JP4647753B2 - Metal bellows manufacturing equipment - Google Patents

Metal bellows manufacturing equipment Download PDF

Info

Publication number
JP4647753B2
JP4647753B2 JP2000192802A JP2000192802A JP4647753B2 JP 4647753 B2 JP4647753 B2 JP 4647753B2 JP 2000192802 A JP2000192802 A JP 2000192802A JP 2000192802 A JP2000192802 A JP 2000192802A JP 4647753 B2 JP4647753 B2 JP 4647753B2
Authority
JP
Japan
Prior art keywords
mold
bellows
moving
tube
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000192802A
Other languages
Japanese (ja)
Other versions
JP2002011528A (en
Inventor
秀樹 岡田
勉 古山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2000192802A priority Critical patent/JP4647753B2/en
Priority to US09/878,085 priority patent/US6564606B2/en
Priority to EP01305001A priority patent/EP1166912B1/en
Priority to DE60125070T priority patent/DE60125070T2/en
Priority to EP04010163A priority patent/EP1442805B1/en
Priority to DE60106812T priority patent/DE60106812T2/en
Publication of JP2002011528A publication Critical patent/JP2002011528A/en
Application granted granted Critical
Publication of JP4647753B2 publication Critical patent/JP4647753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms And Bellows (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アキュムレータあるいは真空バルブ、ポンプなどに内蔵される金属ベローズの製造装置に関する。
【0002】
【従来の技術】
金属ベローズにはその軸線方向に山部と谷部が交互に形成されている。これら山部と谷部の断面形状(ひだ壁の断面形状)として、U形以外に、V形、Ω形、あるいはS形など様々な形態が知られている。例えば図17に示すベローズ1はその軸線X方向に交互に形成された複数の山部2と谷部3とを有している。これら山部2と谷部3を構成するひだ壁4,5はそれぞれS形断面をなしている。
【0003】
このようなS形断面のベローズ1は、U形断面のひだ壁を有する通常のベローズと比較して、軸線方向に圧縮したときの密着長が十分短いため、自由長からの伸縮ストロークを長くとれるといった長所がある。なお、この明細書で言うS形断面とは、ベローズ1の径方向に滑らかに連続する凹凸(湾曲面)が、波のように交互に形成されている形状を言い、厳密な意味でのS字形を意味するわけではない。
【0004】
S形断面の金属ベローズ1を製造する方法として、例えば、プレスによって成形されたS形断面の複数枚の円板状ベローズ要素を溶接によって順次つなぎ合わせる方法が知られている。あるいは、ベローズの材料である金属素管からバルジ加工によって山部と谷部を一体に成形する方法も知られている。前者はいわゆる溶接ベローズであり、後者は一体成形ベローズと称されている。一体成形ベローズは溶接ベローズと比較して、加工工数が少なく、材料の歩留まりが高く、品質も安定しているなどの長所がある。
【0005】
【発明が解決しようとする課題】
前記S形断面のベローズを一体成形するために、バルジ加工の一例として液圧成形が適用されることがある。液圧成形を行うベローズ製造装置は、ベローズの材料である素管の外周側に設ける第1の金型および第2の金型を有している。そして素管の内側から液圧を作用させることにより、第1の金型と第2の金型との間で素管の一部を膨らませつつ、これらの金型を互いに近付ける方向に移動させて、金型間に素管の一部を挟み込むことによってひだ壁を成形する。
【0006】
このようなベローズ製造装置において、図11に示すように金型13,14の成形面36,37のテーパ角α1,α2が小さい場合、ひだ壁を成形したのち金型13,14を素管の径方向にひらく際に、成形直後のひだ壁に成形面36,37の一部が強く当たることにより、ベローズに傷が付くという問題が生じた。ベローズに傷が付くことを回避するには、図12に示す金型13′,14′のように、成形面36′,37′のテーパ角β1,β2を大きくすればよい。しかしテーパ角β1,β2が大きい金型13′,14′は、ひだ壁を成形する際に金型13′,14′の先端部C,C間の距離が大きいため、ひだ壁を十分な波形に成形できないという問題がある。
【0007】
従って本発明の目的は、S形断面のベローズも傷付けることなくしかも正確な形状にひだ壁を成形できるベローズ製造装置を提供することにある。
【0008】
【課題を解決するための手段】
前記課題を解決するための本発明のベローズ製造装置は、素管の外周に設ける固定金型と、前記固定金型に対し前記素管の軸線方向に離間して配置され、前記素管の軸線方向に移動可能でかつ前記素管の径方向に分割可能な移動金型と、前記素管の内面において前記固定金型と対応する位置に設けられた第1のシール手段と、前記素管の内面において前記移動金型と対応する位置に設けられかつ前記第1のシール手段との間に液圧室を形成する第2のシール手段と、前記液圧室に加圧された液を供給することによって前記液圧室に位置する前記素管の一部を外側に膨張させる液圧供給手段と、前記移動金型を前記固定金型に近付く第1の方向に移動させることにより前記素管の前記膨張した部位を前記固定金型と移動金型との間で塑性変形させてひだ壁を成形する型駆動機構と、前記ひだ壁が成形されたのち前記移動金型を素管の径方向にひらく前に該移動金型を前記ひだ壁から離す方向で前記第1の方向とは逆の第2の方向に前記ひだ壁のピッチの半分以下の距離だけ僅かに後退させる微量後退手段と、前記移動金型が前記微量後退手段によって後退させられたのち該移動金型を径方向にひらく型開閉機構と、前記移動金型が径方向にひらいた後に前記素管を該移動金型および前記固定金型に対して素管の軸線方向で前記第2の方向と同じ方向に所定量相対移動させる素管送り機構とを具備し、前記固定金型と移動金型の相互対向面に、それぞれ断面S形のひだ壁を成形するための成形面を備え、かつ、前記固定金型と移動金型の各成形面は、それぞれ、前記素管の軸線と直角な線分とのなすテーパ角を10度以下の狭角としている。
【0009】
本発明のベローズ製造装置は、第1のシール手段と第2のシール手段との間の液圧室に加圧された液を供給し、素管の一部を外側に膨張させるとともに、移動金型を固定金型に近付ける方向に移動させる。こうすることにより、素管の一部が固定金型と移動金型との間に挟まれて塑性変形し、ひだ壁が成形される。ひだ壁が成形されたのち、微量後退手段によって移動金型をひだ壁から離す方向に少し後退させる。そののち移動金型が径方向にひらく。移動金型が径方向にひらいたのち、素管送り機構によって素管が移動金型および固定金型に対して軸線方向に所定量移動する。
【0010】
この発明において、前記固定金型と移動金型は、互いの対向面に、例えば断面S形のひだ壁を成形するための成形面を備えている。この場合、各成形面は、それぞれ、前記素管の軸線と直角な線分とのなすテーパ角を10度以下の狭角にするとよい。
【0011】
【発明の実施の形態】
以下に本発明の第1の実施形態について図1から図11を参照して説明する。
図2に概略を示すベローズ製造装置10は、金属ベローズの材料である直管状の薄肉金属素管11を、液圧によりバルジ加工するものである。この製造装置10は、ベースフレーム12と、固定側の第1の金型13および移動側の第2の金型14を含む金型セット15と、第2の金型14を素管11の軸線方向に移動させる型駆動機構16と、素管11を保持するチャック17と、素管11の内部に挿入されるマンドレル18と、マンドレル18を素管11の軸線方向に移動させるマンドレル駆動機構19と、素管11を保持するチャック17を素管11の軸線方向に移動させる素管送り機構20などを備えている。
【0012】
図1に示すように、第1の金型13は第1の型ホルダ30に保持されている。第2の金型14は第2の型ホルダ31に保持されている。第2の金型14と型ホルダ31は、第1の金型13と型ホルダ30に対して、素管11の軸線方向に相対的に往復移動可能である。この実施形態の場合、サーボモータ等のアクチュエータを用いた型駆動機構16(図2に示す)により、第2の型ホルダ31が第2の金型14と一体に素管11の軸線方向に移動させられるようになっている。
【0013】
型駆動機構16は、例えばサーボモータ16aと、サーボモータ16aによって回転駆動されるボールねじ16bなどからなり、サーボモータ16aに入力するパルスに応じてサーボモータ16aが回転することにより、第2の金型14が素管11の軸線方向に移動するようになっている。型駆動機構16は、この発明で言う微量後退手段としても機能する。
【0014】
金型13,14と型ホルダ30,31は、図3にその一部を示すように、分割面38を境に型開閉機構39によって径方向(図3に矢印Wで示す方向)に二分割できるようになっている。この実施形態の場合には、第1の金型13がこの発明で言う固定金型に相当し、第2の金型14が移動金型に相当する。ただしこれとは逆に、第2の金型14と型ホルダ31を固定し、第1の金型13と型ホルダ30を素管11の軸線方向に移動させるように構成してもよい。
【0015】
図1等に示すように、金型13,14に素管11を挿入する孔34,35が形成されている。第1の金型13と第2の金型14の相互対向面には、成形すべきベローズ1(図17に示す)のひだ壁4,5に応じて、それぞれS形断面の成形面36,37が形成されている。
【0016】
図11に示すように金型13,14の成形面36,37のテーパ角α1,α2は10度以下の狭角である。例えばα1は6.5度であり、α2は8.9度である。図12は成形面36′,37′のテーパ角β1,β2が20度を越える金型13′,14′(比較例)を示している。例えばβ1は20.6度であり、β2は20.4度である。ここで言うテーパ角α1,α2,β1,β2とは、各々の金型の軸線(素管11の軸線X)と直角な方向の線分Aに対し、各成形面の基部Bと先端部Cとを結ぶ線分Dがなす角度である。
【0017】
マンドレル18は、素管11に挿入される円筒状のボディ40と、ボディ40の内部を相通しかつボディ40に対して軸線方向に移動可能なセンターロッド41と、センターロッド41の先端部に設けられたピストン状のシールヘッド42などを備えている。シールヘッド42の外周部には、第1の金型13の内周側に位置する第1のシール部材45が設けられている。
【0018】
ボディ40の外周部に、第2の金型14の内周側に位置する第2のシール部材46が設けられている。これらシール部材45,46間において、素管11の内面側に液圧室47が形成される。第1のシール部材45は、この発明で言う第1のシール手段として機能する。第2のシール部材46は、この発明で言う第2のシール手段として機能する。
【0019】
センターロッド41には、液圧室47に開口する液圧導入口48と、この液圧導入口48に連通する液流通部49が形成されている。液流通部49には、加圧された流体(例えば水)を液圧室47に供給するための液圧供給装置50(図2に示す)が接続されている。
【0020】
以下に、上記製造装置10を用いて行われるベローズ製造工程について説明する。
図1に示すように、第1の金型13と第2の金型14を互いに離間させ、かつこれらの金型13,14を二分割した状態(径方向にひらいた状態)で、金型13,14に素管11をセットするとともに、素管11の開口端から素管11の内部にマンドレル18を挿入する。
【0021】
その後、図4に示すように金型13,14を径方向に閉じる。図4中の矢印M1は金型13,14が閉じる方向を示している。このとき第1のシール部材45は第1の金型13の内周側に位置し、第2のシール部材46は第2の金型14の内周側に位置することになる。
【0022】
そののち、図5に示すように、液圧供給装置50によって加圧された流体(例えば水)が、液流通部49と液圧導入口48を経て液圧室47に供給される。液圧室47に供給された液体の圧力により、シール部材45,46間において素管11の一部11aが外径方向に少し膨らむ。
【0023】
図6に示すように、液圧室47内の液圧を維持した状態で、第2の金型14と第2の型ホルダ31およびボディ40とシール部材46が、互いに同期して第1の金型13に向かって矢印F1方向に移動させられる。こうすることによって、金型13,14の成形面36,37に素管11の一部11aが挟まれて塑性変形し、成形面36,37に応じたS形断面のひだ壁4,5が成形される。
【0024】
こうして一山分のひだ壁4,5が成形されたのち、図7に示す微量後退工程において、第2の金型14が型駆動機構16(図2に示す)によって、僅かな距離Δdだけ戻される。すなわち、第2の金型14が第1の金型13から離れる方向(矢印Rで示す方向)に僅かな距離Δdだけ後退する。この距離Δdは、ひだ壁4,5のピッチP(図16に示す)に応じて設定され、例えばピッチPが4.4mmの場合にΔdは約2mm、ピッチPが2.8mmの場合にΔdは約1mmである。後退する距離Δdが大きくなり過ぎると、第2の金型14が一つ前に成形されたひだ壁4を傷付けてしまうおそれがある。このため、後退させる距離ΔdはピッチPの半分以下の小さな量とするとよい。
【0025】
この微量後退工程を経て第2の金型14が少し後退したのち、図8に示すように第1の金型13と第2の金型14が径方向(矢印M2で示す方向)にひらく。こうして金型13,14がひらく前に、予め前記微量後退工程によって、第2の金型14が少し後退しているため、金型13,14の成形面36,37が成形後のひだ壁4,5を強く押してしまうことが回避され、ひだ壁4,5が傷付くことを防止できる。
【0026】
金型13,14が径方向にひらいたのち、素管送り機構20によって素管11が金型13,14に対して図9に矢印F2で示す方向(管軸方向)に所定量相対的に送られる。また、第2の金型14と型ホルダ31が矢印F3で示す方向に後退して成形前の位置に戻るとともに、これと同期してボディ40とシール部材46も後退する。
【0027】
ひだ壁4の前側に第2の金型14の成形面37が位置した時点で、図10に示すように第1の金型13と型ホルダ30および第2の金型14と型ホルダ31が矢印M1方向に閉じる。そして前述の図5から図10に示す一連の工程が再び繰返されることによって、次の一山分のひだ壁4,5が成形される。こうして一山ずつひだ壁4,5を順次形成することによって、図16に示す一次成形ベローズ1′が製造される。
【0028】
この実施形態の金型13,14は、図11に示すように成形面36,37のテーパ角α1,α2をそれぞれ10度以下の狭角としているため、ひだ壁4,5を成形する際に、素管11に対する金型13,14の先端部C,C間の距離Lが小さくなる。このため素管11の型なじみが良くなり、ひだ壁4,5の波形を十分に成形でき、図17に示す最終製品のベローズ1に近い形状の一次成形ベローズ1′を製造することができる。
【0029】
なお、一次成形ベローズ1′を軸線方向に圧縮し、各ひだ壁4,5を互いに密着させることにより、図17に示すように山部2の先端2aと谷部3の先端3aの曲率半径をさらに小さくすることができる。
【0030】
前記実施形態の金型13,14の成形面36,37は、テーパ角α1,α2をそれぞれ10度以下の狭角としている。これに対し、図12は成形面36′,37′のテーパ角β1,β2が20度を越える金型13′,14′を示している。この金型13′,14′を用いて成形されたS形断面のベローズ(比較例)と、図11に示す金型13,14を用いて成形されたS形断面のベローズ(実施例)の耐久試験結果を図13に示した。
【0031】
図13から判るように、図11に示されたテーパ角α1,α2が小さい成形面36,37によって成形されたベローズは、図12に示す大きなテーパ角β1,β2の成形面36′,37′によって成形されたベローズと比較して、耐久性が大幅に向上している。その理由は、テーパ角α1,α2の小さい成形面36,37を用いてひだ壁4,5を成形した場合には、テーパ角β1,β2が大きい成形面36′,37′を用いる場合と比較して、素管11に対する金型13,14の先端部C,C間の距離Lを小さくすることができることにより、ひだ壁4,5のS形状が安定するためと考えられる。
【0032】
図11に示したようにテーパ角α1,α2が小さい成形面36,37によってひだ壁4,5を成形する場合、ひだ壁4,5を成形したのちそのまま金型13,14を径方向にひらいてしまうと、成形直後のひだ壁4,5に成形面36,37の一部が強く当たってしまい、ひだ壁4,5が傷付いてしまう。
【0033】
そこでこの実施形態のベローズ製造装置10は、ひだ壁4,5が成形されたのち金型13,14が径方向にひらく直前に、前述の微量後退工程において、型駆動機構16によって第2の金型14を少し後退させている(図7参照)。このため、金型13,14が径方向にひらく際に、成形面36,37の一部が成形直後のひだ壁4,5を強く押してしまうことを回避でき、ひだ壁4,5に傷がつくことを防止できた。
【0034】
なお、図14と図15は本発明の第2の実施形態のベローズ製造装置10′を示している。このベローズ製造装置10′は、シールヘッド42′を一体に有する部材とボディ40′のみによってマンドレル18′を構成することにより、マンドレル18′の構造を簡単にしている。それ以外の構成と作用は第1の実施形態と同様である。この第2の実施形態のベローズ製造装置10′の場合、第2の金型14を第1の金型13に向かって移動させる際に、シールヘッド42′とシール部材45が第2の金型14と同期して移動し、その移動の際にシール部材45が素管11の内面を滑りながら軸線方向に移動する。このような構成によればマンドレル18′の構成が簡単となる。
【0035】
前記実施形態では、型駆動機構16そのものが微量後退手段としての機能を兼ね備えている。ただしこの発明を実施するに当たって、微量後退手段は、型駆動機構16とは別に設けた油圧式あるいは機械式の駆動機構によって、移動金型を僅かに後退させてもよい。
【0036】
またこの発明は、S形断面のベローズを製造するのに適しているが、場合によってはV形断面やU形断面など、金型の成形面の形状に応じて、S形以外の断面形状のひだ壁を有するベローズの製造にも用いることができる。
【0037】
【発明の効果】
請求項1に記載した発明によれば、金型の成形面の形状に応じてS形断面やV形断面、Ω形、U形断面等の所望のひだ壁を有するベローズを製造することができる。特にS形断面のように凹凸のある成形面によってひだ壁を成形する場合、成形面のテーパ角が小さくても、金型が径方向にひらく際にベローズのひだ壁が成形面によって傷付くことを防止できる。
【0038】
発明によれば、S形断面のひだ壁を有するベローズを傷付けることなく製造できる。また本発明によれば、テーパ角の小さい成形面を有する金型によってS形断面のひだ壁を成形することにより、成形時の固定金型と移動金型の先端部間の距離を小さくとることができ、ひだ壁の形状が安定することにより、耐久性の高い金属ベローズを製造でき、しかも金型がひらく際にベローズのひだ壁が成形面によって傷付くことを防止できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すベローズ製造装置の一部の断面図。
【図2】図1に示されたベローズ製造装置の全体を概略的に示す側面図。
【図3】図1に示されたベローズ製造装置の型開閉機構の一部を示す正面図。
【図4】図1に示されたベローズ製造装置において金型に素管をセットした状態の断面図。
【図5】図1に示されたベローズ製造装置において素管に液圧を作用させた状態の断面図。
【図6】図1に示されたベローズ製造装置においてひだ壁が成形された状態を示す断面図。
【図7】図1に示されたベローズ製造装置において金型を少し後退させた状態を示す断面図。
【図8】図1に示されたベローズ製造装置において金型をひらいた状態の断面図。
【図9】図1に示されたベローズ製造装置において一方の金型を軸線方向に移動させた状態の断面図。
【図10】図1に示されたベローズ製造装置において金型を閉じた状態の断面図。
【図11】図1に示されたベローズ製造装置の金型の一部を拡大して示す断面図。
【図12】テーパ角が大きい比較例の金型の一部を拡大して示す断面図。
【図13】互いにテーパ角が異なる2種類の金型を用いて製造されたベローズの耐久試験結果を示す図。
【図14】本発明の第2の実施形態を示すベローズ製造装置の一部の断面図。
【図15】図14に示されたベローズ製造装置においてひだ壁が成形された状態を示す断面図。
【図16】一次成形されたベローズの一部の断面図。
【図17】完成したベローズの一部の断面図。
【符号の説明】
1…ベローズ
4,5…ひだ壁
10…ベローズ製造装置
11…素管
13…第1の金型(固定金型)
14…第2の金型(移動金型)
16…型駆動機構(微量後退手段)
20…素管送り機構
36,37…成形面
39…型開閉機構
45…第1のシール部材
46…第2のシール部材
47…液圧室
50…液圧供給装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for producing a metal bellows incorporated in an accumulator, a vacuum valve, a pump, or the like.
[0002]
[Prior art]
In the metal bellows, peaks and valleys are alternately formed in the axial direction. In addition to the U shape, various shapes such as a V shape, an Ω shape, and an S shape are known as the cross-sectional shapes (cross-sectional shapes of the pleat walls) of the peaks and valleys. For example, the bellows 1 shown in FIG. 17 has a plurality of crests 2 and troughs 3 that are alternately formed in the axis X direction. Each of the pleat walls 4 and 5 constituting the peak portion 2 and the valley portion 3 has an S-shaped cross section.
[0003]
Such an S-shaped cross-sectional bellows 1 has a sufficiently short contact length when compressed in the axial direction as compared with a normal bellows having a U-shaped cross-sectional pleated wall, so that the expansion / contraction stroke from the free length can be increased. There are advantages such as. In addition, the S-shaped cross section referred to in this specification means a shape in which unevenness (curved surface) continuously smoothly in the radial direction of the bellows 1 is alternately formed like a wave, and S in a strict sense. It does not mean a glyph.
[0004]
As a method of manufacturing the metal bellows 1 having an S-shaped cross section, for example, a method is known in which a plurality of disk-shaped bellows elements having an S-shaped cross section formed by pressing are sequentially joined together by welding. Alternatively, a method is also known in which a crest and a trough are integrally formed from a metal base tube, which is a bellows material, by bulging. The former is a so-called welded bellows, and the latter is called an integrally formed bellows. The integrally formed bellows has advantages such as fewer processing steps, higher material yield, and stable quality compared to welded bellows.
[0005]
[Problems to be solved by the invention]
In order to integrally form the bellows having the S-shaped cross section, hydraulic forming may be applied as an example of bulge processing. A bellows manufacturing apparatus that performs hydroforming has a first mold and a second mold that are provided on the outer peripheral side of a base tube that is a material of bellows. Then, by applying a hydraulic pressure from the inside of the raw tube, a part of the raw tube is inflated between the first die and the second die, and these die are moved in a direction approaching each other. The pleat wall is formed by sandwiching a part of the raw tube between the molds.
[0006]
In such a bellows manufacturing apparatus, when the taper angles α1 and α2 of the molding surfaces 36 and 37 of the molds 13 and 14 are small as shown in FIG. When opening in the radial direction, a problem arises in that the bellows is damaged by a part of the molding surfaces 36 and 37 strongly contacting the pleat wall immediately after molding. To avoid scratching the bellows, the taper angles β1 and β2 of the molding surfaces 36 ′ and 37 ′ may be increased as in the molds 13 ′ and 14 ′ shown in FIG. However, the molds 13 'and 14' having a large taper angle β1 and β2 have a large corrugated wall because the distance between the tips C and C of the molds 13 'and 14' is large when the pleat wall is formed. There is a problem that it cannot be molded.
[0007]
Accordingly, an object of the present invention is to provide a bellows manufacturing apparatus capable of forming a pleated wall into an accurate shape without damaging the bellows having an S-shaped cross section.
[0008]
[Means for Solving the Problems]
A bellows manufacturing apparatus according to the present invention for solving the above-mentioned problems is provided with a fixed mold provided on the outer periphery of a raw pipe, and spaced apart from the fixed mold in the axial direction of the raw pipe. A movable mold that is movable in the direction and can be divided in the radial direction of the blank, a first sealing means provided at a position corresponding to the fixed mold on the inner surface of the blank, Second sealing means provided on the inner surface at a position corresponding to the moving mold and forming a hydraulic pressure chamber with the first sealing means, and a pressurized liquid is supplied to the hydraulic pressure chamber said element by moving a portion of the base pipe is located in the hydraulic chamber and the hydraulic pressure supply means for expanding outwardly, the movable die Konzuke Ku in a first direction to said fixed mold by The expanded portion of the tube is plastically deformed between the stationary mold and the moving mold. And type drive mechanism for forming the pleat walls Te, said first direction said movable mold before opening the movable die after the pleat walls are formed in a radial direction of the mother tube in a direction away from the fold wall A small amount retreating means for slightly retreating by a distance equal to or less than half of the pitch of the pleat wall in the second direction opposite to the above, and after the moving mold is retreated by the small amount retreating means, A mold opening / closing mechanism that opens in a direction; and after the moving mold opens in a radial direction, the element pipe is arranged in the same direction as the second direction in the axial direction of the element pipe with respect to the moving mold and the fixed mold. An element feed mechanism for relatively moving a predetermined amount, and having a molding surface for molding a pleated wall having an S-shaped cross section on each of the opposing surfaces of the fixed mold and the movable mold, and the fixed mold Each molding surface of the mold and the moving mold is perpendicular to the axis of the raw tube. The eggplant taper angle of the minute is 10 degrees or less of a narrow angle.
[0009]
The bellows manufacturing apparatus of the present invention supplies pressurized liquid to the hydraulic chamber between the first sealing means and the second sealing means, expands a part of the raw tube to the outside, Move the mold toward the fixed mold. By doing so, a part of the raw tube is sandwiched between the fixed mold and the movable mold and plastically deformed, and a pleated wall is formed. After the pleat wall is formed, the moving mold is slightly retracted in a direction away from the pleat wall by a small amount of retracting means. After that, the moving mold opens in the radial direction. After the moving mold opens in the radial direction, the element pipe moves by a predetermined amount in the axial direction relative to the moving mold and the fixed mold by the element feeding mechanism.
[0010]
In the present invention, the fixed mold and the movable mold include a molding surface for molding a pleated wall having, for example, an S-shaped cross section on the opposing surfaces. In this case, it is preferable that each forming surface has a narrow angle of 10 degrees or less formed by a line segment perpendicular to the axis of the raw tube.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described below with reference to FIGS.
The bellows manufacturing apparatus 10 schematically shown in FIG. 2 bulges a straight tubular thin-walled metal tube 11 which is a metal bellows material by hydraulic pressure. The manufacturing apparatus 10 includes a base frame 12, a mold set 15 including a fixed-side first mold 13 and a moving-side second mold 14, and a second mold 14 connected to the axis of the base tube 11. A mold drive mechanism 16 that moves in the direction, a chuck 17 that holds the blank 11, a mandrel 18 that is inserted into the blank 11, a mandrel drive mechanism 19 that moves the mandrel 18 in the axial direction of the blank 11, And a tube feed mechanism 20 for moving the chuck 17 holding the tube 11 in the axial direction of the tube 11.
[0012]
As shown in FIG. 1, the first mold 13 is held by a first mold holder 30. The second mold 14 is held by the second mold holder 31. The second mold 14 and the mold holder 31 can reciprocate relative to the first mold 13 and the mold holder 30 in the axial direction of the raw tube 11. In the case of this embodiment, the second mold holder 31 is moved in the axial direction of the raw tube 11 integrally with the second mold 14 by the mold drive mechanism 16 (shown in FIG. 2) using an actuator such as a servo motor. It is supposed to be made.
[0013]
The mold drive mechanism 16 includes, for example, a servo motor 16a and a ball screw 16b that is rotationally driven by the servo motor 16a. The mold drive mechanism 16 is rotated by the servo motor 16a in accordance with a pulse input to the servo motor 16a. The mold 14 moves in the axial direction of the raw tube 11. The mold drive mechanism 16 also functions as a small amount of retracting means in the present invention.
[0014]
The molds 13 and 14 and the mold holders 30 and 31 are divided into two in the radial direction (the direction indicated by the arrow W in FIG. 3) by the mold opening / closing mechanism 39 with the dividing surface 38 as a boundary, as shown in part in FIG. It can be done. In the case of this embodiment, the first mold 13 corresponds to the fixed mold referred to in the present invention, and the second mold 14 corresponds to the moving mold. However, conversely, the second mold 14 and the mold holder 31 may be fixed, and the first mold 13 and the mold holder 30 may be moved in the axial direction of the base tube 11.
[0015]
As shown in FIG. 1 and the like, holes 34 and 35 for inserting the raw tube 11 are formed in the molds 13 and 14. According to the pleat walls 4 and 5 of the bellows 1 to be molded (shown in FIG. 17), the molding surfaces 36 and S of the S-shaped cross section are respectively formed on the mutually opposing surfaces of the first mold 13 and the second mold 14. 37 is formed.
[0016]
As shown in FIG. 11, the taper angles α1, α2 of the molding surfaces 36, 37 of the molds 13, 14 are narrow angles of 10 degrees or less. For example, α1 is 6.5 degrees and α2 is 8.9 degrees. FIG. 12 shows molds 13 ′ and 14 ′ (comparative examples) in which the taper angles β1 and β2 of the molding surfaces 36 ′ and 37 ′ exceed 20 degrees. For example, β1 is 20.6 degrees and β2 is 20.4 degrees. The taper angles α1, α2, β1, and β2 referred to here are the base B and the tip C of each molding surface with respect to a line segment A in a direction perpendicular to the axis of each mold (the axis X of the raw tube 11). Is an angle formed by a line segment D connecting the two.
[0017]
The mandrel 18 is provided at the tip of the center rod 41, a cylindrical body 40 inserted into the raw tube 11, a center rod 41 that passes through the inside of the body 40 and is movable in the axial direction with respect to the body 40. The piston-like seal head 42 is provided. A first seal member 45 located on the inner peripheral side of the first mold 13 is provided on the outer peripheral portion of the seal head 42.
[0018]
A second seal member 46 located on the inner peripheral side of the second mold 14 is provided on the outer peripheral portion of the body 40. A hydraulic chamber 47 is formed between the seal members 45 and 46 on the inner surface side of the raw tube 11. The first sealing member 45 functions as the first sealing means referred to in the present invention. The second seal member 46 functions as second seal means in the present invention.
[0019]
The center rod 41 is formed with a fluid pressure introduction port 48 that opens to the fluid pressure chamber 47 and a fluid circulation portion 49 that communicates with the fluid pressure introduction port 48. A fluid pressure supply device 50 (shown in FIG. 2) for supplying a pressurized fluid (for example, water) to the fluid pressure chamber 47 is connected to the fluid circulation portion 49.
[0020]
Below, the bellows manufacturing process performed using the said manufacturing apparatus 10 is demonstrated.
As shown in FIG. 1, the first mold 13 and the second mold 14 are separated from each other, and the molds 13 and 14 are divided into two parts (in a state where they are opened in the radial direction). The raw tube 11 is set to 13 and 14, and the mandrel 18 is inserted into the raw tube 11 from the open end of the raw tube 11.
[0021]
Thereafter, the molds 13 and 14 are closed in the radial direction as shown in FIG. An arrow M1 in FIG. 4 indicates a direction in which the molds 13 and 14 are closed. At this time, the first seal member 45 is positioned on the inner peripheral side of the first mold 13, and the second seal member 46 is positioned on the inner peripheral side of the second mold 14.
[0022]
After that, as shown in FIG. 5, the fluid (for example, water) pressurized by the fluid pressure supply device 50 is supplied to the fluid pressure chamber 47 through the fluid circulation portion 49 and the fluid pressure inlet 48. Due to the pressure of the liquid supplied to the hydraulic pressure chamber 47, a part 11 a of the elementary tube 11 slightly swells in the outer diameter direction between the seal members 45 and 46.
[0023]
As shown in FIG. 6, the second mold 14, the second mold holder 31, the body 40, and the seal member 46 are synchronized with each other while maintaining the hydraulic pressure in the hydraulic chamber 47. It is moved toward the mold 13 in the direction of arrow F1. By doing so, a part 11a of the raw tube 11 is sandwiched between the molding surfaces 36 and 37 of the molds 13 and 14 and plastically deforms, and the pleated walls 4 and 5 having an S-shaped cross section corresponding to the molding surfaces 36 and 37 are formed. Molded.
[0024]
After forming the pleat walls 4 and 5 for one mountain in this way, the second mold 14 is returned by a slight distance Δd by the mold drive mechanism 16 (shown in FIG. 2) in the minute retraction process shown in FIG. It is. That is, the second mold 14 moves backward by a slight distance Δd in the direction away from the first mold 13 (the direction indicated by the arrow R). This distance Δd is set according to the pitch P (shown in FIG. 16) of the pleat walls 4 and 5, for example, Δd is about 2 mm when the pitch P is 4.4 mm, and Δd when the pitch P is 2.8 mm. Is about 1 mm. If the retreating distance Δd becomes too large, the second mold 14 may damage the pleat wall 4 that was previously formed. For this reason, the distance Δd to be moved back is preferably a small amount equal to or less than half of the pitch P.
[0025]
After the second mold 14 is slightly retracted through this minute retraction process, the first mold 13 and the second mold 14 are opened in the radial direction (the direction indicated by the arrow M2) as shown in FIG. Thus, before the molds 13 and 14 are opened, the second mold 14 is slightly retracted in advance by the micro-retraction step, so that the molding surfaces 36 and 37 of the molds 13 and 14 are the pleated walls 4 after molding. , 5 can be avoided and the pleat walls 4, 5 can be prevented from being damaged.
[0026]
After the molds 13 and 14 are opened in the radial direction, the base tube 11 is moved relative to the molds 13 and 14 by a predetermined amount relative to the molds 13 and 14 in the direction indicated by the arrow F2 in FIG. Sent. In addition, the second mold 14 and the mold holder 31 are retracted in the direction indicated by the arrow F3 and returned to the position before molding, and the body 40 and the seal member 46 are also retracted in synchronization therewith.
[0027]
When the molding surface 37 of the second mold 14 is positioned on the front side of the pleat wall 4, the first mold 13 and the mold holder 30 and the second mold 14 and the mold holder 31 are as shown in FIG. Close in the direction of arrow M1. Then, the series of steps shown in FIGS. 5 to 10 are repeated again, so that the next pleat walls 4 and 5 are formed. By forming the pleat walls 4 and 5 one by one in this manner, the primary molded bellows 1 'shown in FIG. 16 is manufactured.
[0028]
In the molds 13 and 14 of this embodiment, the taper angles α1 and α2 of the molding surfaces 36 and 37 are narrow angles of 10 degrees or less as shown in FIG. The distance L between the tips C and C of the molds 13 and 14 with respect to the raw tube 11 becomes small. For this reason, the familiarity of the element tube 11 is improved, the corrugations of the pleat walls 4 and 5 can be sufficiently formed, and the primary molded bellows 1 ′ close to the bellows 1 of the final product shown in FIG. 17 can be manufactured.
[0029]
In addition, by compressing the primary molded bellows 1 'in the axial direction and bringing the pleat walls 4 and 5 into close contact with each other, the radii of curvature of the tip 2a of the crest 2 and the tip 3a of the trough 3 are set as shown in FIG. It can be further reduced.
[0030]
The molding surfaces 36 and 37 of the molds 13 and 14 according to the embodiment have narrow angles of taper angles α1 and α2 of 10 degrees or less, respectively. On the other hand, FIG. 12 shows molds 13 'and 14' in which the taper angles β1 and β2 of the molding surfaces 36 'and 37' exceed 20 degrees. An S-shaped cross-section bellows formed using the molds 13 'and 14' (comparative example) and an S-shaped cross-section bellows formed using the molds 13 and 14 shown in FIG. The durability test results are shown in FIG.
[0031]
As can be seen from FIG. 13, the bellows formed by the molding surfaces 36 and 37 having small taper angles α1 and α2 shown in FIG. 11 are formed by molding surfaces 36 ′ and 37 ′ having large taper angles β1 and β2 shown in FIG. Compared with the bellows molded by the above, the durability is greatly improved. The reason is that when the pleat walls 4 and 5 are formed using the molding surfaces 36 and 37 having small taper angles α1 and α2, compared with the case where the molding surfaces 36 ′ and 37 ′ having large taper angles β1 and β2 are used. Then, it is considered that the S shape of the pleat walls 4 and 5 is stabilized by reducing the distance L between the tip portions C and C of the molds 13 and 14 with respect to the raw tube 11.
[0032]
When the pleat walls 4 and 5 are formed by the molding surfaces 36 and 37 having small taper angles α1 and α2 as shown in FIG. 11, the molds 13 and 14 are opened in the radial direction as they are after the pleat walls 4 and 5 are formed. As a result, part of the molding surfaces 36 and 37 strongly hit the pleat walls 4 and 5 immediately after molding, and the pleat walls 4 and 5 are damaged.
[0033]
Therefore, in the bellows manufacturing apparatus 10 of this embodiment, the mold drive mechanism 16 performs the second metal mold in the above-described minute retraction process immediately after the mold walls 13, 5 are formed and immediately before the molds 13, 14 are opened in the radial direction. The mold 14 is slightly retracted (see FIG. 7). For this reason, when the molds 13 and 14 are opened in the radial direction, it is possible to prevent a part of the molding surfaces 36 and 37 from pressing the pleat walls 4 and 5 immediately after molding, and the pleat walls 4 and 5 are damaged. I was able to prevent sticking.
[0034]
14 and 15 show a bellows manufacturing apparatus 10 'according to the second embodiment of the present invention. This bellows manufacturing apparatus 10 'simplifies the structure of the mandrel 18' by constructing the mandrel 18 'only by the member 40' integrally formed with the seal head 42 'and the body 40'. Other configurations and operations are the same as those in the first embodiment. In the case of the bellows manufacturing apparatus 10 ′ of the second embodiment, when the second mold 14 is moved toward the first mold 13, the seal head 42 ′ and the seal member 45 are connected to the second mold. 14, and the seal member 45 moves in the axial direction while sliding on the inner surface of the raw tube 11 during the movement. Such a configuration simplifies the configuration of the mandrel 18 '.
[0035]
In the above embodiment, the mold drive mechanism 16 itself has a function as a small amount of retracting means. However, in carrying out the present invention, the micro-retracting means may slightly retract the moving mold by a hydraulic or mechanical drive mechanism provided separately from the mold drive mechanism 16.
[0036]
Further, the present invention is suitable for manufacturing a bellows having an S-shaped cross section, but depending on the shape of the molding surface of the mold, such as a V-shaped cross section or a U-shaped cross section, the cross-sectional shape other than the S-shaped may be used. It can also be used for the production of bellows with pleat walls.
[0037]
【The invention's effect】
According to the first aspect of the invention, a bellows having a desired pleated wall such as an S-shaped cross section, a V-shaped cross section, an Ω-shaped cross section, or a U-shaped cross section can be manufactured according to the shape of the molding surface of the mold. . In particular, when the pleat wall is formed by an uneven molding surface such as an S-shaped cross section, even if the taper angle of the molding surface is small, the fold wall of the bellows is damaged by the molding surface when the mold is opened in the radial direction. Can be prevented.
[0038]
According to the present invention, a bellows having a pleated wall having an S-shaped cross section can be manufactured without being damaged. Further , according to the present invention, by forming the pleated wall having an S-shaped cross section with a mold having a molding surface with a small taper angle, the distance between the fixed mold and the tip of the moving mold can be reduced. In addition, by stabilizing the shape of the pleat wall, a highly durable metal bellows can be manufactured, and the fold wall of the bellows can be prevented from being damaged by the molding surface when the mold is opened.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a bellows manufacturing apparatus showing a first embodiment of the present invention.
FIG. 2 is a side view schematically showing the whole bellows manufacturing apparatus shown in FIG. 1;
3 is a front view showing a part of a mold opening / closing mechanism of the bellows manufacturing apparatus shown in FIG. 1. FIG.
4 is a cross-sectional view of the bellows manufacturing apparatus shown in FIG. 1 in a state where an element pipe is set in a mold.
5 is a cross-sectional view of the bellows manufacturing apparatus shown in FIG. 1 in a state where hydraulic pressure is applied to the raw pipe.
6 is a cross-sectional view showing a state in which a pleat wall is formed in the bellows manufacturing apparatus shown in FIG. 1;
7 is a cross-sectional view showing a state in which the mold is slightly retracted in the bellows manufacturing apparatus shown in FIG. 1. FIG.
8 is a cross-sectional view showing a state in which a mold is opened in the bellows manufacturing apparatus shown in FIG.
9 is a cross-sectional view showing a state in which one mold is moved in the axial direction in the bellows manufacturing apparatus shown in FIG. 1;
10 is a cross-sectional view of the bellows manufacturing apparatus shown in FIG. 1 with the mold closed.
11 is an enlarged cross-sectional view showing a part of a mold of the bellows manufacturing apparatus shown in FIG.
FIG. 12 is an enlarged cross-sectional view showing a part of a comparative mold having a large taper angle.
FIG. 13 is a diagram showing the endurance test results of bellows manufactured using two types of dies having different taper angles.
FIG. 14 is a partial cross-sectional view of a bellows manufacturing apparatus showing a second embodiment of the present invention.
15 is a cross-sectional view showing a state in which a pleat wall is formed in the bellows manufacturing apparatus shown in FIG.
FIG. 16 is a cross-sectional view of a part of a primary molded bellows.
FIG. 17 is a cross-sectional view of a part of the completed bellows.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bellows 4, 5 ... Fold wall 10 ... Bellows manufacturing apparatus 11 ... Elementary tube 13 ... 1st metal mold | die (fixed metal mold | die)
14 ... Second mold (moving mold)
16 ... Mold drive mechanism
DESCRIPTION OF SYMBOLS 20 ... Raw-tube feeding mechanism 36, 37 ... Molding surface 39 ... Mold opening / closing mechanism 45 ... 1st sealing member 46 ... 2nd sealing member 47 ... Hydraulic pressure chamber 50 ... Hydraulic pressure supply apparatus

Claims (1)

ベローズの材料としての金属素管の外周に設ける固定金型と、
前記固定金型に対し前記素管の軸線方向に離間して配置され、前記素管の軸線方向に移動可能でかつ前記素管の径方向に分割可能な移動金型と、
前記素管の内面において前記固定金型と対応する位置に設けられた第1のシール手段と、
前記素管の内面において前記移動金型と対応する位置に設けられかつ前記第1のシール手段との間に液圧室を形成する第2のシール手段と、
前記液圧室に加圧された液を供給することによって前記液圧室に位置する前記素管の一部を外側に膨張させる液圧供給手段と、
前記移動金型を前記固定金型に近付く第1の方向(F1)に移動させることにより前記素管の前記膨張した部位を前記固定金型と移動金型との間で塑性変形させてひだ壁を成形する型駆動機構と、
前記ひだ壁が成形されたのち前記移動金型を素管の径方向にひらく前に該移動金型を前記ひだ壁から離す方向で前記第1の方向(F1)とは逆の第2の方向(R)に前記ひだ壁のピッチの半分以下の距離だけ僅かに後退させる微量後退手段と、
前記移動金型が前記微量後退手段によって後退させられたのち該移動金型を径方向にひらく型開閉機構と、
前記移動金型が径方向にひらいた後に前記素管を該移動金型および前記固定金型に対して素管の軸線方向で前記第2の方向(R)と同じ方向(F2)に所定量相対移動させる素管送り機構とを具備し、
前記固定金型と移動金型の相互対向面に、それぞれ断面S形のひだ壁を成形するための成形面を備え、かつ、
前記固定金型と移動金型の各成形面は、それぞれ、前記素管の軸線と直角な線分とのなすテーパ角を10度以下の狭角としたことを特徴とする金属ベローズの製造装置。
A fixed mold provided on the outer periphery of the metal base tube as a bellows material;
A movable mold that is arranged apart from the fixed mold in the axial direction of the element pipe, is movable in the axial direction of the element pipe, and can be divided in the radial direction of the element pipe;
First sealing means provided at a position corresponding to the fixed mold on the inner surface of the raw tube;
Second sealing means provided at a position corresponding to the moving mold on the inner surface of the raw tube and forming a hydraulic chamber between the first sealing means;
Hydraulic pressure supply means for expanding a part of the raw pipe located in the hydraulic pressure chamber to the outside by supplying pressurized liquid to the hydraulic pressure chamber;
Wherein the movable die by plastically deformed between the movable die and the expanded the fixed mold a portion of the mother tube by moving Konzuke to Ku first direction (F1) to the stationary mold A mold drive mechanism for forming a pleat wall;
A second direction opposite to the first direction (F1) in the direction of separating the movable mold from the pleat wall before the movable mold is opened in the radial direction of the raw tube after the pleat wall is formed. (R) a minute amount retreating means for slightly retreating by a distance less than half of the pitch of the pleat wall;
A mold opening / closing mechanism that opens the moving mold in a radial direction after the moving mold is retracted by the micro-retracting means;
After the moving mold is opened in the radial direction, the raw pipe is placed in a predetermined amount in the same direction (F2) as the second direction (R) in the axial direction of the raw pipe with respect to the moving mold and the fixed mold. Comprising a raw pipe feeding mechanism for relative movement ,
A molding surface for molding a pleated wall having an S-shaped cross section is provided on the mutually opposing surfaces of the stationary mold and the movable mold, and
The metal bellows manufacturing apparatus , wherein each of the molding surfaces of the fixed mold and the moving mold has a narrow angle of 10 degrees or less formed by a line segment perpendicular to the axis of the base tube. .
JP2000192802A 2000-06-16 2000-06-27 Metal bellows manufacturing equipment Expired - Lifetime JP4647753B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000192802A JP4647753B2 (en) 2000-06-27 2000-06-27 Metal bellows manufacturing equipment
US09/878,085 US6564606B2 (en) 2000-06-16 2001-06-08 Manufacturing method and manufacturing apparatus for metallic bellows
EP01305001A EP1166912B1 (en) 2000-06-16 2001-06-08 Method of manufacturing metallic bellows
DE60125070T DE60125070T2 (en) 2000-06-16 2001-06-08 Apparatus and method for producing metallic bellows
EP04010163A EP1442805B1 (en) 2000-06-16 2001-06-08 Apparatus for, and method of, manufacturing metallic bellows
DE60106812T DE60106812T2 (en) 2000-06-16 2001-06-08 Method for producing metallic bellows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192802A JP4647753B2 (en) 2000-06-27 2000-06-27 Metal bellows manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2002011528A JP2002011528A (en) 2002-01-15
JP4647753B2 true JP4647753B2 (en) 2011-03-09

Family

ID=18691882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192802A Expired - Lifetime JP4647753B2 (en) 2000-06-16 2000-06-27 Metal bellows manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4647753B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040068676A (en) * 2003-01-27 2004-08-02 임원일 High Pressure Bellows Forming Device and High Pressure Bellows Forming Method using thereof
JP4981717B2 (en) * 2008-03-12 2012-07-25 本田技研工業株式会社 Bulge forming method and bulge forming apparatus
KR20160141774A (en) * 2014-04-21 2016-12-09 스미도모쥬기가이고교 가부시키가이샤 Molding Apparatus
CN107876606A (en) * 2017-10-30 2018-04-06 平湖市万顺达机械有限公司 A kind of forming machine
CN114147124B (en) * 2021-11-29 2023-07-21 天津航天长征火箭制造有限公司 Continuous forming die of large-cavity diameter ratio compensator for spaceflight and forming control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144830A (en) * 1980-04-12 1981-11-11 Osaka Rasenkan Kogyo Kk Production of diaphragm bellows
JPH02290626A (en) * 1989-04-27 1990-11-30 Nhk Spring Co Ltd Method and device for manufacturing metallic bellows
JPH03193224A (en) * 1989-12-22 1991-08-23 Shinwa Kogyo Kk Manufacturing equipment for metallic bellows tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144830A (en) * 1980-04-12 1981-11-11 Osaka Rasenkan Kogyo Kk Production of diaphragm bellows
JPH02290626A (en) * 1989-04-27 1990-11-30 Nhk Spring Co Ltd Method and device for manufacturing metallic bellows
JPH03193224A (en) * 1989-12-22 1991-08-23 Shinwa Kogyo Kk Manufacturing equipment for metallic bellows tube

Also Published As

Publication number Publication date
JP2002011528A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP2753125B2 (en) Method and apparatus for performing tube inflation
US6912884B2 (en) Hydroforming process and apparatus for the same
US3914101A (en) Apparatus for forming corrugated tubing
US6564606B2 (en) Manufacturing method and manufacturing apparatus for metallic bellows
JP4647753B2 (en) Metal bellows manufacturing equipment
CN116329352A (en) Automatic hydraulic forming device and forming method for corrugated pipe
US6044678A (en) Method and device for manufacturing a tubular hollow body with spaced-apart increased diameter portions
JPH09183149A (en) Extrusion molding apparatus and method for molding parison
WO2006060118A1 (en) Transition forming machine
JP4873402B2 (en) Deformed element pipe for hydraulic bulge processing, hydraulic bulge processing apparatus using the same, hydraulic bulge processing method, and hydraulic bulge processed product
TWI272143B (en) Forging method, forged article and forging apparatus
KR920003510B1 (en) Method and apparatus for manufacturing bellows pipe
JP2775490B2 (en) Bellows tube manufacturing equipment
CN116511327A (en) Thin-wall conical tube forming die with flanging characteristic and method
EP0022343A1 (en) Blow moulding method and apparatus
JP2000079421A (en) Device for manufacturing metallic bellows and manufacture of bellows
KR100512457B1 (en) Producing Device of Metal Bellows Pipe
JP2002005288A (en) Method for manufacturing metal bellows
KR200309380Y1 (en) Producing Device of Metal Bellows Pipe
CN116281316A (en) Core demoulding method and device
US5056346A (en) Method and device for manufacturing bellows pipe
KR20010028044A (en) manufacturing apparature of metal bellows-pipe
JP2559584B2 (en) Manufacturing method and apparatus for beaded pipe
JPH03193224A (en) Manufacturing equipment for metallic bellows tube
JP2005052891A (en) Device for reducing diameter and method for manufacturing metallic parts reducing diameter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term