JP4651342B2 - Grounding resistance reducing material and its construction method - Google Patents
Grounding resistance reducing material and its construction method Download PDFInfo
- Publication number
- JP4651342B2 JP4651342B2 JP2004276447A JP2004276447A JP4651342B2 JP 4651342 B2 JP4651342 B2 JP 4651342B2 JP 2004276447 A JP2004276447 A JP 2004276447A JP 2004276447 A JP2004276447 A JP 2004276447A JP 4651342 B2 JP4651342 B2 JP 4651342B2
- Authority
- JP
- Japan
- Prior art keywords
- ground
- resistance reducing
- reducing material
- grounding
- inorganic salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010276 construction Methods 0.000 title claims description 13
- 239000000463 material Substances 0.000 title description 44
- 239000000126 substance Substances 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 17
- 239000000843 powder Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 11
- VSFBSEDSFCLXNI-UHFFFAOYSA-N calcium;zinc;phosphite Chemical compound [Ca+2].[Zn+2].[O-]P([O-])[O-] VSFBSEDSFCLXNI-UHFFFAOYSA-N 0.000 claims description 10
- 239000002001 electrolyte material Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- YKJGLGUBQQTOBD-UHFFFAOYSA-N strontium;zinc;phosphite Chemical compound [Zn+2].[Sr+2].[O-]P([O-])[O-] YKJGLGUBQQTOBD-UHFFFAOYSA-N 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- IJOFPNADZXCHJK-UHFFFAOYSA-N dicalcium;phosphite Chemical compound [Ca+2].[Ca+2].[O-]P([O-])[O-] IJOFPNADZXCHJK-UHFFFAOYSA-N 0.000 description 2
- RPOCFUQMSVZQLH-UHFFFAOYSA-N furan-2,5-dione;2-methylprop-1-ene Chemical compound CC(C)=C.O=C1OC(=O)C=C1 RPOCFUQMSVZQLH-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- -1 do not melt Substances 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Description
本発明は、通信設備及び電力設備等の設置工事で敷設される接地電極とともに埋設される接地抵抗低減材の改良と、その施工方法に関するものである。
The present invention relates to an improvement in a ground resistance reducing material embedded together with a ground electrode laid in installation work for communication equipment, power equipment, and the like, and a construction method therefor.
通信設備及び電力設備等の接地工事においては、地中に接地電極を埋め込み該接地電極の周囲に接地抵抗低減材を投入し埋設することで接地抵抗を低減させることが従来から行われている。例えば本出願人の特開2003−109683号報に示す接地抵抗低減材にあっては、接地抵抗を下げるための電解質物質等からなる導電性物質と、この導電性物質を接地電極の周囲に留めさせて土中へ流出するのを防ぐ高吸水性樹脂とゲル化成物からなる保持物質とから構成されている。 In grounding work for communication equipment, power equipment, etc., it has been conventionally practiced to reduce the ground resistance by embedding a ground electrode in the ground and introducing a ground resistance reducing material around the ground electrode. For example, in the ground resistance reducing material disclosed in Japanese Patent Application Laid-Open No. 2003-109683 of the present applicant, a conductive material made of an electrolyte material or the like for lowering the ground resistance, and this conductive material is fastened around the ground electrode. It consists of a highly water-absorbing resin that prevents it from flowing out into the soil and a holding substance made of a gel chemical.
さらに、上記接地抵抗低減材にあっては高吸水性樹脂とゲル化成物に加水し混合したものを接地電極の周囲に埋設することで、高吸水性樹脂に含まれる水と電解質により長期に渡り接地抵抗を下げることができるとともに、該電解質が土中に流れ出さないため周辺土壌の汚染を防ぐことができる特長を備えている。 Furthermore, in the above ground resistance reducing material, the superabsorbent resin and the gel compound mixed with water are buried around the ground electrode, so that the water and electrolyte contained in the superabsorbent resin can be used for a long time. The ground resistance can be lowered, and the electrolyte does not flow into the soil, so that it can prevent contamination of the surrounding soil.
しかしながら実際の工事での前記接地抵抗低減材に加水し混合する作業において、作業者は該接地抵抗低減材が使用できる状況になったことを客観的に知ることができず、今までの経験やおおよその攪拌時間により判断されてきた。そのため混合(攪拌)が完全に行われず接地抵抗低減材としての作用が十分発揮されない状況で使用される可能性があった。
本発明は、このような問題点を解決することを目的とするものであり、作業者が接地抵抗低減材に加水し混合する作業において使用可能状態が目視確認でることで、熟練者でなくても安定した低い接地抵抗値が得られる接地抵抗低減材を提供すると共に、その施工方法についても提供することを目的としている。
The present invention aims to solve such problems, and the operator can visually check the usable state in the work of adding water to the ground resistance reducing material and mixing it, so that it is not an expert. In addition to providing a ground resistance reducing material capable of obtaining a stable low ground resistance value, an object is to provide a construction method thereof.
本発明は上記課題を解決するために請求項1の発明は、通信設備及び電力設備等の接地工事で敷設される接地電極とともに埋設される接地抵抗低減剤の施行方法であって、
水を加え混合する際に使用可能状態が変色にて目視確認できるように、電解質物質粉末と、二酸化ケイ素と、前記電解質物質粉末を前記接地電極の周囲に留めさせて土中へ流出するのを防ぐ高吸水性樹脂粉末と、難溶性無機塩物質粉末とを含む接地抵抗低減剤を、あらかじめ大地に掘られた穴に打設されたパイプ状接地電極内とその周囲に投入し埋設する施行方法である。
In order to solve the above-mentioned problems, the invention of claim 1 is a method of enforcing a ground resistance reducing agent embedded together with a ground electrode laid in grounding work such as communication equipment and power equipment,
The electrolyte material powder, silicon dioxide, and the electrolyte material powder are allowed to flow around into the ground electrode while keeping the electrolyte material powder, silicon dioxide, and the electrolyte material powder around the ground electrode so that the usable state can be visually confirmed by color change when adding water and mixing. A method of conducting by placing a ground resistance reducing agent containing a highly water-absorbing resin powder to prevent and a hardly soluble inorganic salt substance powder in and around a pipe-shaped ground electrode placed in a hole dug in the ground in advance. It is.
請求項2の発明は、上記請求項1の発明において、上記難溶性無機塩物質は、亜リン酸亜鉛カルシウム、または、亜リン酸亜鉛ストロンチウムからなる施行方法である。 Invention of Claim 2 is the enforcement method in which the said hardly soluble inorganic salt substance consists of zinc calcium phosphite or zinc strontium phosphite in the invention of said 1st invention .
請求項3の発明は、上記請求項1または2の発明において、上記難溶性無機塩物質の平均粒径は50μm以下のものからなる施行方法である。 The invention of claim 3 is the enforcement method according to the invention of claim 1 or 2, wherein the hardly soluble inorganic salt substance has an average particle size of 50 μm or less.
本請求項1に記載される電解質物質は水溶状態で導電性を備えるのもであれば良く、塩化ナトリウム、塩化マグネシウム、硫酸マグネシウム、炭酸ナトリウム、硫酸第一鉄、塩化カリウム、塩化カルシウム、塩化アンモニウム及び硫酸アンモニウム等を例示することができる。このうち、容易に入手することができ毒性が少ない塩化ナトリウムを好例として挙げることができる。 The electrolyte substance according to the first aspect of the present invention only needs to have conductivity in an aqueous state, such as sodium chloride, magnesium chloride, magnesium sulfate, sodium carbonate, ferrous sulfate, potassium chloride, calcium chloride, ammonium chloride. And ammonium sulfate. Of these, sodium chloride that can be easily obtained and has low toxicity can be cited as a good example.
高吸水性樹脂は水及びその溶解物を取り込み、容易に放出することができない樹脂であれば良く、マレイン酸系、ポリアクリル酸系、ポリエチレンオキサイド系、セルロース系、デンプン系等を例示することができる。このうち、マレイン酸系のイソブチレン無水マレイン酸重合体を好例として挙げることができる。 The superabsorbent resin may be any resin that can take up water and its dissolved matter and cannot be easily released, and examples thereof include maleic acid-based, polyacrylic acid-based, polyethylene oxide-based, cellulose-based, and starch-based resins. it can. Among these, a maleic acid type isobutylene maleic anhydride polymer can be cited as a good example.
このように該接地抵抗低減材によれば、難溶性無機塩物質が含まれていることで作業者が該接地抵抗低減材に水を加え攪拌する作業において、その使用可能状態が初期の透明状態から白色(白濁)に変化することで容易に目視確認できる。そのため該接地抵抗低減材の攪拌が不十分なまま接地電極とともに埋設されることがないため安定した接地施工が行える。 As described above, according to the grounding resistance reducing material, in the work in which the worker adds water to the grounding resistance reducing material and stirs because the hardly soluble inorganic salt substance is contained, the usable state is the initial transparent state. It can be easily visually confirmed by changing from white to cloudy. Therefore, since the ground resistance reducing material is not embedded with the ground electrode with insufficient stirring, stable grounding can be performed.
さらに、該難溶性無機塩物質には防錆効果があるため、それをパイプ状接地電極内部やその周囲に埋設されるため、該パイプ状接地電極の腐食が防止され長期に渡って安定した接地抵抗値を得ることができる。 Furthermore, since the sparingly soluble inorganic salt substance has a rust-preventing effect, it is embedded in and around the pipe-shaped ground electrode, so that corrosion of the pipe-shaped ground electrode is prevented and stable grounding over a long period of time. A resistance value can be obtained.
また、二酸化ケイ素の粉末を混合しているため、電解質物質の凝縮や固化防止となり該接地抵抗低減材が長期保存された後に水を混合し使用する場合においても、該電解質物質が該接地抵抗低減材内に拡散することで安定した接地抵抗値が得られる。
In addition, since silicon dioxide powder is mixed, the electrolyte substance is prevented from condensing and solidifying, and even when water is mixed and used after the earth resistance reducing material has been stored for a long time, the electrolyte substance reduces the earth resistance. A stable ground resistance value can be obtained by diffusing into the material.
次に本発明の好ましい実施の形態について図1を参照しながら説明する。 Next, a preferred embodiment of the present invention will be described with reference to FIG.
本接地抵抗低減材2の製造方法について説明する。始めに電解質物質である塩化ナトリウム43gと電解質物質の凝固、固化防止に使用する二酸化ケイ素1.3gを混合、攪拌したものに高吸水性樹脂物質であるイソブチレン無水マレイン酸重合物の粉体86gと銅の防錆物質である1.2.3−ベンゾトリアゾールの粉体1.6gと中性調整剤物質であるコハク酸の粉体4.6g、そして鉄の防錆物質である難溶性無機塩類の亜リン酸亜鉛カルシウムの粉体2.7gを混合、攪拌することで接地抵抗低減材2を製造した。 A method for manufacturing the grounding resistance reducing material 2 will be described. First, 43 g of sodium chloride as an electrolyte substance and 1.3 g of silicon dioxide used for preventing the solidification and solidification of the electrolyte substance were mixed and stirred, and then 86 g of powder of isobutylene maleic anhydride polymer as a superabsorbent resin substance was mixed. 1.6g of copper rust preventive substance, 1.6g of powder of benzotriazole, 4.6g of neutral adjuster substance of succinic acid, and poorly soluble inorganic salts of iron rust preventive substance The ground resistance reducing material 2 was manufactured by mixing and stirring 2.7 g of the powder of zinc calcium phosphite.
始めに電解質物質である塩化ナトリウムと二酸化ケイ素を混合、攪拌するのは上記製造方法により製造された該接地抵抗低減材を保存している状態において電解質物質が凝固や固化するのを防止するためであり、施工時に水を加え混合する場合においても電解質物質が水に良く溶け易く低い電気伝導度を確保するためである。 First, the sodium chloride and silicon dioxide, which are electrolyte substances, are mixed and stirred in order to prevent the electrolyte substance from solidifying and solidifying in a state where the ground resistance reducing material produced by the above production method is stored. In addition, even when water is added and mixed at the time of construction, the electrolyte material is easily dissolved in water to ensure low electrical conductivity.
なお、上記重量については該接地低減材2に水4lを加えることに対しての好ましい混合比である。 The weight is a preferable mixing ratio for adding 4 l of water to the ground contact reducing material 2.
また、本発明である本接地抵抗低減材2が白色(白濁)に変化するのは次の理由である。難溶性無機塩物質である該亜リン酸亜鉛カルシウムの粉体や該亜リン酸亜鉛ストロンチウムの粉体は溶融せず、加水され製造されたゲル状の接地抵抗低減材内に微粒子が漂い光の反射によるためである。その時の電気特性については後で詳細に説明する。白色(白濁)化しかつ沈殿も発生しない好ましい該難溶性無機塩物質の条件としては、平均粒径が50μm以下で添加量としては3から10gの範囲でもよい。 Further, the reason why the grounding resistance reducing material 2 according to the present invention changes to white (white turbidity) is as follows. The powder of calcium calcium phosphite and the powder of strontium zinc phosphite, which are hardly soluble inorganic salt substances, do not melt, and fine particles drift in the grounded resistance reducing material that is produced by water addition. This is due to reflection. The electrical characteristics at that time will be described in detail later. As a preferable condition of the hardly soluble inorganic salt substance that turns white (white turbid) and does not generate precipitation, the average particle diameter may be 50 μm or less and the addition amount may be in the range of 3 to 10 g.
添加量に対しては3gより少ない場合では鉄への防錆効果が小さく、また10g以上であれば添加量に比例して防錆効果も向上するものの経済性の面であまり好ましくない。 When the amount is less than 3 g, the rust preventive effect on iron is small, and when it is 10 g or more, the rust preventive effect is improved in proportion to the added amount, but it is not preferable in terms of economy.
上記製造した接地抵抗低減材2を使用した施工例について説明する。始めに、大地6に直径30cmから50cm、深さ40cmから100cm程度の穴を掘り、この穴に円錐形状の電極先端部4を備えたパイプ状接地電極3を打ち込む。そして該接地抵抗低減材に水を加え混合しゲル状で白色に変化したことで、使用可能状態を確認する。その後、白色化した該接地抵抗低減材とリード線1を該パイプ状接地電極3内および、その周囲に投入する。該接地抵抗低減材を投入後、この穴を盛土5で覆い施工完了とする。
A construction example using the manufactured ground resistance reducing material 2 will be described. First, a hole having a diameter of 30 cm to 50 cm and a depth of 40 cm to 100 cm is dug in the ground 6, and a pipe-like ground electrode 3 having a conical electrode tip 4 is driven into this hole. Then, water is added to the grounding resistance reducing material and mixed, and the gelled white color is confirmed. Thereafter, the ground resistance reducing material and the lead wire 1 that have been whitened are put into and around the pipe-shaped ground electrode 3. After introducing the grounding resistance reducing material, this hole is covered with the
なお、上記施工方法で水を加え混合し白色化した該接地抵抗低減材をあらかじめ該パイプ状接地電極3内に投入した後、それを大地に設けた穴に打ち込んだ後、周囲に該接地抵抗低減材を投入してもよい。この施工方法であれば該接地抵抗低減材はパイプ状接地電極3を大地に設けられた穴に打ち込む際に振動により該パイプ状接地電極の内部まで入り込み、さらに安定した接地抵抗値を得ることができる。 In addition, after putting the grounding resistance reducing material whitened by adding water by the above construction method into the pipe-shaped grounding electrode 3 in advance, it is driven into a hole provided in the ground and then the grounding resistance A reducing material may be added. With this construction method, the ground resistance reducing material can penetrate into the pipe ground electrode by vibration when the pipe ground electrode 3 is driven into a hole provided in the ground, and can obtain a more stable ground resistance value. it can.
次に、本発明である接地抵抗低減材2に含まれる難溶性無機塩物質(亜リン酸亜鉛カルシウムや亜リン酸亜鉛ストロンチウム)の平均粒径、添加量の差による効果を調べるための試験を行った。
(1)変色状況の確認試験
該接地抵抗低減材2に加水し攪拌する作業において、変色する状況を調べるために次の試験を行った。この試験では本接地抵抗低減材の製造方法で製造した接地抵抗低減材2において難溶性無機塩である平均粒径3μmの亜リン酸亜鉛カルシウムの添加量5gとし、水7lを加え混合してえられた試料にて攪拌時間の経過による変色の状況と電気伝導度について調べた結果を表1に示す
表1
表1に示すように攪拌時間が1分を経過後、該接地抵抗低減材は白色化しさらに電気伝導度も所定値に変化することがわかる。
Next, a test for examining the effect of the difference in the average particle diameter and the addition amount of the hardly soluble inorganic salt substance (zinc calcium phosphite or zinc strontium phosphite) contained in the grounding resistance reducing material 2 of the present invention is performed. went.
(1) Confirmation test of discoloration state The following test was conducted in order to investigate the discoloration state in the work of adding water to the ground resistance reduction material 2 and stirring. In this test, the ground resistance reduction material 2 manufactured by the method for manufacturing a ground resistance reduction material was added with 5 g of zinc calcium phosphite having an average particle diameter of 3 μm, which is a hardly soluble inorganic salt, and 7 l of water was added and mixed. Table 1 shows the results of examining the state of discoloration and the electrical conductivity of the obtained samples with the passage of stirring time.
As shown in Table 1, it can be seen that after the stirring time of 1 minute has elapsed, the ground resistance reducing material turns white and the electrical conductivity also changes to a predetermined value.
なお白色化確認方法としては目視であり、電気伝導度の測定方法は以下の通りである。
幅34mm、長さ63mm、深さ9mmの絶縁容器の対抗する面(幅34mm×深さ9mmの面)に銅箔の電極を備えた測定箱に水を加え混合した該接地抵抗低減材を入れる。測定箱の両側に設けられた電極にLCRメータ(KOKUYO LCR METER KC−535C)を接続し、周波数1kHzの所定交流電圧を加え、その時の電極間に生じる抵抗値を測定する。測定された抵抗値に電極の面積(0.034×0.009平方メートル)を電極間(0.063メートル)で割った値を掛けることで電気伝導度が求められる。
In addition, it is visual as a whitening confirmation method, and the measuring method of electrical conductivity is as follows.
The ground resistance reducing material mixed with water is added to a measuring box having a copper foil electrode on the opposing surface (surface of width 34 mm × depth 9 mm) of an insulating container having a width of 34 mm, a length of 63 mm, and a depth of 9 mm. . An LCR meter (KOKUYO LCR METER KC-535C) is connected to the electrodes provided on both sides of the measurement box, a predetermined AC voltage with a frequency of 1 kHz is applied, and a resistance value generated between the electrodes at that time is measured. The electric conductivity is obtained by multiplying the measured resistance value by the value obtained by dividing the electrode area (0.034 × 0.009 square meter) by the distance between the electrodes (0.063 meters).
また、上記実施例の亜リン酸亜鉛カルシウムの平均粒径3μmで添加量3gと5g、平均粒径が45μmで添加量5g、さらに平均粒径が100μmで添加量5gとし、水7lを加え混合し、1分間の攪拌後のそれぞれの試料について変色状況と電気伝導度について調べた結果を表2に示す
表2
In addition, the average particle diameter of zinc calcium phosphite of the above examples is 3 μm and the addition amount is 3 g and 5 g, the average particle size is 45 μm, the addition amount is 5 g, the average particle size is 100 μm and the addition amount is 5 g, and 7 l of water is added and mixed. Table 2 shows the results of examining the discoloration and electrical conductivity of each sample after stirring for 1 minute.
さらに、亜リン酸亜鉛カルシウムに代わり平均粒径3μmの亜リン酸亜鉛ストロンチウムを5gとし、水7lを加え混合し1分間の攪拌後については白色化し、電気伝導度も0.60Ωmであった。
表2や上記の結果からも分るように難溶性無機塩物質である亜リン酸亜鉛カルシウムや亜リン酸亜鉛ストロンチウムの平均粒径は50μm以下程度が白色化し易く、その時の電気伝導度も0.60Ωm前後で安定していることが分る。
Furthermore, instead of zinc calcium phosphite, 5 g of zinc strontium phosphite having an average particle diameter of 3 μm was added, 7 l of water was added and mixed, and the mixture was whitened after stirring for 1 minute, and the electric conductivity was 0.60 Ωm.
As can be seen from Table 2 and the above results, the average particle diameter of zinc calcium phosphite and zinc strontium phosphite, which are sparingly soluble inorganic salt substances, is easily whitened at about 50 μm or less, and the electric conductivity at that time is also 0 .Stable at around 60Ωm.
(2)防錆効果の確認試験
さらに施工後の接地電極の腐食について調べるために次の試験を行った。この試験では本接地抵抗低減材の製造方法で製造した接地抵抗低減材において難溶性無機塩である亜リン酸亜鉛カルシウムの添加量を1g、3g、5g、10gとし、それぞれの接地抵抗低減材に水7lを加え混合して得られた試料に鋼材であるSPCC材(厚み0.6mm、幅1.3mm、長さ60mm)を30日間放置し、その重量変化率を調べた。なお、重量変化率は放置前後の重量変化を放置前の重量で割り100分率で表した。その結果を表3に示す。
表3
(2) Confirmation test of rust prevention effect The following test was conducted to investigate the corrosion of the ground electrode after construction. In this test, the amount of added zinc calcium phosphite, which is a sparingly soluble inorganic salt, in the ground resistance reducing material manufactured by the method for manufacturing the ground resistance reducing material is 1 g, 3 g, 5 g, and 10 g. An SPCC material (thickness 0.6 mm, width 1.3 mm, length 60 mm), which is a steel material, was allowed to stand for 30 days to a sample obtained by adding 7 l of water and mixing, and the weight change rate was examined. In addition, the weight change rate was expressed by dividing the weight change before and after being left by the weight before being left as a percentage. The results are shown in Table 3.
Table 3
同様に該接地抵抗低減材の難溶性無機塩物質の亜リン酸亜鉛カルシウムの代用として平均粒度3μmの亜リン酸亜鉛ストロンチウムを用い添加量を1g、5g、10gとそれぞれの接地抵抗低減材に水7lを加え混合して得られた試料に同様の試験を行い調べた結果を表4に示す。
表4
表3、表4の結果からも分るように難溶性無機塩物質である該亜リン酸亜鉛カルシウムや該亜リン酸亜鉛ストロンチウムの添加量が5g以上では重量変化率が0であることから重量変化がないと判断でき防錆効果が高いことが分る。
Similarly, zinc strontium phosphite with an average particle size of 3 μm is used as a substitute for the poorly soluble inorganic salt substance zinc calcium phosphite of the ground resistance reducing material, and the addition amount is 1 g, 5 g and 10 g. Table 4 shows the results of a similar test conducted on a sample obtained by adding 7 l and mixing.
Table 4
As can be seen from the results in Tables 3 and 4, the weight change rate is 0 when the added amount of the calcium calcium phosphite or zinc strontium phosphite, which is a hardly soluble inorganic salt substance, is 5 g or more. It can be judged that there is no change, and it can be seen that the antirust effect is high.
なお、本発明においては、上記本接地抵抗低減材の製造方法に記載した重量配分に限らず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。即ち、本接地抵抗低減材の難溶性無機塩物質の混合割合は本接地抵抗低減材の製造方法に示したものに限られず、前記説明に記載された好ましい範囲内で変更することができる。
In addition, in this invention, it can be set as the Example variously changed within the range of this invention according to the objective and a use not only in the weight distribution described in the manufacturing method of this said earthing resistance reduction material. That is, the mixing ratio of the sparingly soluble inorganic salt substance of the grounding resistance reducing material is not limited to that shown in the manufacturing method of the grounding resistance reducing material, and can be changed within the preferable range described in the above description.
1 リード線
2 接地抵抗低減材
3 パイプ状接地電極
4 電極先端部
5 盛土
6 大地
DESCRIPTION OF SYMBOLS 1 Lead wire 2 Grounding resistance reduction material 3 Pipe-shaped ground electrode 4
Claims (3)
水を加え混合する際に使用可能状態が変色にて目視確認できるように、電解質物質粉末と、二酸化ケイ素と、前記電解質物質粉末を前記接地電極の周囲に留めさせて土中へ流出するのを防ぐ高吸水性樹脂粉末と、難溶性無機塩物質粉末とを含む接地抵抗低減剤を、あらかじめ大地に掘られた穴に打設されたパイプ状接地電極内とその周囲に投入し埋設する施工方法。 The electrolyte material powder, silicon dioxide, and the electrolyte material powder are allowed to flow around into the ground electrode while keeping the electrolyte material powder, silicon dioxide, and the electrolyte material powder around the ground electrode so that the usable state can be visually confirmed by color change when adding water and mixing. A construction method in which a ground resistance reducing agent containing a highly water-absorbing resin powder to prevent and a poorly soluble inorganic salt substance powder is buried in and around a pipe-shaped ground electrode placed in a hole dug in the ground in advance. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004276447A JP4651342B2 (en) | 2004-09-24 | 2004-09-24 | Grounding resistance reducing material and its construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004276447A JP4651342B2 (en) | 2004-09-24 | 2004-09-24 | Grounding resistance reducing material and its construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006089584A JP2006089584A (en) | 2006-04-06 |
JP4651342B2 true JP4651342B2 (en) | 2011-03-16 |
Family
ID=36230868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004276447A Expired - Lifetime JP4651342B2 (en) | 2004-09-24 | 2004-09-24 | Grounding resistance reducing material and its construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4651342B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102969579A (en) * | 2012-11-13 | 2013-03-13 | 中国石油天然气集团公司 | Grounding electrode |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5210851B2 (en) * | 2008-12-22 | 2013-06-12 | 中国電力株式会社 | Grounding electrode and construction method of grounding electrode |
KR100962244B1 (en) * | 2009-12-11 | 2010-06-11 | (주)의제전기설비연구원 | Carbon grounding electrode and coating method thereof |
JP6519790B2 (en) * | 2015-07-31 | 2019-05-29 | 株式会社関電工 | Grounding device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05339004A (en) * | 1992-06-05 | 1993-12-21 | Nippon Chem Ind Co Ltd | White rust-preventive pigment and its production |
JPH06163133A (en) * | 1992-07-10 | 1994-06-10 | Toagosei Chem Ind Co Ltd | Composition for decreasing earthing resistance |
JPH06310244A (en) * | 1993-04-22 | 1994-11-04 | Three Bond Co Ltd | Grounding resistance reducing composition |
JPH07232907A (en) * | 1994-02-21 | 1995-09-05 | Taihei Kagaku Sangyo Kk | Zinc phosphite strontium based pigment and coating material containing the same |
-
2004
- 2004-09-24 JP JP2004276447A patent/JP4651342B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05339004A (en) * | 1992-06-05 | 1993-12-21 | Nippon Chem Ind Co Ltd | White rust-preventive pigment and its production |
JPH06163133A (en) * | 1992-07-10 | 1994-06-10 | Toagosei Chem Ind Co Ltd | Composition for decreasing earthing resistance |
JPH06310244A (en) * | 1993-04-22 | 1994-11-04 | Three Bond Co Ltd | Grounding resistance reducing composition |
JPH07232907A (en) * | 1994-02-21 | 1995-09-05 | Taihei Kagaku Sangyo Kk | Zinc phosphite strontium based pigment and coating material containing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102969579A (en) * | 2012-11-13 | 2013-03-13 | 中国石油天然气集团公司 | Grounding electrode |
Also Published As
Publication number | Publication date |
---|---|
JP2006089584A (en) | 2006-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Christy et al. | Voltammetric and Raman microspectroscopic studies on artificial copper pits grown in simulated potable water | |
Hu et al. | Cerium tartrate as a pigment in epoxy coatings for corrosion protection of AA 2024-T3 | |
Simões et al. | Corrosion inhibition at galvanized steel cut edges by phosphate pigments | |
JP4332643B2 (en) | Installation method of non-polarizable electrode on rock or ground, and electric exploration method or electromagnetic exploration method using the same | |
Norin et al. | Corrosion of carbon steel in filling material in an urban environment | |
JP4651342B2 (en) | Grounding resistance reducing material and its construction method | |
Angst et al. | An organic corrosion-inhibiting admixture for reinforced concrete: 18 years of field experience | |
JP2007271501A (en) | Method of evaluating corrosion protection for coating | |
Romaine et al. | Corrosion processes of carbon steel in argillite: Galvanic effects associated with the heterogeneity of the corrosion product layer | |
Maeda et al. | Passivation mechanism of galvanized steel rebar in fresh concrete | |
CN103107426B (en) | Multi-path lighting protection bag and pre-buried method of lighting protection bag in soil | |
Dhakal et al. | Investigation on the soil corrosivity towards the buried water supply pipelines in Kamerotar town planning area of Bhaktapur, Nepal | |
JP5520351B2 (en) | Non-polarized probe and borehole inductive polarization logging instrument including the same | |
CN101748406B (en) | Chrome-free formation processing galvanized steel sheet with excellent corrosion resistance of cutting end face | |
US5174871A (en) | Method for providing cathodic protection of underground structures | |
Dahal et al. | Study on the soil corrosivity towards the buried water supply pipelines in Madhyapur Thimi municipality, Bhaktapur | |
CA3108476A1 (en) | Probe for measuring a cathodic protection condition of a buried steel structure, and backfill composition for same | |
Saber et al. | Degradation Analysis of α-Brass Drinking Water Pipes in Aggressive Soil | |
JPH03265556A (en) | Ground resistance reducing agent | |
JP7377460B2 (en) | Cathodic protection methods, backfill selection methods, drainage terminal installation methods, and concrete structures | |
Fell et al. | Monitoring of archaeological and experimental iron at Fiskerton, England | |
CN85105413A (en) | Has special low-resistance ground wire device | |
Umar et al. | Impact of Aisami Solid Waste dumping site, Kano Metropolis, Nigeria on the quality of ground water of the neighbouring environment | |
JP4323292B2 (en) | Cementitious composition | |
JP4820884B2 (en) | Grounding resistance reducing agent and method for producing grounding resistance reducing agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070913 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101130 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4651342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |