JP4644889B2 - Fluorine-containing polyfunctional (meth) acrylic acid ester and low refractive material - Google Patents
Fluorine-containing polyfunctional (meth) acrylic acid ester and low refractive material Download PDFInfo
- Publication number
- JP4644889B2 JP4644889B2 JP24711399A JP24711399A JP4644889B2 JP 4644889 B2 JP4644889 B2 JP 4644889B2 JP 24711399 A JP24711399 A JP 24711399A JP 24711399 A JP24711399 A JP 24711399A JP 4644889 B2 JP4644889 B2 JP 4644889B2
- Authority
- JP
- Japan
- Prior art keywords
- acrylic acid
- fluorine
- meth
- acid ester
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Macromonomer-Based Addition Polymer (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Polyethers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、架橋重合後に高い表面硬度と低屈折率を示し、反射防止膜や光ファイバーのクラッド材料等の原料成分として利用できる含フッ素多官能(メタ)アクリル酸エステル及び該エステルを有効成分として含有する組成物を重合硬化して形成される低屈折材料に関する。
【0002】
【従来の技術】
フッ素原子は大きな電気陰性度と小さな分極率を有するため、フッ素-他原子間の結合は外界電場による動的分極が小さく、フッ素原子を含む化合物は低い屈折率を示す。近年、反射防止膜や光ファイバーのクラッド材料等の低屈折率材料として、このフッ素化合物が盛んに応用されてきている。例えば、含フッ素(メタ)アクリル酸エステル重合体、テトラフルオロエチレン重合体、フッ化ビニリデンとテロラフルオロエチレンの共重合体等の光ファイバーへの応用が報告されている(特開昭59-4203号公報、特開昭59-98116号公報、特開昭59-147011号公報等参照)。また、脂肪族環構造を有する非結晶パーフルオロ樹脂等の溶媒可溶性の低屈折率含フッ素重合体の反射防止反射防止フィルムへの応用が報告されている(特平6-18705号公報、特平6-114023号公報等参照)。
しかし、これらの含フッ素化合物は非架橋性であるため、重合体の表面硬度は低く、耐摩耗性、耐擦傷性に劣るという欠点を有している。 これに対し、含フッ素単官能(メタ)アクリル酸エステルまたは含フッ素2官能(メタ)アクリル酸エステルと、非含フッ素多官能(メタ)アクリル酸エステルを架橋重合させ、表面硬度を向上させる試みがなされている(特昭58-105943号公報、特昭62-199643号公報、特昭62-250047号公報等参照)。しかし、含フッ素単官能(メタ)アクリル酸エステルと多官能(メタ)アクリル酸エステルは任意の割合で混合しない。また、含フッ素2官能(メタ)アクリル酸エステルは多官能(メタ)アクリル酸エステルと任意の割合で混合するが、フッ素含有量を増やすと架橋密度が低下してしまう。このため、従来の技術では十分な低屈折率と優れた表面硬度を両立させることは困難である。
【0003】
【発明が解決しようとする課題】
本発明は、上記の技術的課題を解決しようとするものであり、含フッ素多官能(メタ)アクリル酸エステル及び該エステルを有効成分とする組成物が架橋重合後に高い表面硬度と低屈折率を示す低屈折材料を提供することを目的とする。
【0004】
【課題を解決するための手段】
前記課題を解決するための請求項1記載の発明は、
下記一般式(1)で表されることを特徴とする含フッ素多官能(メタ)アクリル酸エステル。
【0005】
【化3】
(Rfは下記一般式(2)表されるフルオロアルキレンオキサイド基とフッ素原子を2以上有するフルオロアルキレン基からなり、且つ、R3はCH2CH(OR5)(CH2)PまたはCH(OR5)CH2(CH2)P(但し、pは1〜3の整数)を表し、R4はCH2CH(OR6)(CH2) P またはCH(OR6)CH2(CH2) P を表し、且つ、R1、R2はアクリロイル基もしくはメタクリロイル基を表し、R 5 、R 6 は水素原子またはアクリロイル基もしくはメタクリロイル基を表し、R5、R6のうち少なくとも1つはアクリロイル基またはメタクリロイル基である。)
【0008】
【化4】
(q,rは1〜50の整数を表す。)
【0009】
請求項2記載の発明は、前記一般式(1)で表される請求項1記載の含フッ素多官能(メタ)アクリル酸エステルを少なくとも有効成分として含有する組成物を重合硬化して形成される低屈折材料である。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
前記一般式(1)で示される本発明の含フッ素多官能(メタ)アクリル酸エステルとして、一例として下記一般式(3)〜(8)の化合物が挙げられる。
【0011】
【化5】
(kは2〜12の整数を表す)上記一般式においてであるが、屈折率を効果的に低減し、かつ表面硬度を向上させるために、kを4〜10とするのが好ましい。また、q,rは1〜50の整数を示すが、同様の理由から、 q+rを10〜30とするのが好ましい。
【0012】
本発明の含フッ素多官能(メタ)アクリル酸エステルを合成する方法を以下に示す。
まず、前記一般式(3)、(4)で表される含フッ素多官能(メタ)アクリル酸エステル化合物を合成する方法を説明する。
下記式(9)で示される含フッ素ジオールと下記式(10)で示されるエポキシ基をもつアクリレートとを通常の開環反応により反応させ、得られた生成物を下記式(11)で示されるアクリル酸クロライドとエステル反応させることにより合成される。
【0013】
【化6】
【0014】
<含フッ素ジオールとエポキシ基をもつアクリレートとの反応>
原料の仕込み比は、含フッ素ジオール1molに対しエポキシ基含有アクリレート2〜4mol、好ましくは2〜3molである。また、反応を促進するために触媒を使用することが望ましく、例えば、ピリジン、イソキノリン、N,Nジメチルシクロヘキシルアミン、ピコリン、トリエチルアミン、トリブチルアミン、N,Nジメチルアニリン、ベンジルトリメチルアンモニウムクロライド、トリフェニルホスフィン、水酸化カリウム、水酸化ナトリウム、3フッ化ホウ素等が用いられる。その添加量は、原料混合物に対して、0.1〜15重量%、好ましくは0.3〜5重量%である。また、反応中の重合を抑制するために重合禁止剤を使用することが望ましく、例えば、メトキノン、ハイドロキノン、フェノチアジン等が用いられる。その添加量は、原料混合物に対して、0.01〜5重量%、好ましくは0.05〜3重量%である。
反応温度は系により異なるが、原料や生成物の熱重合が起こらない温度が望ましく、50℃〜130℃が好ましい。反応時間は系により異なるが、2〜80時間が好ましい。
前記反応終了後に生成物に各種処理を行い、純度の高い反応生成物を得ることができる。処理としては例えば、未反応アクリレートや重合禁止剤等を除去するための、反応生成物を炭酸ナトリウム水溶液や炭酸水素ナトリウム等のアルカリ性水溶液で洗浄する操作が挙げられる。
上記の反応により得られる生成物は下記式(12)〜(14)で示される化合物の混合物である。以下、この混合物を生成物(a)と表記する。
【0015】
【化7】
【0016】
<上記生成物(a)とアクリル酸クロライドのエステル反応>
前記生成物(a)とアクリル酸クロリドの反応生成物は、下記一般式(15)〜(21)で示される化合物の混合物となり、その組成比は生成物(a)とアクリル酸クロリドの仕込み比により変化する。下記一般式(13)〜(16)で示される3官能アクリレートを合成する場合は、生成物(a)1molに対しアクリル酸クロリド1.0〜2.0molが好ましく、下記式(17)〜(19)で示される4官能アクリレートを合成する場合は、生成物(a)1molに対しアクリル酸クロリド2.0〜4.0molが好ましい。
【0017】
【化8】
【0018】
次に、前記一般式(5)〜(8)で表される含フッ素多官能(メタ)アクリル酸エステル化合物の合成する方法を説明する。
下記一般式(22)で示される両末端にそれぞれ2つの水酸基を有するパーフルオロポリエーテルと、前記化学式(11)で示されるアクリル酸クロライドを反応させることにより前記一般式(5)〜(8)で表される含フッ素化合物が合成される。
【0019】
【化9】
【0020】
得られる反応生成物は下記一般式(23)〜(31)で示される化合物の混合物であり、その成分比は上記一般式(22)で示される化合物と前記化学式(11)で示されるアクリル酸クロリドの仕込み比により変化する。上記一般式(22)で示される化合物1molに対しアクリル酸クロリドの添加量はそれぞれ、下記一般式(23)〜(24)で示される単官能エステルを合成する場合は1〜2mol、下記一般式(25)〜(28)で示される2官能エステルを合成する場合は2〜4mol、下記一般式(29)〜(30)で示される3官能エステルを合成する場合は3〜6mol、下記一般式(31)で示される4官能エステルを合成する場合は4〜8molが好ましい。
【化10】
【0021】
本発明の含フッ素多官能(メタ)アクリル酸エステルを合成する際、アクリル酸クロライドとのエステル反応で生じる塩化水素を捕捉するために、トリエチルアミン、ベンジルアミン等の3級アルキルアミンやピリジン等の塩基を添加することが望ましい。また、反応温度は−20℃〜20℃であるが、−10℃〜10℃が好ましく、反応時間は0.1〜12時間であるが、特に0.5〜2時間が好ましい。
上記エステル反応生成物は未反応アクリル酸クロライドや塩化水素捕捉剤の塩基を含むが、これらは各種処理により除去することが可能である。処理としては例えば、メタノール等のアルコール類や水の添加による未反応アクリル酸クロライドの分解除去、あるいは、蒸留やカラムクロマトグラフィーによる精製等が挙げられる。生成混合物は、そのまま使用できるが、用途に応じ分離することも可能である。
【0022】
本発明の上記含フッ素(メタ)アクリル酸エステルはそのまま架橋重合により硬化させて耐摩耗性、耐擦傷性に優れた塗膜とすることができるが、硬化塗膜にさらに良好な耐擦傷性を付与するために重合性不飽和基を有する化合物を添加することも可能である。重合性不飽和基を有する化合物としては、(メタ)アクリル酸エステル類、(メタ)アクリル酸オリゴエステルプレポリマー類、不飽和ニトリル類、不飽和アミド類、不飽和カルボン酸類、不飽和カルボン酸エステル類、カルボン酸ビニルエステル類があるが、特に(メタ)アクリル酸エステル類が好ましい。(メタ)アクリル酸エステルの具体例としては、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
【0023】
【実施例】
以下、本発明の実施例について具体的に説明する。
【0024】
<実施例1>
攪拌機、冷却管、ガス導入管を備えたの三つ口フラスコに、含フッ素ジオールHOCH2(CF2)8CH2OHを0.05mol、トリエチルアミンを100mg、溶媒としてテトラヒドロフラン20gを仕込み、油浴中窒素雰囲気で60℃で2時間加熱した後、グリシジルアクリレートを0.1molを滴下した。さらに80℃で40時間反応させた後、溶媒を留去し、下記式(32)〜(34)に示す化合物の混合物が得られた。以下これらの混合物を生成物1と称する。
【0025】
【化11】
【0026】
次に、攪拌機、温度計、滴下漏斗およびガス導入管を備えた三つ口フラスコに、上記生成物1をクロロホルム50mlに溶解したもの、およびトリエチルアミン0.2molを仕込み、氷温下でアクリル酸クロリド0.2molをクロロホルム15mlに溶解した溶液を、滴下漏斗から反応溶液の温度が5℃を超えないように滴下した。滴下終了後氷冷のまま2時間攪拌した後、4mlのメタノールを添加し、さらに10分間攪拌した。クロロホルムを減圧留去し、得られた黄色結晶を酢酸エチル/n-ヘキサン混合溶媒(体積比=1/4)を展開溶媒としてカラムクロマトグラフィーにより精製し、さらに溶媒を減圧留去することで、下記式(35)〜(37)に示す化合物の混合物が得られた。以下この混合物を生成物2と称する。
【化12】
【0027】
生成物2をメチルイソブチルケトンに5重量%となるように溶解した後、開始剤としてイルガキュア184(商品名:チバーガイギー製)を添加し塗液を調製した。この塗液をハードコートされたPET基材に、重合硬化物の反射率が550nmで最低値をとるようにデイップコート法により塗布した後、120w/cmの高圧水銀ランプにより紫外線を180秒照射し、硬化塗膜1を得た。
【0028】
<実施例2>
攪拌機、温度計、滴下漏斗およびガス導入管を備えた三つ口フラスコに、下記式(38)に示した末端2水酸基パーフルオロポリエーテル0.01mol(平均分子量2000)をメタキシレンヘキサフルオリドに溶解したもの、およびトリエチルアミン0.08molを仕込み、氷温下でアクリル酸クロリド0.08molをクロロホルム6mlに溶解した溶液を、滴下漏斗から反応溶液の温度が5℃を超えないように滴下した。滴下終了後氷冷のまま2時間攪拌した後、2mlのメタノールを添加しさらに10分間攪拌した。クロロホルムを減圧留去し、得られた黄色結晶をさらに酢酸エチル/n-ヘキサン混合溶媒(体積比=1/4)を展開溶媒としてカラムクロマトグラフィーにより精製し、さらに溶媒を減圧留去することで、下記式(39)に示す化合物が得られた。以下この生成物を生成物3と称する。
【0029】
【化13】
【0030】
生成物3をメタキシレンヘキサフルオリドに5重量%になるように溶解した後、開始剤としてイルガキュア184(商品名:チバーガイギー製)を添加し塗液を調製した。この塗液を用い、実施例1と同様の方法で、ハードコートされたPET基材上に硬化塗膜2を形成した。
【0031】
<実施例3>
生成物3とジペンタエリスリトールヘキサアクリレートを重量比で80/20となるように混合した。この混合物をメタキシレンヘキサフルオリドに5重量%になるように溶解した後、開始剤としてイルガキュア184(商品名:チバーガイギー製)を添加し塗液を調製した。この塗液を用い、実施例1と同様の方法で、ハードコートされたPET基材上に硬化塗膜3を形成した。
【0032】
<比較例1>
実施例1で合成された生成物1をメチルイソブチルケトンに5重量%となるように溶解した後、開始剤としてイルガキュア184(商品名:チバーガイギー製)を添加し塗液を調製した。この塗液を用い、実施例1と同様の方法で、ハードコートされたPET基材上に硬化塗膜4を形成した。
【0033】
<比較例2>
主鎖に環構造を有する従来の含フッ素脂肪族重合体であるサイトップ(商品名:旭硝子製)をパーフルオロオクタンに5重量%となるように溶解し塗液を調製した。この塗液をハードコートされたPET基材に、重合硬化後の反射率が最低になるようにデイップコート法により塗布した後、80℃で30分乾燥させ塗膜5を形成した。
【0034】
実施例1〜3および比較例1〜2で得られた塗膜1〜5について以下の評価を行った。
<反射率測定>
各硬化塗膜の裏面を艶消し黒色塗料でベタ塗りした後、分光光度計(UV−4000:日立製作所製)を用い反射率を測定した。
<耐擦傷性>
スチールウール#0000を用い、各硬化塗膜の表面を250g/cm2の圧力で擦過した後の表面状態の目視判定を行った。判定基準を以下に示す。Aは、全く傷がつかない。Bは、少々傷が認められる。Cは、膜が剥がれ落ちる。を各々表す。
<鉛筆硬度試験>
鉛筆硬度試験機(モデルC221A:ヨシミツ精機製)を用い各塗膜の鉛筆硬度試験を行った。
【0035】
【表1】
【0036】
【発明の効果】
本発明の含フッ素多官能(メタ)アクリル酸エステルは、複数の(メタ)アクリロイル基を有し、架橋重合体は3次元網目構造をとる。このため、硬化塗膜は高い表面硬度を有し、耐擦傷性、耐摩耗性に優れ、高い表面硬度が要求される反射防止膜や光ファイバーのクラッド等の低屈折率材料として利用可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention contains a fluorine-containing polyfunctional (meth) acrylic acid ester which shows high surface hardness and low refractive index after cross-linking polymerization and can be used as a raw material component for an antireflection film, an optical fiber cladding material, and the like as an active ingredient. The present invention relates to a low refractive material formed by polymerizing and curing a composition.
[0002]
[Prior art]
Since fluorine atoms have a large electronegativity and a small polarizability, the bond between fluorine and other atoms has a small dynamic polarization due to an external electric field, and a compound containing a fluorine atom exhibits a low refractive index. In recent years, this fluorine compound has been actively applied as a low refractive index material such as an antireflection film or a clad material of an optical fiber. For example, application to optical fibers such as fluorine-containing (meth) acrylic acid ester polymers, tetrafluoroethylene polymers, copolymers of vinylidene fluoride and terafluoroethylene has been reported (Japanese Patent Laid-Open No. 59-4203). JP, 59-98116, JP, 59-147011, etc.). In addition, application of a solvent-soluble low refractive index fluorine-containing polymer such as an amorphous perfluoro resin having an aliphatic ring structure to an antireflection antireflection film has been reported (Japanese Patent Publication No. 6-18705, Japanese Patent Publication No. Hei 6). 6-114023 gazette etc.).
However, since these fluorine-containing compounds are non-crosslinkable, they have the disadvantages that the surface hardness of the polymer is low and the wear resistance and scratch resistance are poor. On the other hand, attempts to improve surface hardness by cross-linking polymerization of fluorine-containing monofunctional (meth) acrylic acid ester or fluorine-containing bifunctional (meth) acrylic acid ester and non-fluorine-containing polyfunctional (meth) acrylic acid ester (See Japanese Patent Publication No. 58-105943, Japanese Patent Publication No. 62-199643, Japanese Patent Publication No. 62-250047, etc.). However, the fluorine-containing monofunctional (meth) acrylic acid ester and the polyfunctional (meth) acrylic acid ester are not mixed at an arbitrary ratio. Moreover, although fluorine-containing bifunctional (meth) acrylic acid ester mixes with polyfunctional (meth) acrylic acid ester in arbitrary ratios, if a fluorine content is increased, a crosslinking density will fall. For this reason, it is difficult to achieve both a sufficiently low refractive index and excellent surface hardness with the conventional technology.
[0003]
[Problems to be solved by the invention]
The present invention is intended to solve the above technical problem, and a fluorine-containing polyfunctional (meth) acrylic acid ester and a composition containing the ester as an active ingredient have high surface hardness and low refractive index after cross-linking polymerization. It is an object to provide the low refractive material shown.
[0004]
[Means for Solving the Problems]
The invention according to claim 1 for solving the above-mentioned problem is as follows.
A fluorine-containing polyfunctional (meth) acrylic acid ester represented by the following general formula (1).
[0005]
[Chemical 3]
(Rf is composed of a fluoroalkylene oxide group represented by the following general formula (2) and a fluoroalkylene group having two or more fluorine atoms, and R 3 is CH 2 CH (OR 5 ) (CH 2 ) P or CH (OR 5) CH 2 (CH 2) P ( Here, p represents an integer of 1 to 3), R 4 is CH 2 CH (oR 6) ( CH 2) P or CH (oR 6) CH 2 ( CH 2) P represents R 1 and R 2 each represents an acryloyl group or a methacryloyl group, R 5 and R 6 each represent a hydrogen atom, an acryloyl group or a methacryloyl group, and at least one of R 5 and R 6 represents an acryloyl group. Or a methacryloyl group.)
[0008]
[Formula 4]
(Q and r represent an integer of 1 to 50.)
[0009]
The invention described in claim 2 is formed by polymerizing and curing a composition containing at least the fluorine-containing polyfunctional (meth) acrylate ester of claim 1 represented by the general formula (1) as an active ingredient. It is a low refractive material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
Examples of the fluorine-containing polyfunctional (meth) acrylic acid ester of the present invention represented by the general formula (1) include compounds represented by the following general formulas (3) to (8).
[0011]
[Chemical formula 5]
(K represents an integer of 2 to 12) In the above general formula, it is preferable to set k to 4 to 10 in order to effectively reduce the refractive index and improve the surface hardness. Moreover, although q and r show the integer of 1-50, it is preferable to set q + r to 10-30 for the same reason.
[0012]
A method for synthesizing the fluorine-containing polyfunctional (meth) acrylic acid ester of the present invention is shown below.
First, a method for synthesizing the fluorine-containing polyfunctional (meth) acrylate compound represented by the general formulas (3) and (4) will be described.
A fluorine-containing diol represented by the following formula (9) and an acrylate having an epoxy group represented by the following formula (10) are reacted by a normal ring-opening reaction, and the resulting product is represented by the following formula (11). Synthesized by ester reaction with acrylic acid chloride.
[0013]
[Chemical 6]
[0014]
<Reaction of fluorine-containing diol with acrylate having epoxy group>
The raw material charge ratio is 2 to 4 mol, preferably 2 to 3 mol, of an epoxy group-containing acrylate with respect to 1 mol of the fluorine-containing diol. It is also desirable to use a catalyst to accelerate the reaction, such as pyridine, isoquinoline, N, N dimethylcyclohexylamine, picoline, triethylamine, tributylamine, N, N dimethylaniline, benzyltrimethylammonium chloride, triphenylphosphine Potassium hydroxide, sodium hydroxide, boron trifluoride and the like are used. The addition amount is 0.1 to 15% by weight, preferably 0.3 to 5% by weight, based on the raw material mixture. In addition, it is desirable to use a polymerization inhibitor in order to suppress polymerization during the reaction, and for example, methoquinone, hydroquinone, phenothiazine and the like are used. The addition amount is 0.01 to 5% by weight, preferably 0.05 to 3% by weight, based on the raw material mixture.
Although the reaction temperature varies depending on the system, a temperature at which thermal polymerization of raw materials and products does not occur is desirable, and 50 ° C to 130 ° C is preferable. Although reaction time changes with systems, 2 to 80 hours are preferable.
After completion of the reaction, the product can be subjected to various treatments to obtain a highly pure reaction product. Examples of the treatment include an operation of washing the reaction product with an alkaline aqueous solution such as an aqueous sodium carbonate solution or sodium hydrogen carbonate to remove unreacted acrylate, polymerization inhibitor and the like.
The product obtained by the above reaction is a mixture of compounds represented by the following formulas (12) to (14). Hereinafter, this mixture is referred to as a product (a).
[0015]
[Chemical 7]
[0016]
<Ester reaction of the product (a) and acrylic acid chloride>
The reaction product of the product (a) and acrylic acid chloride is a mixture of compounds represented by the following general formulas (15) to (21), and the composition ratio is the charging ratio of the product (a) and acrylic acid chloride. It depends on. When synthesizing trifunctional acrylates represented by the following general formulas (13) to (16), 1.0 to 2.0 mol of acrylic acid chloride is preferable with respect to 1 mol of the product (a), and the following formulas (17) to ( When synthesizing the tetrafunctional acrylate represented by 19), 2.0 to 4.0 mol of acrylic acid chloride is preferable with respect to 1 mol of the product (a).
[0017]
[Chemical 8]
[0018]
Next, a method for synthesizing the fluorine-containing polyfunctional (meth) acrylic acid ester compound represented by the general formulas (5) to (8) will be described.
By reacting perfluoropolyether having two hydroxyl groups at both ends represented by the following general formula (22) with acrylic acid chloride represented by the chemical formula (11), the general formulas (5) to (8) are reacted. Is synthesized.
[0019]
[Chemical 9]
[0020]
The reaction product obtained is a mixture of compounds represented by the following general formulas (23) to (31), and the component ratio thereof is the compound represented by the general formula (22) and acrylic acid represented by the chemical formula (11). Varies depending on the ratio of chloride charge. The amount of acrylic acid chloride added to 1 mol of the compound represented by the general formula (22) is 1 to 2 mol when synthesizing monofunctional esters represented by the following general formulas (23) to (24), respectively. 2 to 4 mol when synthesizing the bifunctional ester represented by (25) to (28), 3 to 6 mol when synthesizing the trifunctional ester represented by the following general formulas (29) to (30), When synthesizing the tetrafunctional ester represented by (31), 4 to 8 mol is preferable.
Embedded image
[0021]
When synthesizing the fluorine-containing polyfunctional (meth) acrylic acid ester of the present invention, a tertiary alkylamine such as triethylamine or benzylamine or a base such as pyridine is used to capture hydrogen chloride generated by the ester reaction with acrylic acid chloride. It is desirable to add. Moreover, although reaction temperature is -20 degreeC-20 degreeC, -10 degreeC-10 degreeC is preferable and reaction time is 0.1 to 12 hours, However, 0.5 to 2 hours are especially preferable.
The ester reaction product contains unreacted acrylic acid chloride and a hydrogen chloride scavenger base, which can be removed by various treatments. Examples of the treatment include decomposition and removal of unreacted acrylic acid chloride by adding alcohols such as methanol and water, or purification by distillation or column chromatography. The product mixture can be used as it is, but can also be separated according to the application.
[0022]
The fluorine-containing (meth) acrylic acid ester of the present invention can be cured as it is by cross-linking polymerization to form a coating film excellent in abrasion resistance and scratch resistance. However, the cured coating film has better scratch resistance. It is also possible to add a compound having a polymerizable unsaturated group for imparting. Examples of the compound having a polymerizable unsaturated group include (meth) acrylic acid esters, (meth) acrylic acid oligoester prepolymers, unsaturated nitriles, unsaturated amides, unsaturated carboxylic acids, and unsaturated carboxylic acid esters. In particular, (meth) acrylic acid esters are preferred. Specific examples of the (meth) acrylic acid ester include trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate and the like. .
[0023]
【Example】
Examples of the present invention will be specifically described below.
[0024]
<Example 1>
A three-necked flask equipped with a stirrer, a condenser tube, and a gas introduction tube was charged with 0.05 mol of fluorine-containing diol HOCH 2 (CF 2 ) 8 CH 2 OH, 100 mg of triethylamine, and 20 g of tetrahydrofuran as a solvent in an oil bath. After heating at 60 ° C. for 2 hours in a nitrogen atmosphere, 0.1 mol of glycidyl acrylate was added dropwise. Furthermore, after making it react at 80 degreeC for 40 hours, the solvent was distilled off and the mixture of the compound shown to following formula (32)-(34) was obtained. Hereinafter, these mixtures are referred to as product 1.
[0025]
Embedded image
[0026]
Next, a three-necked flask equipped with a stirrer, a thermometer, a dropping funnel and a gas introduction tube was charged with the product 1 dissolved in 50 ml of chloroform and 0.2 mol of triethylamine, and acrylic acid chloride under ice temperature. A solution obtained by dissolving 0.2 mol in 15 ml of chloroform was dropped from a dropping funnel so that the temperature of the reaction solution did not exceed 5 ° C. After completion of dropping, the mixture was stirred for 2 hours with ice cooling, 4 ml of methanol was added, and the mixture was further stirred for 10 minutes. Chloroform was distilled off under reduced pressure, and the resulting yellow crystals were purified by column chromatography using a mixed solvent of ethyl acetate / n-hexane (volume ratio = 1/4) as a developing solvent, and further the solvent was distilled off under reduced pressure. A mixture of compounds represented by the following formulas (35) to (37) was obtained. Hereinafter this mixture is referred to as product 2.
Embedded image
[0027]
Product 2 was dissolved in methyl isobutyl ketone so as to be 5% by weight, and then Irgacure 184 (trade name: manufactured by Ciba Geigy) was added as an initiator to prepare a coating solution. This coating solution is applied to a hard-coated PET substrate by a dip coating method so that the reflectance of the polymerized cured product takes a minimum value of 550 nm, and then irradiated with ultraviolet rays for 180 seconds with a 120 w / cm high-pressure mercury lamp. A cured coating film 1 was obtained.
[0028]
<Example 2>
In a three-necked flask equipped with a stirrer, a thermometer, a dropping funnel and a gas introduction tube, 0.01 mol (average molecular weight 2000) of a terminal 2-hydroxyl perfluoropolyether represented by the following formula (38) was added to metaxylene hexafluoride. A solution prepared by dissolving 0.08 mol of triethylamine and 0.08 mol of acrylic acid chloride in 6 ml of chloroform was added dropwise from an addition funnel so that the temperature of the reaction solution did not exceed 5 ° C. After completion of the dropwise addition, the mixture was stirred for 2 hours with ice cooling, 2 ml of methanol was added, and the mixture was further stirred for 10 minutes. Chloroform was distilled off under reduced pressure, and the resulting yellow crystals were further purified by column chromatography using a mixed solvent of ethyl acetate / n-hexane (volume ratio = 1/4) as a developing solvent, and the solvent was further distilled off under reduced pressure. As a result, a compound represented by the following formula (39) was obtained. Hereinafter this product is referred to as product 3.
[0029]
Embedded image
[0030]
Product 3 was dissolved in meta-xylene hexafluoride so as to be 5% by weight, and then Irgacure 184 (trade name: manufactured by Ciba Geigy) was added as an initiator to prepare a coating solution. Using this coating solution, a cured coating film 2 was formed on a hard-coated PET substrate in the same manner as in Example 1.
[0031]
<Example 3>
Product 3 and dipentaerythritol hexaacrylate were mixed at a weight ratio of 80/20. This mixture was dissolved in metaxylene hexafluoride so as to be 5% by weight, and then Irgacure 184 (trade name: manufactured by Ciba Geigy) was added as an initiator to prepare a coating solution. Using this coating solution, a cured coating film 3 was formed on a hard-coated PET substrate in the same manner as in Example 1.
[0032]
<Comparative Example 1>
The product 1 synthesized in Example 1 was dissolved in methyl isobutyl ketone so as to be 5% by weight, and then Irgacure 184 (trade name: manufactured by Ciba Geigy) was added as an initiator to prepare a coating solution. Using this coating solution, a cured coating film 4 was formed on a hard-coated PET substrate in the same manner as in Example 1.
[0033]
<Comparative Example 2>
Cytop (trade name: manufactured by Asahi Glass Co., Ltd.), which is a conventional fluorine-containing aliphatic polymer having a ring structure in the main chain, was dissolved in perfluorooctane so as to be 5% by weight to prepare a coating solution. This coating solution was applied to a hard-coated PET substrate by a dip coating method so that the reflectance after polymerization and curing was minimized, and then dried at 80 ° C. for 30 minutes to form a coating film 5.
[0034]
The following evaluation was performed about the coating films 1-5 obtained in Examples 1-3 and Comparative Examples 1-2.
<Reflectance measurement>
After the back surface of each cured coating film was matted and solidly coated with a black paint, the reflectance was measured using a spectrophotometer (UV-4000: manufactured by Hitachi, Ltd.).
<Abrasion resistance>
Using steel wool # 0000, the surface state after each surface of each cured coating film was rubbed at a pressure of 250 g / cm 2 was visually determined. Judgment criteria are shown below. A is not scratched at all. B is slightly scratched. In C, the film peels off. Represents each.
<Pencil hardness test>
The pencil hardness test of each coating film was performed using a pencil hardness tester (model C221A: manufactured by Yoshimitsu Seiki).
[0035]
[Table 1]
[0036]
【The invention's effect】
The fluorine-containing polyfunctional (meth) acrylic acid ester of the present invention has a plurality of (meth) acryloyl groups, and the crosslinked polymer has a three-dimensional network structure. For this reason, the cured coating film has a high surface hardness, is excellent in scratch resistance and abrasion resistance, and can be used as a low refractive index material such as an antireflection film or an optical fiber clad which requires a high surface hardness.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24711399A JP4644889B2 (en) | 1999-09-01 | 1999-09-01 | Fluorine-containing polyfunctional (meth) acrylic acid ester and low refractive material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24711399A JP4644889B2 (en) | 1999-09-01 | 1999-09-01 | Fluorine-containing polyfunctional (meth) acrylic acid ester and low refractive material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001064326A JP2001064326A (en) | 2001-03-13 |
JP4644889B2 true JP4644889B2 (en) | 2011-03-09 |
Family
ID=17158639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24711399A Expired - Fee Related JP4644889B2 (en) | 1999-09-01 | 1999-09-01 | Fluorine-containing polyfunctional (meth) acrylic acid ester and low refractive material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4644889B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006082845A1 (en) * | 2005-02-04 | 2006-08-10 | Daikin Industries, Ltd. | Curable composition and optical member obtained by curing same |
JP2010053040A (en) * | 2008-08-26 | 2010-03-11 | Sumitomo Chemical Co Ltd | Compound |
JP5660370B2 (en) * | 2010-09-28 | 2015-01-28 | Dic株式会社 | Polymerizable fluorine compound, active energy ray-curable composition using the same, and cured product thereof |
JP5997998B2 (en) * | 2012-09-28 | 2016-09-28 | 株式会社ネオス | Reactive fluorine-containing oligomer |
WO2016017227A1 (en) * | 2014-08-01 | 2016-02-04 | オリンパス株式会社 | Endoscope operation assistance device |
CN116217916B (en) * | 2023-02-07 | 2023-09-05 | 湖南天氟新材料有限公司 | Y-type perfluoropolyether modified acrylic ester, antifouling paint, preparation method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03215453A (en) * | 1990-01-19 | 1991-09-20 | Nippon Kayaku Co Ltd | (meth)acrylic acid ester, resin composition using the same, coating agent for heat-resistant optical fiber and their cured product |
JPH10182746A (en) * | 1996-02-21 | 1998-07-07 | Nof Corp | Fluorine-containing monomer composition and reflectivity-reduced film made therefrom |
JPH10279530A (en) * | 1997-03-31 | 1998-10-20 | Toray Ind Inc | Fluorine-containing compound, optical thin film and reflectionproof article using the same |
JP2000264883A (en) * | 1999-03-17 | 2000-09-26 | Kyoeisha Chem Co Ltd | Perfluoro group-containing compound and its cured polymer |
-
1999
- 1999-09-01 JP JP24711399A patent/JP4644889B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03215453A (en) * | 1990-01-19 | 1991-09-20 | Nippon Kayaku Co Ltd | (meth)acrylic acid ester, resin composition using the same, coating agent for heat-resistant optical fiber and their cured product |
JPH10182746A (en) * | 1996-02-21 | 1998-07-07 | Nof Corp | Fluorine-containing monomer composition and reflectivity-reduced film made therefrom |
JPH10279530A (en) * | 1997-03-31 | 1998-10-20 | Toray Ind Inc | Fluorine-containing compound, optical thin film and reflectionproof article using the same |
JP2000264883A (en) * | 1999-03-17 | 2000-09-26 | Kyoeisha Chem Co Ltd | Perfluoro group-containing compound and its cured polymer |
Also Published As
Publication number | Publication date |
---|---|
JP2001064326A (en) | 2001-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3773552B2 (en) | Acrylic group-containing perfluoropolyether paint | |
JP5292680B2 (en) | Fluorine-containing polyether (meth) acrylate and process for producing the same | |
JP4267088B2 (en) | Anti-reflection coating material and low-reflection material using the anti-reflection coating material | |
JPH0778102B2 (en) | Fluorinated acrylic or methacrylic polymer | |
JP2008038015A5 (en) | ||
JP4644889B2 (en) | Fluorine-containing polyfunctional (meth) acrylic acid ester and low refractive material | |
EP0820980A1 (en) | Fluorinated polyfunctional (meth)acrylic esters, fluoromonomer composition, material with low refractive index, and lowly reflective film | |
JP4590703B2 (en) | Fluorinated polyether carboxylic acid ester | |
JPS63301268A (en) | Actinic radiation-curable composition | |
JP4406966B2 (en) | Fluorine-containing polyfunctional (meth) acrylate and low refractive materials | |
JPH0686581B2 (en) | Paint composition | |
JP5729845B2 (en) | Crosslinkable solidified hyperbranched polyester, solidified product thereof and preparation method thereof | |
JPH04321660A (en) | Urethane (meth)acrylate and resin composition, coating agent for optical fiber and curing agent using the same monomer | |
JP4963545B2 (en) | (Meth) acryloyloxytetrahydrofuran and process for producing the same | |
JPH09104655A (en) | Fluorine-containing (meth)acrylic compound | |
JP3963028B2 (en) | Fluorine-containing polyfunctional (meth) acrylic acid ester | |
JPH0431430A (en) | Aliphatic copolycarbonate | |
JP4003249B2 (en) | Fluorine-containing compound, optical thin film, and antireflection article using the same | |
JP5082907B2 (en) | Novel tri (meth) acrylate and curable composition | |
JPH08165269A (en) | New alkenyl group-containing (meth)acrylate and its production | |
JP3941894B2 (en) | New (meth) acrylate | |
JP4003248B2 (en) | Fluorine-containing compound, optical thin film, and antireflection article using the same | |
JPS6368542A (en) | Fluorinated metharylic acid ester | |
JPH06179721A (en) | Fluoroalkyl group-containing cationic polymer and its production | |
JP2008115106A (en) | Fluorine-containing polyether carboxylic acid ester and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101109 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |