JP4645460B2 - Discharge lamp lighting device and lighting fixture - Google Patents

Discharge lamp lighting device and lighting fixture Download PDF

Info

Publication number
JP4645460B2
JP4645460B2 JP2006018208A JP2006018208A JP4645460B2 JP 4645460 B2 JP4645460 B2 JP 4645460B2 JP 2006018208 A JP2006018208 A JP 2006018208A JP 2006018208 A JP2006018208 A JP 2006018208A JP 4645460 B2 JP4645460 B2 JP 4645460B2
Authority
JP
Japan
Prior art keywords
discharge lamp
balancer
lighting device
winding
lamp lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006018208A
Other languages
Japanese (ja)
Other versions
JP2007200720A (en
Inventor
桂介 植田
寛之 浅野
博彦 野尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006018208A priority Critical patent/JP4645460B2/en
Publication of JP2007200720A publication Critical patent/JP2007200720A/en
Application granted granted Critical
Publication of JP4645460B2 publication Critical patent/JP4645460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、互いに並列に接続された2個の放電灯を点灯する放電灯点灯装置及び照明器具に関するものである。   The present invention relates to a discharge lamp lighting device and a lighting fixture for lighting two discharge lamps connected in parallel to each other.

従来から、交流電力を出力する電源部を備え、電源部の出力端間に互いに並列に接続された複数個の放電灯を同時に点灯させる放電灯点灯装置が提供されている(例えば、特許文献1参照)。ここで、単に放電灯を互いに並列に接続した場合、放電灯間で特性によって供給される電力にばらつきが生じるために放電灯間で光出力(すなわち輝度)がばらついてしまう。特に、調光点灯時には、光出力を小さくするほど上記の輝度の差が比率として大きくなるために目立つという問題がある。また、放電灯の始動時に、一部の放電灯のみが点灯してしまった場合、点灯した放電灯のインピーダンスが低下するために、点灯しなかった放電灯は十分な電圧が供給されず点灯できなくなることがある。   2. Description of the Related Art Conventionally, there has been provided a discharge lamp lighting device that includes a power supply unit that outputs AC power and that simultaneously lights a plurality of discharge lamps connected in parallel to each other between output terminals of the power supply unit (for example, Patent Document 1). reference). Here, when the discharge lamps are simply connected in parallel to each other, the power supplied by the characteristics varies among the discharge lamps, so that the light output (that is, the luminance) varies between the discharge lamps. In particular, at the time of dimming lighting, there is a problem that the above-mentioned difference in luminance becomes larger as a ratio as the light output is reduced, so that it is noticeable. In addition, when only some of the discharge lamps are lit when starting the discharge lamp, the impedance of the lit discharge lamps decreases, so that the discharge lamps that did not illuminate cannot be lit without being supplied with sufficient voltage. It may disappear.

上記の問題を解決する方法として、互いに磁気的に結合された2個の巻線を有するバランサを用いるという方法が知られている(例えば、特許文献1参照)。この種の放電灯点灯装置として、例えば図1に示すものがある。この放電灯点灯装置は、周知のハーフブリッジ型のインバータ回路からバランサTを介して2本の放電灯Laにそれぞれ高周波の交流電力を供給して点灯させるものである。   As a method for solving the above problem, a method of using a balancer having two windings magnetically coupled to each other is known (for example, see Patent Document 1). An example of this type of discharge lamp lighting device is shown in FIG. This discharge lamp lighting device supplies high-frequency AC power to two discharge lamps La via a balancer T from a known half-bridge type inverter circuit to light them.

図1の放電灯点灯装置について詳しく説明する。この放電灯点灯装置は、直流電源DCの出力端間に接続された2個のスイッチング素子Q1,Q2の直列回路と、上記2個のスイッチング素子Q1,Q2の一方(図1の例では低電圧側のスイッチング素子Q2)の両端間に接続されたバラストチョークL1と共振用コンデンサC1との直列回路と、上記2個のスイッチング素子Q1,Q2を交互にオンオフすることにより共振用コンデンサC1の両端間に交流電力を生じさせる駆動制御部1とを備える。また、バランサTの各巻線は、それぞれ一端がバラストチョークL1と共振用コンデンサC1との接続点に直流カット用コンデンサC2を介して接続されている。バランサTの各巻線の他端は、互いに異なる放電灯Laを介してそれぞれ低電圧側のスイッチング素子Q1の低電圧側の端子に接続されている。   The discharge lamp lighting device in FIG. 1 will be described in detail. This discharge lamp lighting device includes a series circuit of two switching elements Q1 and Q2 connected between output terminals of a DC power supply DC and one of the two switching elements Q1 and Q2 (in the example of FIG. A series circuit of a ballast choke L1 connected between both ends of the switching element Q2) and the resonance capacitor C1, and between the both ends of the resonance capacitor C1 by alternately turning on and off the two switching elements Q1 and Q2. And a drive control unit 1 for generating AC power. Each end of each winding of the balancer T is connected to a connection point between the ballast choke L1 and the resonance capacitor C1 via a DC cut capacitor C2. The other end of each winding of the balancer T is connected to the low voltage side terminal of the switching element Q1 on the low voltage side via different discharge lamps La.

バランサTは例えば、図9に示すように、筒形状であって各巻線N1,N2がそれぞれ周方向に巻回される巻回部B1並びに巻回部B1の軸方向(図9の左右方向)の両端にそれぞれ巻回部B1の径方向に突設された鍔部B2を有する絶縁材料からなるボビンBと、中足がボビンBの巻回部B1に挿入されたE型コアECと、E型コアとともに日の字形状の閉磁路を構成するI型コアICと、E型コアECとI型コアICとの間に介装されたギャップ紙Gpとを備える。   For example, as shown in FIG. 9, the balancer T has a cylindrical shape, and the winding portion B1 around which the windings N1 and N2 are wound in the circumferential direction and the axial direction of the winding portion B1 (the left-right direction in FIG. 9). A bobbin B made of an insulating material having a flange part B2 projecting in the radial direction of the winding part B1 at both ends, an E-type core EC having a middle leg inserted into the winding part B1 of the bobbin B, and E An I-type core IC that constitutes a Japanese-shaped closed magnetic path together with the mold core, and a gap paper Gp interposed between the E-type core EC and the I-type core IC.

駆動制御部1は、外部から入力される制御信号に応じて、スイッチング素子Q1,Q2をオンオフする周波数(以下、「動作周波数」と呼ぶ。)を増減させることにより各放電灯Laにそれぞれ供給される電力を増減させる。すなわち、スイッチング素子Q1,Q2とバラストチョークL1と共振用コンデンサC1と直流カット用コンデンサC2と駆動制御部1とで請求項における電源部が構成されているのであり、駆動制御部1は請求項における制御部でもある。また、動作周波数は請求項における電源部の出力の周波数となる。さらに、各放電灯Laにおいて、一方のフィラメントの一端がバランサTに接続され、他方のフィラメントの一端が低電圧側のスイッチング素子Q1の低電圧側の端子に接続され、各フィラメントの他端間には予熱用コンデンサ(図示せず)が接続されている。   The drive controller 1 is supplied to each discharge lamp La by increasing or decreasing the frequency (hereinafter referred to as “operation frequency”) for turning on and off the switching elements Q1 and Q2 in accordance with a control signal input from the outside. Increase or decrease the power. That is, the switching elements Q1, Q2, the ballast choke L1, the resonance capacitor C1, the DC cut capacitor C2, and the drive control unit 1 constitute the power supply unit in the claims, and the drive control unit 1 It is also a control unit. The operating frequency is the output frequency of the power supply unit in the claims. Further, in each discharge lamp La, one end of one filament is connected to the balancer T, one end of the other filament is connected to the low voltage side terminal of the switching element Q1 on the low voltage side, and between the other ends of each filament. Is connected to a preheating capacitor (not shown).

ここで、放電灯Laのフィラメント間の電圧と動作周波数との関係を示す特性曲線を図10に示す。図10において、曲線aは各放電灯Laがいずれも点灯していない状態を示し、曲線bは各放電灯Laがともに点灯した状態を示す。また、frは曲線aの状態についてスイッチング素子Q2の両端間に接続された回路の共振周波数を示している。   Here, a characteristic curve showing the relationship between the voltage between the filaments of the discharge lamp La and the operating frequency is shown in FIG. In FIG. 10, a curve a indicates a state where none of the discharge lamps La is lit, and a curve b indicates a state where both discharge lamps La are lit. Further, fr indicates the resonance frequency of the circuit connected between both ends of the switching element Q2 in the state of the curve a.

放電灯Laを始動する際には、駆動制御部1は、まず、所定の予熱期間にわたり、動作周波数を、バラストチョークL1と共振用コンデンサC1とからなるLC直列共振回路の共振周波数よりも高い周波数であって、共振用コンデンサC1の両端間に出力される電力が放電灯Laの予熱に充分な電力となり且つ放電灯Laのフィラメント間の電圧Vyが放電灯Laを始動(いわゆるコールドスタート)させない程度とするような予熱周波数fyとする。予熱期間の終了後、駆動制御部1は、動作周波数を低下させ、放電灯Laのフィラメント間にかかる電圧が放電灯Laが始動する電圧Vsとなるような始動周波数fsとする。すると、各放電灯Laがそれぞれ始動して各放電灯Laのインピーダンスがそれぞれ低下することにより特性曲線は図10の曲線bとなる。その後は、駆動制御部1は、調光比の変更を指示する制御信号が入力される都度、入力された制御信号に応じて動作周波数を変更して放電灯Laに供給される電力を変更することにより放電灯Laの光出力を変更する。この際、動作周波数は放電灯Laを含めてスイッチング素子Q2の両端間に接続された回路全体での共振周波数よりも高い範囲内とされており、従って動作周波数を高くするほど光出力が連続的に低くなる。動作周波数がとりうる上限値は、例えば各放電灯Laにそれぞれ点灯維持可能な最低限の電力が供給されるときの動作周波数とする。   When starting the discharge lamp La, the drive control unit 1 first has an operating frequency higher than the resonance frequency of the LC series resonance circuit including the ballast choke L1 and the resonance capacitor C1 over a predetermined preheating period. The power output between both ends of the resonance capacitor C1 is sufficient to preheat the discharge lamp La, and the voltage Vy between the filaments of the discharge lamp La does not start the discharge lamp La (so-called cold start). The preheating frequency fy is as follows. After the preheating period, the drive control unit 1 lowers the operating frequency so that the voltage applied between the filaments of the discharge lamp La becomes the starting frequency fs that becomes the voltage Vs at which the discharge lamp La starts. Then, each discharge lamp La is started and the impedance of each discharge lamp La is lowered, so that the characteristic curve becomes a curve b in FIG. Thereafter, each time a control signal instructing change of the dimming ratio is input, the drive control unit 1 changes the operating frequency according to the input control signal to change the power supplied to the discharge lamp La. As a result, the light output of the discharge lamp La is changed. At this time, the operating frequency is in a range higher than the resonance frequency of the entire circuit connected between both ends of the switching element Q2 including the discharge lamp La. Therefore, the light output is continuously increased as the operating frequency is increased. It becomes low. The upper limit value that can be taken by the operating frequency is, for example, the operating frequency at which each discharge lamp La is supplied with the minimum power that can be kept on.

上記従来例においては、バランサTにより、各放電灯Laに供給される電力が互いに略等しくなり、従って放電灯La間の光出力の差が小さくなっている。また、放電灯Laの始動時に一方の放電灯Laのみが点灯した場合であっても、バランサTの巻線のうち点灯した放電灯Laに接続された巻線に流れる電流により、点灯しなかった放電灯Laに接続された巻線に電流が誘導されるから、点灯しなかった放電灯Laにも十分な電力を供給して始動させることができる。
特許第3291852号公報
In the above conventional example, the power supplied to each discharge lamp La is substantially equal to each other by the balancer T, and therefore the difference in light output between the discharge lamps La is small. Further, even when only one of the discharge lamps La was lit when starting the discharge lamp La, it was not lit due to the current flowing in the winding connected to the lit discharge lamp La among the windings of the balancer T. Since a current is induced in the winding connected to the discharge lamp La, it is possible to start the discharge lamp La that has not been lit by supplying sufficient power.
Japanese Patent No. 3291852

ところで、一方の放電灯Laが寿命末期など点灯しない異常状態となった場合には、正常な放電灯Laの点灯後に、スイッチング素子Q2の両端間の回路は図11に示すようになり、上記回路は各放電灯Laがともに消灯している曲線aの状態と各放電灯Laがともに点灯している曲線bの状態とのどちらとも異なる特性を示す。一方の放電灯Laのみが点灯した状態における点灯しなかった放電灯Laの両端間に加わる電圧を図10に曲線cで示す。また、fr’は曲線cの状態についてスイッチング素子Q2の両端間に接続された回路の共振周波数を示している。図10を見てもわかるように、一方の放電灯Laのみが点灯した状態では、点灯しなかった放電灯Laの両端間にかかる電圧は、各放電灯Laがいずれも点灯していない場合に比べて高くなっている。すなわち、点灯しなかった放電灯Laの両端間には、放電灯Laの始動に本来必要な電圧以上の高い電圧が加わっている。   By the way, when one of the discharge lamps La is in an abnormal state where it does not light, such as at the end of its life, the circuit between both ends of the switching element Q2 becomes as shown in FIG. Shows different characteristics from both the state of curve a where each discharge lamp La is turned off and the state of curve b where both discharge lamps La are turned on. A voltage applied to both ends of the discharge lamp La that is not lit in a state where only one discharge lamp La is lit is shown by a curve c in FIG. Further, fr ′ represents the resonance frequency of the circuit connected between both ends of the switching element Q2 in the state of the curve c. As can be seen from FIG. 10, in the state where only one of the discharge lamps La is lit, the voltage applied to both ends of the discharge lamp La that has not been lit is the case when none of the discharge lamps La is lit. It is higher than that. That is, a voltage higher than the voltage originally required for starting the discharge lamp La is applied between both ends of the discharge lamp La that has not been lit.

ここで、バランサTによる上記効果を充分に得るためには、バランサTの相互インダクタンスを高く、すなわち、バランサTの各巻線の自己インダクタンスを高くする必要がある。しかし、上記のように一方の放電灯Laが寿命末期など点灯しない異常状態となった場合に、正常な放電灯Laの点灯後に異常な放電灯Laのフィラメント間にかかる電圧Vs’は、バランサTの各巻線の自己インダクタンスが高いほど高くなる。このため、放電灯La間の光出力の差を小さくするためにバランサTの各巻線の自己インダクタンスを高くすると、その分、上記電圧Vs’に応じた電圧が加わる回路部品(例えば放電灯Laのフィラメント間に予熱用コンデンサを接続する場合には予熱用コンデンサ)としてより耐圧の高い高価な部品を用いる必要が生じ、製造コストが高くなっていた。   Here, in order to sufficiently obtain the above effect by the balancer T, it is necessary to increase the mutual inductance of the balancer T, that is, to increase the self-inductance of each winding of the balancer T. However, when one of the discharge lamps La is in an abnormal state that does not light, such as at the end of its life as described above, the voltage Vs ′ applied between the filaments of the abnormal discharge lamp La after the normal discharge lamp La is lit is the balancer T The higher the self-inductance of each winding, the higher. For this reason, when the self-inductance of each winding of the balancer T is increased in order to reduce the difference in the optical output between the discharge lamps La, a circuit component to which a voltage corresponding to the voltage Vs ′ is applied correspondingly (for example, the discharge lamp La When a preheating capacitor is connected between the filaments, it is necessary to use an expensive part having a higher withstand voltage as the preheating capacitor), and the manufacturing cost is high.

本発明は上記事由に鑑みて為されたものであり、その目的は、互いに並列に接続された放電灯の一方が点灯しない場合に回路にかかる負荷を低減することができる放電灯点灯装置及び照明器具を提供することにある。   The present invention has been made in view of the above-described reasons, and its object is to provide a discharge lamp lighting device and an illumination that can reduce the load on the circuit when one of the discharge lamps connected in parallel to each other does not light up. To provide an instrument.

請求項1の発明は、交流電力を出力する電源部と、それぞれ一端が電源部の一方の出力端に電気的に接続され他端が互いに異なる放電灯を介して電源部の他方の出力端に電気的に接続されるとともに互いに磁気的に結合された2本の巻線を有するバランサを少なくとも含み各放電灯に供給される電力を互いに均衡させる均衡部と、電源部の出力の周波数を変動させることにより放電灯の光出力を制御する制御部とを備える放電灯点灯装置であって、バランサの各巻線において電源部の出力端に直接接続される一端同士を短絡した状態での均衡部の共振周波数である均衡部共振周波数を、放電灯始動時の電源部の出力の周波数の1.5倍以下としたことを特徴とする。   According to the first aspect of the present invention, there is provided a power supply unit that outputs AC power, and a discharge lamp that is electrically connected at one end to one output end of the power supply unit and the other end is connected to the other output end of the power supply unit. A balance unit including at least a balancer having two windings that are electrically connected and magnetically coupled to each other, and a balance unit that balances power supplied to each discharge lamp, and a frequency of an output of the power supply unit is varied. And a control unit for controlling the light output of the discharge lamp, the resonance of the balance unit in a state where one end directly connected to the output end of the power supply unit is short-circuited in each winding of the balancer The balanced portion resonance frequency, which is the frequency, is set to 1.5 times or less of the frequency of the output of the power source when the discharge lamp is started.

この発明によれば、均衡部共振周波数を放電灯始動時の電源部の出力の周波数の1.5倍よりも大きくする場合に比べ、一方の放電灯のみが点灯したときに他方の放電灯の両端間に加わる電圧を小さくして回路にかかる電気的負荷を低減することができる。   According to the present invention, when only one of the discharge lamps is turned on, the balanced part resonance frequency is set to be larger than 1.5 times the output frequency of the power supply unit at the time of starting the discharge lamp. The electric load applied to the circuit can be reduced by reducing the voltage applied between both ends.

請求項2の発明は、請求項1の発明において、均衡部共振周波数を、電源部の出力の周波数の上限値の0.8倍よりも大きくしたことを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the balanced portion resonance frequency is made larger than 0.8 times the upper limit value of the frequency of the output of the power supply portion.

この発明によれば、均衡部共振周波数を電源部の出力の周波数の上限値の0.8倍以下とする場合に比べ、電源部の出力の周波数を上限値としたときの放電灯間での光出力の差を小さくすることができる。   According to this invention, compared with the case where the balanced portion resonance frequency is 0.8 times or less of the upper limit value of the output frequency of the power supply unit, the discharge lamp between the discharge lamps when the output frequency of the power supply unit is set to the upper limit value. The difference in light output can be reduced.

請求項3の発明は、請求項1又は請求項2の発明において、バランサの各巻線の少なくとも一部ずつが巻線の径方向について交互に積層するように巻回されていることを特徴とする。   The invention of claim 3 is characterized in that, in the invention of claim 1 or claim 2, at least a part of each winding of the balancer is wound so as to be laminated alternately in the radial direction of the winding. .

この発明によれば、設計時に、バランサの各巻線を径方向について交互に積層するように巻回する回数を設計要素とすることにより、バランサの巻線間の寄生容量を変更して所望の均衡部共振周波数を得ることができる。   According to the present invention, at the time of designing, the design factor is the number of times each winding of the balancer is alternately stacked in the radial direction, thereby changing the parasitic capacitance between the windings of the balancer to achieve a desired balance. A part resonance frequency can be obtained.

請求項4の発明は、請求項1〜3のいずれかの発明において、均衡部は、バランサの各巻線と放電灯との間にそれぞれ介在して互いに近接配置された導電体からなる容量部を有することを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the balance portion includes a capacitor portion made of conductors disposed in close proximity to each other and interposed between the windings of the balancer and the discharge lamp. It is characterized by having.

この発明によれば、設計時に、容量部を構成する導電体間の距離や、各導電体において互いに近接する部位の寸法形状を設計要素とすることにより、容量部の導体間の寄生容量を変更して所望の均衡部共振周波数を得ることができる。   According to the present invention, the parasitic capacitance between the conductors of the capacitive part is changed by designing the distance between the conductors constituting the capacitive part and the dimensional shape of the parts close to each other in each conductor during design. Thus, a desired balance part resonance frequency can be obtained.

請求項5の発明は、請求項1〜4のいずれかの発明において、バランサの各巻線のインダクタンス値をそれぞれ5.0mH以上としたことを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the inductance value of each winding of the balancer is 5.0 mH or more.

この発明によれば、バランサの各巻線のインダクタンス値をそれぞれ5.0mH未満とする場合に比べ、放電灯間での光出力の差を小さくすることができる。   According to the present invention, the difference in light output between the discharge lamps can be reduced as compared with the case where the inductance value of each winding of the balancer is less than 5.0 mH.

請求項6の発明は、請求項1〜5のいずれかの放電灯点灯装置と、放電灯点灯装置に電気的に接続されるとともに放電灯が機械的且つ電気的に接続されるソケットを有し放電灯点灯装置を収納する器具本体とを備えることを特徴とする。   The invention of claim 6 has the discharge lamp lighting device according to any one of claims 1 to 5 and a socket that is electrically connected to the discharge lamp lighting device and mechanically and electrically connected to the discharge lamp. And an appliance main body for housing the discharge lamp lighting device.

本発明によれば、それぞれ一端が電源部の一方の出力端に電気的に接続され他端が互いに異なる放電灯を介して電源部の他方の出力端に電気的に接続されるとともに互いに磁気的に結合された2本の巻線を有するバランサを少なくとも含み各放電灯に供給される電力を互いに均衡させる均衡部を備え、バランサの各巻線において電源部の出力端に直接接続される一端同士を短絡した状態での均衡部の共振周波数である均衡部共振周波数を、放電灯始動時の電源部の出力の周波数の1.5倍以下としたので、均衡部共振周波数を放電灯始動時の電源部の出力の周波数の1.5倍よりも大きくする場合に比べ、一方の放電灯のみが点灯したときに他方の放電灯の両端間に加わる電圧を小さくして回路にかかる電気的負荷を低減することができる。   According to the present invention, one end is electrically connected to one output end of the power supply unit, and the other end is electrically connected to the other output end of the power supply unit via different discharge lamps and magnetically connected to each other. A balancer that includes at least a balancer having two windings coupled to each other and balances the electric power supplied to each discharge lamp, and one end directly connected to the output end of the power supply in each winding of the balancer Since the equilibrium part resonance frequency, which is the resonance frequency of the equilibrium part in a short-circuited state, is 1.5 times or less of the output frequency of the power supply part at the time of starting the discharge lamp, the equilibrium part resonance frequency is set to the power source at the time of starting the discharge lamp. Compared with a case where the frequency is higher than 1.5 times the output frequency of the part, when only one discharge lamp is lit, the voltage applied across the other discharge lamp is reduced to reduce the electrical load on the circuit. can do.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

なお、本実施形態の回路構成は図1に示した従来例と共通であるので、共通する構成には同じ符号を付して図示並びに説明を省略する。   Since the circuit configuration of this embodiment is common to the conventional example shown in FIG. 1, the same components are denoted by the same reference numerals, and illustration and description thereof are omitted.

本発明者は、放電灯Laが長さ4ft(約120cm)の直管型蛍光灯(FHF32)であって周囲温度が0℃であるときに放電灯Laの光出力を定格点灯時の5%以下としたときのバランサTの各巻線の自己インダクタンス(以下、「バランサインダクタンス」という。)と、輝度差率との関係を、バランサTの各巻線の巻数をそれぞれ変更しつつ各放電灯Laの輝度をそれぞれ測定することにより調べた。ここで、輝度差率とは、2個の放電灯Laのうち輝度が高いものの輝度と2個の放電灯Laの平均輝度との差を、2個の放電灯Laの平均輝度で除した数値(すなわち、2個の放電灯Laの輝度の差を、2個の放電灯Laの輝度の和で除した数値)に100を乗じた数値である。結果を図2に示す。図2を見ても分かる通り、全体としてバランサインダクタンスが高いほど輝度差率は低くなるが、バランサインダクタンスが5mH以下ではその低下率が大きくなっている。この結果に基き、本実施形態では、バランサTの各巻線の自己インダクタンスをそれぞれ5mH以上としている。これにより、バランサTの各巻線の自己インダクタンスをそれぞれ5mH未満とする場合に比べ、放電灯La間の光出力の差が小さくなっている。バランサインダクタンスに関わる設計要素としては、バランサTの各巻線の巻数の他に、図9の構造のバランサTであればギャップ紙Gpの厚さ寸法(すなわち、E型コアECとI型コアICとの間の距離)もある。   The present inventor has determined that the light output of the discharge lamp La is 5% of the rated lighting when the discharge lamp La is a straight tube type fluorescent lamp (FHF32) having a length of 4 ft (about 120 cm) and the ambient temperature is 0 ° C. The relationship between the self-inductance of each winding of the balancer T (hereinafter referred to as “balancer inductance”) and the luminance difference rate when the number of turns of each winding of the balancer T is changed is as follows. It investigated by measuring each brightness | luminance. Here, the luminance difference rate is a numerical value obtained by dividing the difference between the luminance of the two discharge lamps La having high luminance and the average luminance of the two discharge lamps La by the average luminance of the two discharge lamps La. (That is, a numerical value obtained by dividing the difference in luminance between the two discharge lamps La by the sum of the luminances of the two discharge lamps La) multiplied by 100. The results are shown in FIG. As can be seen from FIG. 2, the higher the balancer inductance, the lower the luminance difference rate, but the decrease rate increases when the balancer inductance is 5 mH or less. Based on this result, in this embodiment, the self-inductance of each winding of the balancer T is set to 5 mH or more. Thereby, compared with the case where the self-inductance of each winding of the balancer T is less than 5 mH, the difference in the light output between the discharge lamps La is small. As design elements related to the balancer inductance, in addition to the number of turns of each winding of the balancer T, in the case of the balancer T having the structure of FIG. 9, the thickness dimension of the gap paper Gp (that is, E type core EC and I type core IC) There is also a distance between.

また、本発明者は、図1の回路において放電灯Laが取り付けられるソケットのうち一方にのみ放電灯Laを接続し他方には放電灯Laのフィラメントを模した抵抗(以下、「模擬フィラメント」と呼ぶ。)のみを接続し、一方の放電灯Laが点灯しない状態を模すとともに、バランサTの各巻線において放電灯Laに近い側の一端間に、バランサTの巻線間の寄生容量の増分を模したコンデンサ(図示せず。以下、「寄生容量コンデンサ」と呼ぶ。)を接続した回路について、後述する均衡部共振周波数fbの始動周波数fsに対する比と、動作周波数を始動周波数fsとして放電灯Laを点灯させたときに模擬フィラメント間に生じる電圧(以下、「ストレス電圧」と呼ぶ。)との関係を測定によって調べた。前者を横軸にとり、後者を縦軸にとったグラフを図3に示す。 In addition, the inventor connects the discharge lamp La only to one of the sockets to which the discharge lamp La is attached in the circuit of FIG. 1 and the other simulates a filament of the discharge lamp La (hereinafter referred to as “simulated filament”). In this case, only one of the discharge lamps La is connected, and the parasitic capacitance between the windings of the balancer T is increased between the ends of the windings of the balancer T near the discharge lamp La. For a circuit to which a capacitor imitating a capacitor (not shown; hereinafter referred to as “parasitic capacitance capacitor”) is connected, a ratio of a balanced portion resonance frequency fb to a starting frequency fs, which will be described later, and an operating frequency as a starting frequency fs are discharge lamps. The relationship between the voltage generated between the simulated filaments when La was turned on (hereinafter referred to as “stress voltage”) was examined by measurement. A graph with the former on the horizontal axis and the latter on the vertical axis is shown in FIG.

なお、均衡部共振周波数fbとは、バランサTの各巻線において放電灯Laから離れた側の一端間を短絡した状態で、バランサTの各巻線の他端間(すなわち寄生容量コンデンサの両端間)においてインピーダンスアナライザを用いて測定された共振周波数を指す。また、始動周波数fsは全ての測定点で一定とし、寄生容量コンデンサの容量値を変更することにより均衡部共振周波数fbを変更している。 Note that the balanced portion resonance frequency fb is a state in which one end on the side away from the discharge lamp La in each winding of the balancer T is short-circuited, and between the other ends of each winding of the balancer T (that is, between both ends of the parasitic capacitor). The resonance frequency measured using an impedance analyzer in FIG. The starting frequency fs is constant at all measurement points, and the balanced portion resonance frequency fb is changed by changing the capacitance value of the parasitic capacitor.

図3を見ても分かるように、均衡部共振周波数fbの始動周波数fsに対する比fb/fsが約1.5よりも低い点では明らかにストレス電圧が低くなっている。逆に、上記の比fb/fsが1.8以上ではストレス電圧が1000V近く又は1000V以上と、放電灯Laの始動に必要な電圧値以上に高くなっており、この場合は例えば放電灯Laのフィラメント間に予熱用コンデンサを接続する場合に予熱用コンデンサとして耐圧の高い比較的に高価なコンデンサを用いる必要が生じてしまう。この結果に基き、本実施形態では均衡部共振周波数fbの始動周波数fsに対する比fb/fsを1.5以下としている。例えば、始動周波数fsが70kHzの場合、均衡部共振周波数fbは105kHz以下とすればよいが、これはバランサインダクタンスが5mHであればバランサTの巻線間の寄生容量を約124pF以上とすることにより達成することができる。 As can be seen from FIG. 3, the stress voltage is clearly lower at the point where the ratio fb / fs of the balanced portion resonance frequency fb to the starting frequency fs is lower than about 1.5. On the contrary, when the ratio fb / fs is 1.8 or more, the stress voltage is close to 1000 V or 1000 V or more, which is higher than the voltage value necessary for starting the discharge lamp La. In this case, for example, the discharge lamp La When a preheating capacitor is connected between the filaments, it is necessary to use a relatively expensive capacitor having a high withstand voltage as the preheating capacitor. Based on this result, in this embodiment, the ratio fb / fs to the starting frequency fs of the balanced portion resonance frequency fb is set to 1.5 or less. For example, when the starting frequency fs is 70 kHz, the balanced portion resonance frequency fb may be 105 kHz or less. This is because the parasitic capacitance between the windings of the balancer T is about 124 pF or more when the balancer inductance is 5 mH. Can be achieved.

ここで、図10における曲線cの場合よりもバランサTの巻線間の寄生容量を大きくした場合の、一方の放電灯Laのみが点灯した状態における点灯しなかった放電灯Laの両端間に加わる電圧(すなわち、始動周波数fsではストレス電圧)と動作周波数との関係を示す曲線dを、図10に書き加えたものを図4に示す。また、fr’’は曲線dの状態についてスイッチング素子Q2の両端間に接続された回路の共振周波数を示している。図4を見てもわかるように、曲線cの状態でのストレス電圧Vs’よりも、バランサTの巻線間の寄生容量をより大きくした曲線dの状態でのストレス電圧Vs’’のほうが低減されている。   Here, when the parasitic capacitance between the windings of the balancer T is made larger than in the case of the curve c in FIG. 10, it is applied between both ends of the discharge lamp La that is not lit when only one discharge lamp La is lit. FIG. 4 shows a curve d showing the relationship between the voltage (that is, the stress voltage at the starting frequency fs) and the operating frequency added to FIG. Fr ″ indicates the resonance frequency of the circuit connected between both ends of the switching element Q2 in the state of the curve d. As can be seen from FIG. 4, the stress voltage Vs ″ in the state of the curve d in which the parasitic capacitance between the windings of the balancer T is larger than the stress voltage Vs ′ in the state of the curve c is reduced. Has been.

さらに、本発明者は、動作周波数の上限値(以下、「最高動作周波数」と呼ぶ。)fmaxに対する均衡部共振周波数fbの比fb/fmaxを、0.6,0.8,2.0と互いに異ならせた3通りの場合について、それぞれ放電灯Laのフィラメント間に流れる電流(以下、「放電灯電流」と呼ぶ。)と輝度差率との関係を調べた。前者を横軸にとり、後者を縦軸にとったグラフを図5に示す。なお、上記3通りの場合の全てで最高動作周波数fmaxは一定としており、図3の場合と同様にして均衡部共振周波数fbを変更することにより上記の比fb/fmaxを変更している。因みに、本実施形態で用いられるFHF32の場合、放電灯電流が20mAであるときの光出力は定格点灯時の約5%となる。図5において曲線eは上記の比fb/fmaxが0.6である場合を示し、曲線fは上記の比fb/fmaxが0.8である場合を示し、曲線gは上記の比fb/fmaxが2.0である場合を示す。図5を見ても分かるように、放電灯電流が最小であるとき、すなわち動作周波数が最高動作周波数fmaxであるときの輝度差率は、最高動作周波数fmaxに対する均衡部共振周波数fbの比fb/fmaxが0.6であるときには25%を超えているのに対し、0.8であるときには15%以下と急激に低下している。この結果に基き、本実施形態では、最高動作周波数fmaxに対する均衡部共振周波数fbの比fb/fmaxを0.8よりも大きくしている。例えば、最高動作周波数fmaxが100kHzの場合、均衡部共振周波数fbは80kHzよりも大きくすればよいが、これはバランサインダクタンスが5mHであればバランサTの巻線間の寄生容量を約198pF未満とすることにより達成することができる。これにより、本実施形態では、最高動作周波数fmaxに対する均衡部共振周波数fbの比fb/fmaxを0.8以下とする場合に比べ、放電灯間の光出力(輝度)の差が小さくなっている。 Further, the present inventor sets the ratio fb / fmax of the balanced portion resonance frequency fb to the upper limit value (hereinafter referred to as “maximum operating frequency”) fmax of the operating frequency as 0.6, 0.8, 2.0. In three different cases, the relationship between the current flowing between the filaments of the discharge lamp La (hereinafter referred to as “discharge lamp current”) and the luminance difference rate was examined. A graph with the former on the horizontal axis and the latter on the vertical axis is shown in FIG. In all three cases, the maximum operating frequency fmax is constant, and the ratio fb / fmax is changed by changing the balanced portion resonance frequency fb as in the case of FIG. Incidentally, in the case of the FHF 32 used in the present embodiment, the light output when the discharge lamp current is 20 mA is about 5% of the rated lighting. In FIG. 5, a curve e indicates a case where the ratio fb / fmax is 0.6, a curve f indicates a case where the ratio fb / fmax is 0.8, and a curve g indicates the ratio fb / fmax. Is 2.0. As can be seen from FIG. 5, when the discharge lamp current is the minimum, that is, when the operating frequency is the maximum operating frequency fmax, the luminance difference ratio is the ratio fb / of the balanced portion resonance frequency fb to the maximum operating frequency fmax. When fmax is 0.6, it exceeds 25%, but when it is 0.8, it rapidly decreases to 15% or less. Based on this result, in this embodiment, the ratio fb / fmax of the balanced portion resonance frequency fb to the maximum operating frequency fmax is set to be larger than 0.8. For example, when the maximum operating frequency fmax is 100 kHz, the balanced portion resonance frequency fb may be higher than 80 kHz. If the balancer inductance is 5 mH, the parasitic capacitance between the windings of the balancer T is less than about 198 pF. Can be achieved. Thereby, in this embodiment, the difference of the light output (luminance) between discharge lamps is small compared with the case where ratio fb / fmax of the balance part resonance frequency fb with respect to the maximum operating frequency fmax is 0.8 or less. .

また、動作周波数が均衡部共振周波数fbとなったときにはバランサTによる放電灯La間の光出力の差を小さくする効果が薄れるので、動作周波数が取り得る範囲に均衡部共振周波数fbが含まれないように、均衡部共振周波数fbは例えば最高動作周波数fmaxよりも大きくすることが望ましい。 Moreover, the effect when the operating frequency becomes equilibrium portion resonance frequency fb is to reduce the difference in light output between the discharge lamp La by the balancer T fades, it does not include balancing unit resonance frequency fb to a possible range operating frequencies Thus, it is desirable that the balanced portion resonance frequency fb is higher than the maximum operating frequency fmax, for example.

ここで、fb/fs及びfb/fmaxに関する上記各条件を満たすために均衡部共振周波数fbを調整するには、バランサTにおいて巻線を径方向について交互に巻回する回数を調整することにより、バランサTの巻線間の寄生容量を調整すればよい。例えば、図6(a)に示すようにバランサTの各巻線N1,N2を2回ずつ交互に計4層に巻回すれば、図9のように各巻線N1,N2を個別に計2層に巻回する場合に比べ、バランサTの巻線N1,N2間の寄生容量が大きくなることにより、均衡部における容量値を大きくすることができる。さらに、図6(b)に示すように各巻線N1,N2を交互に5層以上に巻回すれば均衡部における容量値をより大きくすることができる。このように、バランサTの各巻線を径方向について交互に巻回する回数を増やすほど均衡部における容量値を大きくして均衡部共振周波数fbを小さくすることができる。 Here, in order to adjust the balanced portion resonance frequency fb in order to satisfy the above-described conditions regarding fb / fs and fb / fmax, by adjusting the number of times the winding is alternately wound in the radial direction in the balancer T, The parasitic capacitance between the windings of the balancer T may be adjusted. For example, if the windings N1 and N2 of the balancer T are alternately wound twice in a total of four layers as shown in FIG. 6 (a), each winding N1 and N2 is individually divided into a total of two layers as shown in FIG. Since the parasitic capacitance between the windings N1 and N2 of the balancer T is larger than the case where the balancer T is wound around, the capacitance value in the balanced portion can be increased. Furthermore, as shown in FIG. 6 (b), if the windings N1 and N2 are alternately wound in five layers or more, the capacitance value in the balanced portion can be further increased. Thus, as the number of turns of each winding of the balancer T alternately in the radial direction is increased, the capacitance value in the balancing section can be increased and the balancing section resonance frequency fb can be reduced.

上記構成によれば、均衡部共振周波数fbの始動周波数fsに対する比fb/fsを1.5以下としたことにより、上記の比fb/fsを1.5よりも大きくする場合に比べ、一方の放電灯Laのみしか点灯しない場合に他方の放電灯Laのフィラメント間にかかるストレス電圧が低減されることにより、ストレス電圧に応じた電圧が加わる回路部品への電気的負荷が低減される。従って、例えば放電灯Laのフィラメント間に予熱用コンデンサを接続する場合であっても、予熱用コンデンサとして耐圧の低い安価なものを用いて製造コストを低減することができる。 According to the above configuration, by setting the ratio fb / fs to the starting frequency fs of the balanced portion resonance frequency fb to be 1.5 or less, compared with the case where the ratio fb / fs is larger than 1.5, When only the discharge lamp La is lit, the stress voltage applied between the filaments of the other discharge lamp La is reduced, thereby reducing the electrical load on the circuit components to which the voltage corresponding to the stress voltage is applied. Therefore, for example, even when a preheating capacitor is connected between the filaments of the discharge lamp La, the manufacturing cost can be reduced by using an inexpensive preheating capacitor having a low withstand voltage.

なお、図7に示すように、直流カット用コンデンサC2に代え、それぞれ直流カット用コンデンサC2の容量値の2分の1の容量値を有する直流カット用コンデンサC2a,C2bを、バランサTの各巻線と放電灯Laとの間にそれぞれ接続してもよい。   As shown in FIG. 7, instead of the direct current cut capacitor C2, direct current cut capacitors C2a and C2b each having a capacitance value that is half the capacitance value of the direct current cut capacitor C2 are connected to the windings of the balancer T. And the discharge lamp La may be connected to each other.

また、均衡部としてバランサTの各巻線と放電灯Laとの間(図7の回路では各直流カット用コンデンサC2a,C2bと放電灯Laとの間)にそれぞれ介在する導電体が互いに並行するように近接配置されてなる容量部を追加してもよい。この構成を採用すれば、容量部の長さや容量部における導電体間の距離を調整することによって均衡部共振周波数fbを調整することができる。例えば、バランサLの各巻線(若しくは各直流カット用コンデンサC2a,C2b)と放電灯Laとの間の導電体として放電灯点灯装置において一般的に用いられる電線を用い、これらの電線を互いに密着するように並行させて容量部を構成した場合、この容量部の容量値は長さ1m当たり約50pFとなる。 Further, the conductors interposed between the windings of the balancer T and the discharge lamp La (between the DC cutting capacitors C2a and C2b and the discharge lamp La in the circuit of FIG. 7) as parallel portions are arranged in parallel with each other. A capacitor portion that is arranged close to may be added. By adopting this configuration, the balanced portion resonance frequency fb can be adjusted by adjusting the length of the capacitance portion and the distance between the conductors in the capacitance portion. For example, an electric wire generally used in a discharge lamp lighting device is used as a conductor between each winding (or each DC cut capacitor C2a, C2b) of the balancer L and the discharge lamp La, and these electric wires are brought into close contact with each other. When the capacitor unit is configured in parallel, the capacitance value of the capacitor unit is about 50 pF per 1 m length.

さらに、電源部については、交流電力を出力する回路であれば、本実施形態のようなハーフブリッジ型のインバータ回路に限られず、例えばフルブリッジ型や一石電圧共振型などの他の周知のインバータ回路を用いてもよい。   Further, the power supply unit is not limited to the half-bridge type inverter circuit as in the present embodiment as long as it is a circuit that outputs alternating current power, and other well-known inverter circuits such as a full-bridge type and a one-stone voltage resonance type, for example. May be used.

本実施形態は、例えば図8に示すように、直管型の放電灯Laの端子がそれぞれ機械的且つ電気的に接続される2組計4個のソケットSを有し天井面に固定される器具本体Hに収納されて照明器具を構成する。この照明器具は一般的な2灯用富士山形照明器具であって、ソケットSには2本の放電灯Laが放電灯Laの径方向であって天井面に沿った方向に並べて取り付けられる。器具本体Hは、放電灯Laの長さ方向に直交する断面での断面積が頂点を下向きとする二等辺三角形となるような三角柱形状である。器具本体Hの下向きの各面はそれぞれ例えば白色に塗装されるとともに放電灯Laに向けられており、放電等Laの光を配光する。   In the present embodiment, for example, as shown in FIG. 8, there are two sets of four sockets S to which the terminals of the straight tube type discharge lamp La are mechanically and electrically connected, and are fixed to the ceiling surface. It is housed in the fixture body H and constitutes a lighting fixture. This lighting fixture is a general Fuji-mountain lighting fixture for two lamps, and two discharge lamps La are mounted on the socket S side by side in the radial direction of the discharge lamp La and along the ceiling surface. The appliance main body H has a triangular prism shape such that a cross-sectional area in a cross section orthogonal to the length direction of the discharge lamp La becomes an isosceles triangle having a vertex downward. Each downward surface of the appliance body H is painted, for example, in white and directed toward the discharge lamp La, and distributes light of La such as discharge.

放電灯点灯装置の一例を示す回路図である。It is a circuit diagram which shows an example of a discharge lamp lighting device. バランサの各巻線の自己インダクタンスと輝度差率との関係を示す説明図である。Is an explanatory view showing the relationship between the self-inductance and the luminance difference ratio of each winding of the balancer. 均衡部共振周波数の始動周波数に対する比とストレス電圧との関係を示す説明図である。For the starting frequency of the balancing portion resonance frequency is an explanatory diagram showing the relationship between the ratio and the stress voltage. 放電灯のフィラメント間に生じる電圧と動作周波数との関係を示す説明図である。Is an explanatory view showing the relationship between the voltage and the operating frequency that occurs between the filaments of the discharge lamp. 均衡部共振周波数をそれぞれ変更した3通りの場合について、放電灯電流と輝度差率との関係を示す説明図である。It is explanatory drawing which shows the relationship between a discharge lamp electric current and a brightness | luminance difference rate about three cases which each changed the balance part resonance frequency. (a)(b)はそれぞれ本発明の実施形態におけるバランサの構造を示す説明図であり、(a)(b)は巻線を交互に巻回する回数をそれぞれ異ならせた例を示す。(A) (b) is explanatory drawing which shows the structure of the balancer in embodiment of this invention, respectively, (a) (b) shows the example which each varied the frequency | count of winding a coil | winding. 放電灯点灯装置の回路の別の例を示す回路図である。It is a circuit diagram which shows another example of the circuit of a discharge lamp lighting device. 本実施形態が用いられる照明器具の一例を示す斜視図である。It is a perspective view which shows an example of the lighting fixture by which this embodiment is used. バランサの構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of a balancer. 放電灯のフィラメント間に生じる電圧と動作周波数との関係を示す説明図である。Is an explanatory view showing the relationship between the voltage and the operating frequency that occurs between the filaments of the discharge lamp. 一方の放電灯のみが点灯した状態での放電灯点灯装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the discharge lamp lighting device in the state where only one of the discharge lamps is lit.

符号の説明Explanation of symbols

1 駆動制御部
H 器具本体
La 放電灯
S ソケット
T バランサ
1 Drive Control Unit H Instrument Body La Discharge Lamp S Socket T Balancer

Claims (6)

交流電力を出力する電源部と、それぞれ一端が電源部の一方の出力端に電気的に接続され他端が互いに異なる放電灯を介して電源部の他方の出力端に電気的に接続されるとともに互いに磁気的に結合された2本の巻線を有するバランサを少なくとも含み各放電灯に供給される電力を互いに均衡させる均衡部と、電源部の出力の周波数を変動させることにより放電灯の光出力を制御する制御部とを備える放電灯点灯装置であって、
バランサの各巻線において電源部の出力端に直接接続される一端同士を短絡した状態での均衡部の共振周波数である均衡部共振周波数を、放電灯始動時の電源部の出力の周波数の1.5倍以下としたことを特徴とする放電灯点灯装置。
A power supply unit that outputs AC power, and one end of which is electrically connected to one output end of the power supply unit and the other end is electrically connected to the other output end of the power supply unit via different discharge lamps A balance unit that includes at least a balancer having two windings magnetically coupled to each other and balances the power supplied to each discharge lamp, and the light output of the discharge lamp by varying the output frequency of the power supply unit A discharge lamp lighting device comprising a control unit for controlling
In each winding of the balancer, the balanced portion resonance frequency, which is the resonance frequency of the balanced portion in a state where one end directly connected to the output end of the power supply portion is short-circuited, is 1. A discharge lamp lighting device characterized by being 5 times or less.
均衡部共振周波数を、電源部の出力の周波数の上限値の0.8倍よりも大きくしたことを特徴とする請求項1記載の放電灯点灯装置。   2. The discharge lamp lighting device according to claim 1, wherein the balanced part resonance frequency is set to be greater than 0.8 times the upper limit value of the output frequency of the power supply part. バランサの各巻線の少なくとも一部ずつが巻線の径方向について交互に積層するように巻回されていることを特徴とする請求項1又は請求項2記載の放電灯点灯装置。   3. The discharge lamp lighting device according to claim 1, wherein at least a part of each winding of the balancer is wound so as to be alternately laminated in the radial direction of the winding. 均衡部は、バランサの各巻線と放電灯との間にそれぞれ介在して互いに近接配置された導電体からなる容量部を有することを特徴とする請求項1〜3のいずれか記載の放電灯点灯装置。   The discharge lamp lighting according to any one of claims 1 to 3, wherein the balancing portion includes a capacitor portion made of conductors disposed in close proximity to each other and interposed between each winding of the balancer and the discharge lamp. apparatus. バランサの各巻線のインダクタンス値をそれぞれ5.0mH以上としたことを特徴とする請求項1〜4のいずれか記載の放電灯点灯装置。   The discharge lamp lighting device according to any one of claims 1 to 4, wherein an inductance value of each winding of the balancer is set to 5.0 mH or more. 請求項1〜5のいずれか記載の放電灯点灯装置と、放電灯点灯装置に電気的に接続されるとともに放電灯が機械的且つ電気的に接続されるソケットを有し放電灯点灯装置を収納する器具本体とを備えることを特徴とする照明器具。   A discharge lamp lighting device according to any one of claims 1 to 5, and a socket that is electrically connected to the discharge lamp lighting device and mechanically and electrically connected to the discharge lamp lighting device, and stores the discharge lamp lighting device. A lighting fixture comprising: a lighting fixture body.
JP2006018208A 2006-01-26 2006-01-26 Discharge lamp lighting device and lighting fixture Expired - Fee Related JP4645460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006018208A JP4645460B2 (en) 2006-01-26 2006-01-26 Discharge lamp lighting device and lighting fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006018208A JP4645460B2 (en) 2006-01-26 2006-01-26 Discharge lamp lighting device and lighting fixture

Publications (2)

Publication Number Publication Date
JP2007200720A JP2007200720A (en) 2007-08-09
JP4645460B2 true JP4645460B2 (en) 2011-03-09

Family

ID=38455117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006018208A Expired - Fee Related JP4645460B2 (en) 2006-01-26 2006-01-26 Discharge lamp lighting device and lighting fixture

Country Status (1)

Country Link
JP (1) JP4645460B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240596A (en) * 1985-04-17 1986-10-25 松下電工株式会社 Discharge lamp lighting apparatus
JPS63237394A (en) * 1987-03-26 1988-10-03 松下電工株式会社 Discharge lamp lighter
JPH0745393A (en) * 1993-07-27 1995-02-14 Matsushita Electric Works Ltd Discharge lamp lighting device
JPH118084A (en) * 1997-06-19 1999-01-12 Iwasaki Electric Co Ltd Discharge lamp lighting device
JPH11238589A (en) * 1998-02-24 1999-08-31 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2000030881A (en) * 1998-07-09 2000-01-28 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2005317253A (en) * 2004-04-27 2005-11-10 Fdk Corp Tube current balancing circuit, and balance coil used for same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240596A (en) * 1985-04-17 1986-10-25 松下電工株式会社 Discharge lamp lighting apparatus
JPS63237394A (en) * 1987-03-26 1988-10-03 松下電工株式会社 Discharge lamp lighter
JPH0745393A (en) * 1993-07-27 1995-02-14 Matsushita Electric Works Ltd Discharge lamp lighting device
JPH118084A (en) * 1997-06-19 1999-01-12 Iwasaki Electric Co Ltd Discharge lamp lighting device
JPH11238589A (en) * 1998-02-24 1999-08-31 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2000030881A (en) * 1998-07-09 2000-01-28 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2005317253A (en) * 2004-04-27 2005-11-10 Fdk Corp Tube current balancing circuit, and balance coil used for same

Also Published As

Publication number Publication date
JP2007200720A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
KR101085579B1 (en) A current sharing scheme and device for multiple ccf lamp operation
US6534934B1 (en) Multi-lamp driving system
US7109665B2 (en) Three-way dimming CFL ballast
US7365501B2 (en) Inverter transformer
JP2004103316A (en) Discharge lamp lighting device
JP2010198880A (en) Discharge lamp lighting device, and illumination fixture
JPH03133112A (en) Lighting equipment
US6919693B2 (en) High-voltage transformer and discharge lamp driving apparatus
US20080106215A1 (en) Electronic Ballast
JP2001267156A (en) Inverter transformer
JP3832074B2 (en) Discharge lamp lighting device
JP4529132B2 (en) Multi-lamp type discharge lamp lighting device
JP4645460B2 (en) Discharge lamp lighting device and lighting fixture
JP5122839B2 (en) Discharge lamp lighting device and lighting fixture
JP5122838B2 (en) Discharge lamp lighting device and lighting fixture
JP2007200721A (en) Discharge lamp lighting device and illumination fixture
JP2005317253A (en) Tube current balancing circuit, and balance coil used for same
JP4560679B2 (en) Multi-lamp type discharge lamp lighting device
JP2006012660A (en) Discharge lamp lighting circuit
JP2010123522A (en) Electrodeless discharge lamp lighting device and luminaire
JP2006012659A (en) Discharge lamp lighting circuit
JP2006040871A (en) Lighting apparatus driving device
JP4283348B2 (en) Discharge lamp lighting device
JP2005183107A (en) Two-lamp serial discharge lamp lighting system and illumination device
JP2013045653A (en) Discharge lamp lighting device and illuminating deice using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees