JP4650946B2 - Image processing apparatus, image processing method, program, and recording medium - Google Patents

Image processing apparatus, image processing method, program, and recording medium Download PDF

Info

Publication number
JP4650946B2
JP4650946B2 JP2006057384A JP2006057384A JP4650946B2 JP 4650946 B2 JP4650946 B2 JP 4650946B2 JP 2006057384 A JP2006057384 A JP 2006057384A JP 2006057384 A JP2006057384 A JP 2006057384A JP 4650946 B2 JP4650946 B2 JP 4650946B2
Authority
JP
Japan
Prior art keywords
character
density
pixel
color material
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006057384A
Other languages
Japanese (ja)
Other versions
JP2007235796A (en
Inventor
浩久 稲本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006057384A priority Critical patent/JP4650946B2/en
Publication of JP2007235796A publication Critical patent/JP2007235796A/en
Application granted granted Critical
Publication of JP4650946B2 publication Critical patent/JP4650946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Color, Gradation (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

本発明は、デジタル画像処理装置に関し、例えばプリンタや複写機に好適な技術に関する。   The present invention relates to a digital image processing apparatus, for example, a technique suitable for a printer or a copying machine.

昨今のプリンタの画質向上は著しく、ユーザの求める画質もそれに応じて年々高くなっている。そのため、近年のプリンタでは、従来のCMYKといった色材の他に、同じ色でありながら濃度の低い色材を持つプリンタが増加している。これにはさまざまな理由がある。   The image quality of recent printers has been remarkably improved, and the image quality demanded by users has been increasing year by year accordingly. Therefore, in recent printers, in addition to the conventional color materials such as CMYK, printers having the same color but a low density color material are increasing. There are various reasons for this.

まず、第一の理由として色域の拡大と粒状性の両立が挙げられる。例えば、シアン(以下C)、マゼンタ(以下M)、イエロー(以下Y)を同量ずつ重ねて印刷するとブラック(以下K)に近い色となるが、一般にK色材とCMYを重ねて作成したK(以下プロセスブラック)は分光反射率が異なり、見た目にも若干異なった色となる。つまり、プロセスブラックとK色材とで表現できる色域が異なる。このため、CMYK4色の色材を用いて出力することでプリンタが出力可能な色の再現域はCMY3色の色材のみを用いた場合に比べ拡張される。しかし、その一方で、一般的な黒の色材はその他の色に比べて、出力時のコントラストが高いため、低濃度領域をK色材で再生すると粒状性が劣化するという問題がある。ここで濃度の低いK色材(以下Lk)を用いると、出力時のコントラストが低くなり、拡大された色域の広さを保ちつつ、粒状性の劣化を避けることができる。   First, the first reason is the compatibility between the expansion of the color gamut and the graininess. For example, when cyan (hereinafter referred to as C), magenta (hereinafter referred to as M), and yellow (hereinafter referred to as Y) are printed in the same amount, the color will be close to black (hereinafter referred to as K), but generally K color material and CMY are overlapped. K (hereinafter, process black) has a different spectral reflectance and has a slightly different color. That is, the color gamuts that can be expressed by the process black and the K color material are different. For this reason, by outputting using CMYK four color materials, the color reproduction range that can be output by the printer is expanded as compared with the case where only CMY three color materials are used. However, on the other hand, since a general black color material has a higher contrast at the time of output than other colors, there is a problem that graininess deteriorates when a low density region is reproduced with a K color material. Here, when a K color material having a low density (hereinafter referred to as Lk) is used, the contrast at the time of output is lowered, and deterioration of graininess can be avoided while maintaining the expanded color gamut.

さらに、第二の理由として文字品質の向上が挙げられる。インクジェット方式、電子写真方式のプリンタに関わらず、CMYを正確に重ねて出力することは難しく、そのため、CMYを重ねて出力した黒の周りにはCMYの色がついた黒となる。これは文字を出力するときには都合が悪く、色づいた文字は単色で出力された文字に対し先鋭性に劣る。ここで、十分な濃度を持つ文字を再現するにはただ単に文字部をK色材で出力するだけで前記問題は解決できる。しかし、文字が十分な濃度を持たない場合、不具合が起こる。これについて図1を用いて説明する。簡単のため1次元の画像データに対し2値誤差拡散を施すことを考える。図1(a)が元データで各ブロックは1画素、各数字は画素の濃度値を示すものとする。これに対し、閾値256で誤差拡散を施すと、図1(b)のような点線として出力されてしまう。これが文字の縁であった場合、特に文字エッジががたついてしまい、文字の判読性が悪くなる。これは文字が小さければ小さいほど顕著となる。ここで閾値を設定する手法であるが、1画素をK色材で出力した場合の濃度と1画素の濃度値を画像で出力したときの濃度が等しくなるように設定しなければならない。そうしないと、入力と出力の総濃度が異なることになってしまう。   Furthermore, the second reason is improved character quality. Regardless of the ink jet type or electrophotographic type printer, it is difficult to accurately output CMY in an overlapping manner. Therefore, black with CMY colors is displayed around the black output by overlapping CMY. This is inconvenient when outputting characters, and colored characters are less sharp than characters output in a single color. Here, in order to reproduce a character having a sufficient density, the problem can be solved by simply outputting the character portion with a K color material. However, if the characters do not have sufficient density, a malfunction occurs. This will be described with reference to FIG. For simplicity, consider performing binary error diffusion on one-dimensional image data. FIG. 1A shows the original data, each block is one pixel, and each number indicates the density value of the pixel. On the other hand, if error diffusion is performed with the threshold value 256, it is output as a dotted line as shown in FIG. If this is an edge of a character, the character edge is particularly rattled, resulting in poor readability of the character. This becomes more noticeable as the characters are smaller. Here, the threshold value is set, but the density when one pixel is output as a K color material and the density value when one pixel is output as an image must be set to be equal. Otherwise, the total density of input and output will be different.

この問題を解決する装置として特許文献1がある。特許文献1では、文字を検出し、その文字が低濃度であった場合に、その文字を全てLkで出力する。例えば、簡単のためLk色材の濃度をK色材の半分とすると、当然のことながら図1(a)で示される画像データはLk単色で再生された一本の線(図1(c))として出力される。このようにLkを用いることによって低濃度の文字を高品位で出力することができる。   There is Patent Document 1 as an apparatus for solving this problem. In Patent Document 1, when a character is detected and the character has a low density, the character is all output as Lk. For example, assuming that the density of the Lk color material is half that of the K color material for simplicity, the image data shown in FIG. 1A is naturally a single line reproduced with a single Lk color (FIG. 1C). ) Is output. By using Lk in this way, it is possible to output low-density characters with high quality.

特開2002−067355号公報JP 2002-067355 A

しかし、文字が比較的大きい場合、全面をLk色材で再生すると全面をK色材で再生する場合に比べ必要とする色材の総量が増加し、出力コストが増加するという問題がある。   However, when the characters are relatively large, there is a problem that if the entire surface is reproduced with the Lk color material, the total amount of color material required is increased compared with the case where the entire surface is reproduced with the K color material, and the output cost increases.

本発明は上記した問題点に鑑みてなされたものであり、
本発明の目的は、文字縁のがたつきを抑制しつつ、再生に必要とする色材の総量、つまり再生に必要なコストを削減した画像処理装置、画像処理方法、プログラムおよび記録媒体を提供することにある。
The present invention has been made in view of the above problems,
An object of the present invention is to provide an image processing apparatus, an image processing method, a program, and a recording medium that reduce the total amount of color materials required for reproduction, that is, the cost required for reproduction, while suppressing the shakiness of character edges. There is to do.

本発明は、入力画像の注目画素が文字縁であるか否かを判定する文字縁判定手段と、前記注目画素が文字の内部であるか否かを判定する文字内部判定手段と、前記注目画素の画素値が所定の第1の閾値よりも高ければ高濃度と判定し、前記注目画素の画素値が所定の第2の閾値(<第1の閾値)よりも低ければ低濃度と判定し、前記注目画素の画素値が前記第1の閾値よりも低く、前記第2の閾値よりも高ければ中濃度と判定する濃度判定手段と、前記文字縁と判定された画素と、前記文字内部と判定された画素が隣接する領域において、前記文字内部と判定された注目画素を中間領域と判定する中間領域判定手段と、前記注目画素が太文字画素であるか細文字画素であるかを判定する文字幅判定手段と、前記各判定手段の判定結果に応じて、濃度の異なる色材を用いて画像を再生する出力手段を備え、前記出力手段は、前記濃度判定手段が高濃度と判定した注目画素に対しては、前記文字の内部、文字縁、中間領域を全て高濃度の色材のみを用いて再生し、前記濃度判定手段が低濃度と判定し、前記文字幅判定手段が細文字と判定した注目画素に対しては、前記文字の内部、文字縁、中間領域を全て低濃度の色材で再生し、前記濃度判定手段が中濃度もしくは低濃度と判定し、前記文字幅判定手段が太文字と判定した注目画素に対しては、前記文字縁を低濃度の色材で再生し、前記文字内部を高濃度の色材で再生し、前記中間領域を低濃度の色材と高濃度の色材の混在で再生し、前記濃度判定手段が中濃度と判定し、前記文字幅判定手段が細文字と判定した注目画素に対しては、前記文字縁を低濃度の色材で再生し、前記中間領域および文字内部を低濃度の色材と高濃度の色材の混在で再生することを最も主要な特徴とする。
The present invention provides a character edge determination unit that determines whether or not a target pixel of an input image is a character edge, a character internal determination unit that determines whether or not the target pixel is inside a character, and the target pixel If the pixel value of the pixel of interest is higher than a predetermined first threshold value, it is determined as a high density, and if the pixel value of the pixel of interest is lower than a predetermined second threshold value (<first threshold value), it is determined as a low density, If the pixel value of the target pixel is lower than the first threshold value and higher than the second threshold value, it is determined that the density is medium density, the pixel determined as the character edge, and the character inside is determined Intermediate region determining means for determining a target pixel determined to be inside the character as an intermediate region in a region adjacent to the selected pixel, and a character for determining whether the target pixel is a thick character pixel or a thin character pixel Depending on the determination result of the width determination means and each determination means Output means for reproducing an image using color materials having different densities, and the output means includes, for the target pixel determined to be high density by the density determination means, the inside, character edge, and intermediate area of the character. Reproduction using only high-density color materials, and for the target pixel that the density determination means determines to be low density and the character width determination means determines to be a fine character, the inside of the character, the character edge, All the intermediate areas are reproduced with a low-density color material, and the character edge is reduced to the target pixel that the density determination means determines to be medium density or low density and the character width determination means determines to be a bold character. Reproduction with a color material of density, reproduction of the inside of the character with a high density color material, reproduction of the intermediate area with a mixture of a low density color material and a high density color material, and the density determination means For the pixel of interest that the character width determining means determines to be a fine character, Serial character edges reproduced by low concentrations colorant, and most important feature that reproduces the intermediate region and the character inside mixed low concentration colorant and high density colorant.

本発明によると、文字縁、文字内部、濃度に応じて用いる色材を変化させることで領域、文字種に応じて適切な処理を行うことができ、画質が向上する。
すなわち、高濃度文字はすべて高濃度色材で再生することにより文字の濃度の一様性が向上するとともに、高濃度色材の版と低濃度色材の版がずれることによるデフェクトの発生を抑制することができ文字品質が向上する。
低濃度細文字はすべて高濃度色材で再生することにより文字の濃度の一様性が向上するとともに、高濃度色材の版と低濃度色材の版がずれることによるデフェクトの発生を抑制することができ文字品質が向上する。
中低濃度太文字の縁を低濃度色材で再生することにより文字の縁のジャギーを抑制することができ文字品質が向上するとともに、文字の内部を高濃度色材で再生することにより再生に必要な総色材量を抑制することができ、再生に必要なコストが抑制できる。
中低濃度細文字の縁を低濃度色材で再生することにより文字の縁のジャギーを抑制することができ文字品質が向上するとともに、文字の内部を高濃度色材と低濃度色材の双方で再生することにより文字内部に白抜けが発生することを抑制することができ画質が向上する。
According to the present invention, it is possible to perform appropriate processing according to the region and character type by changing the color material used according to the character edge, the character inside, and the density, and the image quality is improved.
In other words, all high-density characters are reproduced with high-density color material to improve the uniformity of the character density, and the occurrence of defects due to misalignment between the high-density color material plate and the low-density color material plate is suppressed. Can improve character quality.
By reproducing all low-density thin characters with high-density color material, the uniformity of the character density is improved, and the occurrence of defects due to misalignment between the high-density color material plate and the low-density color material plate is suppressed. Can improve character quality.
By reproducing the edges of medium and low density thick characters with a low density color material, it is possible to suppress the jagged edges of the characters, improving the quality of the characters, and reproducing the inside of the characters with a high density color material. The total amount of color material required can be suppressed, and the cost required for reproduction can be suppressed.
By reproducing the edges of the medium and low density fine characters with the low density color material, it is possible to suppress the jagged edges of the characters and improve the character quality, and both the high density color material and the low density color material inside the character. By playing back with, it is possible to suppress the occurrence of white spots inside the characters and improve the image quality.

以下、発明の実施の形態について図面により詳細に説明する。
本発明の好適な実施例を、コピー機を一例に用いて説明する。
図2は、本発明の実施例の構成を示す。まずスキャナ100により原稿を読み込む。読み込みは光源から射出された光を原稿に照射し、その反射光をRGB3色のCCDで読み取ることによって行う。尚、読み取られた画像データはアナログ信号であるが、A/D変換により例えば8bitのデジタル信号へと変換しておく。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A preferred embodiment of the present invention will be described using a copying machine as an example.
FIG. 2 shows the configuration of an embodiment of the present invention. First, the original is read by the scanner 100. Reading is performed by irradiating a document with light emitted from a light source and reading the reflected light with a RGB three-color CCD. Although the read image data is an analog signal, it is converted into, for example, an 8-bit digital signal by A / D conversion.

読み取られた画像データのG信号から像域判定手段101により、原稿の各領域がどの種の領域であるかを判定する。具体的には注目領域が、文字縁領域であるか、文字内部領域であるか、また文字縁領域もしくは文字内部領域である場合には、その文字が太い文字なのか、細い文字なのかを判定する。更に高濃度領域であるか中濃度領域であるか、若しくは低濃度領域であるかを判定する。尚、この像域判定手段101については後に詳述する。   From the G signal of the read image data, the image area determination unit 101 determines what kind of area each area of the document is. Specifically, if the region of interest is a character border region, a character inner region, or a character border region or a character inner region, determine whether the character is a thick character or a thin character To do. Further, it is determined whether the region is a high concentration region, a medium concentration region, or a low concentration region. The image area determination means 101 will be described in detail later.

読み取られたデータは反射光の強度を測った値であり、かつスキャナの特性に対し必ずしも線形な応答を示すものではないので、これをスキャナγ補正手段102によりスキャナの特性に応じた濃度データに変換する。濃度に線形応答する信号へ変換するのは、後の色変換手段104で濃度に対し線形な応答をするCMYKLkデータへの変換が精度良く行われるようにするためである。具体的には図3に示すようなルックアップテーブル(以下LUT)をRGB3色にそれぞれ用いて対応する値に置き換えることで実現する。尚、このLUTに関しては事前にスキャナの特性を計測し、それに応じて作成したものとする。   Since the read data is a value obtained by measuring the intensity of the reflected light and does not necessarily show a linear response to the scanner characteristics, it is converted into density data corresponding to the scanner characteristics by the scanner γ correction means 102. Convert. The conversion to the signal linearly responding to the density is performed so that the conversion to CMYKLk data that responds linearly to the density in the subsequent color conversion means 104 can be performed with high accuracy. More specifically, a lookup table (hereinafter referred to as LUT) as shown in FIG. 3 is used for each of the three RGB colors and replaced with corresponding values. Note that the LUT is prepared in advance by measuring the characteristics of the scanner.

次に、フィルタ補正手段103ではスキャナ読み取りの際に発生したModulation Transfer Function(以下MTF)の劣化、つまり画像のぼけを補正する。MTF劣化の発生する仕組みは以下の通りである。一般的なスキャナはライン状に配されたCCD受光素子をラインの方向(以下主走査方向)に対して垂直方向(以下副走査方向)に移動させながら画像を読み取る。このとき副走査の方向の移動は、本来得たい領域の信号を得ようとしている間にも連続的に行われているため、周辺領域の情報が畳み込まれ、結果としてMTFの劣化が発生する。その他、MTF劣化はCCD素子のシフトレジスタによる電荷の移動が理想通りに行われない等にも起因するため主走査方向にもMTF劣化は発生するが、一般に副走査方向に発生するMTF劣化に比べ軽微である。補正に関しては図4に示すようなフィルタを注目画素周辺領域にたたみ込み積分してやることで達成できる。   Next, the filter correction unit 103 corrects the deterioration of Modulation Transfer Function (hereinafter referred to as MTF) generated during the reading of the scanner, that is, the blur of the image. The mechanism for MTF degradation is as follows. A general scanner reads an image while moving CCD light receiving elements arranged in a line in a direction perpendicular to a line direction (hereinafter referred to as a main scanning direction). At this time, since the movement in the sub-scanning direction is continuously performed while trying to obtain a signal of an area to be originally obtained, information on the peripheral area is convoluted, resulting in degradation of MTF. . In addition, the MTF deterioration is caused by the fact that the charge movement by the shift register of the CCD element is not performed as ideal, so the MTF deterioration also occurs in the main scanning direction, but generally compared with the MTF deterioration that occurs in the sub-scanning direction. Minor. The correction can be achieved by convolving and integrating a filter as shown in FIG.

次に、色変換手段104であるが、入力信号はRGB3色であり、加法混色系であるのに対し、出力には減法混色系が求められるために行われる。一般的なプリンタではCMYK4色に変換することが多いが、本実施例では更にLkを加えたCMYKLkの5色に変換するものとする。尚、この変換手段104についても後で詳述する。   Next, the color conversion means 104 is performed because the input signal is RGB three colors and is an additive color mixing system, whereas the output requires a subtractive color mixing system. In general printers, conversion to CMYK 4 colors is often performed, but in this embodiment, conversion to 5 colors of CMYKLk with Lk added is further performed. The conversion means 104 will also be described in detail later.

次にUCR手段105であるが、ここでは色変換手段104により得られたKおよびLkの値に基づいてCMYの量を削減するものとする。具体的には、Cout=Cin−K−Lk/2、Mout=Min−K−Lk/2、Yout=Yin−K−Lk/2、という計算を行って出力するCMYを決定する。尚、Cin,Min,Yinはそれぞれ色変換手段104から入力されたCMYの値であり、一方、Cout,Mout,YoutはUCR手段105の出力CMY値である。   Next, the UCR unit 105 is assumed to reduce the amount of CMY based on the values of K and Lk obtained by the color conversion unit 104. Specifically, CMY to be output is determined by calculating Cout = Cin−K−Lk / 2, Mout = Min−K−Lk / 2, and Yout = Yin−K−Lk / 2. Cin, Min, and Yin are CMY values input from the color conversion unit 104, while Cout, Mout, and Yout are output CMY values of the UCR unit 105.

次にプリンタγ補正手段106はプリンタの出力特性に合わせて信号を補正する。具体的には図5に示すようなLUTをCMYKLk5色にそれぞれ用いて対応する値に置き換えることで実現する。尚、このLUTに関しては事前にプリンタの特性を計測し、それに応じて作成したものとする。   Next, the printer γ correction means 106 corrects the signal in accordance with the output characteristics of the printer. Specifically, it is realized by replacing the LUT as shown in FIG. 5 with the corresponding values using CMYKLk 5 colors. It is assumed that the LUT is prepared in advance by measuring the characteristics of the printer.

更に、中間調処理手段107により階調数を8bit256値であった信号を1bit2値の信号へ変換し、プリンタ108によって出力する。尚、中間調処理には誤差拡散を用いることとするが、これは一般的な技術であるため本実施例では説明しない。   Further, the halftone processing means 107 converts the signal having the number of gradations of 8 bits 256 values into a 1 bit binary signal and outputs it by the printer 108. Although error diffusion is used for halftone processing, this is a general technique and will not be described in this embodiment.

次に、像域判定手段101について詳述する。図6は像域判定手段101の構成を示す。前提として、像域判定手段101はスキャナから得られたRGB信号のうちG信号を用いて判定を行う。まずエッジ判定手段200は入力信号の画素値を閾値128で2値化し、図7(a)に示すような8つのパタンに合致していれば真、合致していなければ否を出力するものとする。ここで各升は1画素を示し、黒丸は2値化により黒となった画素のことを指すものとする。次に網点判定手段201はまず図7(b)に示すような注目画素を中心とするマトリクスに於いて以下の式が成り立てばピーク点と判定する。   Next, the image area determination unit 101 will be described in detail. FIG. 6 shows the configuration of the image area determination means 101. As a premise, the image area determination unit 101 performs determination using the G signal among the RGB signals obtained from the scanner. First, the edge determination means 200 binarizes the pixel value of the input signal with a threshold value 128, and outputs true if it matches the eight patterns as shown in FIG. To do. Here, each 升 represents one pixel, and a black circle indicates a pixel that has become black due to binarization. Next, the halftone dot determining means 201 first determines a peak point if the following equation is established in a matrix centered on the target pixel as shown in FIG.

(2*a11−a00−a22>th) 且つ
(2*a11−a02−a20>th) 且つ
(2*a11−a10−a12>th) 且つ
(2*a11−a01−a21>th)
尚、thは所定の閾値とし、ここでは0としておく。その後、注目画素を中心とする3×3画素に於いてピーク点と判定された画素が存在すれば、その3×3画素は全て網点領域であると判定し、真を出力する。またそうでない画素を否と判定する。更に、エッジ判定手段200と網点判定手段201の出力は減算器207によりエッジ判定手段200の出力が真で、且つ網点判定手段201の出力が否である領域を文字縁領域として真、それ以外の領域を否として出力する。つまりエッジ判定手段200と網点判定手段201および減算器207を以て文字縁領域判定手段と呼ぶことができる。
(2 * a11-a00-a22> th) and (2 * a11-a02-a20> th) and (2 * a11-a10-a12> th) and (2 * a11-a01-a21> th)
Note that th is a predetermined threshold value, and is set to 0 here. After that, if there is a pixel determined to be a peak point in 3 × 3 pixels centered on the target pixel, it is determined that all the 3 × 3 pixels are halftone dot areas, and true is output. In addition, it is determined that the pixel is not so. Further, the outputs of the edge determination means 200 and the halftone dot determination means 201 are determined to be true when the output of the edge determination means 200 is true by the subtracter 207 and the output of the halftone dot determination means 201 is negative, as the character edge area. Areas other than are output as no. That is, the edge determination means 200, the halftone dot determination means 201, and the subtracter 207 can be called character edge area determination means.

次に濃度判定手段202は注目画素を中心とする3×3画素の画素値の平均を取り、平均値がどの範囲の値であるかによって低濃度であるか、中濃度であるか、あるいは高濃度であるかを判定する。ここで判定に用いる範囲であるが、1ドットのK色材を出力したときの対応すべき画素値を以て中濃度と高濃度の境界、および1ドットのLk色材を出力したときの対応すべき画素値を以て低濃度と中濃度の境界の値とし、ここでは画素値0〜120ならば低濃度、121〜240なら中濃度、241以上なら高濃度とする。こうすることにより、低濃度と判定された文字域は全てLk色材で出力、高濃度と判定された文字域は全てK色材で出力されるので、文字の内部にドットが打たれない領域が発生せず高品位な文字出力が可能となる。ここでは濃度値に対応する画素値そのものを境界に用いたが、あくまでも平均を以て注目画素の濃度としているので、境界は若干ずらしても構わない。また、本実施例では注目領域の画素値の平均を以て判定濃度としたが、中央値や、その他の統計量でも構わない。   Next, the density determination means 202 averages the pixel values of 3 × 3 pixels centered on the target pixel, and it is low density, medium density, or high depending on the range of the average value. Determine whether the concentration. The range used for the determination here should correspond to the boundary between the medium density and the high density with the pixel value that should correspond when the 1-dot K color material is output, and when the 1-dot Lk color material is output. The pixel value is a boundary value between low density and medium density. Here, the pixel value is 0 to 120, the density is low, 121 to 240 is the medium density, and 241 or more is the high density. By doing so, all the character areas determined to be low density are output with Lk color material, and all the character areas determined to be high density are output with K color material, so that no dot is placed inside the character. High-quality character output is possible without generating Here, the pixel value itself corresponding to the density value is used as the boundary. However, since the density of the pixel of interest is only an average, the boundary may be slightly shifted. In the present embodiment, the average density of the pixel values in the region of interest is used as the determination density. However, a median value or other statistics may be used.

次に文字内部領域203は主走査方向にスキャンを行い一度文字縁判定が真であった場合、そこから次の文字縁判定が真である画素が入力されるまで真を出力し、それ以外は否を出力する。   Next, the character inner area 203 scans in the main scanning direction, and once the character edge determination is true, it outputs true until a pixel for which the next character edge determination is true is input from there. Outputs no.

次に、中間領域判定手段204は文字縁判定が真である画素と、文字内部判定が真である画素が隣り合う領域に於いて文字内部判定が真である画素を中間領域と判定する。   Next, the intermediate area determination unit 204 determines a pixel for which the character internal determination is true in an area where a pixel for which the character edge determination is true and a pixel for which the character internal determination is true are adjacent to each other as an intermediate area.

次に、文字幅判定手段205は注目画素に対し、図7(c)に示されるような領域内に文字縁判定により真と判定された領域が無ければ太文字画素とし、更に注目画素を中心とする5×5画素領域内に太文字画素が存在した場合、該5×5画素領域を全て太文字領域とし、それ以外を細文字領域と判定する。   Next, the character width determination unit 205 sets the pixel of interest to a thick character pixel if there is no region determined to be true by the character edge determination in the region as shown in FIG. When there is a bold character pixel in the 5 × 5 pixel area, all the 5 × 5 pixel areas are determined to be thick character areas, and the others are determined to be thin character areas.

最後に総合判定手段206は入力に応じて図9(a)に示されるような出力を行う。更に文字縁判定手段の出力、中間領域判定手段204の出力、文字内部判定手段203の出力がいずれも否の場合は0を出力するものとする。   Finally, the comprehensive judgment unit 206 performs output as shown in FIG. 9A according to the input. Further, when none of the output of the character edge determination means, the output of the intermediate area determination means 204, and the output of the character inside determination means 203 is 0, 0 is output.

次に、色変換手段104について詳述する。図8(a)は色変換手段104の詳細を示した図である。前段までの処理を施されたRGB信号はRGB→CMYKLk変換手段300によりCMYKLkの5つの信号へと変換される。尚、色変換手段300では図8(b)に示されるような行列演算によってCMYKLkを出力するものである。また、a00からa44までの係数の決定方法は、CMYKLkの混色を出力し、その時の分光反射率から事前に算出しておく。   Next, the color conversion unit 104 will be described in detail. FIG. 8A is a diagram showing details of the color conversion means 104. The RGB signals that have been processed up to the previous stage are converted into five CMYKLk signals by the RGB → CMYKLk conversion means 300. Note that the color conversion means 300 outputs CMYKLk by matrix operation as shown in FIG. Also, the coefficient determination method from a00 to a44 outputs CMYKLk color mixture and calculates in advance from the spectral reflectance at that time.

次に色置換手段301では像域判定手段101の出力に応じてKをLkに若しくはLkをKに置き換える処理を行う。本実施例では簡単のため、K色材の濃度がLk色材の2倍であるとし、K信号をLk信号で置き換えるときには、Lk=2×Kで置き換え、LkをKで置き換える場合にはK=Lk÷2を以て置き換えるものとする。当然ながら、KとLkの色材の濃度は2倍の関係になっている必要はなく、K色材とLk色材の濃度比に応じて置き換え比率を設定すればよい。尚、像域判定手段101の出力に応じた置き換えは9(b)に示すように行う。このままでは理解し難いので9(a)と図9(b)を組み合わせた図9(c)を用いて説明する。   Next, the color replacement unit 301 performs a process of replacing K with Lk or Lk with K according to the output of the image area determination unit 101. In this embodiment, for simplicity, it is assumed that the density of the K color material is twice that of the Lk color material. When the K signal is replaced with the Lk signal, Lk = 2 × K, and when Lk is replaced with K, K = Lk ÷ 2 shall be replaced. Of course, the density of the color material of K and Lk does not need to be doubled, and the replacement ratio may be set according to the density ratio of the K color material and the Lk color material. The replacement according to the output of the image area determination means 101 is performed as shown in 9 (b). Since it is difficult to understand as it is, description will be made with reference to FIG. 9C in which 9 (a) and FIG. 9B are combined.

文字が高濃度であると判定された場合には全てKのみを用いて出力するようにする。単色のKで再生されることにより、K版とLk版の打ち出し位置がずれること(以下版ずれ)により文字が2重に見えるデフェクトの発生を抑制することができる。同様に低濃度且つ細幅の場合は文字を全てLkで再生することにより版ずれによるデフェクトの発生を抑制することができる。また低濃度若しくは中濃度、且つ太幅の場合は文字縁をLkで再現し、文字内部をK単色で再生、また中間領域は置換無し、つまり、KとLkが混在するようにする。これにより文字縁が途切れずに連続的に再現されるため文字の判読性が高くなる。一方、文字内部に関してはK単色で再生するためLkを用い再生する場合に比べ、総色材量を抑制することができる。このような処理を行う合理性としては、文字縁に比べ文字中では形状の正確な再生が必要とされないことによる。この様子を図10に示す。図10(a)が文字縁を連続的に処理しない場合の中間濃度文字を2値で表した画像であり、図10(b)が文字縁を連続的に処理した場合の画像である。この図から分かるように文字の縁が連続的に再生されないと文字の縁部分でがたつきが大きく、文字の縁が連続的に再生された方が判読性に優れる。一方、図10(c)、(d)は文字の縁を連続的に処理した後、文字の内部の線数を変えて再生したものである。(c)が低線数で表した画像であり、(d)が高線数で表した画像である。このような画像を提示したのは、中間濃度の文字をK単色で表現した場合と、KおよびLkの混在で表現した場合に近い画像を示すためである。図10(c)、(d)から明らかなように左右の画像で文字の判読性はほとんど変わらない。   If it is determined that the character has a high density, all characters are output using only K. By reproducing with a single color K, it is possible to suppress the occurrence of a defect in which characters appear double due to the shift of the launch positions of the K plate and the Lk plate (hereinafter referred to as plate displacement). Similarly, in the case of low density and narrow width, the occurrence of defects due to plate misregistration can be suppressed by reproducing all characters with Lk. In the case of low density, medium density, and wide width, the character edge is reproduced with Lk, the inside of the character is reproduced with K single color, and the intermediate area is not replaced, that is, K and Lk are mixed. As a result, the character edges are continuously reproduced without interruption, so that the character can be easily read. On the other hand, since the inside of the character is reproduced in K single color, the total color material amount can be suppressed as compared with the case of reproducing using Lk. The rationale for performing such processing is that accurate reproduction of the shape is not required in the character compared to the character edge. This is shown in FIG. FIG. 10A is an image in which intermediate density characters are represented by binary values when character edges are not continuously processed, and FIG. 10B is an image when character edges are processed continuously. As can be seen from this figure, if the edge of the character is not reproduced continuously, the play of the edge of the character is large, and if the edge of the character is reproduced continuously, the legibility is excellent. On the other hand, FIGS. 10 (c) and 10 (d) are reproduced by changing the number of lines inside the character after continuously processing the edges of the character. (C) is an image represented by a low number of lines, and (d) is an image represented by a high number of lines. The reason why such an image is presented is to show an image that is close to the case where characters of medium density are expressed in K single color and the case where K and Lk are mixed. As is clear from FIGS. 10C and 10D, the legibility of the characters hardly changes between the left and right images.

同様に細幅中濃度の場合は文字の縁を連続的に再生するためにLk色材を用いて出力するが、これは十分な線幅がないと文字の内部に一本の濃い色の線が残る可能性が有ることに起因する。   Similarly, in the case of a medium density of narrow width, an Lk color material is used for continuous reproduction of the edge of a character, but this is not a sufficient line width. This is due to the possibility of remaining.

以上の実施例では濃度の異なる色材としてKとLkを挙げて説明したが、勿論CとライトシアンやMとライトマゼンタ、Yとライトイエローといった他の色の色材に関しても全く同様の処理を行うことが可能である。また、本実施例では濃度の薄い色材と濃度の濃い色材を用いて説明したが、中間濃度の色材を用いても同様の処理が可能である。   In the above embodiment, K and Lk are described as color materials having different densities, but of course, the same processing is performed for other color materials such as C and light cyan, M and light magenta, and Y and light yellow. It is possible. In this embodiment, the color material having a low density and the color material having a high density have been described. However, the same processing can be performed using a color material having an intermediate density.

また、以上の説明では、高濃度色材、低濃度色材の利用を二値的に切り替える手法であったが、例えば濃度に応じて、もしくは線の太さに応じて、混在の割合を制御するという手法であっても構わない。   In the above description, the use of the high-density color material and the low-density color material is switched in a binary manner. For example, the mixing ratio is controlled according to the density or the thickness of the line. You may be the technique of doing.

また、本発明は、前述した実施例の処理手順や機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(CPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても達成される。この場合、記憶媒体から読出されたプログラムコード自体が前述した実施例の処理手順や機能を実現することになる。プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。また、コンピュータが読出したプログラムコードを実行することにより、前述した実施例の手順が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれる。さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれる。   The present invention also supplies a storage medium storing software program codes for realizing the processing procedures and functions of the above-described embodiments to a system or apparatus, and a computer (CPU or MPU) of the system or apparatus stores the storage medium. This can also be achieved by reading and executing the program code stored in. In this case, the program code itself read from the storage medium realizes the processing procedures and functions of the above-described embodiment. As a storage medium for supplying the program code, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used. Further, by executing the program code read by the computer, not only the procedure of the above-described embodiment is realized, but also an OS (operating system) operating on the computer based on the instruction of the program code. A case where part or all of the actual processing is performed and the functions of the above-described embodiments are realized by the processing is also included. Further, after the program code read from the storage medium is written into a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer, the function expansion is performed based on the instruction of the program code. This includes a case where the CPU or the like provided in the board or the function expansion unit performs part or all of the actual processing, and the functions of the above-described embodiments are realized by the processing.

従来技術の問題点を説明する図である。It is a figure explaining the problem of a prior art. 本発明の実施例の構成を示す。The structure of the Example of this invention is shown. スキャナγ補正手段の入出力特性を示す。The input / output characteristics of the scanner γ correction means are shown. MTF補正フィルタ例を示す。An example of an MTF correction filter is shown. プリンタγ補正手段の入出力特性を示す。The input / output characteristics of the printer γ correction means are shown. 像域判定手段の構成を示す。The structure of an image area determination means is shown. エッジ判定、網点判定、文字幅判定を説明する図である。It is a figure explaining edge determination, halftone dot determination, and character width determination. 色変換手段を説明する図である。It is a figure explaining a color conversion means. 像域判定結果に応じたLk、K処理を説明する図である。It is a figure explaining the Lk and K process according to the image area determination result. 本発明の処理により文字の画質が向上することを説明する図である。It is a figure explaining that the image quality of a character improves by the process of this invention.

符号の説明Explanation of symbols

100 スキャナ
101 像域判定手段
102 スキャナγ補正手段
103 フィルタ補正手段
104 色変換手段
105 UCR手段
106 プリンタγ補正手段
107 中間調処理手段
108 プリンタ
DESCRIPTION OF SYMBOLS 100 Scanner 101 Image area determination means 102 Scanner gamma correction means 103 Filter correction means 104 Color conversion means 105 UCR means 106 Printer gamma correction means 107 Halftone processing means 108 Printer

Claims (4)

入力画像の注目画素が文字縁であるか否かを判定する文字縁判定手段と、前記注目画素が文字の内部であるか否かを判定する文字内部判定手段と、前記注目画素の画素値が所定の第1の閾値よりも高ければ高濃度と判定し、前記注目画素の画素値が所定の第2の閾値(<第1の閾値)よりも低ければ低濃度と判定し、前記注目画素の画素値が前記第1の閾値よりも低く、前記第2の閾値よりも高ければ中濃度と判定する濃度判定手段と、前記文字縁と判定された画素と、前記文字内部と判定された画素が隣接する領域において、前記文字内部と判定された注目画素を中間領域と判定する中間領域判定手段と、前記注目画素が太文字画素であるか細文字画素であるかを判定する文字幅判定手段と、前記各判定手段の判定結果に応じて、濃度の異なる色材を用いて画像を再生する出力手段を備え、前記出力手段は、
前記濃度判定手段が高濃度と判定した注目画素に対しては、前記文字の内部、文字縁、中間領域を全て高濃度の色材のみを用いて再生し、
前記濃度判定手段が低濃度と判定し、前記文字幅判定手段が細文字と判定した注目画素に対しては、前記文字の内部、文字縁、中間領域を全て低濃度の色材で再生し、
前記濃度判定手段が中濃度もしくは低濃度と判定し、前記文字幅判定手段が太文字と判定した注目画素に対しては、前記文字縁を低濃度の色材で再生し、前記文字内部を高濃度の色材で再生し、前記中間領域を低濃度の色材と高濃度の色材の混在で再生し、
前記濃度判定手段が中濃度と判定し、前記文字幅判定手段が細文字と判定した注目画素に対しては、前記文字縁を低濃度の色材で再生し、前記中間領域および文字内部を低濃度の色材と高濃度の色材の混在で再生することを特徴とする画像処理装置。
Character edge determination means for determining whether or not the pixel of interest of the input image is a character edge, character internal determination means for determining whether or not the pixel of interest is inside a character, and the pixel value of the pixel of interest is If the pixel value of the pixel of interest is lower than a predetermined second threshold (<first threshold), the pixel is determined to have a low density if the pixel value is higher than a predetermined first threshold. If the pixel value is lower than the first threshold and higher than the second threshold, density determination means for determining medium density, pixels determined to be the character edge, and pixels determined to be inside the character In an adjacent region, an intermediate region determining unit that determines a target pixel determined to be inside the character as an intermediate region, and a character width determining unit that determines whether the target pixel is a thick character pixel or a thin character pixel Depending on the determination result of each determination means, the concentration difference An output means for reproducing an image by using that color material, and the output means,
For the target pixel determined by the density determination means to be high density, the inside, the character edge, and the intermediate area of the character are all reproduced using only the high density color material,
For the target pixel determined by the density determination means to be low density and the character width determination means determined to be a fine character, the inside, character edge, and intermediate area of the character are all reproduced with a low density color material,
For the pixel of interest that the density determination means determines as medium density or low density, and the character width determination means determines that it is a thick character, the character edge is reproduced with a low density color material, and the inside of the character is high. Reproduce with a color material with a density, and reproduce the intermediate area with a mixture of a low density color material and a high density color material,
For the pixel of interest that the density determination means determines as medium density and the character width determination means determines that it is a fine character, the character edge is reproduced with a low-density color material, and the intermediate area and the character interior are reduced. An image processing apparatus that reproduces a color material having a high density and a color material having a high density.
入力画像の注目画素が文字縁であるか否かを判定する文字縁判定工程と、前記注目画素が文字の内部であるか否かを判定する文字内部判定工程と、前記注目画素の画素値が所定の第1の閾値よりも高ければ高濃度と判定し、前記注目画素の画素値が所定の第2の閾値(<第1の閾値)よりも低ければ低濃度と判定し、前記注目画素の画素値が前記第1の閾値よりも低く、前記第2の閾値よりも高ければ中濃度と判定する濃度判定工程と、前記文字縁と判定された画素と、前記文字内部と判定された画素が隣接する領域において、前記文字内部と判定された注目画素を中間領域と判定する中間領域判定工程と、前記注目画素が太文字画素であるか細文字画素であるかを判定する文字幅判定工程と、前記各判定工程の判定結果に応じて、濃度の異なる色材を用いて画像を再生する出力工程を備え、前記出力工程は、
前記濃度判定工程が高濃度と判定した注目画素に対しては、前記文字の内部、文字縁、中間領域を全て高濃度の色材のみを用いて再生し、
前記濃度判定工程が低濃度と判定し、前記文字幅判定工程が細文字と判定した注目画素に対しては、前記文字の内部、文字縁、中間領域を全て低濃度の色材で再生し、
前記濃度判定工程が中濃度もしくは低濃度と判定し、前記文字幅判定工程が太文字と判定した注目画素に対しては、前記文字縁を低濃度の色材で再生し、前記文字内部を高濃度の色材で再生し、前記中間領域を低濃度の色材と高濃度の色材の混在で再生し、
前記濃度判定工程が中濃度と判定し、前記文字幅判定工程が細文字と判定した注目画素に対しては、前記文字縁を低濃度の色材で再生し、前記中間領域および文字内部を低濃度の色材と高濃度の色材の混在で再生することを特徴とする画像処理方法。
A character edge determination step for determining whether or not a target pixel of the input image is a character edge, a character internal determination step for determining whether or not the target pixel is inside a character, and a pixel value of the target pixel If the pixel value of the pixel of interest is lower than a predetermined second threshold (<first threshold), the pixel is determined to have a low density if the pixel value is higher than a predetermined first threshold. If a pixel value is lower than the first threshold value and higher than the second threshold value, a density determination step for determining medium density, a pixel determined to be the character edge, and a pixel determined to be inside the character are An intermediate region determining step for determining a target pixel determined to be inside the character as an intermediate region in an adjacent region; and a character width determining step for determining whether the target pixel is a thick character pixel or a fine character pixel; Depending on the determination result of each determination step, the concentration difference An output step of reproducing an image by using that color material, said output step,
For the target pixel determined to be high density in the density determination step, the inside, the character edge, and the intermediate area of the character are all reproduced using only the high density color material,
For the pixel of interest determined by the density determination step as a low density and the character width determination step as a fine character, the inside, the character edge, and the intermediate area of the character are all reproduced with a low density color material,
For a pixel of interest that is determined to be medium density or low density in the density determination step and to be a bold character in the character width determination step, the character edge is reproduced with a low density color material, and the inside of the character is high. Reproduce with a color material with a density, and reproduce the intermediate area with a mixture of a low density color material and a high density color material,
For the pixel of interest that the density determination step determines as medium density and the character width determination step determines that it is a fine character, the character edge is reproduced with a low-density color material, and the intermediate area and the character interior are reduced. An image processing method, wherein reproduction is performed by mixing a color material having a high density and a color material having a high density.
請求項2記載の画像処理方法をコンピュータに実現させるためのプログラム。   A program for causing a computer to implement the image processing method according to claim 2. 請求項2記載の画像処理方法をコンピュータに実現させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。   A computer-readable recording medium recording a program for causing a computer to implement the image processing method according to claim 2.
JP2006057384A 2006-03-03 2006-03-03 Image processing apparatus, image processing method, program, and recording medium Expired - Fee Related JP4650946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006057384A JP4650946B2 (en) 2006-03-03 2006-03-03 Image processing apparatus, image processing method, program, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006057384A JP4650946B2 (en) 2006-03-03 2006-03-03 Image processing apparatus, image processing method, program, and recording medium

Publications (2)

Publication Number Publication Date
JP2007235796A JP2007235796A (en) 2007-09-13
JP4650946B2 true JP4650946B2 (en) 2011-03-16

Family

ID=38555883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006057384A Expired - Fee Related JP4650946B2 (en) 2006-03-03 2006-03-03 Image processing apparatus, image processing method, program, and recording medium

Country Status (1)

Country Link
JP (1) JP4650946B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169133A (en) * 1999-12-14 2001-06-22 Canon Inc Method and device for image processing and method and device for forming images
JP2004282720A (en) * 2003-02-26 2004-10-07 Sharp Corp Image processor, image forming apparatus, image processing method, image processing program and computer readable recording medium with image processing program recorded thereon
JP2005176035A (en) * 2003-12-12 2005-06-30 Canon Inc Image processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169133A (en) * 1999-12-14 2001-06-22 Canon Inc Method and device for image processing and method and device for forming images
JP2004282720A (en) * 2003-02-26 2004-10-07 Sharp Corp Image processor, image forming apparatus, image processing method, image processing program and computer readable recording medium with image processing program recorded thereon
JP2005176035A (en) * 2003-12-12 2005-06-30 Canon Inc Image processing apparatus

Also Published As

Publication number Publication date
JP2007235796A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4548733B2 (en) Image processing apparatus, method, program, and recording medium
JP4637063B2 (en) Image processing apparatus, image processing method, and program
US7733534B2 (en) Image processing method, image processing apparatus, image forming apparatus, and recording medium
US8218206B2 (en) Color conversion using transformed gamuts
JPH05336373A (en) Image recorder
JP2008017365A (en) Apparatus and method for processing picture, and program
JP2006014274A (en) Color-converting apparatus, image forming apparatus, color converting method, computer program, and recording medium
JP2008252700A (en) Image processing apparatus and image processing method
US7880927B2 (en) Image forming apparatus, image forming method, program, and recording medium
JP2004235993A (en) Method for image processing
US20030058465A1 (en) Image processing apparatus
US5892596A (en) Image processing apparatus capable of reforming marker editing
US8098413B2 (en) Image output apparatus, image output method, computer program and recording medium
JP4315176B2 (en) Printing apparatus, printing method, and printing program
JP2007060151A (en) Color processing method and apparatus therefor
JP4650946B2 (en) Image processing apparatus, image processing method, program, and recording medium
JP2001232860A (en) Hue determining device for specific color for recorder and method therefor and recording medium
JP2007060558A (en) Color processing method and apparatus therefor, and image processing method
JP2008092541A (en) Image processing method, image processor, image forming apparatus, computer program, and recording medium
JP7266462B2 (en) IMAGE PROCESSING APPARATUS, IMAGE FORMING APPARATUS, IMAGE PROCESSING METHOD AND PROGRAM
JP2006319961A (en) Image processing apparatus, recording apparatus, and image processing method
JP4044530B2 (en) Image processing apparatus, image processing method, image forming apparatus, image processing program, and recording medium
JPH1170780A (en) Electronic writing boad device
US20020126303A1 (en) Printer having scanning function, color converting device and color converting method
JP2005072635A (en) Image processing apparatus, image forming apparatus, image reading apparatus, image processing method, image processing program, and computer-readable recording medium stored with the image processing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees