JP4644798B2 - Metal-supported nanocarbon fiber catalyst - Google Patents

Metal-supported nanocarbon fiber catalyst Download PDF

Info

Publication number
JP4644798B2
JP4644798B2 JP2004101637A JP2004101637A JP4644798B2 JP 4644798 B2 JP4644798 B2 JP 4644798B2 JP 2004101637 A JP2004101637 A JP 2004101637A JP 2004101637 A JP2004101637 A JP 2004101637A JP 4644798 B2 JP4644798 B2 JP 4644798B2
Authority
JP
Japan
Prior art keywords
catalyst
metal
supported
reaction
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004101637A
Other languages
Japanese (ja)
Other versions
JP2005279596A (en
Inventor
寿浩 安藤
清晴 中川
一行 小川
廣和 小田
美香 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004101637A priority Critical patent/JP4644798B2/en
Publication of JP2005279596A publication Critical patent/JP2005279596A/en
Application granted granted Critical
Publication of JP4644798B2 publication Critical patent/JP4644798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、ナノサイズの金属触媒がナノ炭素繊維に担持された、金属担持ナノ炭素繊維触媒及びその製造方法に関する。   The present invention relates to a metal-supported nanocarbon fiber catalyst in which a nanosize metal catalyst is supported on a nanocarbon fiber and a method for producing the same.

水素ガス、または、水素と一酸化炭素の合成ガスは、メタン等の低級炭化水素、メタノール、または、エタノール等のアルコール類を熱分解して、あるいは、酸素、水蒸気又は二酸化炭素等の酸化剤を使用して分解することにより生成している。これらの分解反応には触媒が用いられ、触媒には主に、アルミナやシリカ等の金属酸化物を担体とし、この担体に、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)、白金(Pt)等の8族遷移金属元素を主成分とする触媒成分を担持させた、所謂金属担持触媒が使用されている。   Hydrogen gas or a synthesis gas of hydrogen and carbon monoxide is obtained by thermally decomposing lower hydrocarbons such as methane, alcohols such as methanol or ethanol, or oxidizing agents such as oxygen, water vapor or carbon dioxide. It is generated by using and decomposing. A catalyst is used for these decomposition reactions, and the catalyst mainly uses a metal oxide such as alumina or silica as a carrier, and this carrier contains nickel (Ni), cobalt (Co), iron (Fe), ruthenium ( A so-called metal-supported catalyst is used in which a catalyst component mainly composed of a group 8 transition metal element such as Ru), rhodium (Rh), palladium (Pd), iridium (Ir), or platinum (Pt) is supported. .

従来、遷移金属触媒を金属酸化物担体に担持するには、含浸法が用いられている。例えば、遷移金属の硝酸塩が含有された溶液、あるいは、遷移金属アミン錯体が含有された溶液に担体を含浸することにより、担体表面に遷移金属を分散、付着させ、続いて、乾燥により溶媒を除去し、焼成により遷移金属を強固に担持する。   Conventionally, an impregnation method is used to support a transition metal catalyst on a metal oxide support. For example, by impregnating the support in a solution containing a transition metal nitrate or a solution containing a transition metal amine complex, the transition metal is dispersed and adhered to the support surface, and then the solvent is removed by drying. The transition metal is firmly supported by firing.

また、触媒金属の単位量あたりの触媒反応速度を高めるため、γ−アルミナ等の多孔質な担体を用い、担体の微細な穴に触媒金属を分散させることによって触媒金属の比表面積を高め、触媒反応速度を高めている。   In addition, in order to increase the catalytic reaction rate per unit amount of catalytic metal, a porous carrier such as γ-alumina is used, and the catalytic metal is dispersed in fine holes in the carrier to increase the specific surface area of the catalytic metal, The reaction rate is increased.

しかしながら、触媒能力向上への化学産業界の要求は留まるところを知らず、多孔質担体の微細な穴を利用して触媒金属を分散させる方法では、これ以上の触媒反応速度の向上が見込めない状況にある。
K. Nakagawa, T. Hashida, C. Kajita, N. Ikenaga, T. Kobayashi, M. Nishitani-Gamo, T. Suzuki, and T. Ando, “Diamond-supported metal catalyst: A novel medium for hydrogen production from methanol decomposition", 2002, Catalysis Letters, Vol.80, pp.161-164 特願2003−072472号 特願2003−070804号
However, the chemical industry's demand to improve the catalyst capacity is not known, and the method of dispersing the catalyst metal using the fine holes of the porous support cannot expect further improvement in the catalyst reaction rate. is there.
K. Nakagawa, T. Hashida, C. Kajita, N. Ikenaga, T. Kobayashi, M. Nishitani-Gamo, T. Suzuki, and T. Ando, “Diamond-supported metal catalyst: A novel medium for hydrogen production from methanol decomposition ", 2002, Catalysis Letters, Vol.80, pp.161-164 Japanese Patent Application No. 2003-072472 Japanese Patent Application No. 2003-070804

上記課題に鑑み本発明者らは、触媒反応速度の向上を実現すべく、鋭意、研究を重ねた結果、触媒金属の単位量あたりの触媒反応速度は触媒金属の粒径に依存し、その最適のサイズはnm(ナノメーター)オーダー、すなわち、クラスターサイズであることを見出した(非特許文献1参照)。本発明者らは、この事実に基づき、nmオーダーの触媒金属粒子を担持した触媒の実現を目指した。   In view of the above problems, the present inventors have intensively studied to realize an improvement in the catalyst reaction rate. As a result, the catalyst reaction rate per unit amount of the catalyst metal depends on the particle size of the catalyst metal, and the optimum It was found that the size of the nanometer is on the order of nm (nanometer), that is, the cluster size (see Non-Patent Document 1). Based on this fact, the inventors of the present invention aimed to realize a catalyst supporting nanometer-order catalytic metal particles.

しかしながら、従来の金属化合物の溶液を用いた含浸法による金属の担持方法では、触媒金属のサイズを最適に制御することはできない。すなわち、含浸法により、多孔質担体に触媒金属を分散させた段階では、触媒金属は原子レベルのサイズで多孔質担体の細孔に付着しているが、溶媒の除去工程や、残留する硝酸を分解除去し、触媒金属を触媒担体に強く結合させる焼成工程において、金属原子がその熱エネルギーにより容易に細孔表面を移動して凝集し、最適サイズよりも大きな粒径の触媒金属粒子が形成されてしまう。   However, the size of the catalyst metal cannot be optimally controlled by a conventional metal loading method using an impregnation method using a solution of a metal compound. That is, at the stage where the catalyst metal is dispersed in the porous carrier by the impregnation method, the catalyst metal is attached to the pores of the porous carrier at the atomic size, but the removal process of the solvent and the remaining nitric acid are removed. In the calcination process, which decomposes and removes and bonds the catalyst metal strongly to the catalyst support, the metal atoms easily move on the surface of the pores due to their thermal energy and agglomerate to form catalyst metal particles having a particle size larger than the optimum size. End up.

このように、従来の多孔質担体を用いた溶媒含浸法では、触媒反応速度が最大になるサ
イズの触媒金属粒子を形成できないという課題がある。
Thus, the conventional solvent impregnation method using a porous carrier has a problem that catalyst metal particles having a size that maximizes the catalytic reaction rate cannot be formed.

上記課題に鑑み本発明は、触媒反応速度が最大になるサイズの触媒金属粒子、すなわち、nmオーダーのサイズの触媒金属粒子を担持した触媒を提供することを目的とする。また、その製造方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a catalyst metal particle having a size that maximizes the catalyst reaction rate, that is, a catalyst carrying catalyst metal particles having a size on the order of nm. Moreover, it aims at providing the manufacturing method.

上記目的を達成するために本発明の触媒金属担持ナノ炭素繊維触媒は、ナノ炭素繊維からなる担体と、この担体に担持されたnmオーダーのサイズの触媒金属粒子とからなることを特徴とする。   In order to achieve the above object, the catalyst metal-supported nanocarbon fiber catalyst of the present invention is characterized by comprising a support made of nanocarbon fibers and catalyst metal particles having a size of nm order supported on the support.

上記ナノ炭素繊維からなる担体は、好ましくは、カーボンナノチューブ、カーボンナノフィラメント、コイン積層型ナノグラファイトの何れかまたはそれらの組合わせでなる。ナノ炭素繊維は、好ましくは、10nm以下の径を有する。   The carrier made of the nanocarbon fiber is preferably made of any one of carbon nanotubes, carbon nanofilaments, coin-laminated nanographite, or a combination thereof. The nanocarbon fiber preferably has a diameter of 10 nm or less.

また、触媒金属は、ニッケルでなる。
Moreover, the catalyst metal is made of nickel.

上記構成によれば、触媒金属はナノ炭素繊維表面に担持され、ナノ炭素繊維の径はナノサイズであるため、担持されるた触媒金属の粒径はnmオーダーのサイズとなり、従って、最も触媒反応速度が大きいサイズとなる。   According to the above configuration, the catalytic metal is supported on the surface of the nanocarbon fiber, and the diameter of the nanocarbon fiber is nano-sized. The speed is a large size.

また、本発明の金属担持ナノ炭素繊維触媒の製造方法は、ナノ炭素繊維を触媒金属の金属塩を含む溶液に含浸する工程と、含浸した状態で溶媒を蒸発する工程と、溶媒を蒸発して得たナノ炭素繊維を焼成する工程と、焼成したナノ炭素繊維を還元雰囲気中で熱処理する工程とから成ることを特徴とする。   The method for producing a metal-supported nanocarbon fiber catalyst of the present invention comprises a step of impregnating nanocarbon fibers in a solution containing a metal salt of a catalyst metal, a step of evaporating the solvent in the impregnated state, and evaporating the solvent. It comprises a step of firing the obtained nanocarbon fiber and a step of heat-treating the fired nanocarbon fiber in a reducing atmosphere.

この方法によれば、ナノ炭素繊維を触媒金属の金属塩を含む溶液に含浸し、含浸した状態で溶液の溶媒を蒸発することによって、ナノ炭素繊維の表面に触媒金属原子が高い分散度で付着した触媒前駆体が得られる。触媒前駆体を焼成すると、残留する酸が分解、蒸発すると共に、ナノ炭素繊維の表面に触媒金属粒子が強固に担持される。焼成したナノ炭素繊維を還元雰囲気中で熱処理することにより、触媒金属粒子が活性化され、金属担持ナノ炭素繊維触媒が製造される。   According to this method, nanocarbon fibers are impregnated in a solution containing a metal salt of a catalyst metal, and the solvent of the solution is evaporated in the impregnated state, whereby catalyst metal atoms adhere to the surface of the nanocarbon fiber with a high degree of dispersion. The catalyst precursor thus obtained is obtained. When the catalyst precursor is calcined, the remaining acid is decomposed and evaporated, and the catalyst metal particles are firmly supported on the surface of the nanocarbon fiber. By heat-treating the calcined nanocarbon fiber in a reducing atmosphere, the catalyst metal particles are activated and a metal-supported nanocarbon fiber catalyst is produced.

この方法によれば、nmオーダーの径のナノ炭素繊維を用いるので、触媒金属粒子の径がnmオーダーになり、触媒反応速度が著しく増大する。   According to this method, since nano-carbon fibers having a diameter on the order of nm are used, the diameter of the catalyst metal particles becomes on the order of nm, and the catalytic reaction rate is remarkably increased.

ナノ炭素繊維としては、カーボンナノチューブ、カーボンナノフィラメント、コイン積層型ナノグラファイトの何れかまたはそれらの組合わせを用いることができる。   As the nanocarbon fiber, any of carbon nanotubes, carbon nanofilaments, coin-laminated nanographite, or a combination thereof can be used.

また、触媒金属としては、ニッケルを用いることができる。
As the catalyst metal, it can be used nickel.

本発明の触媒は、触媒金属粒子の粒径がnmオーダーであるので、触媒金属の単位量あたりの触媒反応速度が従来の触媒に比べて高い。また、本発明の方法によれば、触媒金属粒子の粒径がnmオーダーの金属触媒を製造することができる。   In the catalyst of the present invention, since the particle size of the catalyst metal particles is on the order of nm, the catalyst reaction rate per unit amount of the catalyst metal is higher than that of the conventional catalyst. Moreover, according to the method of the present invention, a metal catalyst having a catalyst metal particle size of the order of nm can be produced.

以下、本発明の金属担持ナノ炭素繊維触媒、及びその製造方法を図面を参照して詳細に説明する。   Hereinafter, the metal-supported nanocarbon fiber catalyst of the present invention and the production method thereof will be described in detail with reference to the drawings.

初めに、本発明の触媒に用いるナノ炭素繊維について説明する。   First, the nanocarbon fiber used for the catalyst of the present invention will be described.

図1は、本発明の触媒に用いるナノ炭素繊維の一例であるコイン積層型ナノグラファイトの走査型電子顕微鏡像である。図において、白い繊維状の線が不規則な網の目状に配列しているのがわかる。この白い線はコイン積層型ナノグラファイトの繊維であり、径は約8nmである。   FIG. 1 is a scanning electron microscope image of coin-laminated nanographite, which is an example of nanocarbon fibers used in the catalyst of the present invention. In the figure, it can be seen that white fibrous lines are arranged in an irregular mesh pattern. This white line is a coin-laminated nanographite fiber, and the diameter is about 8 nm.

触媒金属は、この繊維の表面に担持され、下記に詳しく説明するように、触媒金属の粒径は約2nmである。   The catalyst metal is supported on the surface of the fiber, and the particle diameter of the catalyst metal is about 2 nm as described in detail below.

本発明の触媒に用いるカーボンナノチューブや、カーボンナノフィラメントの像は示さないが、nmオーダーの径の繊維が不規則な網の目状に配列している点は、図1と共通する。   Although the image of the carbon nanotube used for the catalyst of this invention and a carbon nanofilament is not shown, the point with which the fiber of the diameter of nm order is arranged in the shape of an irregular network is common to FIG.

カーボンナノチューブ、カーボンナノフィラメント、あるいはコイン積層型ナノグラファイト等のナノ繊維は、現状では市販されておらず、手に入りにくいのが現状である。従って、これらのナノ繊維の製造方法の一例を下記に説明する(詳しくは特許文献1及び2を参照)。   Currently, nanofibers such as carbon nanotubes, carbon nanofilaments, or coin-laminated nanographite are not commercially available and are difficult to obtain. Therefore, an example of a method for producing these nanofibers will be described below (for details, refer to Patent Documents 1 and 2).

初めにカーボンナノチューブの製造方法を説明する。   First, a method for producing carbon nanotubes will be described.

カーボンナノチューブは、例えば、以下の方法によって製造することができる。粒径が1〜10nmのダイヤモンドを担体として、ニッケル、コバルト又は鉄を触媒金属として担持した触媒の下で、炭化水素を分解することによって製造できる。ダイヤモンドは市販の人工ダイヤモンドで良く、また、触媒金属を担持する前に、ダイヤモンド表面を酸化することが望ましい。炭化水素は、炭素数が1〜30の炭化水素であれば良く、メタン、エタン、プロパンなどの飽和炭化水素の他、エチレン、プロピレン、アセチレンなどの不飽和炭化水素でも良い。   Carbon nanotubes can be produced, for example, by the following method. It can be produced by decomposing hydrocarbons under a catalyst in which diamond having a particle size of 1 to 10 nm is used as a support and nickel, cobalt or iron is supported as a catalyst metal. The diamond may be a commercially available diamond, and it is desirable to oxidize the diamond surface before supporting the catalytic metal. The hydrocarbon may be a hydrocarbon having 1 to 30 carbon atoms, and may be an unsaturated hydrocarbon such as ethylene, propylene, and acetylene in addition to a saturated hydrocarbon such as methane, ethane, and propane.

ニッケルを触媒金属とし、炭化水素としてメタンを用いた場合には、触媒を約600℃に保ち、メタンガス流量を約20cm3 /分とし、約60分の反応時間で得られる。 When nickel is the catalyst metal and methane is used as the hydrocarbon, the catalyst is kept at about 600 ° C., the methane gas flow rate is about 20 cm 3 / min, and the reaction time is about 60 minutes.

このようにして製造したカーボンナノチューブの一端には、触媒として用いたダイヤモンド粒が強固に付着している。カーボンナノチューブの他端は、閉口端または開口端とすることができるが、触媒の担体としては、他端が閉口端であることが好適である。   Diamond particles used as a catalyst are firmly attached to one end of the carbon nanotubes thus produced. The other end of the carbon nanotube can be a closed end or an open end, but as the catalyst carrier, the other end is preferably a closed end.

また、粒径が10〜15nmのダイヤモンドを担体とすると、一端には触媒として用いたダイヤモンド粒が強固に付着し、その他端には閉口端または開口端とを有する二層カーボンナノチューブが得られる。触媒の担体としては、その他端が閉口端であることが好適である。   When diamond having a particle size of 10 to 15 nm is used as a carrier, diamond particles used as a catalyst are firmly attached to one end, and a double-walled carbon nanotube having a closed end or an open end at the other end is obtained. As the catalyst carrier, the other end is preferably a closed end.

さらに、粒径が15〜100nmのダイヤモンドを担体とすると、一端には触媒として用いたダイヤモンド粒が強固に付着し、その他端には閉口端または開口端を有する三層以上のカーボンナノチューブが得られる。触媒の担体としては、その他端が閉口端であることが好適である。   Further, when diamond having a particle diameter of 15 to 100 nm is used as a carrier, diamond particles used as a catalyst are firmly attached to one end, and a carbon nanotube having three or more layers having a closed end or an open end is obtained at the other end. . As the catalyst carrier, the other end is preferably a closed end.

次に、カーボンナノフィラメントの製造方法について説明する。   Next, the manufacturing method of a carbon nanofilament is demonstrated.

カーボンナノフィラメントとは、炭素繊維の構造が中空状でないカーボンナノファイバーのうち、特にその径がおおよそ10nm以下の径のものを指す。   The carbon nanofilament refers to a carbon nanofiber whose carbon fiber structure is not hollow, particularly having a diameter of approximately 10 nm or less.

ところで、平面状のグラファイト層が積層されてなる構造体は、ナノグラファイトと呼ばれている。一方、傘状又はカップ状のグラファイトが積層して成る構造体は、カーボンナノフィラメントと呼ばれている。カーボンナノフィラメントは、例えば、粒径が100〜500nmのダイヤモンドを担体として、カーボンナノチューブと同様に、ニッケル、コバルト、又は鉄を触媒金属として担持した触媒の下で、炭化水素を分解することによって製造できる。ここで、ダイヤモンドや炭化水素は、上記カーボンナノチューブの製造方法で説明したものが使用できる。   By the way, a structure formed by laminating a planar graphite layer is called nanographite. On the other hand, a structure formed by stacking umbrella-shaped or cup-shaped graphite is called a carbon nanofilament. Carbon nanofilaments are produced, for example, by decomposing hydrocarbons under a catalyst in which nickel, cobalt, or iron is supported as a catalytic metal in the same manner as carbon nanotubes using diamond having a particle size of 100 to 500 nm as a carrier. it can. Here, as the diamond and hydrocarbon, those described in the method for producing carbon nanotubes can be used.

パラジウムを触媒金属とし、炭化水素としてメタンを用いた場合には、触媒を約600℃に保ち、メタンガス流量を約20cm3 /分とし、約60分の反応時間で得られる。 When palladium is the catalyst metal and methane is used as the hydrocarbon, the catalyst is kept at about 600 ° C., the methane gas flow rate is about 20 cm 3 / min, and the reaction time is about 60 minutes.

次に、コイン積層型ナノグラファイトの製造方法について説明する。   Next, the manufacturing method of coin laminated nanographite will be described.

コイン積層型グラファイト繊維は、例えば以下の方法によって製造することができる。
粒径が数〜数百nmのダイヤモンドを担体として、パラジウム又はロジウムを触媒金属として担持した触媒の下で、炭化水素を分解することによって製造できる。ここで、ダイヤモンドや炭化水素は上記カーボンナノチューブの製造方法で説明したものが使用できる。パラジウムを触媒金属とし、炭化水素としてメタンを用いた場合には、触媒を約600℃に保ち、メタンガス流量を約20cm3 /分とし、約60分の反応時間で得られる。
The coin laminated graphite fiber can be manufactured, for example, by the following method.
It can be produced by decomposing hydrocarbons under a catalyst in which diamond having a particle size of several to several hundred nm is supported as a carrier and palladium or rhodium is supported as a catalyst metal. Here, as the diamond and the hydrocarbon, those described in the method for producing the carbon nanotube can be used. When palladium is the catalyst metal and methane is used as the hydrocarbon, the catalyst is kept at about 600 ° C., the methane gas flow rate is about 20 cm 3 / min, and the reaction time is about 60 minutes.

次に、本発明の金属担持ナノ炭素繊維触媒の製造方法を説明する。   Next, the manufacturing method of the metal carrying | support nanocarbon fiber catalyst of this invention is demonstrated.

初めに、触媒となる金属の金属塩と、金属塩の溶媒とを加えた溶液を調製する。次に、この溶液中にナノ炭素繊維を含浸する。適切な時間含浸した後、溶液中にナノ炭素繊維を含浸した状態で溶媒を蒸発させる。これにより、触媒金属原子がナノ炭素繊維表面に高い分散度で付着した触媒前駆体が得られる。次に、触媒前駆体を窒素などの不活性ガス中、あるいは、大気中で焼成する。例えば、大気中の場合は、400〜800℃で3〜5時間の条件が好ましい。焼成温度が400℃より低いと残留している硝酸などの不純物を十分に除去できず、触媒活性を発現しないか又は低下させる。焼成温度は800℃程度まで上昇させることもできる。しかしながら、800℃を越える高温は、ナノ炭素繊維と触媒金属とが反応し、触媒金属と炭素からなるグラファイトが形成され、触媒活性を失う恐れがあるので望ましくない。   First, a solution is prepared by adding a metal salt of a metal to be a catalyst and a metal salt solvent. Next, this solution is impregnated with nanocarbon fibers. After impregnation for an appropriate time, the solvent is evaporated while the nanocarbon fiber is impregnated in the solution. As a result, a catalyst precursor in which catalytic metal atoms are attached to the nanocarbon fiber surface with a high degree of dispersion can be obtained. Next, the catalyst precursor is calcined in an inert gas such as nitrogen or in the air. For example, in the air, conditions of 400 to 800 ° C. and 3 to 5 hours are preferable. If the calcination temperature is lower than 400 ° C., residual impurities such as nitric acid cannot be sufficiently removed, and the catalytic activity is not exhibited or reduced. The firing temperature can also be raised to about 800 ° C. However, a high temperature exceeding 800 ° C. is not desirable because the nanocarbon fiber and the catalyst metal react with each other to form graphite composed of the catalyst metal and carbon and lose the catalytic activity.

次に、触媒活性を付与するために還元処理を行う。還元処理は、還元ガス中で行い、例えば、水素などの還元ガスの流気中で行なえばよい。還元温度は、300〜500℃が適当であり、300℃より低いと十分に金属を還元できず、また、800℃以上の高い還元温度は、ナノ炭素繊維の一部が触媒金属と反応し、触媒金属と炭素からなるグラファイトが形成され、触媒活性を失う恐れがあるので望ましくない。   Next, a reduction process is performed to impart catalytic activity. The reduction treatment may be performed in a reducing gas, for example, in a flow of a reducing gas such as hydrogen. The reduction temperature is suitably 300 to 500 ° C. If the temperature is lower than 300 ° C., the metal cannot be sufficiently reduced, and a high reduction temperature of 800 ° C. or higher causes a part of the nanocarbon fiber to react with the catalytic metal, This is not desirable because graphite formed of catalytic metal and carbon is formed and the catalytic activity may be lost.

次に、実施例に基づいてさらに詳細に説明する。   Next, it demonstrates still in detail based on an Example.

約8nm径のコイン積層型ナノグラファイトを担体として、触媒金属としてニッケルを用いて、次のようにして金属担持ナノ炭素繊維触媒を作製した。   A metal-supported nanocarbon fiber catalyst was prepared as follows using a coin-stacked nanographite having a diameter of about 8 nm as a carrier and nickel as the catalyst metal.

硝酸ニッケルの飽和水溶液に所定量のコイン積層型ナノグラファイトを加え、一夜放置後、水を蒸発させて乾燥した。乾燥後、触媒前駆体を400〜500℃の窒素ガス中で焼成し、硝酸及び残留する硝酸ニッケルを除去した。次に、300〜500℃の水素ガス中で還元して、触媒金属がニッケルであり、担体のナノ炭素繊維がコイン積層型ナノグラファイトである、ニッケル担持コイン積層型ナノグラファイト触媒を作製した。なお、この触媒に含まれるNiの担持量は、ニッケル及び担体であるコイン積層型ナノグラファイトの合計質量を基準にして、5質量%であった。
参考例1
A predetermined amount of coin-laminated nanographite was added to a saturated aqueous solution of nickel nitrate, and allowed to stand overnight, after which the water was evaporated and dried. After drying, the catalyst precursor was calcined in nitrogen gas at 400 to 500 ° C. to remove nitric acid and remaining nickel nitrate. Next, it reduced in 300-500 degreeC hydrogen gas, and produced the nickel carrying | support coin lamination type | mold nanographite catalyst whose catalyst metal is nickel and the nano carbon fiber of a support | carrier is a coin lamination type | mold nanographite. The supported amount of Ni contained in this catalyst was 5% by mass based on the total mass of nickel and the coin laminated nanographite as the carrier.
[ Reference Example 1 ]

実施例1の硝酸ニッケルに代えて酢酸パラジウムを用いた以外は、実施例1と同様にして、触媒金属がパラジウムであり、担体のナノ炭素繊維がコイン積層型ナノグラファイトである、パラジウム担持コイン積層型ナノグラファイト触媒を作製した。
参考例2
A palladium-carrying coin laminate in which the catalytic metal is palladium and the nanocarbon fiber of the carrier is a coin-laminated nanographite in the same manner as in Example 1 except that palladium acetate is used instead of nickel nitrate in Example 1. Type nano-graphite catalyst was prepared.
[ Reference Example 2 ]

コイン積層型ナノグラファイト繊維に代えて、約5〜10nm径のカーボンナノチューブを用いた。実施例1と同様にして、触媒金属がニッケルであり、担体のナノ炭素繊維がカーボンナノチューブである、ニッケル担持カーボンナノチューブ触媒を作製した。   Carbon nanotubes having a diameter of about 5 to 10 nm were used in place of the coin laminated nanographite fibers. In the same manner as in Example 1, a nickel-supported carbon nanotube catalyst in which the catalyst metal is nickel and the support nanocarbon fibers are carbon nanotubes was produced.

次に、比較例について説明する。   Next, a comparative example will be described.

シリカ(SiO2 )に硝酸ニッケル水溶液を含浸させ、乾燥の後、大気雰囲気中で500℃、2時間の焼成を行い、5質量%のニッケルが担持されたニッケル担持シリカ触媒(比較例1とする)を得た。 Silica (SiO 2 ) is impregnated with an aqueous nickel nitrate solution, dried and then calcined in the atmosphere at 500 ° C. for 2 hours to carry a nickel-supported silica catalyst on which 5% by mass of nickel is supported (Comparative Example 1) )

さらに、上記担体のシリカに代えて、ジルコニア(ZrO2 )、活性炭、セリア(CeO2 )、チタニア(TiO2 )、アルミナ(Al2 3 )、及びマグネシア(MgO)を担体とした触媒、すなわち、ニッケル担持ジルコニア触媒(比較例2とする)、ニッケル担持活性炭触媒(比較例3とする)、ニッケル担持セリア触媒(比較例4とする)、ニッケル担持チタニア触媒(比較例5とする)、ニッケル担持アルミナ触媒(比較例6とする)、及びニッケル担持マグネシア触媒(比較例7とする)を比較例1と同様な方法で作製した。 Further, instead of the silica of the carrier, a catalyst having zirconia (ZrO 2 ), activated carbon, ceria (CeO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), and magnesia (MgO) as a carrier, , Nickel-supported zirconia catalyst (referred to as Comparative Example 2), nickel-supported activated carbon catalyst (referred to as Comparative Example 3), nickel-supported ceria catalyst (referred to as Comparative Example 4), nickel-supported titania catalyst (referred to as Comparative Example 5), nickel A supported alumina catalyst (referred to as Comparative Example 6) and a nickel-supported magnesia catalyst (referred to as Comparative Example 7) were prepared in the same manner as in Comparative Example 1.

次に、上記実施例の金属担持ナノ炭素繊維触媒と比較例の金属担持維触媒の諸特性について比較した。   Next, various characteristics of the metal-supported nanocarbon fiber catalyst of the above example and the metal-supported fiber catalyst of the comparative example were compared.

図2は、実施例1のニッケル担持コイン積層型ナノグラファイト触媒の透過型電子顕微鏡(TEM)像を示す図である。図において、樹枝状の構造体はコイン積層型ナノグラファイト繊維であり、樹枝状の構造体に分布した白い粒子はニッケル粒子である。この図から、ニッケル粒子の平均粒径は2.2nmであることがわかる。   FIG. 2 is a transmission electron microscope (TEM) image of the nickel-supported coin laminated nanographite catalyst of Example 1. In the figure, the dendritic structure is a coin laminated nanographite fiber, and the white particles distributed in the dendritic structure are nickel particles. From this figure, it can be seen that the average particle diameter of the nickel particles is 2.2 nm.

同様にTEM像を用いて、比較例の触媒について平均粒径を求めた。図3は実施例と比較例の、ニッケル粒子の平均粒径を比較する図である。この図から、実施例の粒径は2.2nmであるのに対し、比較例の粒径は約5倍大きい、10.3nmであることがわかる。
Similarly, the average particle diameter was calculated | required about the catalyst of the comparative example using the TEM image. FIG. 3 is a diagram comparing the average particle diameters of nickel particles in Example 1 and Comparative Example 1 . From this figure, whereas the particle size of the embodiment is 2.2 nm, particle diameter of Comparative Example was about 5 times larger, it can be seen that a 10.3 nm.

この結果から、本発明の金属担持ナノ炭素繊維触媒は、従来の触媒に比べて触媒金属の粒径が小さく、典型的には、数nmであることがわかる。この現象は、炭素繊維が約8nmと細いため、炭素繊維の表面の曲率半径が極めて小さく、金属原子が凝集しにくくなるためと考えられる。   From this result, it can be seen that the metal-supported nanocarbon fiber catalyst of the present invention has a catalyst metal particle size smaller than that of the conventional catalyst, typically several nanometers. This phenomenon is thought to be because the carbon fiber is thin, about 8 nm, so that the radius of curvature of the surface of the carbon fiber is extremely small and metal atoms are less likely to aggregate.

次に、実施例と比較例のメタノール分解活性を比較した。   Next, the methanol decomposition activity of an Example and a comparative example was compared.

図4は、メタノール分解活性の測定に用いたメタノール分解反応装置を模式的に示す図である。図において、メタノール分解反応装置20は、触媒反応部21と、触媒反応部21に、触媒反応によって分解されるガスを供給するガス供給部30と、触媒反応によって生成するガスを回収するガス回収部50等から構成されている。触媒反応部21は、本発明の金属担持ナノ炭素繊維触媒22が収容される反応容器23と、反応容器23を加熱する電気炉などからなる加熱手段24と、加熱手段24の温度制御を行う温度調節機25とからなる。ここで、温度調節機25が、電気配線25a及び測温用熱電対25bを介して加熱手段24と接続されている。   FIG. 4 is a diagram schematically showing a methanol decomposition reaction apparatus used for measurement of methanol decomposition activity. In the figure, a methanol decomposition reaction apparatus 20 includes a catalyst reaction unit 21, a gas supply unit 30 that supplies a gas to be decomposed by the catalyst reaction to the catalyst reaction unit 21, and a gas recovery unit that recovers a gas generated by the catalyst reaction. 50 or the like. The catalyst reaction unit 21 includes a reaction vessel 23 in which the metal-supported nanocarbon fiber catalyst 22 of the present invention is accommodated, a heating unit 24 including an electric furnace for heating the reaction vessel 23, and a temperature at which the temperature of the heating unit 24 is controlled. And a controller 25. Here, the temperature controller 25 is connected to the heating means 24 via the electric wiring 25a and the thermocouple 25b for temperature measurement.

また、ガス供給部30は、キャリアーガスであるアルゴンガス31のアルゴンガス供給部32と、メタノール供給部33とからなり、メタノール供給部33はメタノール蒸発器34から蒸発したメタノールガス34aを吸引するポンプ35から成る。アルゴンガス31は、ストップ弁36、ガス流量調整用のニードル弁37、アルゴンガス流量計38、逆止弁39,40を介して反応容器23に供給される。また、メタノール蒸発器34から蒸発したメタノールガス34aは、ポンプ35に吸引されて、逆止弁41を介して反応容器23に供給される。   The gas supply unit 30 includes an argon gas supply unit 32 of an argon gas 31 as a carrier gas and a methanol supply unit 33. The methanol supply unit 33 is a pump that sucks the methanol gas 34a evaporated from the methanol evaporator 34. 35. The argon gas 31 is supplied to the reaction vessel 23 through a stop valve 36, a needle valve 37 for adjusting a gas flow rate, an argon gas flow meter 38, and check valves 39 and 40. The methanol gas 34 a evaporated from the methanol evaporator 34 is sucked into the pump 35 and supplied to the reaction vessel 23 through the check valve 41.

反応ガス回収部50は、反応容器23に接続される回収用配管51と、未反応のメタノールを回収するトラップ52を有し、反応容器23から流れ出たガスのうち、未反応のメタノールはトラップ52で回収され、反応生成ガス53が分離される。反応生成ガス53は、図示しないガス分析装置に供給されて、その成分が分析される。   The reaction gas recovery unit 50 includes a recovery pipe 51 connected to the reaction vessel 23 and a trap 52 for recovering unreacted methanol. Among the gases flowing out from the reaction vessel 23, unreacted methanol is trap 52. And the reaction product gas 53 is separated. The reaction product gas 53 is supplied to a gas analyzer (not shown) and its components are analyzed.

ここで、回収用配管51は、回収用配管51内で未反応のメタノールガスが凝縮しないようにリボンヒーターなどの回収用配管加熱手段54により加熱する。未反応のメタノールガスは、氷水などの冷媒55を用いたトラップ52により回収され、反応容器23で発生した反応生成ガス53だけが、ガス分析装置に供給される。   Here, the recovery pipe 51 is heated by a recovery pipe heating means 54 such as a ribbon heater so that unreacted methanol gas does not condense in the recovery pipe 51. Unreacted methanol gas is recovered by a trap 52 using a refrigerant 55 such as ice water, and only the reaction product gas 53 generated in the reaction vessel 23 is supplied to the gas analyzer.

次に、上記メタノール分解反応装置20を用いて、実施例の触媒及び比較例の触媒のメタノール分解活性を比較した。   Next, the methanol decomposition activity of the catalyst of an Example and the catalyst of a comparative example was compared using the said methanol decomposition reaction apparatus 20. FIG.

実施例及び比較例の各触媒は、粉末のままでそれぞれ0.2gを反応管22に充填し、反応に供した。供給ガスの組成は、メタノール/アルゴン=3の混合比で、総流量40cm3 /分の流量で供給した。反応生成ガスをオンラインガスクロマトグラフにより定量分析し、メタノール添加率、すなわち、供給したメタノールのモル数に対する、生成した一酸化炭素と水素のモル数の比を求めた。 Each catalyst of the Examples and Comparative Examples was charged with 0.2 g in the reaction tube 22 in the form of powder and used for the reaction. The composition of the supply gas was a mixture ratio of methanol / argon = 3 and a total flow rate of 40 cm 3 / min. The reaction product gas was quantitatively analyzed by an on-line gas chromatograph, and the methanol addition rate, that is, the ratio of the number of moles of produced carbon monoxide and hydrogen to the number of moles of supplied methanol was determined.

図5は、実施例1及び比較例1のメタノール転化率の反応温度依存性を示す図である。図において、縦軸はメタノール転化率(%)を示し横軸は反応温度(℃)を示している。図から、低温領域においては、実施例1のニッケル担持コイン積層型ナノグラファイト触媒のメタノール転化率は、比較例1のニッケル担持シリカ触媒の転化率に比べて2倍以上大きいことがわかる。また、高温領域においては、実施例1と比較例1のメタノール転化率は互いに接近し、350℃でほぼ同等となることがわかる。   FIG. 5 is a graph showing the reaction temperature dependence of the methanol conversion in Example 1 and Comparative Example 1. In the figure, the vertical axis represents the methanol conversion (%) and the horizontal axis represents the reaction temperature (° C.). From the figure, it can be seen that in the low temperature region, the methanol conversion rate of the nickel-supported coin laminated nanographite catalyst of Example 1 is at least twice as high as the conversion rate of the nickel-supported silica catalyst of Comparative Example 1. In addition, in the high temperature region, it can be seen that the methanol conversion rates of Example 1 and Comparative Example 1 are close to each other and are substantially equal at 350 ° C.

低温領域において実施例1の触媒反応速度が大きいのは、実施例1のニッケル担持コイン積層型ナノグラファイト触媒のニッケルの平均粒子径が2.2nmであり、比較例1の場合の10.3nmと比較して、顕著に平均粒子径が小さく、メタノールの分解反応で高い触媒活性をもたらしているからである。   In the low temperature region, the catalyst reaction rate of Example 1 is large because the nickel-supported coin laminated nanographite catalyst of Example 1 has an average nickel particle size of 2.2 nm, which is 10.3 nm in Comparative Example 1. This is because the average particle size is remarkably small in comparison, and high catalytic activity is brought about by the decomposition reaction of methanol.

また、高温領域において実施例1と比較例1の触媒反応速度が同等になるのは、この温度領域においては、触媒反応速度の温度依存性が、触媒の粒径依存性よりも強くなるためである。   In addition, the catalyst reaction rates of Example 1 and Comparative Example 1 are equal in the high temperature region because the temperature dependency of the catalyst reaction rate is stronger than the particle size dependency of the catalyst in this temperature region. is there.

図6は、実施例1〜3の触媒、及び比較例1〜7の触媒の、反応温度300℃におけるメタノール転化率を比較する図である。図から明らかなように、実施例1〜3の触媒のメタノール転化率は、それぞれ、95.1%、94.6%、89.6%であり、メタノール転化率が極めて大きいことがわかる。   FIG. 6 is a graph comparing the methanol conversion rates of the catalysts of Examples 1 to 3 and the catalysts of Comparative Examples 1 to 7 at a reaction temperature of 300 ° C. As is apparent from the figure, the methanol conversion rates of the catalysts of Examples 1 to 3 are 95.1%, 94.6%, and 89.6%, respectively, which indicate that the methanol conversion rates are extremely large.

また、比較例1〜4の触媒のメタノール転化率は、それぞれ78.4%、69.9%、60.9%、51.8%であり、比較例5の触媒のメタノール転化率は、14.1%で実施例の6分の1以下であり、比較例6及び7の触媒ではメタノール転化率が0%であり、本発明の触媒は、従来のいずれの触媒と比べても、メタノール転化率が大きいことがわかる。   Further, the methanol conversion rates of the catalysts of Comparative Examples 1 to 4 were 78.4%, 69.9%, 60.9%, and 51.8%, respectively. The methanol conversion rate of the catalyst of Comparative Example 5 was 14 1% is less than one-sixth of the example, and the catalysts of Comparative Examples 6 and 7 have a methanol conversion of 0%, and the catalyst of the present invention has a methanol conversion compared to any of the conventional catalysts. It can be seen that the rate is large.

上記結果から、本発明の金属担持ナノ炭素繊維触媒は、従来の触媒より、特に低温において触媒反応速度が大きいことがわかる。   From the above results, it can be seen that the metal-supported nanocarbon fiber catalyst of the present invention has a higher catalytic reaction rate than conventional catalysts, particularly at low temperatures.

本発明の金属担持ナノ炭素繊維触媒を用いれば、従来の触媒に比べて、触媒反応速度が大きいので、例えば、水素や、水素と一酸化炭素の合成ガスを、メタン等の低級炭化水素や、メタノールやエタノール等のアルコール類から生成する化学反応工程に触媒として用いれば、水素や水素と一酸化炭素の合成ガスの製造コストを下げることができる。   When the metal-supported nanocarbon fiber catalyst of the present invention is used, the catalytic reaction rate is higher than that of the conventional catalyst.For example, hydrogen, a synthesis gas of hydrogen and carbon monoxide, a lower hydrocarbon such as methane, If it is used as a catalyst in a chemical reaction step produced from alcohols such as methanol and ethanol, the production cost of hydrogen or a synthesis gas of hydrogen and carbon monoxide can be reduced.

本発明の触媒に用いるナノ炭素繊維の一例であるコイン積層型ナノグラファイトの走査型電子顕微鏡像である。It is a scanning electron microscope image of coin lamination type nano graphite which is an example of nano carbon fiber used for the catalyst of the present invention. 実施例1のニッケル担持コイン積層型ナノグラファイト触媒の透過型電子顕微鏡(TEM)像を示す図である。1 is a transmission electron microscope (TEM) image of a nickel-supported coin laminated nanographite catalyst of Example 1. FIG. 実施例と比較例の、ニッケル粒子の平均粒径を比較する図である。It is a figure which compares the average particle diameter of the nickel particle of Example 1 and Comparative Example 1 . メタノール分解活性の測定に用いたメタノール分解反応装置を模式的に示す図である。It is a figure which shows typically the methanol decomposition reaction apparatus used for the measurement of methanol decomposition activity. 実施例1及び比較例1のメタノール転化率の反応温度依存性の図である。It is a figure of reaction temperature dependence of the methanol conversion of Example 1 and Comparative Example 1. 実施例1、参考例2、3の触媒、及び比較例1〜7の触媒の、反応温度300℃におけるメタノール転化率を比較する図である。It is a figure which compares the methanol conversion rate in the reaction temperature of 300 degreeC of the catalyst of Example 1 , the reference examples 2 and 3 , and the catalyst of Comparative Examples 1-7.

符号の説明Explanation of symbols

20:メタノール分解反応装置
21:触媒反応部
22:金属担持ナノ炭素繊維触媒
23:反応容器
24:反応容器加熱手段
25:温度調節機
25a:電気配線
25b:測温用熱電対
30:ガス供給部
31:アルゴンガス
32:アルゴンガス供給部
33:メタノールガス供給部
34:メタノール蒸発器
34a:メタノールガス
35:ポンプ
36:ストップ弁
37:ニードル弁
38:アルゴンガス流量計
39,40,41:逆止弁
50:反応ガス回収部
51:回収用配管
52:トラップ
53:反応生成ガス
54:回収用配管加熱手段
55:冷媒
20: methanol decomposition reaction device 21: catalyst reaction unit 22: metal-supported nanocarbon fiber catalyst 23: reaction vessel 24: reaction vessel heating means 25: temperature controller 25a: electric wiring 25b: thermocouple 30 for temperature measurement: gas supply unit 31: Argon gas 32: Argon gas supply unit 33: Methanol gas supply unit 34: Methanol evaporator
34a: Methanol gas 35: Pump 36: Stop valve 37: Needle valve 38: Argon gas flow meter 39, 40, 41: Check valve 50: Reaction gas recovery section 51: Recovery pipe 52: Trap 53: Reaction product gas 54 : Recovery pipe heating means 55: Refrigerant

Claims (2)

アルコールの分解用触媒であって、ナノ炭素繊維からなる担体と、この担体に担持された担体ナノ繊維の径8nmよりも小さいサイズで平均粒子径が2.2nmのニッケル金属粒子からなることを特徴とする、金属担持ナノ炭素繊維触媒。 A cracking catalyst in alcohol, and a carrier consisting of nanocarbon fibers, an average particle size of 2.2nm nickel metals particle children or found in a size smaller than the diameter 8nm carriers nanofibers supported on the carrier A metal-supported nanocarbon fiber catalyst characterized by comprising: アルコール分解方法であって、アルコール雰囲気中に請求項1の金属担持ナノ炭素繊維触
媒を配置し当該触媒を加熱することを特徴とするアルコール分解方法。
An alcohol decomposing method comprising disposing the metal-supported nanocarbon fiber catalyst of claim 1 in an alcohol atmosphere and heating the catalyst.
JP2004101637A 2004-03-31 2004-03-31 Metal-supported nanocarbon fiber catalyst Expired - Lifetime JP4644798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101637A JP4644798B2 (en) 2004-03-31 2004-03-31 Metal-supported nanocarbon fiber catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101637A JP4644798B2 (en) 2004-03-31 2004-03-31 Metal-supported nanocarbon fiber catalyst

Publications (2)

Publication Number Publication Date
JP2005279596A JP2005279596A (en) 2005-10-13
JP4644798B2 true JP4644798B2 (en) 2011-03-02

Family

ID=35178543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101637A Expired - Lifetime JP4644798B2 (en) 2004-03-31 2004-03-31 Metal-supported nanocarbon fiber catalyst

Country Status (1)

Country Link
JP (1) JP4644798B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696463B1 (en) 2003-09-27 2007-03-19 삼성에스디아이 주식회사 High concentration carbon impregnated catalyst, method for preparing the same, catalyst electrode using the same and fuel cell having the catalyst electrode
CN100434167C (en) * 2005-11-17 2008-11-19 上海交通大学 Method for preparing carbon nanometer material carried with noble metal(S)
KR101384070B1 (en) 2006-03-13 2014-04-09 가부시키가이샤 니콘 Process for production of carbon nanotube aggregates, carbon nanotube aggregates, catalyst particle dispersion membrane, electron emitters, and field emission displays
JP5087344B2 (en) * 2007-08-20 2012-12-05 国立大学法人九州大学 Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds
JP5272767B2 (en) * 2009-02-05 2013-08-28 トヨタ自動車株式会社 Hydrogen generator
KR101572123B1 (en) 2009-12-17 2015-11-26 삼성전자주식회사 Electrode catalyst for fuel cell manufacturing method thereof and fuel cell using the same
JP5829418B2 (en) * 2011-03-31 2015-12-09 大阪瓦斯株式会社 Metal catalyst production equipment
JP5996050B2 (en) * 2015-07-10 2016-09-21 大阪瓦斯株式会社 Method and apparatus for producing metal catalyst
CN110218083A (en) * 2019-05-30 2019-09-10 龚建林 A kind of preparation method of ceramic packing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146408A (en) * 1999-11-15 2001-05-29 Toshiba Corp Hydrogen storage material and method for producing the same
JP2002083604A (en) * 2000-06-30 2002-03-22 Toshiba Corp Manufacturing method of catalyst carrying carbon nanofiber, slurry composition for fuel cell electrode, and fuel cell
JP2003025297A (en) * 2001-07-13 2003-01-29 Japan Science & Technology Corp Carbon nano horn and its manufacturing method
JP2004066009A (en) * 2002-08-01 2004-03-04 Mitsubishi Heavy Ind Ltd Carbon material and equipment for treating flue gas
JP2004074060A (en) * 2002-08-20 2004-03-11 Kiyoshi Otsuka Catalyst for manufacturing carbon nanofibers, manufacturing method of carbon nanofibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146408A (en) * 1999-11-15 2001-05-29 Toshiba Corp Hydrogen storage material and method for producing the same
JP2002083604A (en) * 2000-06-30 2002-03-22 Toshiba Corp Manufacturing method of catalyst carrying carbon nanofiber, slurry composition for fuel cell electrode, and fuel cell
JP2003025297A (en) * 2001-07-13 2003-01-29 Japan Science & Technology Corp Carbon nano horn and its manufacturing method
JP2004066009A (en) * 2002-08-01 2004-03-04 Mitsubishi Heavy Ind Ltd Carbon material and equipment for treating flue gas
JP2004074060A (en) * 2002-08-20 2004-03-11 Kiyoshi Otsuka Catalyst for manufacturing carbon nanofibers, manufacturing method of carbon nanofibers

Also Published As

Publication number Publication date
JP2005279596A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US8865613B2 (en) Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof
Ay et al. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts
US7799726B2 (en) Composites based on carbon nanotubes or nanofibers deposited on an activated support for use in catalysis
JP5709954B2 (en) Method for producing metal-carbon composite supported catalyst
Lokteva et al. Metal-support interactions in the design of heterogeneous catalysts for redox processes
Gil et al. Synthesis and characterization of Au supported on carbonaceous material-based catalysts for the selective oxidation of glycerol
Chen et al. Sinter-resistant nanoparticle catalysts achieved by 2D boron nitride-based strong metal–support interactions: A new twist on an old story
US8598240B2 (en) Fischer-tropsch process using fibrous composite catalytic structures having at least three solid phases
JP2007513760A (en) Rhenium catalyst and method for the production of single-walled carbon nanotubes
JP4644798B2 (en) Metal-supported nanocarbon fiber catalyst
Al-Fatesh et al. Reforming of methane: effects of active metals, supports, and promoters
Zhu et al. Effect of structural properties on catalytic performance in citral selective hydrogenation over carbon–titania composite supported Pd catalyst
US8946111B2 (en) Fibrous composite catalytic structure having at least three solid phases
WO2010060736A1 (en) Non-noble metals based catalysts for ammonia decomposition and their preparation
JP5126762B2 (en) Honeycomb catalyst for carbon monoxide methanation, method for producing the catalyst, and method for methanation of carbon monoxide using the catalyst
CN110732335B (en) Transition metal @ BO for methane dry gas reforming reactionxCore-shell structure nano catalyst and preparation method thereof
Gong et al. Preparation of carbon nanotubes (CNTs)-cordierite monoliths by catalytic chemical vapor deposition as catalyst supports for ammonia synthesis
JP6487114B2 (en) Method and apparatus for chemical process enhancement
US20130092877A1 (en) Methane Steam Reforming Using Fibrous Composite Catalytic Structures Having at Least Three Solid Phases
Kuznetsov et al. Texture and catalytic properties of palladium supported on thermally expanded natural graphite
KR100911575B1 (en) Titania-palladium compositesand preparing method for the same
TWI828048B (en) Reduction method of bimetal hydrogenation catalyst
Afandi et al. CO 2 reforming of methane to syngas over multi-walled carbon nanotube supported Ni-Ce nanoparticles: effect of different synthesis methods
RU2552639C1 (en) Method of preparing oxide-polymetallic catalysts based on heat-resistant alloys for partial oxidation of hydrocarbons into synthesis-gas
Wang et al. Size Effect of Gold Sol/γ‐Alumina on the Catalytic Activities of CO Oxidation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350