JP4649568B2 - Protein removal filter medium, protein removal method, and drooping method - Google Patents

Protein removal filter medium, protein removal method, and drooping method Download PDF

Info

Publication number
JP4649568B2
JP4649568B2 JP2006193419A JP2006193419A JP4649568B2 JP 4649568 B2 JP4649568 B2 JP 4649568B2 JP 2006193419 A JP2006193419 A JP 2006193419A JP 2006193419 A JP2006193419 A JP 2006193419A JP 4649568 B2 JP4649568 B2 JP 4649568B2
Authority
JP
Japan
Prior art keywords
protein
filter medium
sample
liquid
protein removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006193419A
Other languages
Japanese (ja)
Other versions
JP2008018365A (en
Inventor
淑男 西田
芳孝 山下
通男 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Prefecture
Original Assignee
Aichi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Prefecture filed Critical Aichi Prefecture
Priority to JP2006193419A priority Critical patent/JP4649568B2/en
Publication of JP2008018365A publication Critical patent/JP2008018365A/en
Application granted granted Critical
Publication of JP4649568B2 publication Critical patent/JP4649568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明は、液体中からたんぱく質を除去するたんぱく質除去用濾材、このたんぱく質除去用濾材を用いたたんぱく質除去方法、並びに滓下げ方法に関するものである。   The present invention relates to a protein removing filter medium for removing protein from a liquid, a protein removing method using the protein removing filter medium, and a drooping method.

醸造液、特に清酒の評価項目には、サエやテリと呼ばれるものがあり、白濁が生じた清酒はサエが悪いとして高い評価が得られない。この白濁の原因には白ボケと呼ばれるたんぱく混濁と、火落菌による火落とがあり、このような白濁の除去のためには珪藻土や活性炭による濾過が為されているが、たんぱく混濁は前記濾過のみでは除去できないため、火入れ及び滓下げと呼ばれる操作が必要とされている。また、みりんを調理、加工に使用する際には、白濁現象や、泡の発生を伴い商品価値を低下させるニキリ現象が生じる場合がある。このニキリの原因物質としてもたんぱく質が挙げられるため、やはり滓下げの操作が必要とされる。   The evaluation items for brewing liquids, particularly sake, include so-called “sae” and “teri”, and sake with white turbidity cannot be rated highly because it is bad. The cause of this white turbidity is protein turbidity called white bokeh and fire caused by fire eradication bacteria. To remove such turbidity, filtration with diatomaceous earth or activated carbon is used. In this case, it is impossible to remove them, so an operation called burning and lowering is required. In addition, when mirin is used for cooking and processing, there may be a cloudiness phenomenon or a cracking phenomenon that reduces the value of the product with the occurrence of bubbles. As a causative substance of this bite, protein can be cited, so it is still necessary to perform a drooping operation.

従来の清酒等等の醸造液に対する滓下げ方法としては、柿しぶ(タンニン)、ゼラチン、シリカ、二酸化珪素ゾル等を混入して滓を強制的に形成させ、固いフロックとして沈降除去する方法、プロテアーゼにより混濁物質であるタンパクの末端を切断し、切断部分でタンパク同士を結合させて凝集させる方法、限外濾過膜により濾過する方法等が知られている。これらの方法については、財団法人日本醸造協会発行の「増補改訂清酒製造技術」に詳しく記載されている。   As a conventional method for lowering brewing liquids such as sake, tannin, gelatin, silica, silicon dioxide sol, etc. are mixed to forcibly form koji, and precipitate and remove it as a hard flock, protease There are known a method of cleaving the ends of a protein which is a turbid substance, binding the proteins together at the cut portion and aggregating them, a method of filtering through an ultrafiltration membrane, and the like. These methods are described in detail in “Enhanced and revised Sake Manufacturing Technology” published by the Japan Brewing Association.

しかし、上記従来方法のうち、柿しぶ(タンニン)、ゼラチン、シリカ、二酸化珪素ゾル等を用いる方法では酒質によってこれらの添加量が変動するため、ときにはフロックの凝集度が低くて沈降に多大な日数を要したり、滓下げ剤が過剰になったりするという問題があった。また、殊にゼラチンは近年のBSE(牛海綿状脳症)問題やアレルギー物質表示の問題から使用を避けるようになってきている。   However, among the above conventional methods, in the method using tannin, gelatin, silica, silicon dioxide sol, etc., the amount of addition varies depending on the quality of the liquor. There was a problem that it took days or excessive amount of the suspending agent. In particular, gelatin has been avoided from recent BSE (bovine spongiform encephalopathy) problems and allergen labeling problems.

また。プロテアーゼを用いる方法では処理に長時間かかる上に、ロット間の配合が難しいという問題があった。   Also. The method using protease has a problem that it takes a long time to process and it is difficult to mix between lots.

また、限外濾過膜を用いる方法は、浸透圧が高くなると濾過速度が落ちる上に、滓の原因物質以外の成分まで除去してしまうため、酒の味が変化して旨みがなくなる等の問題があった。   In addition, the method using an ultrafiltration membrane reduces the filtration rate when the osmotic pressure increases, and also removes components other than the causative agent of the koji so that the taste of the sake changes and the taste is lost. was there.

このような問題を解決するため、例えばセピオライト原石を焼成した多孔質体と醸造液と接触させることで滓下げを行う方法(特許文献1参照)が提案されているが、処理後の醸造液に着色が生じてしまうことがあるという問題があった。また、ゼオライト原石を焼成した多孔質体に醤油等を55℃以上の温度で接触させる方法(特許文献1参照)や、醸造液を所定の温度域で未焼成のセピオライトと接触させる方法(特許文献2参照)も提案されているが、処理温度が高いため製品の着色度が上昇したり製品の香りが変わってしまうおそれがあるため、別途活性炭処理工程等を追加する必要があった。   In order to solve such a problem, for example, a method (see Patent Document 1) for lowering the brewing liquid by bringing the raw sepiolite into contact with the baked porous body and the brewing liquid has been proposed. There was a problem that coloring may occur. In addition, a method in which soy sauce or the like is brought into contact with a porous body obtained by firing a raw zeolite ore at a temperature of 55 ° C. or higher (see Patent Document 1), or a method in which a brewing liquid is brought into contact with unfired sepiolite in a predetermined temperature range (Patent Document) 2) has also been proposed. However, since the treatment temperature is high, there is a risk that the coloring degree of the product may increase or the scent of the product may change, so that an additional activated carbon treatment step or the like has to be added.

そのため、醸造液中のたんぱく質を品質を損なうことなく迅速に除去することにより滓下げを行うことができる技術が求められている。またこのような技術を得ることができれば、醸造液の滓下げに限らず、各種の動物や植物等から得られる抽出液等からたんぱく質を除去するために応用することもできるようになる。
特開2000-106863号公報 特開2000-152765号公報 特開2001-128657号公報
For this reason, there is a need for a technique that can lower the protein by quickly removing the protein in the brewing liquid without impairing the quality. If such a technique can be obtained, it can be applied not only to lowering the brewing liquid, but also to removing proteins from extracts obtained from various animals and plants.
JP 2000-106863 A JP 2000-152765 A JP 2001-128657 A

本発明は上記の問題に鑑みて為されたものであり、対象となる液体中のたんぱく質を、前記液体の品質を劣化させることなく迅速に除去することができるたんぱく質除去用濾材、このたんぱく質除去用濾材を用いたたんぱく質除去方法、並びにこのたんぱく質除去方法を利用した醸造液の滓下げ方法を提供することを目的とするものである。   The present invention has been made in view of the above problems, and is a protein removing filter medium capable of quickly removing a protein in a target liquid without deteriorating the quality of the liquid, and for removing the protein. It is an object of the present invention to provide a method for removing a protein using a filter medium, and a method for lowering a brewing liquid using the method for removing a protein.

本発明者らは鋭意研究の結果、加熱することなく滓下げに必要とされるたんぱく質除去性能を有すると共に品質の変化を生じることなく迅速なたんぱく質除去が可能な濾材を用いてたんぱく質の除去を行う手法を見出し、本発明の完成に至ったものである。   As a result of diligent research, the present inventors have performed protein removal using a filter medium that has a protein removal performance required for lowering without heating and can quickly remove a protein without causing a change in quality. The technique has been found and the present invention has been completed.

すなわち、請求項1に係るたんぱく質除去用濾材は、カオリン鉱物に強酸を加え、水熱処理と焼成処理を施すことにより得られる多孔質体からなることを特徴とする。   That is, the filter medium for removing protein according to claim 1 is characterized by comprising a porous body obtained by adding a strong acid to kaolin mineral, and subjecting it to hydrothermal treatment and firing treatment.

請求項2に係るたんぱく質除去方法は、カオリン鉱物に強酸を加え、水熱処理と焼成処理を施すことにより得られる多孔質体からなる濾材に、たんぱく質除去対象となる液体を接触させることを特徴とする。   The protein removing method according to claim 2 is characterized in that a strong acid is added to kaolin mineral, and a liquid to be removed is brought into contact with a filter medium made of a porous material obtained by hydrothermal treatment and baking treatment. .

請求項3に係る発明は、請求項1において、上記濾材をカラムに充填し、このカラムに上記たんぱく質除去対象となる液体を通液することを特徴とする。   The invention according to claim 3 is characterized in that, in claim 1, the filter medium is packed in a column, and the liquid to be subjected to the protein removal is passed through the column.

請求項4に係る発明は、請求項2又は3において、上記たんぱく質除去対象となる液体が、植物又は動物から得られた液体であることを特徴とする。   The invention according to claim 4 is characterized in that, in claim 2 or 3, the liquid to be subjected to protein removal is a liquid obtained from a plant or an animal.

請求項5に係る滓下げ方法は、請求項2又は3に記載の方法を用いて醸造液の滓下げを行うことを特徴とする。   The dripping method according to claim 5 is characterized in that dripping of the brewing liquid is carried out using the method according to claim 2 or 3.

請求項1に係る発明によれば、たんぱく質除去用濾材をたんぱく質除去対象となる液体と接触させることで、この液体中のたんぱく質を濾材にて捕捉して速やかに吸着除去することができ、液体中のたんぱく質を迅速に効率よく除去してこの液体中のたんぱく質濃度を低減することができるものであり、またこのとき加熱等の処理が不要であって液体の品質変化や着色の発生を抑制することができるものである。また、濾材は能力が低下しても容易に再生して、繰り返し使用することができるものである。   According to the invention of claim 1, by bringing the protein removal filter medium into contact with the liquid to be removed, the protein in the liquid can be captured by the filter medium and quickly adsorbed and removed. The protein concentration in this liquid can be reduced quickly and efficiently by removing the protein of this liquid, and at this time, treatment such as heating is unnecessary, and the liquid quality change and the occurrence of coloring are suppressed. It is something that can be done. In addition, the filter medium can be easily regenerated and used repeatedly even if its capacity is reduced.

請求項2に係る発明によれば、たんぱく質除去対象となる液体中のたんぱく質を濾材にて捕捉して速やかに吸着除去することができ、液体中のたんぱく質を迅速に効率よく除去してこの液体中のたんぱく質濃度を低減することができるものであり、またこのとき加熱等の処理が不要であって液体の品質変化や着色の発生を抑制することができるものである。また、濾材は能力が低下しても容易に再生して、繰り返し使用することができるものである。   According to the second aspect of the present invention, the protein in the liquid to be removed can be trapped by the filter medium and quickly adsorbed and removed, and the protein in the liquid can be removed quickly and efficiently. The protein concentration can be reduced, and at this time, treatment such as heating is unnecessary, and the change in the quality of the liquid and the occurrence of coloring can be suppressed. In addition, the filter medium can be easily regenerated and used repeatedly even if its capacity is reduced.

請求項3に係る発明によれば、連続的な処理にて液体からのたんぱく質の除去が可能であり、且つ液体と濾材とを分離するための操作も不要となって、更に効率良くたんぱく質の除去を行うことができるものである。   According to the invention of claim 3, it is possible to remove the protein from the liquid by continuous treatment, and an operation for separating the liquid and the filter medium is unnecessary, and the protein can be removed more efficiently. Is something that can be done.

また、請求項4に係る発明によれば、動植物から得られる液体からもたんぱく質を除去することができ、例えばこの液体を原料とした加工品にたんぱく質に起因する白濁等が生じることを防止することができる。   Moreover, according to the invention which concerns on Claim 4, protein can be removed from the liquid obtained from animals and plants, for example, it prevents that the cloudiness etc. which originate in protein arise in the processed goods which used this liquid as a raw material. Can do.

また、請求項5に係る発明によれば、醸造液からたんぱく質を除去することで滓下げを迅速に効率良く行うことができると共に、醸造液の品質変化の発生を防止することができるものである。   Moreover, according to the invention which concerns on Claim 5, while removing a protein from a brewing liquid, while being able to perform a drooping quickly and efficiently, generation | occurrence | production of the quality change of a brewing liquid can be prevented. .

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明にて用いられる濾材は、カオリン鉱物を原料として得られる。   The filter medium used in the present invention is obtained using kaolin mineral as a raw material.

カオリン鉱物として用いられるカオリナイトは、アルミニウムの含水珪酸塩で、カオリン鉱物中では最も代表的なものであり、三斜晶系に属する小さな偽六角形の薄片状や燐片状の結晶を作るほか、塊状や緻密土状、粘土状の塊のものもある。   Kaolinite used as a kaolin mineral is a hydrated aluminum silicate, the most typical kaolin mineral. It produces small pseudohexagonal flaky and scaly crystals belonging to the triclinic system. There are also lumps, dense earths, and clay lumps.

カオリン鉱物は、上記カオリナイト以外にディッカイト、ナクライト、ハロイサイトから選択された一種又は複数のものが主成分であれば良く、天然品もしくは合成品のどちらでも良い。このようなカオリン鉱物の一例としては蛙目粘土を挙げることができる。   In addition to the kaolinite, the kaolin mineral may be one or more selected from dickite, nacrite, and halloysite as main components, and may be either a natural product or a synthetic product. An example of such a kaolin mineral is Sasame clay.

このカオリン鉱物に強酸を加え、水熱処理と焼成処理を施すことに多孔質体を得ることができる。この多孔質体を、たんぱく質除去用濾材(以下、濾材という)として用いることができる。   A porous material can be obtained by adding a strong acid to the kaolin mineral and subjecting it to a hydrothermal treatment and a baking treatment. This porous material can be used as a filter medium for removing protein (hereinafter referred to as filter medium).

強酸としては、カオリン鉱物を10%スラリーにした状態でpHが4.0以下になるものを用いることができる。この強酸は、無機酸、有機酸のいずれでも良い。   As the strong acid, one having a pH of 4.0 or less in a state where kaolin mineral is made into a 10% slurry can be used. This strong acid may be either an inorganic acid or an organic acid.

水熱処理は、好ましくは100℃以上で1時間以上行う。前記処理温度は100〜250℃の範囲が特に好ましい。この水熱処理条件が弱いと得られたスラリー又は多孔質体の細孔量が少なく、逆に水熱処理条件が強過ぎるとカオリン鉱物の分解が発生する上、燃費等が余計にかかって不経済であるという問題が生じる。   The hydrothermal treatment is preferably performed at 100 ° C. or higher for 1 hour or longer. The treatment temperature is particularly preferably in the range of 100 to 250 ° C. If the hydrothermal treatment conditions are weak, the resulting slurry or porous body has a small amount of pores. Conversely, if the hydrothermal treatment conditions are too strong, the kaolin mineral will be decomposed and the fuel consumption will be excessive and uneconomical. The problem that there is.

水熱処理後のスラリー又は粉体には、必要に応じて造粒処理を施す。造粒方法は転動造粒法,粉霧乾燥造粒法,攪拌造粒法,真空乾燥造粒法,流動層造粒法等多くの造粒法の何れを用いても良い。ここで、濾材をカラムに充填して使用する場合には、造粒径が小さいほど液体との接触面積が増えるため、濾過効率が高くなるが、この造粒径が過小であると圧力損失が増えて液体の流れが悪くなるという問題が生じる。このため濾材の平均粒径は10μm以上であることが好ましく、実用的には液体の粘度等に応じて100μm〜2mmの範囲とすることが好ましい。   The slurry or powder after the hydrothermal treatment is granulated as necessary. As the granulation method, any of a number of granulation methods such as a tumbling granulation method, a powder fog drying granulation method, a stirring granulation method, a vacuum drying granulation method, and a fluidized bed granulation method may be used. Here, when the filter medium is packed in a column and used, the smaller the particle size, the larger the contact area with the liquid. Therefore, the filtration efficiency increases. However, if the particle size is too small, the pressure loss is reduced. The problem arises that the flow of liquid becomes worse due to the increase. For this reason, it is preferable that the average particle diameter of a filter medium is 10 micrometers or more, and it is preferable to set it as the range of 100 micrometers-2 mm practically according to the viscosity etc. of a liquid.

また、焼成処理は適宜の条件で行うことができるが、焼成温度は350〜1000℃の範囲が好ましく、また焼成時間は1〜5時間の範囲が好ましい。ここで示差熱分析のデータによれば、上記カオリン鉱物はOHの形で含まれている水が400℃前後から脱水し始め、600℃前後で大きい吸熱ピークをつくって脱水し、この脱水が終わった後メタカオリンになり、更に970℃〜1000℃付近でγアルミナ又はムライトの結晶化に起因する発熱ピークが現れ、焼成収縮が始まる。そのため焼成温度が350℃以下では結晶水の放出が十分行われず、メタカオリン化が不十分となって細孔量が少なくなり、焼成温度が1000℃以上では、焼成収縮が始まる為、細孔がつぶされて細孔量が少なくなる。従って焼成温度は前記の通り、350〜1000℃の範囲が好ましいものである。   Moreover, although a baking process can be performed on suitable conditions, the range of 350-1000 degreeC is preferable for baking temperature, and the range for 1-5 hours is preferable for baking time. Here, according to the differential thermal analysis data, the water contained in the form of OH in the kaolin mineral begins to dehydrate from around 400 ° C., dehydrates with a large endothermic peak around 600 ° C., and this dehydration is over. After that, it becomes metakaolin, and an exothermic peak due to crystallization of γ-alumina or mullite appears around 970 ° C. to 1000 ° C., and firing shrinkage starts. Therefore, when the firing temperature is 350 ° C. or lower, the water of crystallization is not sufficiently released, resulting in insufficient metakaolinization and a reduced amount of pores. As a result, the amount of pores is reduced. Accordingly, the firing temperature is preferably in the range of 350 to 1000 ° C. as described above.

このようにして得られる濾材は上記製造過程において原料であるカオリナイト原石の結晶構造が変化し、50〜1000nmの範囲に細孔径分布のピークが生じると共に比表面積が極めて大きなものとなることで、たんぱく質を捕捉するために適したものとなり、分子量3500以上程度或いは5000以上程度で広い範囲の分子量のたんぱく質を吸着除去することができるようになる。ここで、前記たんぱく質にはポリペプチド類も含まれる。このとき、この濾材によっては、旨味成分に欠かせないといわれる低分子量のペプチドは除去されにくく、滓等の原因となるたんぱく質のみを十分に低減することができる。   The filter medium obtained in this manner changes the crystal structure of the raw kaolinite ore as a raw material in the above production process, a peak of pore size distribution occurs in the range of 50 to 1000 nm and the specific surface area becomes extremely large. It becomes suitable for capturing proteins, and proteins with a molecular weight of about 3500 or more or about 5000 or more can be adsorbed and removed. Here, the protein includes polypeptides. At this time, depending on the filter medium, it is difficult to remove low molecular weight peptides, which are said to be indispensable for umami components, and it is possible to sufficiently reduce only proteins that cause wrinkles and the like.

このような濾材をたんぱく質を含む液体と接触させた場合、液体中の分子量5000以上のたんぱく質が濾材の細孔に捕捉されて速やかに吸着除去され、またこの吸着したたんぱく質は再び液体中に溶出することがなくなる。   When such a filter medium is brought into contact with a liquid containing a protein, a protein having a molecular weight of 5000 or more in the liquid is trapped in the pores of the filter medium and quickly adsorbed and removed, and the adsorbed protein is eluted in the liquid again. Nothing will happen.

また、このような濾材によるたんぱく質の捕捉性能が低下した場合には、上記濾材は耐薬品性及び耐熱性が高いため、種々の薬品で処理したり加熱処理を施したりするなどして、濾材を変質させることなくこの濾材からたんぱく質を容易に除去又は変性させることが可能となり、たんぱく質の捕捉性能を再生させて、濾材を繰り返し再生して利用することが可能となる。ここで、濾材を再生する方法としては種々のものを挙げることができるが、例えば次亜塩素酸ナトリウム水溶液による処理、水酸化ナトリウム水溶液による処理、尿素水溶液による処理等のような薬剤による処理や、500〜600℃の温度での焼成処理を挙げることができる。   In addition, when the protein trapping performance by such a filter medium is lowered, the filter medium has high chemical resistance and heat resistance, so that the filter medium is treated with various chemicals or subjected to heat treatment, etc. The protein can be easily removed or denatured from the filter medium without alteration, and the filter medium can be regenerated and reused by regenerating the protein capturing performance. Here, various methods can be cited as a method for regenerating the filter medium, for example, treatment with an aqueous solution such as treatment with an aqueous sodium hypochlorite solution, treatment with an aqueous sodium hydroxide solution, treatment with an aqueous urea solution, A baking treatment at a temperature of 500 to 600 ° C. can be mentioned.

上記のようなたんぱく質除去性能は、清酒、みりん、発酵調味料、ビール、発泡酒、醤油、白醤油、ワイン等の各種醸造液における滓下げを行うために好適なものであり、前記のような醸造液を上記濾過材に接触させることでこの醸造液から滓の原因となるたんぱく質を高効率で迅速に除去して滓下げを行うことが可能となる。またこのとき濾材に加熱処理を施すことなく処理を行うことができると共に、滓の原因物質以外の成分までもが除去されることを抑制し、滓下げを行うことによる醸造液の品質低下を抑制することができる。   The protein removal performance as described above is suitable for lowering in various brewing liquids such as sake, mirin, fermented seasoning, beer, sparkling sake, soy sauce, white soy sauce, wine, etc. By bringing the brewing liquid into contact with the filter medium, it becomes possible to quickly and efficiently remove the protein that causes koji from the brewing liquid and perform the kneading. In addition, at this time, the filter medium can be processed without heat treatment, and the removal of components other than the causative agent of the koji is also suppressed, and the deterioration of the quality of the brewing liquid due to the koji lowering is suppressed. can do.

また、上記濾材によるたんぱく質の除去は、醸造液の滓下げのみならず、野菜や果物等の植物や、家畜・魚介類等の動物から得られる液体からたんぱく質を除去するためにも適用することができる。このような液体としては、動植物を採取した際や冷凍、解凍した際に出てくる液体、動植物を水・有機溶媒(エタノール等)で処理してこの動植物の旨味成分等を抽出した抽出液等を挙げることができる。これらの液体について上記濾材を用いてたんぱく質の除去を行うと、この液体を原料とした加工品にたんぱく質に起因する白濁が発生することを防止することができる。例えば鰹節、むろあじ節、鰹節エキス、昆布エキス等を水や湯などで煮出して抽出した風味原料溶液について上記濾材を用いてたんぱく質の除去を行うことにより、この風味原料溶液を醤油、みりん、発酵調味料等と混合して製造されるうどん、そば等のだしつゆに白濁が生じることを防止することができる。   In addition, the removal of protein by the filter medium can be applied not only to lowering the brewing liquid, but also to removing protein from liquids obtained from plants such as vegetables and fruits, and animals such as livestock and seafood. it can. Examples of such liquids include liquids that come out when animals and plants are collected, frozen, and thawed, extracts obtained by treating the animals and plants with water or an organic solvent (such as ethanol), and extracting the umami components of the animals and plants. Can be mentioned. When the protein is removed from the liquid using the filter medium, white turbidity caused by the protein can be prevented from occurring in a processed product using the liquid as a raw material. For example, by removing the protein from the flavor raw material solution extracted from boiled bonito, murojiji, bonito extract, kelp extract, etc. by boiling it in water or hot water, the flavor raw material solution is soy sauce, mirin, fermented seasoning. It is possible to prevent white turbidity from appearing in the soup stock such as udon and soba produced by mixing with ingredients.

これらの液体中からたんぱく質を除去するための具体的な方法としては、例えばたんぱく質除去対象となる液体中に濾材を投入することで両者を接触させることが挙げられる。このとき液体中を濾材が速やかに沈降する過程においてこの濾材にたんぱく質が吸着除去され、高効率でたんぱく質の除去がなされる。   As a specific method for removing the protein from these liquids, for example, by putting a filter medium into the liquid to be removed, it is possible to bring them into contact with each other. At this time, in the process in which the filter medium quickly settles in the liquid, the protein is adsorbed and removed from the filter medium, and the protein is efficiently removed.

また、濾材をカラム中に充填し、このカラムにたんぱく質除去対象となる液体を通液する方法も挙げられる。この場合、カラムに液体を通液することで連続的な処理が可能であり、且つ液体と濾材とを分離するための操作も不要となって、更に効率良くたんぱく質の除去を行うことができる。   In addition, a method in which a filter medium is packed in a column and a liquid to be removed of protein is passed through the column is also mentioned. In this case, continuous processing is possible by passing a liquid through the column, and an operation for separating the liquid and the filter medium is not required, and the protein can be removed more efficiently.

以下、本発明を実施例を挙げて更に詳述する。   Hereinafter, the present invention will be described in more detail with reference to examples.

〔1〕清酒からのたんぱく質の除去
(濾材)
愛知県瀬戸地区で産出したカオリナイトを主成分とする蛙目粘土に塩酸を加えてpH0.5の10%スラリーを調整した。このスラリーをテフロン(登録商標)内装モーレ型ボンベに封入し、循環式温風乾燥にて220℃で18時間放置して水熱処理を行い、スラリーを取り出して濾過,水洗した後、乾燥させてサンプルミルで粉砕して粉体を得た。
[1] Removal of protein from sake (filter material)
Hydrochloric acid was added to Sasame clay mainly composed of kaolinite produced in the Seto district of Aichi Prefecture to prepare a 10% slurry at pH 0.5. This slurry was sealed in a Teflon (registered trademark) interior type bomb and left at 220 ° C. for 18 hours by circulating hot air drying to perform hydrothermal treatment. The slurry was taken out, filtered, washed with water, dried, and sample The powder was obtained by grinding with a mill.

この粉体と、上記濾過・水洗したスラリーとを、スプレードライヤーを用いて造粒し、造粒乾燥体を得た。   This powder and the slurry filtered and washed with water were granulated using a spray dryer to obtain a granulated dried product.

そして、上記造粒乾燥体を電気炉にて700℃、2時間焼成して、平均粒径170μmの粒状の濾材を得た。   And the granulated dry body was fired at 700 ° C. for 2 hours in an electric furnace to obtain a granular filter medium having an average particle diameter of 170 μm.

この濾材について、10〜100nmの細孔径範囲における、積算細孔量(cm3/g)とlog微分細孔量(cm3/g)とを水銀圧入法で測定した結果を図1に示す。 FIG. 1 shows the results of measuring the cumulative pore volume (cm 3 / g) and the log differential pore volume (cm 3 / g) in the pore diameter range of 10 to 100 nm by the mercury intrusion method for this filter medium.

(未処理試料1)
愛知県内酒造メーカーで製造された、滓下げが為されていない白濁を生じた清酒を未処理試料1とする。
(Untreated sample 1)
Sake produced with a brewing maker in Aichi Prefecture and having a cloudiness that has not been lowered is designated as untreated sample 1.

(処理済試料1)
上記濾材を直径8mm、長さ170mmのカラム(バイオラット社製)に3.1g充填した。
(Processed sample 1)
3.1 g of the filter medium was packed in a column (manufactured by Biorat) having a diameter of 8 mm and a length of 170 mm.

そして、上記カラムを上下方向に配置した状態で上端から上記未処理試料1を供給すると共に下端からカラムを通液した試料を導出し、処理済試料1を得た。このとき120〜140mlの試料が約1〜2分かけて通液された。   And the sample which supplied the said untreated sample 1 from the upper end in the state which has arrange | positioned the said column to the up-down direction, and let the column pass through from the lower end was derived | led-out, and the processed sample 1 was obtained. At this time, a sample of 120 to 140 ml was passed over about 1 to 2 minutes.

(電気泳動試験)
上記未処理試料1及び処理済試料1のそれぞれについて、透析チューブ(Spectrum. Medical Industries社製、spec/por3,分画分子量3500)を用いて蒸留水中で透析することにより低分子量の糖類を除去した後、凍結乾燥して0.8mlの蒸留水に溶解し、下記表1に示す組成のSDS−ポリアクリルアミドゲル電気泳動(SDS−PAGE)用サンプル緩衝液と1:1の割合で混合して、電気泳動試料を調製した。
(Electrophoresis test)
Each of the untreated sample 1 and the treated sample 1 was dialyzed in distilled water using a dialysis tube (Spectrum. Medical Industries, spec / por3, molecular weight cut off 3500) to remove low molecular weight sugars. After that, freeze-dried and dissolved in 0.8 ml of distilled water, mixed with a sample buffer for SDS-polyacrylamide gel electrophoresis (SDS-PAGE) having the composition shown in Table 1 below at a ratio of 1: 1, An electrophoresis sample was prepared.

次いで、上記電気泳動試料について、電気泳動装置(アナテック株式会社製、3072w型)を用い、下記表2に示す組成を有する15%ポリアクリルアミドゲルを用いて、SDS−PAGEを行った。試験にあたっては、各電気泳動試料10μlを濃縮ゲル中に添加し、試料が濃縮ゲルに入るまでを5mA、濃縮ゲル中を10mA、分離ゲル中を15mAの定電流で泳動させた。   Subsequently, the electrophoresis sample was subjected to SDS-PAGE using an electrophoresis apparatus (anatech Co., Ltd., 3072w type) and a 15% polyacrylamide gel having the composition shown in Table 2 below. In the test, 10 μl of each electrophoresis sample was added to the concentrated gel, and electrophoresed at a constant current of 5 mA until the sample entered the concentrated gel, 10 mA in the concentrated gel, and 15 mA in the separated gel.

そして、泳動後のゲルの染色を下記表3に示す組成の染色液で行い、脱色を下記表4に示す組成の脱色液で行った。   The gel after electrophoresis was stained with a staining solution having the composition shown in Table 3 below, and decolorization was performed with a decoloring solution having the composition shown in Table 4 below.

(品質試験)
各試料のボーメ度、アルコール濃度、酸度、アミノ酸度を、国税庁所定分析法注解の清酒の項に従って分析した。
(Quality test)
The Baume degree, alcohol concentration, acidity, and amino acid degree of each sample were analyzed in accordance with the section of sake in the National Tax Agency's commentary method.

(結果及び考察)
図2に未処理試料1及び処理済試料1についての電気泳動試験の結果を示す。その結果、未処理試料1中には低分子から高分子の種々のたんぱく質が存在し、これが混濁の原因物質であると考えられる。一方、処理済試料1には、広い範囲分子量範囲でたんぱく質の含有量が低減されることが確認され、上記濾材によるたんぱく質除去が滓下げに非常に有用な手段であることが確認された。
(Results and discussion)
FIG. 2 shows the results of the electrophoresis test for the untreated sample 1 and the treated sample 1. As a result, various proteins ranging from low molecules to high molecules exist in the untreated sample 1, and this is considered to be a causative substance of turbidity. On the other hand, in the treated sample 1, it was confirmed that the protein content was reduced in a wide molecular weight range, and it was confirmed that the removal of the protein by the filter medium was a very useful means for lowering.

また、各試料の品質試験結果によると、未処理試料1と処理済試料1では、共にボーメ度が+5、アルコール濃度が17.4、酸度が19.0、アミノ酸度が1.20となって、変化は認められず、上記濾材によるたんぱく質除去によっては清酒の品質変化が生じず、低分子量のペプチドは除去されないことが確認された。   Further, according to the quality test result of each sample, the untreated sample 1 and the treated sample 1 both have a Baume degree of +5, an alcohol concentration of 17.4, an acidity of 19.0, and an amino acid degree of 1.20. No change was observed, and it was confirmed that the quality of sake was not changed by removing the protein with the filter medium, and the low molecular weight peptide was not removed.

〔2〕濾材の再生
同じ濾材を用いて上記の清酒からのたんぱく質の除去を繰り返し行い、100回目に得られた試料を処理済試料2とする。
[2] Regeneration of filter medium The same filter medium is used to repeatedly remove the protein from the sake, and the sample obtained at the 100th time is treated sample 2.

次いで、処理済試料2を得た後の濾材について、カラム内に有効塩素濃度0.1%の次亜塩素酸ナトリウム水溶液を5時間循環させ、その後、このカラムに蒸留水を通水してカラムから導出される排液の有効塩素濃度が0.1ppm以下となるまで洗浄することにより、濾材に再生処理を施した。   Next, with respect to the filter medium after obtaining the treated sample 2, an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 0.1% is circulated in the column for 5 hours, and then distilled water is passed through this column. The filter medium was subjected to a regeneration treatment by washing until the effective chlorine concentration of the effluent derived from No. 1 was 0.1 ppm or less.

この再生後の濾材について、上記清酒からのたんぱく質の除去と同様に、未処理試料1に対してたんぱく質除去処理を施し、処理済試料3を得た。   About the filter material after this reproduction | regeneration, the protein removal process was performed with respect to the untreated sample 1 similarly to the removal of the protein from the said sake, and the processed sample 3 was obtained.

この処理済試料2,3について電気泳動試験を行った。その結果、図2に示すように、繰り返し使用された濾材を用いて得られた処理済試料2ではたんぱく質が十分に除去されなかったのに対して、再生処理を施した濾材を用いて得られた処理済試料3では広い範囲分子量範囲でたんぱく質の含有量が低減されることが確認され、再生処理によって濾材のたんぱく質除去性能が回復したことが確認された。   An electrophoretic test was performed on the treated samples 2 and 3. As a result, as shown in FIG. 2, in the processed sample 2 obtained using the repeatedly used filter medium, the protein was not sufficiently removed, whereas it was obtained using the regenerated filter medium. In the treated sample 3, it was confirmed that the protein content was reduced in a wide molecular weight range, and it was confirmed that the protein removal performance of the filter medium was recovered by the regeneration treatment.

3.みりんからのたんぱく質の除去
(未処理試料2)
精米歩合80%のうるち米を46時間製麹して米麹を調製した。
3. Removal of protein from mirin (untreated sample 2)
Rice bran was prepared by kneading glutinous rice having a rice polishing ratio of 80% for 46 hours.

また、もち米を15℃で6時間浸漬後、水切り、50分間蒸煮後、30℃まで放冷した。   Moreover, the glutinous rice was immersed at 15 ° C. for 6 hours, drained, steamed for 50 minutes, and then allowed to cool to 30 ° C.

次いで、下記表5に示す仕込配合で仕込を行い、仕込後、新日本化学株式会社製の蛋白分解酵素(スミチームLP50)を総米に対して重量比で10000分の1量添加し、蓋をして密閉したのち30℃の恒温槽にて糖化熟成させた。この間、7日に一度、もろみを均一にする混合し、仕込日から30日後にもろみを上槽した後、20日間放置し、滓を自然沈降させ滓引きを行って未処理試料2を得た。   Next, charging was performed with the charging composition shown in Table 5 below, and after charging, a proteolytic enzyme (Sumiteam LP50) manufactured by Shin Nippon Chemical Co., Ltd. was added in an amount of 1 / 10,000 by weight with respect to the total rice, and the lid was covered. After sealing, saccharification and aging were performed in a constant temperature bath at 30 ° C. During this period, once in 7 days, the mash was mixed uniformly, and after 30 days from the preparation date, the mash was left in the upper tank, and left for 20 days. .

(処理済試料4)
上記「清酒からのたんぱく質の除去」の場合と同一の濾材を直径23mm、長さ150mmのカラム(バイオラット社製)に36.7g充填した。
(Processed sample 4)
36.7 g of a filter medium (manufactured by Biorat Co., Ltd.) having a diameter of 23 mm and a length of 150 mm was packed with the same filter medium as in the above-mentioned “removal of protein from sake”.

そして、上記カラムを上下方向に配置した状態で上端から上記未処理試料2を供給すると共に下端からカラムを通液した試料を導出し、処理済試料4を得た。このとき500mlの試料が約3〜5分かけて通液された。   And the sample which supplied the said unprocessed sample 2 from the upper end in the state which has arrange | positioned the said column in the up-down direction, and let the column pass through from the lower end was derived | led-out, and the processed sample 4 was obtained. At this time, a 500 ml sample was passed over about 3 to 5 minutes.

(加熱処理試料、及び比較試料1〜10)
上記未処理試料を容量900mlのビンに800ml入れ、湯煎して87℃に達した後、3分間維持し、更に水冷し30℃まで急冷する加熱処理を施し、加熱処理試料を得た。
(Heat-treated sample and comparative samples 1 to 10)
800 ml of the untreated sample was put into a 900 ml capacity bottle, boiled and reached 87 ° C., maintained for 3 minutes, further subjected to heat treatment of water cooling and rapid cooling to 30 ° C. to obtain a heat treated sample.

この加熱処理試料300mlに対して、柿渋を表7に示す割合で添加し、1分間攪拌した。次いで、50倍に稀釈したオリダイヤを表7に示す割合で添加し、30秒間攪拌した後、24時間静置して滓下げをした。次いで、上澄液と滓部分を分離して上澄液を比較試料1〜10として得た。   To 300 ml of this heat-treated sample, persimmon astringent was added at a ratio shown in Table 7 and stirred for 1 minute. Next, the oridia diluted 50 times was added at the ratio shown in Table 7, stirred for 30 seconds, and allowed to stand for 24 hours to be lowered. Subsequently, the supernatant and the phlegm portion were separated to obtain supernatants as comparative samples 1 to 10.

(比較試料11〜18)
上記未処理試料300mlに対して、加熱処理が施すことなく、柿渋を表8に示す割合で添加し、1分間攪拌した。次いで、50倍に稀釈したオリダイヤを表8に示す割合で添加し、30秒間攪拌した後、24時間静置して滓下げをした。次いで、上澄液と滓部分を分離して上澄液を比較試料11〜18として得た。
(Comparative samples 11-18)
To 300 ml of the above-mentioned untreated sample, koji astringent was added at a rate shown in Table 8 without stirring, and stirred for 1 minute. Next, the oridia diluted 50 times was added at the ratio shown in Table 8, stirred for 30 seconds, and allowed to stand for 24 hours to be lowered. Next, the supernatant and the phlegm portion were separated to obtain supernatants as comparative samples 11-18.

(品質試験)
未処理試料2、加熱試料、処理済試料4、並びに各比較試料について、ボーメ度、アルコール濃度、エキス分、pH、酸度、アミノ酸度、全糖含量、全窒素含量、色度(430nmの吸光度)を測定した。ボーメ度、アルコール濃度、エキス分、酸度、アミノ酸度は国税庁所定分析法注解のみりんの項、全糖分は同じく酒母・もろみの項、全窒素含量は同じく原料米の項、pH、色度(430nmの吸光度)は同じく清酒の項に従い測定した。また、たんぱく質含量を、全窒素含量に6.25を乗じた数として導出した。
(Quality test)
About untreated sample 2, heated sample, treated sample 4 and each comparative sample, Baume degree, alcohol concentration, extract content, pH, acidity, amino acid degree, total sugar content, total nitrogen content, chromaticity (absorbance at 430 nm) Was measured. Baume degree, alcohol concentration, extract content, acidity, amino acid degree are the terms of phosphorus in the analytical method prescribed by the National Tax Agency, the total sugar content is the same as the term of the sake mother and moromi, the total nitrogen content is also the term of the raw rice, pH, chromaticity (430 nm Was also measured according to the sake section. The protein content was derived as the total nitrogen content multiplied by 6.25.

(ニキリ測定)
各試料について、ニキリの定量を煮沸、加水、加酎反応、並びにTCA反応により行った。煮沸、加水、加酎反応はそれぞれ山下法を用いた測定により行った。またTCA反応については、試料2.5mlに50%TCA(トリクロロ酢酸)を2.5mlを加えて攪拌した後、10分間静置したものに対し、波長660nmの吸光度を測定した。
(Nikiri measurement)
About each sample, the quantitative determination of Nikiri was performed by boiling, water addition, an addition reaction, and a TCA reaction. Boiling, hydration, and kneading reactions were each carried out by measurement using the Yamashita method. As for the TCA reaction, 2.5 ml of 50% TCA (trichloroacetic acid) was added to 2.5 ml of the sample and stirred, and then the absorbance at a wavelength of 660 nm was measured with respect to the sample that was allowed to stand for 10 minutes.

また、試料150mlを鍋に入れ、加熱して煮沸させた場合の泡立ちの状貌を観察した。そして、水を沸騰した場合のように泡の凝集が生じない場合を(−)、泡が液面全体に凝集した場合を(±)、泡が凝集しただけでなく更に泡の盛り上がりが生じた場合を(+)、泡の盛り上がりが著しい場合を(++)と、それぞれ評価した。   In addition, 150 ml of a sample was put in a pan and the appearance of foaming when heated and boiled was observed. When the water does not aggregate like when boiling water (-), when the foam aggregates over the entire liquid surface (±), not only the bubbles are aggregated but also the foam rises further. The case was evaluated as (+), and the case where the bulges were remarkable was evaluated as (++).

(試験結果及び考察)
各試料についての試験結果を表6〜8に示す。尚、表7,8における比較試料の評価において、評価が記載されていないものは、滓下げ時に上澄液と滓部分を分離できず、評価が不可能であったことを示す。
(Test results and discussion)
Test results for each sample are shown in Tables 6-8. In addition, in the evaluation of the comparative samples in Tables 7 and 8, those for which no evaluation is described indicate that the supernatant liquid and the cocoon part could not be separated at the time of lowering and evaluation was impossible.

この結果、処理済試料4では、たんぱく質含有量が大きく低減した。また、煮沸反応、加水反応、加酎反応、TCA反応の結果のブランクとの差が小さいと共に沸騰泡も少なく、ニキリ現象が低減したことが確認された。これにより処理済試料4ではニキリの原因となるたんぱく質が高い効率で除去されたことが確認された。また、未処理試料2と処理済試料4では、ボーメ度、アルコール濃度、エキス分、pH、酸度、アミノ酸度、全糖含量に変化は認められず、上記濾材によるたんぱく質除去によっては品質変化が生じず、低分子量のペプチドは除去されないことが確認された。   As a result, in the processed sample 4, the protein content was greatly reduced. Moreover, it was confirmed that the difference between the boiling reaction, the hydrolysis reaction, the addition reaction, and the TCA reaction was small and the boiling bubbles were small, and the biting phenomenon was reduced. As a result, it was confirmed that in the treated sample 4, the protein causing the biting was removed with high efficiency. Further, in the untreated sample 2 and the treated sample 4, no change was observed in the degree of baume, alcohol concentration, extract content, pH, acidity, amino acid content, and total sugar content, and the quality change occurred due to the protein removal by the filter medium. It was confirmed that the low molecular weight peptide was not removed.

これに対して、加熱試料ではニキリ現象やたんぱく質含量がある程度低減し、また各比較試料のように加熱処理後又は未加熱のまま、滓下げを柿渋やオリダイヤと組み合わせて処理する場合には、更にたんぱく質の除去とニキリの低減とがなされたが、処理済試料4に比して充分ではなく、しかも加熱した場合には着色を生じてしまうものであった。   On the other hand, in the heated sample, the biting phenomenon and the protein content are reduced to some extent, and when heat treatment is performed in combination with astringent astringent or ORIDIA after heat treatment or unheated as in each comparative sample, Although the protein was removed and the biting rate was reduced, it was not sufficient as compared with the treated sample 4, and coloration occurred when heated.

4.鰹だしからのたんぱく質の除去
(未処理試料3)
かつお節(削りかつお)9gを200mlの水中に投入して懸濁させ、11分間かけて100℃まで加熱した後、5分間保持して煮沸した。これをキムワイプ(登録商標)2枚でろ過してかつお節を濾し取り、冷却して、162mlの未処理試料3を得た。
4). Removal of protein from soup stock (untreated sample 3)
9 g of bonito (shaved bonito) was poured into 200 ml of water to suspend it, heated to 100 ° C. over 11 minutes, then held for 5 minutes to boil. This was filtered through two Kimwipes (registered trademark) and the knots were filtered off and cooled to obtain 162 ml of untreated sample 3.

(処理済試料5)
上記「清酒からのたんぱく質の除去」の場合と同一の濾材を直径23mm、長さ150mmのカラム(バイオラット社製)に35.4g充填した。
(Processed sample 5)
The same filter medium as in the above-mentioned “removal of protein from sake” was packed in 35.4 g in a column (manufactured by Biorat) having a diameter of 23 mm and a length of 150 mm.

そして、上記カラムを上下方向に配置した状態で上端から上記未処理試料を供給すると共に下端からカラムを通液した試料を導出し、処理済試料5を得た。このとき100mlの試料を約3〜4分かけて通液させた。   And the sample which supplied the said untreated sample from the upper end in the state which has arrange | positioned the said column to the up-down direction, and let the column pass through from the lower end was derived | led-out, and the processed sample 5 was obtained. At this time, a 100 ml sample was passed over about 3 to 4 minutes.

(評価試験)
上記未処理試料3及び処理済試料5について、上記「清酒からのたんぱく質の除去」の場合と同様の手法により電気泳動試料を30μlを調製し、電気泳動試験を実施した。
(Evaluation test)
About the said untreated sample 3 and the processed sample 5, 30 microliters of electrophoresis samples were prepared with the method similar to the case of said "removal of protein from sake", and the electrophoresis test was implemented.

この結果を図3に示す。   The result is shown in FIG.

また、各試料中のたんぱく質含量をバイオラッド株式会社製のプロテインアッセイにより測定した。尚、その際のたんぱく質としてのスタンダード(標準化)は牛血清アルブミンを使用した。   Further, the protein content in each sample was measured by a protein assay manufactured by Bio-Rad Co., Ltd. In this case, bovine serum albumin was used as a standard (standardization) as a protein.

その結果、未処理試料中のたんぱく質含有量の測定結果は0.30mg/mlであるのに対して、処理済試料5中での測定結果は0.00mg/mlであった。   As a result, the measurement result of the protein content in the untreated sample was 0.30 mg / ml, whereas the measurement result in the treated sample 5 was 0.00 mg / ml.

以上の結果から、濾材による処理によりたんぱく質が除去されたとことが確認された。   From the above results, it was confirmed that the protein was removed by the treatment with the filter medium.

実施例における濾材の細孔分布を測定した結果を示すグラフである。It is a graph which shows the result of having measured the pore distribution of the filter medium in an Example. 実施例における処理済試料1〜3及び未処理試料1についての電気泳動試験結果を撮影した写真である。It is the photograph which image | photographed the electrophoretic test result about the processed samples 1-3 in the Example and the unprocessed sample 1. FIG. 実施例における処理済試料5及び未処理試料3についての電気泳動試験結果を撮影した写真である。It is the photograph which image | photographed the electrophoresis test result about the processed sample 5 and the unprocessed sample 3 in an Example.

Claims (5)

カオリン鉱物に強酸を加え、水熱処理と焼成処理を施すことにより得られる多孔質体からなることを特徴とするたんぱく質除去用濾材。   A filter medium for removing a protein, comprising a porous material obtained by adding a strong acid to kaolin mineral and subjecting it to a hydrothermal treatment and a baking treatment. カオリン鉱物に強酸を加え、水熱処理と焼成処理を施すことにより得られる多孔質体からなる濾材に、たんぱく質除去対象となる液体を接触させることを特徴とするたんぱく質除去方法。   A protein removal method comprising contacting a liquid to be removed with a filter medium comprising a porous material obtained by adding a strong acid to kaolin mineral and subjecting it to hydrothermal treatment and baking treatment. 上記濾材をカラムに充填し、このカラムに上記たんぱく質除去対象となる液体を通液することを特徴とする請求項2に記載のたんぱく質除去方法。   The protein removal method according to claim 2, wherein the filter medium is packed in a column, and a liquid to be removed of the protein is passed through the column. 上記たんぱく質除去対象となる液体が、植物又は動物から得られた液体であることを特徴とする請求項2又は3に記載のたんぱく質除去方法。   The protein removal method according to claim 2 or 3, wherein the liquid to be subjected to protein removal is a liquid obtained from a plant or an animal. 請求項2又は3に記載の方法を用いて醸造液の滓下げを行うことを特徴とする滓下げ方法。   A method for lowering a brewing liquid using the method according to claim 2 or 3.
JP2006193419A 2006-07-13 2006-07-13 Protein removal filter medium, protein removal method, and drooping method Active JP4649568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193419A JP4649568B2 (en) 2006-07-13 2006-07-13 Protein removal filter medium, protein removal method, and drooping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193419A JP4649568B2 (en) 2006-07-13 2006-07-13 Protein removal filter medium, protein removal method, and drooping method

Publications (2)

Publication Number Publication Date
JP2008018365A JP2008018365A (en) 2008-01-31
JP4649568B2 true JP4649568B2 (en) 2011-03-09

Family

ID=39074746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193419A Active JP4649568B2 (en) 2006-07-13 2006-07-13 Protein removal filter medium, protein removal method, and drooping method

Country Status (1)

Country Link
JP (1) JP4649568B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152765A (en) * 1998-11-19 2000-06-06 Ngk Insulators Ltd Prevention of lees of soy source

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK120381B (en) * 1966-02-11 1971-05-24 Brauerei Ind Ag F Process for the preparation of an adsorbent for the treatment of fermentable or fermented liquids.
JPS63132898A (en) * 1986-11-26 1988-06-04 Meito Sangyo Kk Separation and purification of protein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000152765A (en) * 1998-11-19 2000-06-06 Ngk Insulators Ltd Prevention of lees of soy source

Also Published As

Publication number Publication date
JP2008018365A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
Waters et al. Preventing protein haze in bottled white wine
CN101297673B (en) Method for processing fish collagen oligopeptide
CN101878924B (en) Method for preparing high-foamability egg albumen powder by efficiently desalting salted egg albumen
KR20160126095A (en) Rice-protein composition and method for manufacturing same
FR2589751A1 (en) PROCESS FOR ADSORPTING PROTEINS FROM FLUIDS
CN101603038A (en) A kind of preparation method of N,O-Diacetylmuramidase
JPH04229140A (en) Improving method for secondary coffee extract on manufacture of water soluble coffee
JPS58880B2 (en) A mixture of granular activated carbon and bone charcoal that has a high ability to remove colored substances from sugar solution
Kemp et al. New directions in stabilization, clarification, and fining
JP4649568B2 (en) Protein removal filter medium, protein removal method, and drooping method
CN108203566A (en) The technique that a kind of alkaline process prepares pharmagel
JP4468144B2 (en) Yeast extract high in 5'-ribonucleotide and method for producing the same
CN110050872B (en) Industrial production method for preparing oyster peptide by enzyme method
CN113215216A (en) Industrial production method for preparing oyster peptide by enzyme method
JP4886358B2 (en) Foaming agent comprising soluble polypeptide derived from pea whey as active ingredient and carbonated beverage containing the same
JP6334014B1 (en) Method for producing dried egg white and dried egg white
EP0398544B1 (en) Hydrolysed protein purification
US1990751A (en) Production of base exchange and similar materials
US4072667A (en) Process for recovering microbial cellular proteins
JPS61181356A (en) Production of yeast extract
US1532521A (en) Alcoholic solution of animal proteins and method of preparing the same
Kempa et al. Richard Marchald, e aCool Climate Oenology and Viticulture Institute (CCOVI), Brock University, St. Catharines, ON, Canada, bDepartment of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy, cWine Australia, Industry
JP3982757B2 (en) Lowering agent
JPH034751A (en) Treatment of gelation agent
Ma et al. Study on soybean polypeptide refining process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4649568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250