoding the peptide as an active ingredient, a therapeutic agent for cardiovascular disease, the peptide The object is to provide a method for determining a targeted cardiovascular disease and a screening method for an SA channel activation inhibitor.
STREX配列ではシステインに富むので、まずERA配列を中心にしたSTREXと未知のタンパク質Xとの特異的結合の可能性が考えられ、さらにその未知タンパク質Xとの結合がSA活性の実現に必須であるという仮説が考えられる。すなわち、SAKCAは何らかの様式で膜の伸展を感じる必要があるのだが、これまでの2次構造予測からはその責任部位であるSTREXは細胞質側に露出していて、直接には細胞膜と相互作用しそうもない。そこでCHO細胞にSAKCAと過剰なSTREX−GFP融合タンパク質を共発現させたところ、まずSTREX−GFPの細胞膜局在が確認され、STREXのパートナーが膜会合タンパク質である可能性が出てきた。より重要なことは、STREX−GFPの過剰共発現でSAKCAのSA活性が著しく阻害されたことである。すなわち、導入された過剰なSTREXがSAKCAのSTREXと競合して未知タンパク質XとSAKCA−STREXの結合を阻害したと考えられた。さらにSTREX配列のうち672位のALAを中心にした様々な配列の7アミノ酸ペプチドを合成し、細胞質側からのSAKCAチャネルに対する影響を調べたところERAを含むLERAFPL配列(配列番号1)のみがSA活性を強く抑制することを見い出した。 Since the STREX sequence is rich in cysteine, there is a possibility of specific binding between STREX centered on the ERA sequence and the unknown protein X, and the binding with the unknown protein X is essential for realizing the SA activity. The hypothesis is considered. In other words, SAKCA needs to feel the extension of the membrane in some way, but from the previous secondary structure prediction, STREX, which is the responsible site, is exposed to the cytoplasm side and seems to interact directly with the cell membrane. Nor. Thus, when SAKCA and an excess of STREX-GFP fusion protein were co-expressed in CHO cells, the localization of STREX-GFP in the cell membrane was confirmed first, and the possibility that the STREX partner was a membrane-associated protein. More importantly, over-expression of STREX-GFP significantly inhibited the SA activity of SAKCA. That is, it was considered that the excessive STREX introduced competed with STREX of SAKCA to inhibit the binding of unknown protein X and SAKCA-STREX. Furthermore, 7-amino acid peptides of various sequences centering on ALA at position 672 in the STREX sequence were synthesized, and the influence on the SAKCA channel from the cytoplasm side was examined. As a result, only the LERAFPL sequence (SEQ ID NO: 1) containing ERA was SA activity. I found that I strongly suppressed.
次の課題は、謎の仲介タンパク質Xの同定である。本発明者らはLERAFPL配列の阻害特異性を利用してこのタンパク質を精製できないかと考え、この配列を含む様々なペプチドを固定した親和性カラムを調整し、心筋細胞の溶解物に適用した。その結果、LERAFPL配列カラムに特異的に結合する分子量約50kDaのタンパク質を精製することができた。質量分析器でペプチド配列を決定したところ、仮想的タンパク質Xがユビキタスタンパク質の一つであるペプチド延長因子EF1−αであることを見い出し、本発明を完成するに至った。 The next challenge is the identification of the mysterious mediator protein X. The present inventors thought that this protein could be purified using the inhibitory specificity of the LERAFPL sequence, and prepared an affinity column on which various peptides containing this sequence were immobilized, and applied it to the lysate of cardiomyocytes. As a result, a protein having a molecular weight of about 50 kDa that specifically binds to the LERAFPL sequence column could be purified. When the peptide sequence was determined with a mass spectrometer, it was found that the hypothetical protein X is a peptide elongation factor EF1-α which is one of ubiquitous proteins, and the present invention has been completed.
すなわち本発明は、(1)LERAFPLに示されるアミノ酸配列からなり、機械受容(Stretch Activated)チャネルの活性化を抑制するペプチドや、(2)上記(1)記載のペプチドと、マーカータンパク質及び/又はペプチドタグとを結合させた融合ペプチドや、(3)LERAFPLに示されるアミノ酸配列からなるペプチド又は該ペプチドをコードするDNAを有効成分とする機械受容(Stretch Activated)チャネルの活性化抑制剤に関する。 That is, the present invention comprises (1) a peptide consisting of an amino acid sequence represented by LERAFPL and suppressing activation of a mechanosensitive (Stretch Activated) channel, (2) the peptide according to (1) above, a marker protein and / or The present invention relates to a fusion peptide in which a peptide tag is bound, (3) a mechanosensitive (Stretch Activated) channel activation inhibitor comprising as an active ingredient a peptide comprising an amino acid sequence represented by LERAFPL or a DNA encoding the peptide.
さらに本発明は、(4)インビトロで、LERAFPLに示されるアミノ酸配列からなるペプチドと被検物質とを接触させ、その結合の程度を測定・評価することを特徴とする機械受容(Stretch Activated)チャネルの活性化抑制剤のスクリーニング方法に関する。
The present invention further relates to ( 4 ) a mechanosensitive (Stretch Activated) channel characterized in that a test substance is contacted with a peptide comprising the amino acid sequence shown in LERAFPL in vitro and the degree of binding is measured and evaluated. The present invention relates to a screening method for an activation inhibitor.
本発明によると、SAチャネルの活性化を抑制するペプチドや、該ペプチド又は該ペプチドをコードするDNAを有効成分とするSAチャネルの活性化抑制剤や循環器病疾患の治療薬、前記ペプチドを標的とした循環器病疾患の判定方法、SAチャネルの活性化抑制剤のスクリーニング方法を提供することができる。 According to the present invention, a peptide that suppresses SA channel activation, an SA channel activation inhibitor comprising the peptide or DNA encoding the peptide as an active ingredient, a therapeutic agent for cardiovascular disease, and the peptide target And a screening method for an SA channel activation inhibitor.
本発明のSAチャネルの活性化を抑制するペプチドとしては、LERAFPLに示されるアミノ酸配列(配列番号1)からなるペプチドであれば特に制限されず、かかるペプチド化学合成により調製することができる。例えば、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t−ブチルオキシカルボニル法)等の化学合成法に従って本発明のペプチドを合成することができる他、各種の市販のペプチド合成機を利用して本発明のペプチドを合成することもできる。 The peptide that suppresses the activation of the SA channel of the present invention is not particularly limited as long as it is a peptide consisting of the amino acid sequence (SEQ ID NO: 1) shown in LERAFPL, and can be prepared by such peptide chemical synthesis. For example, the peptide of the present invention can be synthesized according to chemical synthesis methods such as Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-butyloxycarbonyl method), and various commercially available peptide synthesizers. It is also possible to synthesize the peptide of the present invention.
本発明の融合ペプチドとしては、上記本発明のペプチドとマーカータンパク質及び/又はペプチドタグとが結合しているものであればどのようなものでもよい。マーカータンパク質としては、従来知られているマーカータンパク質であれば特に制限されるものではなく、例えば、アルカリフォスファターゼ、HRP等の酵素、抗体のFc領域、GFP等の蛍光物質などを具体的に挙げることができ、またペプチドタグとしては、HA、FLAG、Myc等のエピトープタグや、GST、マルトース結合タンパク質、ビオチン化ペプチド、オリゴヒスチジン等の親和性タグなどの従来知られているペプチドタグを具体的に例示することができる。かかる融合ペプチドは、常法により作製することができ、Ni−NTAとHisタグの親和性を利用した本発明のペプチドの精製や、本発明のペプチドの検出や、本発明のペプチドに対する抗体の定量や、その他当該分野の研究用試薬としても有用である。 The fusion peptide of the present invention may be any peptide as long as the peptide of the present invention is bound to the marker protein and / or peptide tag. The marker protein is not particularly limited as long as it is a conventionally known marker protein. Specific examples include an enzyme such as alkaline phosphatase and HRP, an Fc region of an antibody, and a fluorescent substance such as GFP. As peptide tags, known peptide tags such as epitope tags such as HA, FLAG, and Myc, and affinity tags such as GST, maltose-binding protein, biotinylated peptide, oligohistidine, etc. It can be illustrated. Such a fusion peptide can be prepared by a conventional method. Purification of the peptide of the present invention utilizing the affinity between Ni-NTA and His tag, detection of the peptide of the present invention, and quantification of an antibody against the peptide of the present invention It is also useful as a research reagent in this field.
本発明のSAチャネルの活性化抑制剤としては、LERAFPLに示されるアミノ酸配列からなるペプチド又は該ペプチドをコードするDNAを有効成分とするものであれば特に制限されず、かかるDNAとしては配列番号2に示される塩基配列CTTGAGAGAGCCTTCCCACTTを具体的に例示することができる。SAKCAは、心筋の他、血管平滑筋、気管支平滑筋、内臓平滑筋など平滑筋細胞が存在するところに発現しており、また腎臓でも発現するといわれていることから、本発明のSAチャネルの活性化抑制剤は、循環器疾患以外に、呼吸器疾患や内臓疾患などの予防・治療薬として利用しうる可能性がある。 The SA channel activation inhibitor of the present invention is not particularly limited as long as it comprises a peptide consisting of the amino acid sequence shown in LERAFPL or a DNA encoding the peptide as an active ingredient. The base sequence CTTGAGAGAGCCCTTCCACTTT shown by can be specifically illustrated. SAKCA is expressed in the presence of smooth muscle cells such as vascular smooth muscle, bronchial smooth muscle, and visceral smooth muscle in addition to the myocardium, and is also expressed in the kidney. Thus, the activity of the SA channel of the present invention. The anti-oxidation agent may be used as a preventive / therapeutic agent for respiratory diseases and visceral diseases in addition to cardiovascular diseases.
本発明の循環器疾患の予防・治療薬としては、LERAFPLに示されるアミノ酸配列からなるペプチド又は該ペプチドをコードするDNAを有効成分とするものであれば特に制限されず、循環器病疾患としては、不整脈、高血圧症、心筋症、動脈硬化、心筋梗塞等を挙げることができる。本発明の循環器疾患の予防・治療薬として、本発明のSAチャネルの活性化を抑制するペプチドを有効成分として用いる場合、心臓等の細胞内にを導入する方法としては、巨大分子と非共有結合体を形成し、タンパク質等の巨大分子の構造を変化させ、タンパク質等の巨大分子を細胞内にデリバリーすることができるChariot(Active Motif社製)等の細胞毒性のない試薬を用いることができる。また、本発明の循環器疾患の予防・治療薬として、本発明のSAチャネルの活性化を抑制するペプチドをコードするDNAを有効成分として用いる場合、該DNAを適当な発現ベクターにインテグレイトし、かかるベクターをエレクトロポレーション、超音波、遺伝子銃、ハイドロダイナミクスインジェクションにより細胞内に導入する方法や、デンドリティックポリリジン等の遺伝子キャリアー分子を用いて遺伝子デリバリーすることにより細胞内に本発明のペプチドを発現させることができる。また製剤とする場合、生理的食塩水アルコール等の溶剤、ポリエチレングリコール、プロピレングリコール等の溶解補助剤、ステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、レシチン等の懸濁化剤、グリセリン、D−マンニトール等の等張化剤、リン酸塩、酢酸塩、クエン酸塩等の緩衝剤などを配合することができる。 The prophylactic / therapeutic agent for cardiovascular disease of the present invention is not particularly limited as long as it comprises a peptide consisting of the amino acid sequence shown in LERAFPL or a DNA encoding the peptide as an active ingredient. Arrhythmia, hypertension, cardiomyopathy, arteriosclerosis, myocardial infarction and the like. When the peptide that suppresses activation of the SA channel of the present invention is used as an active ingredient as a prophylactic / therapeutic agent for cardiovascular disease of the present invention, a method for introducing it into cells such as the heart is non-shared with macromolecules. Non-cytotoxic reagents such as Chariot (manufactured by Active Motif) that can form conjugates, change the structure of macromolecules such as proteins, and deliver macromolecules such as proteins into cells can be used . In addition, when a DNA encoding a peptide that suppresses activation of the SA channel of the present invention is used as an active ingredient as a prophylactic / therapeutic agent for cardiovascular disease of the present invention, the DNA is integrated into an appropriate expression vector, The vector of the present invention is expressed in cells by introducing such vectors into cells by electroporation, ultrasound, gene gun, hydrodynamics injection, or by gene delivery using gene carrier molecules such as dendritic polylysine. Can be made. When preparing a preparation, a solvent such as physiological saline alcohol, a solubilizing agent such as polyethylene glycol and propylene glycol, a suspending agent such as stearyltriethanolamine, sodium lauryl sulfate, and lecithin, glycerin, D-mannitol and the like. Buffering agents such as tonicity agents, phosphates, acetates and citrates can be blended.
本発明の循環器疾患の判定方法としては、LERAFPLに示されるアミノ酸配列からなるペプチド部分を標的とする方法であれば特に制限されず、具体的には、ヒトSTREX配列(図2参照)におけるLERAFPL相当部分の塩基配列を調べ、該塩基配列がコードするアミノ酸配列がLERAFPLと異なっている場合、例えばLERTFPL(配列番号3)、LGRAFPL(配列番号4)、LAPEFRL(配列番号5)等の変異が認められた場合、伸展感受性が低く、不整脈、低血圧症等の循環器病疾患の可能性が大きい。 The method for determining a circulatory disease of the present invention is not particularly limited as long as it is a method targeting a peptide portion consisting of the amino acid sequence shown in LERAFPL, and specifically, LERAFPL in the human STREX sequence (see FIG. 2). When the nucleotide sequence of the corresponding part is examined and the amino acid sequence encoded by the nucleotide sequence is different from LERAFPL, for example, mutations such as LERTFPL (SEQ ID NO: 3), LGRAFPL (SEQ ID NO: 4), LAPEFRL (SEQ ID NO: 5) are observed. In this case, the stretch sensitivity is low, and the possibility of cardiovascular diseases such as arrhythmia and hypotension is high.
本発明のSAチャネルの活性化抑制剤のスクリーニング方法としては、インビトロで、LERAFPLに示されるアミノ酸配列からなるペプチドと被検物質とを接触させ、その結合の程度を測定・評価する方法であれば特に制限されず、本発明のペプチドと被検物質とを接触させ、その結合の程度を測定・評価する方法としては、NHS活性化HiTrapカラムに結合させたLERAFPLに被検物質を接触・結合させるアフィニティークロマトグラフィーを利用する方法の他、ツーハイブリッド法やファージディスプレー法等を具体的に挙げることができる。このスクリーニング方法で得られるタンパク質等の物質は、SAチャネルのSTREX配列におけるLERAFPLに示されるアミノ酸配列部分と結合し、STREX配列におけるLERAFPLに示されるアミノ酸配列部分がEF−1と結合するのを防ぐことにより、SAチャネルの活性化を抑制することが可能となることから、不整脈、高血圧症、心筋症、動脈硬化、心筋梗塞等の循環器病疾患の予防・治療薬として期待できる。 As a screening method for the SA channel activation inhibitor of the present invention, any method can be used in which a peptide comprising the amino acid sequence shown in LERAFPL is brought into contact with a test substance in vitro, and the degree of binding is measured and evaluated. The method of contacting the peptide of the present invention with a test substance and measuring and evaluating the degree of binding is not particularly limited, and the test substance is contacted and bound to LERAFPL bound to an NHS-activated HiTrap column. In addition to the method using affinity chromatography, a two-hybrid method, a phage display method and the like can be specifically mentioned. Substances such as proteins obtained by this screening method bind to the amino acid sequence part shown in LERAFPL in the STREX sequence of the SA channel and prevent the amino acid sequence part shown in LERAFPL in the STREX sequence from binding to EF-1. Therefore, it is possible to suppress the activation of SA channel. Therefore, it can be expected as a prophylactic / therapeutic agent for cardiovascular diseases such as arrhythmia, hypertension, cardiomyopathy, arteriosclerosis and myocardial infarction.
以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.
(STREXと膜会合コンポーネントとの相互作用)
STREXは、システイン及びプロリンに富むというその性質から他の分子と相互作用することが示唆されており(Saito et al., 1997)、従ってSTREX配列が膜会合コンポーネントと直接又は間接に相互作用し、膜内の強度を感知している可能性を想定しても不自然ではない。この伸展感受性には上記の相互作用が必要であることから考察すると、ERA配列を有するSTREXが過剰になると結合パートナーを占有することになり、その結果、SAKCaC内STREXのパートナーとの結合がブロックされる(図3A、図式)。かかる仮説を実証するために本発明者らは、SAKCa発現CHO細胞において、トリSTREX(ERAを含む)−EGFP融合タンパク質を過剰発現させた。図3Aに示すように、GFPシグナルは膜で検出され、STREX−GFPが細胞質膜に局在することが示唆された。さらに興味深いことに、SAKCaCの伸展感受性は顕著に抑制されており、SAKCaCの伸展感受性には、STREX配列及び数種の膜会合タンパク質との相互作用が重要であることが示唆された(図3B)。このことは、切除したinside-outパッチにLERAFPLペプチドのSTREX断片を塗布すると、SAKCaCの伸展感受性が顕著に抑制される一方で、LERTFPL、LGRAFPL及びLAEFRL等、他のペプチドを用いても伸展感受性は抑制されなかったとの観察結果によって裏付けられている(図4A.B)。
(Interaction between STREX and membrane-associated components)
STREX has been suggested to interact with other molecules due to its nature of being rich in cysteine and proline (Saito et al., 1997), thus the STREX sequence interacts directly or indirectly with membrane association components, It is not unnatural to assume the possibility of sensing the strength in the membrane. Considering that the above-mentioned interaction is necessary for this stretch sensitivity, when STREX having an ERA sequence becomes excessive, the binding partner is occupied, and as a result, the binding of the STREX partner in SAK Ca C with the STREX partner becomes difficult. Blocked (FIG. 3A, schematic). In order to demonstrate this hypothesis, we over-expressed the avian STREX (including ERA) -EGFP fusion protein in SAK Ca- expressing CHO cells. As shown in FIG. 3A, GFP signal was detected in the membrane, suggesting that STREX-GFP was localized in the cytoplasmic membrane. More interestingly, the stretch sensitivity of SAK Ca C was remarkably suppressed, suggesting that the interaction with the STREX sequence and several membrane-associated proteins is important for the stretch sensitivity of SAK Ca C. (FIG. 3B). This is because when the STRAF fragment of the LERAFPL peptide is applied to the excised inside-out patch, the extension sensitivity of SAK Ca C is remarkably suppressed. This is supported by the observation that sensitivity was not suppressed (FIGS. 4A and B).
(STREX結合するタンパク質の単離と質量分析器を用いての同定)
伸展感受性には、STREXと未知のコンポーネントが会合することが重要であることが示唆されることから、本発明者らは、STREXペプチド及びトリ心臓抽出液を用いてインビトロ結合分析を行った。製造者マニュアルに従い、STREXペプチド(LERAFPL、LERTFPL、LGRAFPL、LAPEFRL;各1mg)を、NHS活性化HiTrapカラム(1ml)(Amersham Biosciences社製)に交差結合させた。1%NP40、25mMのトリス、プロテイナーゼインヒビター(Roche社製、complete, Mini, Protease inhibitor cocktail tablets)を含む溶解緩衝液(pH7.40)において、4℃でトリ胚心臓(生後12日(12D))をホモジェナイズし、その後、15000×g、4℃、20分間の条件下で遠心分離にかけた。上清(タンパク質1mg)を上記カラムに適用し、1%NP40、100mMのグリシンを含む溶液(pH3.0)を用いて結合したタンパク質を溶出させた。
(Isolation of STREX-binding protein and identification using mass spectrometer)
Since it is suggested that STREX and an unknown component associate with each other for stretch sensitivity, the present inventors performed in vitro binding analysis using STREX peptide and avian heart extract. According to the manufacturer's manual, STREX peptides (LERAFPL, LERTFPL, LGRAFPL, LAPEFRL; 1 mg each) were cross-linked to NHS activated HiTrap columns (1 ml) (Amersham Biosciences). Avian embryonic heart (12 days after birth (12D)) at 4 ° C. in lysis buffer (pH 7.40) containing 1% NP40, 25 mM Tris, proteinase inhibitor (complete, Mini, Protease inhibitor cocktail tablets, manufactured by Roche) Was then homogenized and then centrifuged at 15000 × g, 4 ° C. for 20 minutes. The supernatant (1 mg of protein) was applied to the column, and the bound protein was eluted using a solution (pH 3.0) containing 1% NP40, 100 mM glycine.
溶出タンパク質を直ちにSDS−PAGEによって分離し、シルバー染色又はクマシーブルー染色を施し、質量分析器による分析及びin-gelタンパク質分解に供した。SDS−PAGE実験の結果、トリSTREXにおいてのみ、明確な分子量(42kDa及び50kDa)を有するバンドが認められ、マウス、ウサギ及び混合型STREXでは認められなかった(図5A、左図)。ゲル内の染色タンパク質のバンドを清潔なレーザー刃で切断し、ゲル内のタンパク質を10mMのDTTで減少させ、10mMの重炭酸アンモニウム中において100mMのヨードアセタミドで修飾した。10mMの重炭酸アンモニウム中において50%アセトニトリルでゲル片を処理し、タンパク質の染色を除去し、ゲル片を乾燥させた。乾燥したゲル片を、300ngのトリプシン(Promega社製)を含む10mMの重炭酸アンモニウムで再水和させた。かかるゲル片を一晩37℃でインキュベートし、得られたペプチドを、0.1%トリフルオロ酢酸を含む60%アセトニトリルを用いて回収した。 The eluted protein was immediately separated by SDS-PAGE, subjected to silver staining or Coomassie blue staining, and subjected to analysis by a mass spectrometer and in-gel proteolysis. As a result of the SDS-PAGE experiment, bands having clear molecular weights (42 kDa and 50 kDa) were observed only in the bird STREX, but not in the mouse, rabbit and mixed STREX (FIG. 5A, left panel). The stained protein band in the gel was cut with a clean laser blade, the protein in the gel was reduced with 10 mM DTT and modified with 100 mM iodoacetamide in 10 mM ammonium bicarbonate. Gel pieces were treated with 50% acetonitrile in 10 mM ammonium bicarbonate to remove protein staining and the gel pieces were dried. The dried gel pieces were rehydrated with 10 mM ammonium bicarbonate containing 300 ng trypsin (Promega). The gel pieces were incubated overnight at 37 ° C., and the resulting peptides were collected using 60% acetonitrile containing 0.1% trifluoroacetic acid.
上記トリプシンペプチドを溶解させ、エレクトロスプレーイオン化(ESI)ソース及びMAGIC2002液体クロマトグラフィーシステム(Michrom BioResources社製)を備えたLCQイオントラップ(IT)質量分析器(ThermoFinnigan社製)にかけて分析した。質量分析データを用い、マスコットサーチエンジンを利用して、タンパク質データベースを検索した。すなわち、質量分析アプローチと配列データベース検索法を組み合わせ、トリSTREX(LERAFPL)と会合するタンパク質を分析した。スペクトラムにおけるシグナルは、ゲル中トリプシン消化によってタンパク質から産生したトリプシンペプチドに相当するものだった。測定したペプチド質量を用い、類似のトリプシンペプチド質量マップをもたらすタンパク質を求めて配列データベース(マスコットサーチエンジン;Mascot search engines)を検索した。42kDaのタンパク質はアクチンであると同定され、50kDaのタンパク質は、EF−1αであると同定された。抗EF−1α抗体を用いた免疫ブロッティングの結果、50kDaの精製タンパク質がEF−1であることがさらに確認された(図5A、右図)。 The trypsin peptide was dissolved and analyzed on an LCQ ion trap (IT) mass spectrometer (ThermoFinnigan) equipped with an electrospray ionization (ESI) source and a MAGIC 2002 liquid chromatography system (Michrom BioResources). Using the mass spectrometry data, a protein database was searched using a mascot search engine. That is, a protein that associates with avian STREX (LERAFPL) was analyzed by combining a mass spectrometry approach and a sequence database search method. The signal in the spectrum was comparable to the tryptic peptide produced from the protein by trypsin digestion in the gel. Using the measured peptide mass, a sequence database (Mascot search engines) was searched for proteins that yielded a similar tryptic peptide mass map. The 42 kDa protein was identified as actin and the 50 kDa protein was identified as EF-1α. As a result of immunoblotting using an anti-EF-1α antibody, it was further confirmed that the 50 kDa purified protein was EF-1 (FIG. 5A, right figure).
(siRNAトランスフェクション及び細胞培養)
SAKCaCの伸展感受性におけるEF−1の役割を調べるために、短い干渉RNA(siRNA)を用い、培養トリ胚心筋におけるEF−1の発現を消失させた。EF−1をコードするmRNAのコード領域と、コントロールとしての蛍ルシフェラーゼをそれぞれ標的とするsiRNAデュプレックス(duplex)における機械感受性の抑制能を調べた。EF−1(Gallus gallus elongation factor 1 alpha)cDNA配列(アクセッションナンバー:L00677)に対するトリEF−1のsiRNAは、B-Bridge International Inc.(San Jose, CA)が設計したもので、Dharmaconで合成した。実験で使用した配列は以下のとおり:5’−CCAUGUGUGUUGAGAGCUU−3’(ORF中の1226−1244ヌクレオチド)。また、標的配列の位置は、開始コドンの1番目のヌクレオチドとの関連で決定した。蛍(Photinus pyralis)ルシフェラーゼ遺伝子のsiRNAをコントロールとした。このsiRNAを、siFECTOR(B-Bridge International Inc.社製)を用いて培養トリ胚心筋細胞にトランスフェクトした。
(SiRNA transfection and cell culture)
To investigate the role of EF-1 in SAK Ca C stretch sensitivity, a short interfering RNA (siRNA) was used to abolish EF-1 expression in cultured avian embryo myocardium. The ability to suppress the mechanosensitivity of siRNA duplexes targeting the coding region of mRNA encoding EF-1 and firefly luciferase as a control was examined. The avian EF-1 siRNA against the EF-1 (Gallus gallus elongation factor 1 alpha) cDNA sequence (accession number: L00677) was designed by B-Bridge International Inc. (San Jose, Calif.) And synthesized by Dharmacon. did. The sequences used in the experiment are as follows: 5′-CCAUGUGUGUGUGAGAGCUU-3 ′ (1226-1244 nucleotides in the ORF). In addition, the position of the target sequence was determined in relation to the first nucleotide of the start codon. A siRNA of a firefly (Photinus pyralis) luciferase gene was used as a control. The siRNA was transfected into cultured avian embryonic cardiomyocytes using siFECTOR (B-Bridge International Inc.).
標的タンパク質が実際に前記胚心筋細胞から除去されたことを明らかにするために、抗EF−1α抗体を用いてウエスタンブロッティングを行った。図5Bに示すように、ルシフェラーゼに対するsiRNAデュプレックスで処理したコントロール細胞の場合と比べ、EF−1αに対するsiRNAデュプレックスを用いた場合にEF−1αタンパク質の発現は顕著に減少した。アクチンの発現はsiRNA処理によって影響されなかった。 In order to clarify that the target protein was actually removed from the embryonic cardiomyocytes, Western blotting was performed using an anti-EF-1α antibody. As shown in FIG. 5B, the expression of the EF-1α protein was significantly reduced when the siRNA duplex for EF-1α was used as compared to the control cells treated with the siRNA duplex for luciferase. Actin expression was not affected by siRNA treatment.
siRNA−ルシフェラーゼで処理した細胞におけるSAKCaCの伸展感受性は影響を受けなかったが、siRNA−EF−1αで処理した細胞における伸展感受性は顕著に抑制された(図5C)。 Although the stretch sensitivity of SAK Ca C in cells treated with siRNA-luciferase was not affected, the stretch sensitivity in cells treated with siRNA-EF-1α was significantly suppressed (FIG. 5C).
以上の結果から、SAKCaCの伸展感受性にEF−1αが重要な役割を担っていることが示唆される。 From the above results, it is suggested that EF-1α plays an important role in the extension sensitivity of SAK Ca C.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004323916A JP4654432B2 (en) | 2004-11-08 | 2004-11-08 | Inhibitors of activation of StretchActivated channel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004323916A JP4654432B2 (en) | 2004-11-08 | 2004-11-08 | Inhibitors of activation of StretchActivated channel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006131570A JP2006131570A (en) | 2006-05-25 |
JP4654432B2 true JP4654432B2 (en) | 2011-03-23 |
Family
ID=36725427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004323916A Active JP4654432B2 (en) | 2004-11-08 | 2004-11-08 | Inhibitors of activation of StretchActivated channel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4654432B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021145038A1 (en) * | 2020-01-17 | 2021-07-22 | ロート製薬株式会社 | Method for evaluating/screening tissue structure and tissue function control agent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004097060A (en) * | 2002-09-06 | 2004-04-02 | Japan Science & Technology Corp | Calcium-dependent potassium-permeable stretch-activated channel protein and gene thereof |
WO2004085647A1 (en) * | 2003-03-26 | 2004-10-07 | Pharmadesign, Inc. | Low-molecular weight peptides inhibiting ion channel activity |
-
2004
- 2004-11-08 JP JP2004323916A patent/JP4654432B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004097060A (en) * | 2002-09-06 | 2004-04-02 | Japan Science & Technology Corp | Calcium-dependent potassium-permeable stretch-activated channel protein and gene thereof |
WO2004085647A1 (en) * | 2003-03-26 | 2004-10-07 | Pharmadesign, Inc. | Low-molecular weight peptides inhibiting ion channel activity |
Also Published As
Publication number | Publication date |
---|---|
JP2006131570A (en) | 2006-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Morris et al. | Clathrin assembly protein AP180: primary structure, domain organization and identification of a clathrin binding site. | |
US20190151456A1 (en) | Compositions of Engineered Exosomes and Methods of Loading Luminal Exosome Payloads | |
Kalthoff et al. | Clint: a novel clathrin-binding ENTH-domain protein at the Golgi | |
Sharer et al. | ARL2 and BART enter mitochondria and bind the adenine nucleotide transporter | |
Lázár et al. | Structure–function analysis of peroxidasin provides insight into the mechanism of collagen IV crosslinking | |
ES2625316T3 (en) | Neukinase, a protein downstream of neuregulin | |
Roger et al. | Expression analysis of highly polymorphic mucin proteins (Sm PoMuc) from the parasite Schistosoma mansoni | |
Wang et al. | Echinococcus multilocularis: proteomic analysis of the protoscoleces by two-dimensional electrophoresis and mass spectrometry | |
Jimenez et al. | αC-conotoxin PrXA: a new family of nicotinic acetylcholine receptor antagonists | |
Okutsu et al. | AKAP220 colocalizes with AQP2 in the inner medullary collecting ducts | |
Murai et al. | Synthetic ubiquinones specifically bind to mitochondrial voltage-dependent anion channel 1 (VDAC1) in Saccharomyces cerevisiae mitochondria | |
Craik et al. | Cyclotide isolation and characterization | |
Emadali et al. | Proteomic Analysis of Ischemia-Reperfusion Injury upon Human Liver Transplantation Reveals the Protective Role of IQGAP1* S | |
Heintzelman | Actin and myosin in Gregarina polymorpha | |
Samgina et al. | Mass spectrometry differentiation between Rana arvalis populations based on their skin peptidome composition | |
Blazejczyk et al. | Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling | |
Freeman et al. | β2-Adrenergic receptor stimulated, G protein-coupled receptor kinase 2 mediated, phosphorylation of ribosomal protein P2 | |
JP4654432B2 (en) | Inhibitors of activation of StretchActivated channel | |
Tsai et al. | Molecular cloning and differential expression pattern of two structural variants of the crustacean hyperglycemic hormone family from the mud crab Scylla olivacea | |
Yi et al. | A Ser/Thr kinase required for membrane-associated assembly of the major sperm protein motility apparatus in the amoeboid sperm of Ascaris | |
Ge et al. | AcT‐2: a novel myotropic and antimicrobial type 2 tryptophyllin from the skin secretion of the central American red‐eyed leaf frog, Agalychnis callidryas | |
Zhu et al. | The role of Bombyx mori Bmtutl-519 protein in the infection of BmN cells by Nosema bombycis | |
Redeker et al. | Posttranslational modification of brain tubulins from the Antarctic fish Notothenia coriiceps: reduced C-terminal glutamylation correlates with efficient microtubule assembly at low temperature | |
Kawashima et al. | CABCOCO1, a novel coiled‐coil protein With calcium‐binding activity, is localized in the sperm flagellum | |
Zeng et al. | Proteomic analysis of individual fruit fly hemolymph |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071102 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4654432 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |