JP4644551B2 - Optical communication system and apparatus - Google Patents

Optical communication system and apparatus Download PDF

Info

Publication number
JP4644551B2
JP4644551B2 JP2005210805A JP2005210805A JP4644551B2 JP 4644551 B2 JP4644551 B2 JP 4644551B2 JP 2005210805 A JP2005210805 A JP 2005210805A JP 2005210805 A JP2005210805 A JP 2005210805A JP 4644551 B2 JP4644551 B2 JP 4644551B2
Authority
JP
Japan
Prior art keywords
optical
main signal
signal light
raman
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005210805A
Other languages
Japanese (ja)
Other versions
JP2007025510A (en
Inventor
昌司 吉田
徹 松本
耕一 土屋
昭雄 森本
明秀 佐野
篤史 須藤
久保  勉
良典 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujitsu Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujitsu Ltd
Priority to JP2005210805A priority Critical patent/JP4644551B2/en
Publication of JP2007025510A publication Critical patent/JP2007025510A/en
Application granted granted Critical
Publication of JP4644551B2 publication Critical patent/JP4644551B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は光通信システム及び装置に関し、更に詳しくは、ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システム及び装置に関する。   The present invention relates to an optical communication system and apparatus, and more particularly to an optical communication system and apparatus in which a plurality of optical communication apparatuses are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied.

ラマンアンプは光非線形効果の一つである誘導ラマン散乱を使用して主信号光のパワーを増幅するために使用される。ラマンアンプによって得られる利得(ラマン利得)は励起用レーザから伝送路に注入される光パワーに比例するが、ラマンアンプは伝送路である光ファイバを増幅媒体とするために、その伝送路特性(損失、距離等)によっても利得が大きく変化するのが特徴的である。このため、伝送路特性によってラマンアンプの適用可否が決まる。即ち、例えば、伝送路損失が小さすぎる場合には、ラマンアンプの励起レーザが低出力となるために、安定した発振状態を維持するのが困難となり、主信号の伝送特性に影響を与える。以下、具体的に説明する。   The Raman amplifier is used to amplify the power of the main signal light using stimulated Raman scattering, which is one of optical nonlinear effects. The gain obtained by the Raman amplifier (Raman gain) is proportional to the optical power injected from the pumping laser into the transmission line. The Raman amplifier uses an optical fiber as a transmission line as an amplification medium, so that the transmission line characteristics ( It is characteristic that the gain varies greatly depending on loss, distance, etc. For this reason, the applicability of the Raman amplifier is determined by the transmission path characteristics. That is, for example, when the transmission line loss is too small, the pump laser of the Raman amplifier has a low output, so that it is difficult to maintain a stable oscillation state, which affects the transmission characteristics of the main signal. This will be specifically described below.

図7,図8は従来技術を説明する図(1),(2)で、図7(A)は後方励起によるラマンアンプを使用した光伝送方式の典型例を示している。図において、10A,10Bは主信号光の長距離伝送を行う光伝送装置、51A、51Bはラマン光増幅を適用した光ファイバ伝送路、12A、12Bはエルビウムド−プファイバ(EDFA)等を使用した光アンプ(OA)、14は主信号光の一部を分岐する波長分波器、15は分岐光のパワーを検出するフォトダイオード(PD)、20はラマンアンプ、21はラマンアンプ励起用のレーザダイオード(LD)、22はレーザ励起光を光ファイバ伝送路51Aに注入する波長合波器、16はPD15の検出出力に基づきLD21の出力制御を行うLD制御部、
13A,13Bは上記下り回線に対するものと同様に設けられた上り回線の構成を代表する光アンプである。
FIGS. 7 and 8 are views (1) and (2) for explaining the prior art, and FIG. 7 (A) shows a typical example of an optical transmission system using a Raman amplifier by backward pumping. In the figure, 10A and 10B are optical transmission apparatuses that perform long-distance transmission of main signal light, 51A and 51B are optical fiber transmission lines to which Raman optical amplification is applied, and 12A and 12B are erbium doped fibers (EDFA) or the like. An optical amplifier (OA), 14 is a wavelength demultiplexer that branches a part of the main signal light, 15 is a photodiode (PD) that detects the power of the branched light, 20 is a Raman amplifier, and 21 is a laser for exciting the Raman amplifier. A diode (LD), 22 is a wavelength multiplexer that injects laser excitation light into the optical fiber transmission line 51A, 16 is an LD controller that performs output control of the LD 21 based on the detection output of the PD 15,
Reference numerals 13A and 13B denote optical amplifiers representing the configuration of the uplink provided in the same manner as that for the downlink.

LD制御部16は光アンプ12Bに入力する信号光パワーPIをモニタして、これが光アンプ12Bの所定の入力レンジに入るようにLD21の励起光出力を制御する。その際には、図7(B)に示す如く、LD21が安定領域で動作するように、素子の発振閾値に所定の動作マージンを加えたバイアス電流に対応する光出力を最小励起光出力と規定し、該最小励起光出力以上の光出力でLD21を動作させていた。
特開2003−177440(要約,図)
The LD control unit 16 monitors the signal light power PI input to the optical amplifier 12B, and controls the pumping light output of the LD 21 so that it enters a predetermined input range of the optical amplifier 12B. At that time, as shown in FIG. 7B, the light output corresponding to the bias current obtained by adding a predetermined operation margin to the oscillation threshold of the element is defined as the minimum pumping light output so that the LD 21 operates in the stable region. Then, the LD 21 is operated with a light output equal to or higher than the minimum pumping light output.
JP2003-177440 (summary, figure)

しかし、上記の制御を行う場合は、光伝送路特性とLD発振閾値との関係から、自ずとラマンアンプを適用可能な伝送路損失の最小値が存在する。即ち、光伝送路のロス係数(dB/km)が小さい等、伝送路特性が良い場合には、励起レーザが低出力となるため、ラマンアンプを適用できない。   However, when performing the above-described control, there is a minimum value of the transmission line loss to which the Raman amplifier can be applied, from the relationship between the optical transmission line characteristic and the LD oscillation threshold value. That is, when the transmission line characteristics are good, such as when the loss coefficient (dB / km) of the optical transmission line is small, the pump laser has a low output, and thus the Raman amplifier cannot be applied.

図8にラマンアンプの伝送距離に対する光増幅特性を示す。送信端における主信号の光出力パワーPOは伝送距離の増加と共に一様に減衰し、もしラマンアンプが無い場合は、図の点線で示す如く距離Lの受信端では所要の受信レンジを下回っており、主信号を正常に受信できない。この場合は、ラマンアンプを設けることで、受信端Lにおけるより大きな光入力パワーを獲得できるが、このとき、もし受信端Lにおける伝送路損失がラマンアンプ適用範囲の最小値付近又はこれを下回っていると、光入力パワーPIは図の実線で示
す如くオーバレンジになってしまい、光アンプが正常に動作しなくなる結果、受信品質(SN比等)が大幅に低下する。しかも、この状態では励起光パワーも最小範囲にあるため、LD21を安定に動作(発振)させることができない。
FIG. 8 shows the optical amplification characteristics with respect to the transmission distance of the Raman amplifier. The optical output power PO of the main signal at the transmitting end is uniformly attenuated as the transmission distance increases. If there is no Raman amplifier, the receiving end at the distance L is below the required receiving range as indicated by the dotted line in the figure. The main signal cannot be received normally. In this case, it is possible to obtain a larger optical input power at the receiving end L by providing a Raman amplifier. At this time, if the transmission line loss at the receiving end L is near or below the minimum value of the Raman amplifier application range. If so, the optical input power PI becomes overrange as shown by the solid line in the figure, and as a result of the optical amplifier not operating normally, the reception quality (S / N ratio, etc.) is significantly reduced. Moreover, since the pumping light power is also in the minimum range in this state, the LD 21 cannot be stably operated (oscillated).

このような事態は、実際の伝送路損失が机上の設計値よりも小さい場合、又は事前の測定で大きく見えた伝送路損失が、アンプ実装時における精密なセッテイングや清掃等によって小さくなってしまう場合等、現実には、しばしば起こり得る。   Such a situation is when the actual transmission line loss is smaller than the design value on the desk, or the transmission line loss that appeared to be large in the previous measurement is reduced by precise setting or cleaning when mounting the amplifier. In reality, it can often happen.

なお、特許文献1には、光増幅器12から出力された波長多重信号光をモニタして、当該波長多重信号光の波長ごとのパワーが均一になるように、ラマン増幅励起用光源13及び可変光減衰器14を制御することで、部品の製造ばらつきや経年劣化によらず良好(平坦)な利得プロファイルが得られる光中継装置が記載されている。しかし、上記問題点及びその解決手段に関しては何ら開示も示唆もされていない。   In Patent Document 1, the wavelength multiplexed signal light output from the optical amplifier 12 is monitored, and the Raman amplification excitation light source 13 and the variable light are adjusted so that the power for each wavelength of the wavelength multiplexed signal light is uniform. An optical repeater is described in which a good (flat) gain profile can be obtained by controlling the attenuator 14 regardless of manufacturing variations of components and aging deterioration. However, there is no disclosure or suggestion regarding the above-mentioned problem and its solution.

本発明は上記従来技術の問題点に鑑みなされたものであり、その目的とする所は、ラマン増幅のより広い適用範囲を可能とする光通信システム及び装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an optical communication system and apparatus that enable a wider application range of Raman amplification.

上記の課題は例えば図1の構成により解決される。即ち、本発明(1)の光通信システムは、ラマン光増幅を適用した光ファイバ伝送路51Aを介して複数の光通信装置50A,50Bが相互に接続する光通信システムであって、前記主信号光を減衰させる可変アッテネータ69と、前記光ファイバ伝送路を介して受信した主信号光の受信レベルを検出する検出手段55と、前記光ファイバ伝送路中の主信号光を増幅させるためのラマン励起用レーザ61と、前記ラマン励起用レーザの光出力をモニタするモニタ手段63と、前記モニタ手段が所定以上の光出力を検出している状態で、前記検出手段55により所定の受信レベルが検出されるように、前記可変アッテネータ69の損失量を制御する制御手段56とを備えるものである。
The above problem is solved by the configuration of FIG. That is, the optical communication system of the present invention (1) has a plurality of optical communication devices 50A through the optical fiber transmission path 51A to which the Raman amplification, 50B is a optical communication system interconnecting said main signal a variable attenuator 69 for attenuating the light, the detection means 55 for detecting the reception level of the main signal light received through the optical fiber transmission line, the Raman pumping to amplify the main signal light of the optical fiber transmission path A predetermined reception level is detected by the detection means 55 in a state in which the laser 61, the monitor means 63 for monitoring the light output of the Raman excitation laser, and the monitor means are detecting a light output exceeding a predetermined value. as that, in which a control unit 56 for controlling the amount of loss of the variable attenuator 69.

本発明(1)においては、所定の受信レベルが得られるのみならず、必要なら、主信号伝送系路に設けた可変アッテネータの減衰量を増すことで、ラマンアンプにより必要とされる利得を増やすことが可能となり、よって励起用レーザを安定動作させることが可能となる。従って、光ファイバ伝送路がラマンアンプ適用範囲の最小値付近又はこれを下回っていても、ラマンアンプを安定に適用可能となり、よってラマンアンプの適用範囲が大幅に拡大する。   In the present invention (1), not only a predetermined reception level is obtained, but if necessary, the gain required by the Raman amplifier is increased by increasing the attenuation amount of the variable attenuator provided in the main signal transmission line. Therefore, the excitation laser can be stably operated. Therefore, even if the optical fiber transmission line is near or below the minimum value of the Raman amplifier application range, the Raman amplifier can be stably applied, and the application range of the Raman amplifier is greatly expanded.

また本発明(2)の光通信システムは、上記本発明(1)において、例えば図1に示す如く、光送信側50Aに可変アッテネータ69を備え、光受信側50Bにラマン励起用レーザ61を備えるものである。この構成は後方励起方式に適用して好適である。   Further, the optical communication system of the present invention (2) is the same as the above-mentioned present invention (1). For example, as shown in FIG. 1, the optical transmission side 50A includes a variable attenuator 69 and the optical reception side 50B includes a Raman excitation laser 61. Is. This configuration is suitable for application to the backward excitation method.

また本発明(3)の光通信システムは、上記本発明(1)において、例えば図5に示す如く、光送信側50Aにラマン励起用レーザ61を備え、光受信側50Bにおける前記検出手段の前段に可変アッテネータ69を備えるものである。この構成は前方励起方式に適用して好適である。
The optical communication system of the present invention (3), in the present invention (1), for example as shown in FIG. 5, comprises a Raman pump laser 61 to the optical transmitting side 50A, the detection means definitive on the light receiving side 50B A variable attenuator 69 is provided in the preceding stage . This configuration is suitable for application to the forward excitation method.

また本発明(4)の受信装置は、例えば図4に示す如く、ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムの受信装置50Bであって、光ファイバ伝送路51A中の主信号光を増幅させるためのラマン励起用レーザ61と、前記ラマン励起用レーザの光出力をモニタするモニタ手段63と、前記光ファイバ伝送路への励起光注入部の後段に設けられ、前記光ファイバ伝送路を介して受信した主信号光を減衰させる可変アッテネータ69と、前記可変アッテネータ通過後の主信号光の受信レベルを検出する検出手段55と、前記モニタ手段が所定以上の光出力を検出している状態で、前記検出手段55により所定の受信レベルが検出されるように、前記可変アッテネータ69の損失量を制御する制御手段56とを備えるものである。こうすれば、受信側装置の単独で本発明を実現できる。
Further, the receiving side device of the present invention (4) is, for example, as shown in FIG. 4, a receiving side device 50B of an optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman light amplification is applied. A Raman excitation laser 61 for amplifying the main signal light in the optical fiber transmission line 51A, a monitor means 63 for monitoring the optical output of the Raman excitation laser, and excitation to the optical fiber transmission line A variable attenuator 69 which is provided in a subsequent stage of the light injection unit and attenuates the main signal light received via the optical fiber transmission line; and a detection means 55 for detecting the reception level of the main signal light after passing through the variable attenuator; The loss amount of the variable attenuator 69 is adjusted so that a predetermined reception level is detected by the detection unit 55 in a state where the monitor unit detects a light output exceeding a predetermined level. In which and a Gosuru control unit 56. In this way, the present invention can be realized by a single receiving apparatus.

また本発明(5)の送信装置は、例えば図6示す如く、ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムの送信装置50Aであって、前記光ファイバ伝送路に送信する主信号光を減衰させる可変アッテネータ69と、前記可変アッテネータの後段より励起光を注入し、前記光ファイバ伝送路51A中の主信号光を増幅させるためのラマン励起用レーザ61と、前記ラマン励起用レーザの光出力をモニタするモニタ手段63と、対向装置50Bで検出された主信号光の受信レベルの情報を受信する受信手段67と、前記モニタ手段が所定以上の光出力を検出している状態で、前記受信手段により所定の受信レベルの情報が受信されるように、前記可変アッテネータ69の損失量を制御する制御手段56とを備えるものである。こうすれば、受信側装置に簡単な構成を付加すると共に本発明を送信装置で実現できる。

The transmission side device of the present invention (5) is a transmission side device 50A of an optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied, for example, as shown in FIG. And a variable attenuator 69 for attenuating the main signal light to be transmitted to the optical fiber transmission line, and pumping light from the subsequent stage of the variable attenuator to amplify the main signal light in the optical fiber transmission line 51A. A Raman excitation laser 61, a monitor means 63 for monitoring the light output of the Raman excitation laser, a reception means 67 for receiving information on the reception level of the main signal light detected by the opposing device 50B, and the monitoring means The loss amount of the variable attenuator 69 is controlled so that information of a predetermined reception level is received by the receiving means in a state where a light output exceeding a predetermined value is detected. In which a control unit 56. This way, the present invention can be implemented in the transmitting apparatus with the addition of a simple configuration to the receiving device.

以上述べた如く本発明によれば、ラマンアンプの適用領域が拡大し、長距離・高品質伝送の普及拡大に寄与するところが極めて大きい。   As described above, according to the present invention, the application area of the Raman amplifier is expanded, which greatly contributes to the spread of long-distance / high-quality transmission.

以下、添付図面に従って本発明に好適なる実施の形態を詳細に説明する。なお、全図を通して同一符号は同一又は相当部分を示すものとする。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings.

図1は第1の実施の形態によるラマンアンプ制御方式の構成を示す図で、ラマンアンプが後方励起方式でかつ可変アッテネータが送信側にある場合を示している。図において、50A,50Bは主信号光の長距離伝送を行う光伝送装置(端局装置、光中継装置等)、51A,51Bはラマン光増幅を適用した光ファイバ伝送路、52A,52BはEDFA等を使用した光アンプ(OA)、54は主信号光の一部を分岐する波長分波器、55は分岐光のパワーを検出するフォトダイオード(PD)、60はラマンアンプ、61はラマンアンプ励起用のレーザダイオード(LD)、62はレーザ励起光を光ファイバ伝送路51Aに注入する波長合波器、63はLD61のバック光に基づきLD61の動作状態(光出力)を検出するフォトダイオード(PD)、64,67は光伝送装置50A,50B間の光監視チャネル(OSC:Optical Supervisory Channel)で上り監視信号のやり取りを行うOSC通信部、65,66は光ファイバ伝送路51Bに主信号光とは異なる波長の制御信号光を合波/分岐する波長合/分波器、69は主信号光のパワーを減衰させる可変アッテネータ(ATT)、68は可変アッテネータ制御部、56はPD55,PD63の各検出出力に基づきLD61の出力制御を行う制御部、53A,53Bは上記下り回線51Aに対するものと同様に設けられた上り回線51Bの構成を代表する光アンプである。   FIG. 1 is a diagram showing a configuration of a Raman amplifier control system according to the first embodiment, and shows a case where a Raman amplifier is a backward pumping system and a variable attenuator is on the transmission side. In the figure, 50A and 50B are optical transmission devices (terminal station devices, optical repeaters, etc.) that transmit the main signal light over a long distance, 51A and 51B are optical fiber transmission lines to which Raman optical amplification is applied, and 52A and 52B are EDFAs. Etc., 54 is a wavelength demultiplexer that branches a part of the main signal light, 55 is a photodiode (PD) that detects the power of the branched light, 60 is a Raman amplifier, and 61 is a Raman amplifier. A laser diode (LD) for excitation, 62 is a wavelength multiplexer for injecting laser excitation light into the optical fiber transmission line 51A, and 63 is a photodiode for detecting the operating state (light output) of the LD 61 based on the back light of the LD 61. PD), 64, 67 are OSC communication units for exchanging uplink monitoring signals through an optical supervisory channel (OSC) between the optical transmission apparatuses 50A, 50B, 65, 6 is a wavelength multiplexer / demultiplexer for multiplexing / branching control signal light having a wavelength different from that of the main signal light to the optical fiber transmission line 51B, 69 is a variable attenuator (ATT) for attenuating the power of the main signal light, and 68 is The variable attenuator control unit 56 is a control unit that controls the output of the LD 61 based on the detection outputs of the PD 55 and PD 63, and 53A and 53B are light representative of the configuration of the uplink 51B provided in the same manner as that for the downlink 51A. It is an amplifier.

制御部56は、PD55の検出出力PIDに基づき、光アンプ52Bの入力で単に所定レンジ内の受信レベルPIDが得られるのみならず、該所定の受信レベルPIDが検出される範囲内で、かつラマン励起用LD61が安定発振状態で動作するように、可変アッテネータ69の損失量を制御する。従って、光ファイバ伝送路51Aがラマンアンプ適用範囲の最小値付近又はこれを下回っていても、ラマンアンプを安定に適用可能となり、よってラマンアンプの適用範囲が大幅に拡大する。   Based on the detection output PID of the PD 55, the control unit 56 not only obtains a reception level PID within a predetermined range at the input of the optical amplifier 52B, but also within a range where the predetermined reception level PID is detected, and Raman. The loss amount of the variable attenuator 69 is controlled so that the excitation LD 61 operates in a stable oscillation state. Therefore, the Raman amplifier can be stably applied even when the optical fiber transmission line 51A is near or below the minimum value of the Raman amplifier application range, and thus the application range of the Raman amplifier is greatly expanded.

次に、制御部56による好ましい制御方法の一例を具体的に説明する。図2は実施の形態によるアッテネータ制御処理のフローチャートで、制御部56により実行される。ステップS11ではOSC通信部64,67を介して可変ATT69の損失を最小にする。ステップS12では励起用LD61の光出力LPを所定量ΔP(mW)だけ上昇させる。ステップS13ではPD55の検出出力PIDに基づき光アンプ52Bの入力パワーPIが目
標値(所定の受信レンジ内)に達したか否かを判別し、達していない場合は上記ステップS12の処理に戻る。
Next, an example of a preferable control method by the control unit 56 will be specifically described. FIG. 2 is a flowchart of the attenuator control process according to the embodiment, and is executed by the control unit 56. In step S11, the loss of the variable ATT 69 is minimized via the OSC communication units 64 and 67. In step S12, the optical output LP of the excitation LD 61 is increased by a predetermined amount ΔP (mW). In step S13, it is determined whether or not the input power PI of the optical amplifier 52B has reached the target value (within a predetermined reception range) based on the detection output PID of the PD 55. If not, the process returns to step S12.

こうして、やがて、ステップS13の判別で、光アンプ52Bの入力パワーPIが目標値に達すると、ステップS14ではPD63の検出出力に基づき、励起用LD61の光出力パワーLPは所定の最小励起光パワーに達したか否かを判別する。達していない場合はステップS15で可変ATT69の損失を所定量Δx(dB)だけ増加させ、上記ステップS12の処理に戻る。   Thus, when the input power PI of the optical amplifier 52B reaches the target value in the determination in step S13, the optical output power LP of the pumping LD 61 becomes a predetermined minimum pumping light power based on the detection output of the PD 63 in step S14. It is determined whether or not it has been reached. If not, the loss of the variable ATT 69 is increased by a predetermined amount Δx (dB) in step S15, and the process returns to step S12.

こうして、再度ステップS13の判別で光アンプ52Bの入力が目標値になるまで、LD61の励起光パワーを上昇させ、やがて、目標値に達すると、ステップS14ではその時点の励起光出力が最小励起光出力に達しているか否かを判別し、達していると、この処理を抜ける。   Thus, the pumping light power of the LD 61 is increased until the input of the optical amplifier 52B reaches the target value again in the determination in step S13. When the target value is reached, the pumping light output at that time is the minimum pumping light in step S14. It is determined whether or not the output has been reached.

従って、所定の受信レベルと安定なレーザ発振状態との双方を効率良く達成可能となる。なお、上記制御方法は図1の第1の実施の形態に対するものを具体的に述べたが、該制御方法は後述する他の実施の形態にも適用できる。   Therefore, it is possible to efficiently achieve both the predetermined reception level and the stable laser oscillation state. In addition, although the said control method specifically described the thing with respect to 1st Embodiment of FIG. 1, this control method is applicable also to other embodiment mentioned later.

図3は実施の形態による光伝送特性を説明する図である。上記従来技術によれば、送信端における光出力がPOの場合は、LD61を最小励起光で駆動しても、又は励起光を止めても、受信端Lにおける受信レベルが光アンプ52Bの所要のダイナミックレンジ(例えば6〜7dB)に入らなかったが、本発明により可変ATT69を制御して送信端における光出力をPO−αにまで減衰させると、LD61を最小励起光以上のパワーで励起した状態で最適の受信レベルが得られる。   FIG. 3 is a diagram for explaining optical transmission characteristics according to the embodiment. According to the above prior art, when the optical output at the transmission end is PO, even if the LD 61 is driven with the minimum excitation light or the excitation light is stopped, the reception level at the reception end L is the required level of the optical amplifier 52B. Although the dynamic range (for example, 6 to 7 dB) was not entered, when the variable ATT 69 is controlled according to the present invention and the optical output at the transmission end is attenuated to PO-α, the LD 61 is excited with a power higher than the minimum excitation light. The optimum reception level can be obtained.

図4は第2の実施の形態によるラマンアンプ制御方式の構成を示す図で、受信側装置50Bの単独で本発明を実現できる場合を示している。ここでは、ラマンアンプ60を後方励起とすると共に、ラマンアンプ60の後段に可変ATT69を設け、その後段に波長分波器54を備える構成となっている。係る構成でも上記図2の制御方法で光アンプ52Bへの所要の主信号入力と、LD61の安定な発振動作とを確保できる。   FIG. 4 is a diagram showing the configuration of the Raman amplifier control system according to the second embodiment, and shows a case where the present invention can be realized by the receiving apparatus 50B alone. Here, the Raman amplifier 60 is configured to be backward pumped, the variable ATT 69 is provided in the subsequent stage of the Raman amplifier 60, and the wavelength demultiplexer 54 is provided in the subsequent stage. Even in such a configuration, a required main signal input to the optical amplifier 52B and a stable oscillation operation of the LD 61 can be secured by the control method of FIG.

図5は第3の実施の形態によるラマンアンプ制御方式の構成を示す図で、ラマンアンプが前方励起方式でかつ可変アッテネータが受信側にある場合を示している。図において、70,71は光ファイバ伝送路51Aに主信号光とは異なる波長の制御信号光を合波/分岐する波長合/分波器である。ここでは、制御部56が送信装置50Aの側に設けられており、上り回線51Bを介して受信側PD55からの受信レベル検出信号PIDを受取ると共に、下り回線51Aを介して遠隔の可変ATT69を制御する構成となっている。係る構成でも上記図2の制御方法で光アンプ52Bへの所要の主信号入力と、LD61の安定な発振動作とを確保できる。   FIG. 5 is a diagram showing the configuration of the Raman amplifier control system according to the third embodiment, and shows a case where the Raman amplifier is a forward pumping system and the variable attenuator is on the receiving side. In the figure, reference numerals 70 and 71 denote wavelength multiplexers / demultiplexers for multiplexing / branching control signal light having a wavelength different from that of the main signal light into the optical fiber transmission line 51A. Here, the control unit 56 is provided on the transmitting device 50A side, receives the reception level detection signal PID from the receiving side PD 55 via the uplink 51B, and controls the remote variable ATT 69 via the downlink 51A. It is the composition to do. Even in such a configuration, a required main signal input to the optical amplifier 52B and a stable oscillation operation of the LD 61 can be secured by the control method of FIG.

図6は第4の実施の形態によるラマンアンプ制御方式の構成を示す図で、ラマンアンプが前方励起方式でかつ可変アッテネータが送信側にある場合を示している。ここでは、制御部56が送信装置50Aの側に設けられており、上り回線51Bを介して受信側PD55からの受信レベル検出信号PIDを受取ると共に、自装置50A内のラマンアンプ60及びその前段に設けられた可変ATT69を制御する構成となっている。係る構成でも上記図2の制御方法で光アンプ52Bへの所要の主信号入力と、LD61の安定な発振動作とを確保できる。   FIG. 6 is a diagram showing a configuration of a Raman amplifier control system according to the fourth embodiment, and shows a case where the Raman amplifier is a forward excitation system and a variable attenuator is on the transmission side. Here, the control unit 56 is provided on the side of the transmitting device 50A, receives the reception level detection signal PID from the receiving side PD 55 via the uplink 51B, and at the Raman amplifier 60 in the own device 50A and the preceding stage. The variable ATT 69 provided is controlled. Even in such a configuration, a required main signal input to the optical amplifier 52B and a stable oscillation operation of the LD 61 can be secured by the control method of FIG.

なお、図示しないが、例えば上記図4と図6の構成を組み合わせて重複する構成を省略することにより本発明を前方励起及び後方励起方式のラマンアンプに適用できる。この場
合の上記図2の制御について、例えばステップS12では、送受信側の2つのLD61の光出力を交互にΔP(又はΔP/2)づつ上昇させて励起負荷分担の均一化を図る。またステップS14でも2つのLD61の動作状態をモニタし、両者が共に所要の動作状態に達するまで図2のループ処理を繰り返す。
Although not shown, the present invention can be applied to a forward-pumping and backward-pumping Raman amplifier by, for example, combining the configurations of FIGS. 4 and 6 and omitting the overlapping configuration. In the control of FIG. 2 in this case, for example, in step S12, the optical outputs of the two LDs 61 on the transmission / reception side are alternately increased by ΔP (or ΔP / 2) to equalize the excitation load sharing. Also in step S14, the operating states of the two LDs 61 are monitored, and the loop processing of FIG. 2 is repeated until both of them reach a required operating state.

また、上記各実施の形態では主信号光について詳述していないが、本発明は波長多重伝送システム(WDM:Wavelength Division Multi/demultiplexing)に適用して特に好適なるものである。この場合の主信号光及び励起光は共に複数種の波長を含む(波長多重励起方式とも呼ばれる)。また、波長分波器54は特定の波長の信号光のみを分岐するものでも良いが、全波長の信号光を一様に分岐する所謂ビームスプリッタでも良い。   Further, although the main signal light is not described in detail in each of the above embodiments, the present invention is particularly suitable when applied to a wavelength division multi / demultiplexing (WDM) system. In this case, both the main signal light and the excitation light include a plurality of types of wavelengths (also referred to as wavelength multiplexing excitation methods). The wavelength demultiplexer 54 may branch only signal light of a specific wavelength, but may be a so-called beam splitter that branches signal light of all wavelengths uniformly.

また、上記実施の形態ではラマン励起用LD61の動作状態をバック光の光パワーでモニタしたが、これに限らない。例えば、LD61に加えているバイアス電流の大きさでモニタしても良い。   In the above embodiment, the operating state of the Raman excitation LD 61 is monitored by the optical power of the backlight, but the present invention is not limited to this. For example, it may be monitored by the magnitude of the bias current applied to the LD 61.

また、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成、制御、処理及びこれらの組合せの様々な変更が行えることは言うまでも無い。   Moreover, although several embodiment suitable for the said invention was described, it cannot be overemphasized that the structure of each part, control, a process, and these combination can be variously changed within the range which does not deviate from this invention. .

(付記1) ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムのラマンアンプ制御方法であって、主信号光を減衰させる可変アッテネータと、主信号光の受信レベルを検出する検出手段と、光ファイバ伝送路中の主信号光を増幅させるラマン励起用レーザと、前記ラマン励起用レーザの動作状態をモニタするモニタ手段とを備え、前記可変アッテネータの減衰量を最小にする第1のステップと、主信号光の受信レベルが所定のレンジに達するまで前記ラマン励起用レーザの出力を増加させる第2のステップと、主信号光の受信レベルが前記所定レンジに達した際のラマン励起用レーザがその発振状態を安定に維持可能な所定以上の動作状態に達しているか否かを判別する第3のステップと、前記判別が所定以上の動作状態に達していないことにより、可変アッテネータの減衰量を所定量増加させて後、前記第2のステップに戻る第4のステップと、前記判別が所定以上の動作状態に達していることにより、一連の制御を停止させる第5のステップとを備えることを特徴とするラマンアンプ制御方法。   (Supplementary note 1) A Raman amplifier control method for an optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied, comprising: a variable attenuator for attenuating main signal light; A variable attenuator, comprising: a detection means for detecting a reception level of the signal light; a Raman excitation laser for amplifying the main signal light in the optical fiber transmission line; and a monitor means for monitoring an operating state of the Raman excitation laser. A first step of minimizing the amount of attenuation, a second step of increasing the output of the Raman excitation laser until the reception level of the main signal light reaches a predetermined range, and the reception level of the main signal light A third step of determining whether or not the Raman excitation laser when reaching the predetermined range has reached a predetermined operating state or higher capable of stably maintaining the oscillation state; Since the determination has not reached the predetermined operating state, a fourth step of increasing the attenuation amount of the variable attenuator by a predetermined amount and then returning to the second step; A Raman amplifier control method comprising: a fifth step of stopping a series of controls by reaching the first step.

付記1の発明によれば、単に所定の受信レベルが得られるのみならず、このとき、もしラマン励起用レーザが安定発振状態に無い場合は、可変アッテネータの損失量を増すことで、所定の受信レベルと安定なレーザ発振状態との双方を効率良く達成可能となる。   According to the invention of appendix 1, not only a predetermined reception level can be obtained, but at this time, if the Raman excitation laser is not in a stable oscillation state, the predetermined amount of reception can be increased by increasing the loss amount of the variable attenuator. Both the level and the stable laser oscillation state can be achieved efficiently.

(付記2) ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムであって、主信号光を減衰させる可変アッテネータと、主信号光の受信レベルを検出する検出手段と、光ファイバ伝送路中の主信号光を増幅させるラマン励起用レーザと、前記ラマン励起用レーザの動作状態をモニタするモニタ手段と、前記検出手段により所定の受信レベルが検出される範囲内で、前記ラマン励起用レーザが安定発振状態で動作するように、前記可変アッテネータの損失量を制御する制御手段とを備えることを特徴とする光通信システム。   (Supplementary Note 2) An optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied, and a variable attenuator for attenuating main signal light, and a reception level of main signal light Detecting means for detecting the Raman signal, a Raman excitation laser for amplifying the main signal light in the optical fiber transmission line, a monitoring means for monitoring the operating state of the Raman excitation laser, and a predetermined reception level detected by the detection means An optical communication system comprising: control means for controlling a loss amount of the variable attenuator so that the Raman excitation laser operates in a stable oscillation state within a range to be operated.

(付記3) 光送信側に可変アッテネータを備え、光受信側にラマン励起用レーザを備えることを特徴とする付記2記載の光通信システム。   (Supplementary note 3) The optical communication system according to supplementary note 2, wherein a variable attenuator is provided on the optical transmission side, and a Raman excitation laser is provided on the optical reception side.

(付記4) 光送信側にラマン励起用レーザを備え、光受信側に可変アッテネータを備えることを特徴とする付記2記載の光通信システム。   (Supplementary note 4) The optical communication system according to supplementary note 2, wherein a Raman pumping laser is provided on the optical transmission side, and a variable attenuator is provided on the optical reception side.

(付記5) ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムの光通信装置であって、光ファイバ伝送路中の主信号光を増幅させるラマン励起用レーザと、前記ラマン励起用レーザの動作状態をモニタするモニタ手段と、前記ラマン励起用レーザ注入部の後段に設けられ、受信した主信号光を減衰させる可変アッテネータと、前記可変アッテネータ通過後の主信号光の受信レベルを検出する検出手段と、前記検出手段により所定の受信レベルが検出される範囲内で、前記ラマン励起用レーザが安定発振状態で動作するように、前記可変アッテネータの損失量を制御する制御手段とを備えることを特徴とする光通信装置。   (Supplementary Note 5) An optical communication device of an optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied, and amplifies main signal light in the optical fiber transmission line A Raman excitation laser, a monitoring means for monitoring the operating state of the Raman excitation laser, a variable attenuator provided at a subsequent stage of the Raman excitation laser injection unit, and attenuating the received main signal light, and passing through the variable attenuator Detecting means for detecting the reception level of the subsequent main signal light; and the variable attenuator so that the Raman excitation laser operates in a stable oscillation state within a range in which a predetermined reception level is detected by the detecting means. An optical communication apparatus comprising: a control unit that controls a loss amount.

(付記6) ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムの光通信装置であって、送信する主信号光を減衰させる可変アッテネータと、前記可変アッテネータの後段に設けられ、光ファイバ伝送路中の主信号光を増幅させるラマン励起用レーザと、前記ラマン励起用レーザの動作状態をモニタするモニタ手段と、対向装置で検出された受信レベルの情報を受信する受信手段と、
前記受信された受信レベルの情報につき所定の受信レベルが得られる範囲内で、前記ラマン励起用レーザが安定発振状態で動作するように、前記可変アッテネータの損失量を制御する制御手段とを備えることを特徴とする光通信装置。
(Supplementary Note 6) An optical communication device of an optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied, and a variable attenuator that attenuates main signal light to be transmitted; A Raman pumping laser provided after the variable attenuator for amplifying the main signal light in the optical fiber transmission line, a monitoring means for monitoring the operating state of the Raman pumping laser, and a reception level detected by the opposing device Receiving means for receiving the information,
Control means for controlling a loss amount of the variable attenuator so that the Raman excitation laser operates in a stable oscillation state within a range in which a predetermined reception level is obtained with respect to the received reception level information. An optical communication device.

第1の実施の形態によるラマンアンプ制御方式の構成を示す図である。It is a figure which shows the structure of the Raman amplifier control system by 1st Embodiment. 実施の形態によるアッテネータ制御処理のフローチャートである。It is a flowchart of the attenuator control process by embodiment. 実施の形態による光伝送特性を説明する図である。It is a figure explaining the optical transmission characteristic by embodiment. 第2の実施の形態によるラマンアンプ制御方式の構成を示す図である。It is a figure which shows the structure of the Raman amplifier control system by 2nd Embodiment. 第3の実施の形態によるラマンアンプ制御方式の構成を示す図である。It is a figure which shows the structure of the Raman amplifier control system by 3rd Embodiment. 第4の実施の形態によるラマンアンプ制御方式の構成を示す図である。It is a figure which shows the structure of the Raman amplifier control system by 4th Embodiment. 従来技術を説明する図(1)である。It is a figure (1) explaining a prior art. 従来技術を説明する図(2)である。It is a figure (2) explaining a prior art.

符号の説明Explanation of symbols

50A,50B 光伝送装置
51A,51B 光ファイバ伝送路
52A,52B 光アンプ(OA)
54 波長分波器
55、63 フォトダイオード(PD)
56 制御部
60 ラマンアンプ
61 レーザダイオード(LD)
62 波長合波器
64,67 OSC(Optical Supervisory Channel)通信部
65 波長合波器
66 波長分波器
68 可変アッテネータ制御部
69 可変アッテネータ(ATT)
50A, 50B Optical transmission device 51A, 51B Optical fiber transmission line 52A, 52B Optical amplifier (OA)
54 Wavelength demultiplexer 55, 63 Photodiode (PD)
56 Control unit 60 Raman amplifier 61 Laser diode (LD)
62 Wavelength multiplexer 64, 67 OSC (Optical Supervisory Channel) communication unit 65 Wavelength multiplexer 66 Wavelength demultiplexer 68 Variable attenuator control unit 69 Variable attenuator (ATT)

Claims (5)

ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムであって、
前記主信号光を減衰させる可変アッテネータと、
前記光ファイバ伝送路を介して受信した主信号光の受信レベルを検出する検出手段と、
前記光ファイバ伝送路中の主信号光を増幅させるためのラマン励起用レーザと、
前記ラマン励起用レーザの光出力をモニタするモニタ手段と、
前記モニタ手段が所定以上の光出力を検出している状態で、前記検出手段により所定の受信レベルが検出されるように、前記可変アッテネータの損失量を制御する制御手段とを備えることを特徴とする光通信システム。
An optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied,
A variable attenuator for attenuating the main signal light;
Detecting means for detecting the reception level of the main signal light received via the optical fiber transmission line;
A Raman excitation laser for amplifying main signal light in the optical fiber transmission line;
Monitoring means for monitoring the optical output of the Raman excitation laser;
Control means for controlling a loss amount of the variable attenuator so that a predetermined reception level is detected by the detection means in a state in which the monitor means detects a light output exceeding a predetermined value. Optical communication system.
前記主信号光の送信側に前記可変アッテネータを備え、前記主信号光の受信側に前記ラマン励起用レーザを備えることを特徴とする請求項1記載の光通信システム。 2. The optical communication system according to claim 1, wherein the variable attenuator is provided on the transmission side of the main signal light, and the Raman excitation laser is provided on the reception side of the main signal light. 前記主信号光の送信側に前記ラマン励起用レーザを備え、前記主信号光の受信側における前記検出手段の前段に前記可変アッテネータを備えることを特徴とする請求項1記載の光通信システム。 2. The optical communication system according to claim 1, wherein the Raman pumping laser is provided on the main signal light transmitting side, and the variable attenuator is provided in front of the detecting means on the main signal light receiving side. ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムの受信装置であって、
前記光ファイバ伝送路中の主信号光を増幅させるためのラマン励起用レーザと、
前記ラマン励起用レーザの光出力をモニタするモニタ手段と、
前記光ファイバ伝送路への励起光注入部の後段に設けられ、前記光ファイバ伝送路を介して受信した主信号光を減衰させる可変アッテネータと、
前記可変アッテネータ通過後の主信号光の受信レベルを検出する検出手段と、
前記モニタ手段が所定以上の光出力を検出している状態で、前記検出手段により所定の受信レベルが検出されるように、前記可変アッテネータの損失量を制御する制御手段とを備えることを特徴とする受信装置。
A receiving- side device of an optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied,
A Raman excitation laser for amplifying main signal light in the optical fiber transmission line;
Monitoring means for monitoring the optical output of the Raman excitation laser;
A variable attenuator provided downstream of the pumping light injection unit to the optical fiber transmission line, for attenuating the main signal light received via the optical fiber transmission line;
Detection means for detecting the reception level of the main signal light after passing through the variable attenuator;
Control means for controlling a loss amount of the variable attenuator so that a predetermined reception level is detected by the detection means in a state in which the monitor means detects a light output exceeding a predetermined value. receiving device for.
ラマン光増幅を適用した光ファイバ伝送路を介して複数の光通信装置が相互に接続する光通信システムの送信装置であって、
前記光ファイバ伝送路に送信する主信号光を減衰させる可変アッテネータと、
前記可変アッテネータの後段より励起光を注入し、前記光ファイバ伝送路中の主信号光を増幅させるためのラマン励起用レーザと、
前記ラマン励起用レーザの光出力をモニタするモニタ手段と、
対向装置で検出された主信号光の受信レベルの情報を受信する受信手段と、
前記モニタ手段が所定以上の光出力を検出している状態で、前記受信手段により所定の受信レベルの情報が受信されるように、前記可変アッテネータの損失量を制御する制御手段とを備えることを特徴とする送信装置。
A transmission side device of an optical communication system in which a plurality of optical communication devices are connected to each other via an optical fiber transmission line to which Raman optical amplification is applied,
A variable attenuator for attenuating the main signal light transmitted to the optical fiber transmission line;
A pump for Raman excitation for injecting pumping light from the latter stage of the variable attenuator, and amplifying main signal light in the optical fiber transmission line;
Monitoring means for monitoring the optical output of the Raman excitation laser;
Receiving means for receiving information of the reception level of the main signal light detected by the opposite device;
Control means for controlling the amount of loss of the variable attenuator so that information of a predetermined reception level is received by the reception means in a state where the monitor means detects a light output exceeding a predetermined value. transmitting device, wherein.
JP2005210805A 2005-07-21 2005-07-21 Optical communication system and apparatus Active JP4644551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210805A JP4644551B2 (en) 2005-07-21 2005-07-21 Optical communication system and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210805A JP4644551B2 (en) 2005-07-21 2005-07-21 Optical communication system and apparatus

Publications (2)

Publication Number Publication Date
JP2007025510A JP2007025510A (en) 2007-02-01
JP4644551B2 true JP4644551B2 (en) 2011-03-02

Family

ID=37786321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210805A Active JP4644551B2 (en) 2005-07-21 2005-07-21 Optical communication system and apparatus

Country Status (1)

Country Link
JP (1) JP4644551B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121826A1 (en) * 2012-02-17 2013-08-22 三菱電機株式会社 Optical communication device
JP2022144392A (en) 2021-03-19 2022-10-03 富士通株式会社 Transmission device and transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250947A (en) * 2001-02-23 2002-09-06 Fujitsu Ltd Raman excitation control method and optical transmission device using the same
JP2003177440A (en) * 2001-12-11 2003-06-27 Nec Corp Optical relaying device and optical transmission system using the device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250947A (en) * 2001-02-23 2002-09-06 Fujitsu Ltd Raman excitation control method and optical transmission device using the same
JP2003177440A (en) * 2001-12-11 2003-06-27 Nec Corp Optical relaying device and optical transmission system using the device

Also Published As

Publication number Publication date
JP2007025510A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US6462861B2 (en) Optical amplifying apparatus and optical communication system
US6310716B1 (en) Amplifier system with a discrete Raman fiber amplifier module
JP6233100B2 (en) Optical amplification repeater and optical transmission station
JP4388705B2 (en) Optical amplifier
JP4973491B2 (en) Optical transmission apparatus and optical communication system
JPH08278523A (en) Light amplifier
US6775055B2 (en) Raman amplifier
JP5245747B2 (en) Optical amplifier and optical receiver module
US6657774B1 (en) Amplifier system with distributed and discrete Raman fiber amplifiers
JP4459277B2 (en) Method and apparatus for monitoring noise light by Raman amplification, and optical communication system using the same
CN101431375A (en) Optical amplifier and a method of controlling the optical amplifier
US20020145796A1 (en) Band-expanding method for optical amplifiers and optical transmission apparatus
JPH11275021A (en) Optical amplifier
JP4703164B2 (en) Optical amplifier
JP4835305B2 (en) Optical amplifier
US8351112B2 (en) Optical amplifier
JP4644551B2 (en) Optical communication system and apparatus
JP4666364B2 (en) Optical amplifier
JP3551418B2 (en) Optical transmission device and wavelength division multiplexing optical communication system
JP2008042096A (en) Optical amplifier and light transmission system
US8379299B2 (en) Optical amplifier
JP2015133519A (en) Light amplification device
JP3338007B2 (en) Optical amplifier and WDM optical communication system
JP4773703B2 (en) Optical amplifier
JP3551419B2 (en) Optical transmission device and wavelength division multiplexing optical communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4644551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350