JP4652547B2 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
JP4652547B2
JP4652547B2 JP2000294823A JP2000294823A JP4652547B2 JP 4652547 B2 JP4652547 B2 JP 4652547B2 JP 2000294823 A JP2000294823 A JP 2000294823A JP 2000294823 A JP2000294823 A JP 2000294823A JP 4652547 B2 JP4652547 B2 JP 4652547B2
Authority
JP
Japan
Prior art keywords
temperature
shape memory
substrate
superconducting
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000294823A
Other languages
Japanese (ja)
Other versions
JP2002098039A (en
Inventor
義武 西
洋正 矢部
直忠 萩原
和也 小栗
恒則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University Educational Systems
Original Assignee
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational Systems filed Critical Tokai University Educational Systems
Priority to JP2000294823A priority Critical patent/JP4652547B2/en
Publication of JP2002098039A publication Critical patent/JP2002098039A/en
Application granted granted Critical
Publication of JP4652547B2 publication Critical patent/JP4652547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超伝導現象を用いた形状記憶材料及びアクチュエータに関する。本発明の形状記憶材料は、宇宙空間でのアンテナなどの可動骨材、強力なサーボモータの代わりとして適用可能である。また、本発明のアクチュエータは、航空宇宙用強力アクチュエータとして適用可能である。
【0002】
【従来の技術】
一般に、形状記憶材料は温度により形状が変化し、宇宙空間でのアンテナなどの可動骨材、深海ロボットのアクチュエータや人工弁等の医療用材料に応用されている。
【0003】
しかしながら、形状記憶材料は力が弱く、大きさのかさむサーボモータの代わりや航空宇宙用強力アクチュエータ等への応用が困難である。また、高度な技術を要する大型航空機や宇宙船等の機器やシステムでは、部品点数の多量化、それに伴う複雑化、工数増大、コスト上昇などの大きな技術上、産業上の問題点がある。
【0004】
【発明が解決しようとする課題】
本発明はこうした事情を考慮してなされたもので、基板と、この基板上に形成された超伝導現象を用いた形状記憶材料からなる薄膜とを具備し、前記形状記憶材料が、磁場中に配置して温度により形状が変化する材料とすることにより、大型航空機や宇宙船などの機器やシステムの小型化、部品点数の少量化、工数減少、コスト低減等を図れる可能性が高いアクチュエータを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、基板と、この基板上に形成された超伝導現象を用いた形状記憶材料からなる薄膜とを具備し、前記形状記憶材料が、磁場中に配置して温度により形状が変化する材料であることを特徴とするアクチュエータである。
【0008】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。
超伝導誘起形状記憶材料の特徴は、次の点にある。
1)一般に形状記憶材料は温度などの単位な刺激により形状が変化する。本発明では、温度、磁場、電流量、特定の波長の光、力学的応力などの多様な刺激により形状変化が発現する。
2)低温で形状記憶効果を発現する場合が多い。この結果、外部に作用する力が高出力である場合が多い。
【0009】
本発明において、前記超伝導材料としては例えば金属Nb,YBaCu7−xが挙げられる。その他、NbTi合金やNbSn、VSiに代表されるA15型化合物は実験から形状記憶効果を示すことが確認されている。また、セラミックスを含めて各種超伝導体も同様に形状記憶効果を示す材料が挙げられる。
【0010】
本発明において、前記形状記憶材料は、温度、磁場、電流値、特定の波長光、力学的応力などの環境の多様な刺激により形状が変化する。ここで、「多様な刺激」とは上述の温度、磁場、電流値、特定の波長光、力学的応力を意味する。
【0011】
本発明において、アクチュエータは基板上に前記形状記憶材料からなる薄膜を形成しても構成されるが、基板上に薄膜を形成する場合は、例えば図1に示すようなマグネトロンスパッタリング装置が使用される。図1において、符番1は反応容器を示す。この反応容器1内には、上部にターゲット2が配置され、下部に基板3を支持するホルダー4が配置され、両者間にシャッター5が配置されている。ここで、シャッター5は安定してから開けられる。前記反応容器1の下部、側部にはバルブ6a,6bを介して真空装置(TP)7a、真空装置(RP)7bが夫々接続されている。両真空装置7a,7b間もバルブ6cを介装した配管8により接続されている。前記反応容器1には、夫々Hガスを収容したボンベ9、Arガスを収容したボンベ10が接続されている。
【0012】
【実施例】
以下、本発明の一実施例について図2を参照して説明する。
図2は、本発明に係る形状記憶合金アクチュエータの断面図を示す。図2において、符番21は基板を示す。このSi基板21上には、YBaCu7−xあるいは金属Nbらなる薄膜22が形成されている。前記YBaCu7−xや金属Nb、温度、磁場、電流値、特定の波長光、力学的応力などの環境の多様な刺激により形状が変化する性質を有している。
【0013】
次に、こうした構成のアクチュエータ23の製造方法について説明する。
まず、図1のマグネトロンスパッタリング装置を用いて、ホルダー4上にSi基板21をセットする。つづいて、真空装置7a,7bを用いて反応容器1内を真空にした後、シャッター5を開け、HガスとArガスを同時に反応容器1内に送り、直流プレーナマグネトロン型のスパッタガンを用いて、Si基板21上に厚さ約2μmの薄膜22を成膜した。成膜条件は、到達真空度:3.9×10−5Pa、リークレイト(ガスの漏れ):5.0×10−7Pa・m/s、Ar分圧:6.0×10−2Pa、スパッタリングガス:Ar、ターゲット投入電力:200W、スパッタ時間:3600s、基板材料:Si(100)面、基板温度:300K(室温)とした。
【0014】
上記実施例に係る形状記憶合金アクチュエータは、Si基板21と、この基板21上に形成された、温度により形状変化するYBaCu7−xあるいは金属Nbらなる薄膜22とから構成されているため、機器やシステムの小型化、部品点数の少量化、工数減少、コスト低減などの効果が得られる。
【0015】
図3は、純Nb超伝導材料の温度変化に伴う一軸引張り線膨張計を用いた線膨張変化を示している。なお、図3において、Tcは超伝導遷移温度を示し、Loadは引張り荷重を示す。図3から、超伝導材料としてNb線を用いた場合、超伝導遷移温度直上で軟化・膨張現象が見られることが確認できた。
【0016】
図4は、上記超伝導材料(YBaCu7−x焼結材)における温度と過剰歪の関係を示す図である。なお、図4において、圧縮応力は4.6MPaである。図4より、90Kから145K、及び145Kから155Kの間で過剰歪が見られることが確認できた。YBaCu7−x焼結材の場合も、Nb同様、形状記憶現象が発現されることを確認した。
【0017】
図5は、磁場中の上記超伝導材料(YBaCu7−x急冷凝固(QMG)材)における温度と歪の関係を示す図である。図5から、磁場中で超伝導遷移温度以下まで冷却し昇温させると、昇温時に非常に大きい過剰歪みが見出された。これは、超伝導体に磁束がピンニングされたことによる。即ち、ピンニングされた磁束を中心とした超伝導体中の渦電流の領域同士が反発し合うことにより、急激な過剰歪が発生する。これは、変形量や力が大きな形状記憶現象を発現することを意味する。
【0018】
この材料の電気抵抗において明確な超伝導遷移は、80Kから100Kで見られる。なお、図6(A),(B)から、この材料における電気抵抗の温度依存性が室温から160〜180K付近まで金属と類似の固有の関係にある(参考文献:Journal of Materials Science Letters,8(1989)pp.700−702)。
【0019】
160〜180K以下でこの関係から外れ、超伝導遷移現象が開始され、軟化・膨張が生じる。この体積変化が形状記憶現象を誘起する。現在、軟化は一般に超伝導遷移の前駆現象と見られているが、すでに開始していると考えることもできうる。既存の形状記憶効果は室温付近のマルテンサイト変態が主流であるため、体積変化はそれほど大きくなく、大きな応力が期待できない。ところが、図4、図5に示すYBaCu7−x超伝導材料の場合は、低温領域で見られる過剰歪と、低温における大きな原子間力(凝集力)により、大きな作用力を伴う形状記憶材料となり得る。
【0020】
なお、上記実施例では、YBaCu7−x,金属Nbを用いた場合について述べたが、これに限らず、他の超伝導材料を用いても良い。
【0021】
また、上記実施例では、温度と磁場により形状が変化する超伝導材料を用いる場合について述べたが、これに限らず、他の刺激例えば電流量、特定の光波長、力学的応力により形状が変化する。
【0022】
【発明の効果】
以上詳述したように本発明によれば、基板と、この基板上に形成された超伝導現象を用いた形状記憶材料からなる薄膜とを具備し、前記形状記憶材料が、磁場中に配置して温度により形状が変化する材料であること構成とすることにより、大型航空機や宇宙船などの機器やシステムの小型化、部品点数の少量化、工数減少、コスト低減等を図れる可能性が高いアクチュエータを提供できる。
【図面の簡単な説明】
【図1】本発明に係るマグネトロンスパッタリング装置の説明図。
【図2】本発明の一実施例に係る形状記憶合金アクチュエータの断面図。
【図3】純Nb超伝導材料の温度変化に伴う一軸引張り線膨張計を用いた線膨張変化を示す図。
【図4】超伝導材料(YBaCu7−x焼結材)における温度と過剰歪の関係を示す図。
【図5】磁場中の超伝導材料(YBaCu7−x急冷凝固(QMG)材)における温度と歪の関係を示す図。
【図6】YBaCu7−x超伝導材料における電気抵抗と温度との関係を示す状態図。
【符号の説明】
1…反応容器、
2…ターゲット、
3…基板、
4…ホルダー、
5…シャッター、
6a,6b…バルブ、
7a,7b…真空装置、
8…配管、
9,10…ボンベ、
21…Si基板、
22…薄膜、
23…アクチュエータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shape memory material and an actuator using a superconducting phenomenon. The shape memory material of the present invention is applicable as a substitute for a movable aggregate such as an antenna in space and a powerful servo motor. The actuator of the present invention can be applied as a powerful aerospace actuator.
[0002]
[Prior art]
In general, shape memory materials change in shape according to temperature, and are applied to medical materials such as movable aggregates such as antennas in deep space, actuators of deep sea robots, and artificial valves.
[0003]
However, the shape memory material has a weak force, and it is difficult to apply it to a large-sized servo motor instead of a large servo motor. In addition, devices and systems such as large aircraft and spacecrafts that require advanced technology have major technical problems such as an increase in the number of parts, associated complexity, increased man-hours, and increased costs.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and includes a substrate and a thin film made of a shape memory material using a superconducting phenomenon formed on the substrate, and the shape memory material is in a magnetic field. Providing actuators that are likely to reduce the size of equipment and systems, reduce the number of parts, reduce man-hours, reduce costs, etc. by arranging materials that change shape with temperature. The purpose is to do.
[0006]
[Means for Solving the Problems]
The present invention comprises a substrate and a thin film made of a shape memory material using a superconducting phenomenon formed on the substrate, and the shape memory material is placed in a magnetic field and changes its shape depending on temperature. It is an actuator characterized by being.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The features of the superconductivity-induced shape memory material are as follows.
1) In general, a shape memory material changes its shape by a unit stimulus such as temperature. In the present invention, a shape change is manifested by various stimuli such as temperature, magnetic field, current amount, light of a specific wavelength, and mechanical stress.
2) The shape memory effect is often exhibited at low temperatures. As a result, the force acting on the outside is often high output.
[0009]
In the present invention, examples of the superconducting material include metal Nb, YBa 2 Cu 3 O 7-x . In addition, it has been confirmed from experiments that A15 type compounds represented by NbTi alloy, Nb 3 Sn, and V 3 Si exhibit a shape memory effect. In addition, various superconductors including ceramics similarly include materials exhibiting a shape memory effect.
[0010]
In the present invention, the shape memory material changes its shape due to various environmental stimuli such as temperature, magnetic field, current value, specific wavelength light, and mechanical stress. Here, “various stimuli” means the above-mentioned temperature, magnetic field, current value, specific wavelength light, and mechanical stress.
[0011]
In the present invention, the actuator is configured by forming a thin film made of the shape memory material on the substrate. However, when forming a thin film on the substrate, for example, a magnetron sputtering apparatus as shown in FIG. 1 is used. . In FIG. 1, reference numeral 1 indicates a reaction vessel. In the reaction vessel 1, a target 2 is disposed at the upper portion, a holder 4 for supporting the substrate 3 is disposed at the lower portion, and a shutter 5 is disposed therebetween. Here, the shutter 5 is opened after being stabilized. A vacuum device (TP) 7a and a vacuum device (RP) 7b are connected to the lower and side portions of the reaction vessel 1 through valves 6a and 6b, respectively. Both vacuum devices 7a and 7b are also connected by a pipe 8 having a valve 6c interposed therebetween. The reaction vessel 1 is connected to a cylinder 9 containing H 2 gas and a cylinder 10 containing Ar gas.
[0012]
【Example】
An embodiment of the present invention will be described below with reference to FIG.
FIG. 2 shows a cross-sectional view of a shape memory alloy actuator according to the present invention. In FIG. 2, reference numeral 21 indicates a substrate. On the Si substrate 21, a thin film 22 made of YBa 2 Cu 3 O 7-x or metal Nb is formed. The YBa 2 Cu 3 O 7-x , the metal Nb, the temperature, the magnetic field, the current value, the specific wavelength light, and the property that the shape changes due to various stimuli of the environment such as mechanical stress.
[0013]
Next, a method for manufacturing the actuator 23 having such a configuration will be described.
First, the Si substrate 21 is set on the holder 4 using the magnetron sputtering apparatus of FIG. Subsequently, after the inside of the reaction vessel 1 is evacuated using the vacuum devices 7a and 7b, the shutter 5 is opened, H 2 gas and Ar gas are simultaneously sent into the reaction vessel 1, and a DC planar magnetron type sputtering gun is used. A thin film 22 having a thickness of about 2 μm was formed on the Si substrate 21. The film forming conditions were: ultimate vacuum: 3.9 × 10 −5 Pa, leaked (gas leakage): 5.0 × 10 −7 Pa · m 3 / s, Ar partial pressure: 6.0 × 10 − 2 Pa, sputtering gas: Ar, target input power: 200 W, sputtering time: 3600 s, substrate material: Si (100) surface, substrate temperature: 300 K (room temperature).
[0014]
The shape memory alloy actuator according to the above embodiment is composed of a Si substrate 21 and a thin film 22 formed on the substrate 21 and made of YBa 2 Cu 3 O 7-x or metal Nb whose shape changes with temperature. Therefore, effects such as downsizing of devices and systems, a reduction in the number of parts, reduction of man-hours, and cost can be obtained.
[0015]
FIG. 3 shows a change in linear expansion using a uniaxial tensile linear dilatometer accompanying a change in temperature of a pure Nb superconducting material. In FIG. 3, Tc represents the superconducting transition temperature, and Load represents the tensile load. From FIG. 3, it was confirmed that when Nb wire was used as the superconducting material, softening / expansion phenomenon was observed just above the superconducting transition temperature.
[0016]
FIG. 4 is a diagram showing the relationship between temperature and excess strain in the superconducting material (YBa 2 Cu 3 O 7-x sintered material). In FIG. 4, the compressive stress is 4.6 MPa. From FIG. 4, it was confirmed that excessive strain was observed between 90K to 145K and 145K to 155K. In the case of the YBa 2 Cu 3 O 7-x sintered material, it was confirmed that the shape memory phenomenon was expressed like Nb.
[0017]
FIG. 5 is a diagram showing the relationship between temperature and strain in the superconducting material (YBa 2 Cu 3 O 7-x rapid solidification (QMG) material) in a magnetic field. From FIG. 5, when the temperature was raised to a superconducting transition temperature or lower in a magnetic field, a very large excess strain was found at the time of temperature rise. This is because the magnetic flux is pinned on the superconductor. That is, a sudden excess strain occurs due to repulsion between eddy current regions in the superconductor centered on the pinned magnetic flux. This means that a shape memory phenomenon with a large deformation amount and force is developed.
[0018]
A clear superconducting transition in the electrical resistance of this material is seen from 80K to 100K. 6A and 6B, the temperature dependence of the electrical resistance in this material has an inherent relationship similar to that of metal from room temperature to around 160 to 180 K (reference: Journal of Materials Science Letters, 8 (1989) pp. 700-702).
[0019]
When the temperature is 160 to 180 K or less, this relationship is deviated, and a superconducting transition phenomenon is started, and softening / expansion occurs. This volume change induces a shape memory phenomenon. Currently, softening is generally seen as a precursor of a superconducting transition, but it can be considered that it has already begun. Since the existing shape memory effect is mainly a martensitic transformation near room temperature, the volume change is not so large and a large stress cannot be expected. However, in the case of the YBa 2 Cu 3 O 7-x superconducting material shown in FIGS. 4 and 5, there is a large acting force due to the excessive strain observed in the low temperature region and the large atomic force (cohesive force) at the low temperature. It can be a shape memory material.
[0020]
In the above-described embodiment, the case where YBa 2 Cu 3 O 7-x and metal Nb are used is described. However, the present invention is not limited to this, and other superconductive materials may be used.
[0021]
In the above embodiment, the case where the superconducting material whose shape changes depending on the temperature and the magnetic field is described. However, the shape is not limited to this. To do.
[0022]
【The invention's effect】
As described above in detail, according to the present invention, a substrate and a thin film made of a shape memory material using a superconducting phenomenon formed on the substrate are provided, and the shape memory material is disposed in a magnetic field. with the structure that the shape by temperature is a material that changes Te, miniaturization of equipment and systems, such as large aircraft or spacecraft, a small amount of parts, man-hours decreased, likely attained cost reduction or the like actuator Can provide.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a magnetron sputtering apparatus according to the present invention.
FIG. 2 is a cross-sectional view of a shape memory alloy actuator according to an embodiment of the present invention.
FIG. 3 is a diagram showing a change in linear expansion using a uniaxial tensile linear dilatometer accompanying a change in temperature of a pure Nb superconductive material.
FIG. 4 is a graph showing the relationship between temperature and excess strain in a superconducting material (YBa 2 Cu 3 O 7-x sintered material).
FIG. 5 is a diagram showing the relationship between temperature and strain in a superconducting material (YBa 2 Cu 3 O 7-x rapid solidification (QMG) material) in a magnetic field.
FIG. 6 is a state diagram showing the relationship between electrical resistance and temperature in a YBa 2 Cu 3 O 7-x superconducting material.
[Explanation of symbols]
1 ... reaction vessel,
2 ... Target,
3 ... substrate,
4 ... Holder,
5 ... Shutter,
6a, 6b ... valves,
7a, 7b ... vacuum device,
8 ... Piping,
9, 10 ... cylinder,
21 ... Si substrate,
22 ... thin film,
23: Actuator.

Claims (2)

基板と、この基板上に形成された超伝導現象を用いた形状記憶材料からなる薄膜とを具備し、前記形状記憶材料が、磁場中に配置して温度により形状が変化する材料であることを特徴とするアクチュエータ。A substrate and a thin film made of a shape memory material using a superconducting phenomenon formed on the substrate, wherein the shape memory material is a material that is placed in a magnetic field and changes its shape depending on temperature. Characteristic actuator. 前記形状記憶材料が、金属NbもしくはYBaCu7−xであることを特徴とする請求項1記載のアクチュエータ。The actuator according to claim 1, wherein the shape memory material is metal Nb or YBa 2 Cu 3 O 7-x .
JP2000294823A 2000-09-27 2000-09-27 Actuator Expired - Fee Related JP4652547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294823A JP4652547B2 (en) 2000-09-27 2000-09-27 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294823A JP4652547B2 (en) 2000-09-27 2000-09-27 Actuator

Publications (2)

Publication Number Publication Date
JP2002098039A JP2002098039A (en) 2002-04-05
JP4652547B2 true JP4652547B2 (en) 2011-03-16

Family

ID=18777348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294823A Expired - Fee Related JP4652547B2 (en) 2000-09-27 2000-09-27 Actuator

Country Status (1)

Country Link
JP (1) JP4652547B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102461064B1 (en) * 2020-10-23 2022-10-31 서울대학교 산학협력단 Driving device using surface plasmonic effect

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181301A (en) * 1992-12-14 1994-06-28 Fujitsu Ltd Solid-state image sensing device
JP2000017455A (en) * 1998-07-01 2000-01-18 Isao Sugai Method for coating substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06181301A (en) * 1992-12-14 1994-06-28 Fujitsu Ltd Solid-state image sensing device
JP2000017455A (en) * 1998-07-01 2000-01-18 Isao Sugai Method for coating substrate

Also Published As

Publication number Publication date
JP2002098039A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
Senatore et al. Progresses and challenges in the development of high-field solenoidal magnets based on RE123 coated conductors
Sugano et al. The reversible strain effect on critical current over a wide range of temperatures and magnetic fields for YBCO coated conductors
Buzea et al. Review of the superconducting properties of MgB2
EP2810312B1 (en) A mechanical superconducting switch
Takeda et al. High Ic superconducting joint between Bi2223 tapes
WO2015078897A1 (en) Method for forming a superconducting connection structure and superconducting connection structure
US20050174202A1 (en) Superconducting wire material and method for preparation thereof, and superconducting magnet using the same
Wesche High-temperature superconductors
Li et al. Inductance investigation of YBa 2 Cu 3 O 7− δ nano-slit SQUIDs fabricated with a focused helium ion beam
WO1993021642A1 (en) Composite lead for conducting an electrical current between 75-80 k and 4.5 k temperatures
JP4652547B2 (en) Actuator
JP2021197549A (en) Stress engineered superconducting fine machining spring
US7745376B2 (en) Superconducting composite
Yamada et al. Effect of thermal cycles on thermal expansion of silver-sheathed Bi2223 tape at 10–310 K
Kulikov et al. A superconducting joint for 2G HTS tapes
Ivanchenko et al. Investigation of metastable current states in superconducting Al, Sn, and In films
JP2519773B2 (en) Superconducting material
Nishi et al. Three types of magnetic-field-operated shape memory effects
Dogruer et al. Effect of MgB2 addition on thermal fluxon motions of two-dimensional pancake vortices in Bi-2223 superconducting ceramics
Lanagan et al. Fabricating polycrystalline high-T c superconductors
Shimoyama Superconducting joints for the 1.3 GHz persistent NMR magnet under JST-Mirai Program
Ginley et al. Improved superconducting Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 6. 9/through high temperature processing
Fenner Superconducting flux coupled fast switching device from YBCo films. Final report, 1 September 1991-29 February 1992
Zheng et al. Applications of high temperature superconductors
Balachandran Development of ceramic superconductors for electric power applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees