JP4643365B2 - Sewage disinfection system - Google Patents

Sewage disinfection system Download PDF

Info

Publication number
JP4643365B2
JP4643365B2 JP2005162290A JP2005162290A JP4643365B2 JP 4643365 B2 JP4643365 B2 JP 4643365B2 JP 2005162290 A JP2005162290 A JP 2005162290A JP 2005162290 A JP2005162290 A JP 2005162290A JP 4643365 B2 JP4643365 B2 JP 4643365B2
Authority
JP
Japan
Prior art keywords
chlorine
sewage
consumption
contact time
disinfection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005162290A
Other languages
Japanese (ja)
Other versions
JP2006334509A (en
Inventor
泰彦 永森
伸行 足利
裕一 椛沢
浩貴 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005162290A priority Critical patent/JP4643365B2/en
Publication of JP2006334509A publication Critical patent/JP2006334509A/en
Application granted granted Critical
Publication of JP4643365B2 publication Critical patent/JP4643365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、合流式下水道施設に適用される下水の消毒システムに関する。 The present invention relates to a disinfection system under water that apply to combined sewer facilities.

合流式下水道は、一般家庭や各種工場などからの排水と雨水とを合わせて流すものであり、通常時は下水処理場により所定の水処理を施した後、河川などに放流している。これに対し降雨時は、雨水が加わるため下水水量が増大し、下水処理場の処理能力を越える場合は、越流堰やポンプ場などによる雨水排除施設により雨水を直接放流することが行われている。この場合、雨水は下水処理場を通っていないため、放流しても問題が生じないように消毒剤により消毒する必要がある。   The combined sewer system drains wastewater from ordinary households and various factories together with rainwater, and normally, after a predetermined water treatment is performed at a sewage treatment plant, it is discharged into a river or the like. On the other hand, during rain, the amount of sewage increases due to the addition of rainwater, and when it exceeds the capacity of the sewage treatment plant, it is directly discharged by a storm drainage facility such as an overflow weir or pump station. Yes. In this case, since rainwater does not pass through the sewage treatment plant, it is necessary to disinfect with a disinfectant so that no problem occurs even if it is discharged.

すなわち、合流式下水道における消毒設備の主たる目的は、流入する下水に対して、処理水が定められた条件を満足するような消毒処理がなされる量の消毒剤を注入することである。定められた条件とは、一般的には「処理水中に含まれる大腸菌群が3000個/mL以下」であると認知されている。消毒剤の注入量を増すと消毒効果は上がり、処理水中の大腸菌群は低減するが、必要以上の消毒剤を注入すると未反応の消毒剤が処理水と共に放流され、放流水域環境へ影響を及ぼすことが懸念されている。このため、消毒剤の注入量は、処理水が定められた条件を満足できる必要十分量であることが望まれる。   That is, the main purpose of the disinfecting facility in the combined sewer is to inject an amount of disinfectant into the inflowing sewage so that the disinfecting process can be performed so that the treated water satisfies the predetermined conditions. The defined condition is generally recognized as “3000 coli / mL or less in the treated water”. Increasing the injection amount of disinfectant increases the disinfection effect and reduces coliform bacteria in the treated water, but injecting more disinfectant than necessary causes the unreacted disinfectant to be discharged along with the treated water, affecting the discharge water environment. There are concerns. For this reason, it is desirable that the injection amount of the disinfectant is a necessary and sufficient amount that can satisfy the conditions for the treated water.

合流式下水道において、適切な消毒剤の注入量を決定するにあたって困難な点は、雨天時に合流管に流入する雨水は、晴天時の下水よりもはるかに水量および水質の変動が大きいことから、雨天時の下水に対する消毒は、水量と水質の変動に対応しなければならないことである。合流式下水道の消毒設備において、消毒剤の注入量を決定する方法として、消毒設備の流入下水の水量および水質を計測し、計測された水量と水質に基づいて消毒剤の注入量を演算する方法がある(例えば、特許文献1及び特許文献2参照)。
特開2003−260470号公報 特開2003−1256号公報
In a combined sewer system, the difficulty in determining the appropriate amount of disinfectant to be injected is that the amount of rain and rainwater that flows into the confluence pipe in rainy weather is much more variable than the sewage in fine weather. Disinfection of sewage at times is to cope with fluctuations in water volume and quality. As a method of determining the amount of disinfectant injected in a combined sewer disinfection facility, a method of measuring the amount of inflow sewage water and the quality of the disinfection facility and calculating the amount of disinfectant injection based on the measured water amount and water quality (For example, refer to Patent Document 1 and Patent Document 2).
JP 2003-260470 A JP 2003-1256 A

これらの発明は、下水に対する消毒剤の注入量決定のための有効な一つの手法であるが、雨天時における消毒剤注入に関しては様々な因子が存在しておりこれらを代表する指標を特定し、より的確な消毒剤の注入制御を行うことが望まれている。   These inventions are one effective method for determining the amount of disinfectant injected into sewage, but there are various factors related to disinfectant injection in rainy weather, and indicators that represent them are specified. It is desired to perform more accurate disinfectant injection control.

本発明の目的は、下水に対して塩素を注入して消毒するにあたり、塩素注入率を決定するための指標を見出し、雨天時の下水に対して適切な消毒を実施可能な下水の消毒システムを提供することにある。 An object of the present invention, when disinfected by injecting chlorine against sewage, found an index for determining the chlorine injection rate, disinfection systems feasible sewage adequate disinfection against sewage in rainy weather Is to provide.

発明による下水の消毒システムは、下水に対し塩素を注入して消毒を行う下水の消毒システムであって、予めとらえておいた前記下水の複数の特性値とこれら各特性値における塩素消費量との関係を保存しているデータベースと、前記下水から前記特性値を検出する特性値検出手段と、この特性値入力手段により検出された特性値を入力し、この入力された特性値に対応する塩素消費量を前記データベースから抽出する塩素消費量演算手段と、この塩素消費量演算手段により求められた塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、この決定された塩素注入率で下水へ塩素を注入する消毒設備とを備えたことを特徴とする The sewage disinfection system according to the present invention is a sewage sterilization system for disinfecting chlorine by injecting chlorine into the sewage. A characteristic value detection means for detecting the characteristic value from the sewage, a characteristic value detected by the characteristic value input means, and a chlorine corresponding to the inputted characteristic value. Chlorine consumption calculation means for extracting consumption from the database, and chlorine injection based on the chlorine consumption calculated by the chlorine consumption calculation means, adding an injection quantity within the range that does not exceed the allowable residual chlorine concentration of discharged water determining the rate, characterized in that a disinfecting equipment for injecting chlorine into the sewage by chlorine injection rate this determined.

この下水の消毒システムでは、データベースには、下水の特性を表す特性値として、下水の有機物濃度、及び下水と塩素との接触時間と、これらの複数の値に対応する各塩素消費量とが、予め関係つけられて保存されており、特性値検出手段として、有機物濃度検出手段、及び測定された下水の流量から接触時間を演算する接触時間演算手段を用いるとよい。   In this sewage disinfection system, the database includes, as characteristic values representing sewage characteristics, the organic matter concentration of sewage, the contact time between sewage and chlorine, and the chlorine consumption corresponding to these multiple values. As the characteristic value detecting means, it is preferable to use an organic substance concentration detecting means and a contact time calculating means for calculating the contact time from the measured sewage flow rate.

また、本発明による下水の消毒システムは、前記下水の有機物濃度検出手段、及び下水の流量測定手段で測定された流量に基いて下水と塩素との接触時間を演算する接触時間演算手段と、前記下水の有機物濃度、及び下水と塩素との接触時間を用いて所定の演算モデル式により塩素消費量を求める塩素消費量演算手段と、この塩素消費量演算手段により求められた塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、この決定された塩素注入率で下水へ塩素を注入する消毒設備とを備えた構成でもよい。   Further, the sewage disinfection system according to the present invention comprises a contact time calculating means for calculating a contact time between sewage and chlorine based on the flow rate measured by the organic matter concentration detecting means and the flow rate measuring means of the sewage, Based on the chlorine consumption calculation means for obtaining the chlorine consumption by a predetermined calculation model formula using the organic matter concentration of the sewage and the contact time between the sewage and chlorine, and the chlorine consumption calculated by the chlorine consumption calculation means, A configuration may be provided that includes a disinfection facility that determines the chlorine injection rate by adding an injection amount in a range that does not exceed the allowable residual chlorine concentration of the discharged water, and injects chlorine into the sewage at the determined chlorine injection rate.

さらに、本発明による下水の消毒システムは、特定地域の気象データを入力し、この特定地域の下水が流入する複数箇所の消毒設備への下水流入量を予測し、この予測された各下水流入量に基き各消毒設備における消毒対象下水の有機物濃度及び接触時間をそれぞれ予測する流入予測演算手段と、この流入予測演算手段により予測された各消毒設備における有機物濃度及び接触時間を用いて各消毒設備の塩素消費量の予測値を求める塩素消費量演算手段と、この塩素消費量演算手段で求められた各消毒設備の塩素消費量の予測値を、通信回線により対応する消毒設備に伝送する伝送手段とを備え、各消毒設備では、伝送されてきた塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、この決定された塩素注入率で下水へ塩素を注入するように構成してもよい。   Furthermore, the sewage disinfection system according to the present invention inputs weather data of a specific area, predicts the amount of sewage inflow into a plurality of sterilization facilities into which the sewage flows into the specific area, Inflow prediction calculation means for predicting the organic matter concentration and contact time of the sewage to be sterilized in each sterilization equipment based on each, and using the organic matter concentration and contact time in each sterilization equipment predicted by this inflow prediction calculation means, Chlorine consumption calculation means for obtaining a predicted value of chlorine consumption, and transmission means for transmitting the predicted value of chlorine consumption of each sterilization facility obtained by the chlorine consumption calculation means to the corresponding sterilization facility via a communication line; In each disinfection facility, the chlorine injection rate is determined by adding the injection amount within the range that does not exceed the allowable residual chlorine concentration of the effluent based on the transmitted chlorine consumption. It may be configured to inject chlorine into sewage in the chlorine injection rate.

本発明によれば、複数の水質と水量が異なる下水に対して、消毒のための適切な塩素注入率について調査した結果、塩素消費量が下水に対する消毒効果に影響する複数の因子を代表する指標となり得ることを見出し、この塩素消費量に基づいて塩素の注入率を決定することで、残留塩素が少なく大腸菌群を所定個数以下に低減させる効果的な消毒が可能となった。   According to the present invention, as a result of investigating an appropriate chlorine injection rate for disinfection for a plurality of sewage having different water qualities and amounts, an index representative of a plurality of factors in which chlorine consumption affects the disinfection effect on sewage As a result, it was found that there is little residual chlorine, and effective disinfection that reduces the number of coliforms to a predetermined number or less was made possible by determining the chlorine injection rate based on this chlorine consumption.

以下、本発明の一実施の形態について図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

はじめに、下水に対し塩素を注入して消毒を行う下水の消毒システムにおいて、消毒のための適切な塩素注入率について調査した結果、塩素消費量が下水に対する消毒効果に影響する複数の因子を代表する指標となり得ることを見出したことについて説明を行う。   First, as a result of investigating the appropriate chlorine injection rate for disinfection in a sewage disinfection system that disinfects chlorine by injecting chlorine into the sewage, the chlorine consumption represents several factors that affect the disinfection effect on the sewage Explain that it was found to be an indicator.

一般に、雨天時にポンプ場へ流入する下水は水量・水質の変動が非常に大きく、適正な塩素注入率を得るための知見が不足しているのが現状である。そこで、合流下水へ塩素注入を行うことによって下水中の大腸菌群を殺菌する場合、塩素注入率に影響を及ぼす重要因子(下水の有機物濃度、塩素との接触時間)によって塩素注入率を決定することが可能か否かを検討し、定式化を試みた。このため、次のような実験を行った。   In general, the amount of water and quality of sewage that flows into a pumping station during rainy weather is extremely large, and there is a lack of knowledge to obtain an appropriate chlorine injection rate. Therefore, when sterilizing coliform bacteria in sewage by injecting chlorine into the combined sewage, determine the chlorine injection rate according to important factors that affect the chlorine injection rate (organic concentration of sewage, contact time with chlorine). We examined whether it was possible and tried to formulate it. Therefore, the following experiment was conducted.

下水、もしくは下水に純水を添加して水質を調整して原水とした。次亜塩素酸ナトリウム溶液を消毒剤として使用した。原水をビーカーに取り、温度を常温に保ちスターラーで撹拌しながら次亜塩素酸ナトリウム溶液を所定の少量範囲で注入した。所定の時間撹拌混合した後、すみやかに残留塩素(遊離塩素および結合塩素)を測定し、かつ、大腸菌群の測定を行った。   Raw water was prepared by adjusting the water quality by adding pure water to sewage or sewage. Sodium hypochlorite solution was used as a disinfectant. The raw water was taken in a beaker, and the sodium hypochlorite solution was poured in a predetermined small amount range while stirring at a normal temperature while stirring at a normal temperature. After stirring and mixing for a predetermined time, residual chlorine (free chlorine and combined chlorine) was measured immediately, and coliform bacteria were measured.

このように、下水に塩素を注入した場合、塩素注入率に対して下水中の大腸菌群と残留塩素は例えば、図6のような関係を示す。図6において、大腸菌群は塩素注入率に対して一般的に指数関数的に減少する。これは、以下の(1)式として表現される。すなわち、大腸菌群を対数軸にプロットすると直線として示される。   Thus, when chlorine is injected into sewage, the coliform group and residual chlorine in the sewage have a relationship as shown in FIG. 6, for example, with respect to the chlorine injection rate. In FIG. 6, the coliform group generally decreases exponentially with respect to the chlorine injection rate. This is expressed as the following equation (1). That is, when the coliform group is plotted on the logarithmic axis, it is shown as a straight line.

=b・a ・・・(1)
x:塩素注入率 (mg/L)
:大腸菌群 (個/mL)
:定数 (-)
:定数 (個/mL)
残留塩素はある程度まで0mg/L付近で推移するが、その後は結合塩素が増加することによって塩素注入率に対してほぼ比例的に増加する。この比例的に増加する領域は直線で近似でき、以下の(2)式で表される。
y c = b 1 · a 1 x (1)
x: Chlorine injection rate (mg / L)
y c : coliform group (pieces / mL)
a 1 : Constant (-)
b 1 : Constant (pieces / mL)
Residual chlorine changes to around 0 mg / L to a certain extent, but increases thereafter in proportion to the chlorine injection rate due to the increase in bound chlorine. This proportionally increasing region can be approximated by a straight line and is expressed by the following equation (2).

=a・x+b ・・・(2)
x:塩素注入率 (mg/L)
:残留塩素 (mg/L)
:定数 (-)
:定数 (mg/L)
塩素消費量r0.1を残留塩素が0.1mg/Lとなる塩素注入率と定義すると、(2)式を用いて塩素消費量r0.1を算出できる。さらに(1)式を用いて塩素消費量における大腸菌群yc(x=r0.1)を求めることができる。r0.1は原水に含まれる有機物等によって消費される塩素量に相当するものとして定める。yc(x=r0.1)は最低限の残留塩素が検出された処理水における大腸菌群を示すものとして定める。
y r = a 2 · x + b 2 (2)
x: Chlorine injection rate (mg / L)
yr : Residual chlorine (mg / L)
a 2 : Constant (-)
b 2 : Constant (mg / L)
If the chlorine consumption r 0.1 is defined as the chlorine injection rate at which the residual chlorine is 0.1 mg / L, the chlorine consumption r 0.1 can be calculated using the equation (2). And (1) can be obtained coliforms in chlorine consumption yc (x = r 0.1) with. r 0.1 are defined as equivalent to the chlorine amount consumed by organic substances or the like contained in raw water. yc (x = r 0.1 ) is defined as indicating the coliform group in the treated water in which the minimum residual chlorine was detected.

上記実験は、下水の有機物濃度(以下、COD)と、下水と塩素との接触時間をパラメータとして、これらの値を、大、中、小に変化させて行い、上記の6個の定数(a、b、a、b、r0.1、yc(r0.1))を得た。これらの実験は、上述のように、CODと接触時間をパラメータとしたものであるから、この2つのパラメータと上記各定数との間の有意な関係を見出すことで、2つのパラメータに基づいて、大腸菌群と残留塩素を考慮した適正塩素注入率を決定することが可能となる。 The above experiment was conducted by changing the organic substance concentration (hereinafter referred to as COD) of sewage and the contact time between sewage and chlorine as parameters, and changing these values to large, medium, and small. The above six constants (a 1 , b 1 , a 2 , b 2 , r 0.1 , yc (r 0.1 )). Since these experiments use COD and contact time as parameters, as described above, finding a significant relationship between these two parameters and the above constants, based on the two parameters, It is possible to determine an appropriate chlorine injection rate in consideration of coliform bacteria and residual chlorine.

実験の結果、2つのパラメータについてみる。   As a result of the experiment, we will look at two parameters.

CODを増加させた場合、図6における残留塩素の増加直線は、CODの増加によっての右に移動した。また、傾きも小さくなった。大腸菌群の減少はCODが増加すると緩やかになった。これは塩素の殺菌効果が低下していることを意味する。つまりCODの高い原水には塩素消費物質がより多く含まれているため、注入した塩素が塩素消費物質と反応して消費され、殺菌に有効な塩素量が低下したためと考えられる。   When COD was increased, the residual chlorine increase line in FIG. 6 shifted to the right as COD increased. In addition, the inclination became smaller. The decrease in coliforms became milder as COD increased. This means that the sterilizing effect of chlorine is reduced. That is, it is considered that the raw water with high COD contains more chlorine consuming substances, so that the injected chlorine is consumed by reacting with the chlorine consuming substances, and the amount of chlorine effective for sterilization is reduced.

接触時間についてみると、接触時間が小さくなると、図6における残留塩素の増加直線は左に移動し、傾きは大きくなった。また、大腸菌群の減少量は接触時間が短くなると小さくなった。すなわち、塩素の殺菌効果は低下した。これは原水中に含まれる塩素消費物質や大腸菌群と塩素との反応時間が短いため、残留塩素の増加にもかかわらず大腸菌群が低減していないものと考えられる。   As for the contact time, as the contact time decreased, the residual chlorine increase line in FIG. 6 moved to the left, and the slope increased. The amount of coliform bacteria decreased as the contact time was shortened. That is, the bactericidal effect of chlorine decreased. This is thought to be due to the fact that the reaction time between chlorine-consuming substances and coliform bacteria contained in the raw water and chlorine is short, so that the coliform bacteria are not reduced despite an increase in residual chlorine.

次に、各定数についても、前記パラメータであるCODおよび接触時間の変化に対する関係が明らかになったがここでは省略する。   Next, for each constant, the relationship with respect to changes in the COD and the contact time, which are the parameters, has been clarified, but is omitted here.

上記実験の結果から、残留塩素の増加領域における関数y=a・x+b (2)式では、塩素消費量(図6のr0.1)に、COD及び接触時間との関連性がみられた。なお、(2)式における定数bは、単なる算術上の定数で意味がないので、(2)式は
=a・(x−r0.1)+0.1と表現した方がよい。
From the result of the above experiment, in the function y r = a 2 · x + b 2 (2) in the increase region of residual chlorine, the relationship between the COD and the contact time is related to the chlorine consumption (r 0.1 in FIG. 6). It was seen. The constant b 2 in the expression (2) is simply an arithmetic constant and has no meaning. Therefore, the expression (2) should be expressed as y r = a 2 · (x−r 0.1 ) +0.1. Good.

また、aにもCOD、接触時間との関連性がみられる。したがって、CODと接触時間に基づいて残留塩素を予測することは可能である。特に、塩素消費量r0.1は、塩素消費物質が多く含まれる下水に対する塩素注入率を決定するための重要な指標となる。一般的に下水の放流水の残留塩素濃度の警報値はごく微量に設定される。そのような制約条件下で最も大腸菌の殺菌効果を得られる塩素注入率の決定方法として、塩素消費量r0.1に残留塩素濃度の警報値を加えた量の塩素を注入することを見出し、本発明に到った。 Also, COD, relationship between the contact time is observed in a 2. Thus, it is possible to predict residual chlorine based on COD and contact time. In particular, the chlorine consumption r 0.1 is an important index for determining the chlorine injection rate for sewage containing a large amount of chlorine consuming substances. Generally, the alarm value for residual chlorine concentration in sewage effluent is set to a very small amount. As a method for determining the chlorine injection rate that can most effectively obtain the bactericidal effect of Escherichia coli under such constraint conditions, it has been found that chlorine is added in an amount of chlorine consumption r 0.1 plus an alarm value of residual chlorine concentration, The present invention has been reached.

すなわち、本発明方法は、下水に対する塩素注入量とその残留塩素とから塩素消費量を求め、この塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の塩素注入量を加えて塩素注入率を決定することにある。   That is, the method of the present invention obtains a chlorine consumption from the chlorine injection amount for sewage and its residual chlorine, and adds a chlorine injection amount within a range not exceeding the allowable residual chlorine concentration of effluent water based on this chlorine consumption to add chlorine. It is to determine the injection rate.

この方法により消毒処理水の残留塩素濃度を警報値(許容値)以下に抑えた最大量の塩素を注入することが可能となる。この結果、塩素消費量r0.1での大腸菌群の実測値から、この塩素消費量r0.1に残留塩素濃度の警報値を加えた量の塩素を注入することで、大腸菌群が3000個/mL以下になるように確実に殺菌することが出来る。 By this method, it becomes possible to inject a maximum amount of chlorine in which the residual chlorine concentration of the sterilized water is suppressed to an alarm value (allowable value) or less. As a result, the measured values of coliform chlorine consumption r 0.1, by injecting chlorine in an amount obtained by adding the warning value of the residual chlorine concentration in the chlorine consumption r 0.1, is Coliforms 3000 It can be surely sterilized to be less than 1 piece / mL.

このように、複数の水質と水量が異なる下水に対して、消毒のための適切な塩素注入率について調査した結果、塩素消費量が下水に対する消毒効果に影響する複数の因子を代表する指標となり得ることを見出した。そこで、本発明では下水の消毒方法として、下水に対する塩素注入量とその残留塩素とから塩素消費量を求め、この塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の塩素注入量を加えて塩素注入率を決定することで、残留塩素が少なく大腸菌群を所定個数以下に低減させる効果的な消毒が可能としている。   As described above, as a result of investigating an appropriate chlorine injection rate for sterilization of sewage having different water quality and water volume, chlorine consumption can be an index representing a plurality of factors affecting the disinfection effect on sewage. I found out. Therefore, in the present invention, as a method of disinfecting sewage, the chlorine consumption is determined from the amount of chlorine injected into the sewage and the residual chlorine. Based on the amount of chlorine consumed, the amount of chlorine injected within a range not exceeding the allowable residual chlorine concentration of the discharged water. In addition, by determining the chlorine injection rate, it is possible to effectively disinfect by reducing the number of coliforms to a predetermined number or less with little residual chlorine.

ここで、本発明では、塩素消費量を求めるに当って、前述のように、下水の特性であるCODと接触時間とをパラメータとしているので、これらの求め方について以下説明する。   Here, in the present invention, when determining the chlorine consumption, as described above, the COD, which is a characteristic of sewage, and the contact time are used as parameters, and how to determine these will be described below.

CODについては有機物濃度演算モデルを用いる。すなわち、濁度計により測定される下水の濁度とCODとの間には高い相関性が期待され、有機物濃度演算モデル式は以下の(3)式となる。   For COD, an organic matter concentration calculation model is used. That is, a high correlation is expected between the turbidity of sewage measured by a turbidimeter and COD, and the organic matter concentration calculation model formula is the following formula (3).

COD=a・CTurb+b ・・・・(3)
COD:流入下水の有機物濃度(COD) (mg/L)
Turb:流入下水の濁度 (度)
:定数
:定数
接触時間については接触時間演算モデルを用いる。この接触時間演算モデルは、下水の流量Qpumpに基づいて接触時間Trctを出力する。すなわち、流量Qpumpと水路容積Vrctによって以下の接触時間演算モデル式(4)によって簡易的に算出している。
C COD = a 3 · C Turb + b 3 ··· (3)
C COD : Organic matter concentration of influent sewage (COD) (mg / L)
C Turb : Turbidity of incoming sewage (degree)
a 3 : Constant b 3 : Constant For the contact time, a contact time calculation model is used. This contact time calculation model outputs the contact time T rct based on the sewage flow rate Q pump . That is, the flow rate Q pump and the water channel volume V rct are simply calculated by the following contact time calculation model equation (4).

rct=Vrct÷Qpump×60 ・・・(4)
rct:接触時間 (min)
rct:水路容積 (m3)
pump:流量 (m3/h)
下水の塩素消費量は以下に示す塩素消費量演算モデル式(5)により求める。
T rct = V rct ÷ Q pump × 60 (4)
T rct : Contact time (min)
V rct : Channel volume (m 3 )
Q pump : Flow rate (m 3 / h)
Chlorine consumption of sewage is determined by the chlorine consumption calculation model equation (5) shown below.

0.1=(a・CCOD)・(a・Trct+b) ・・・(5)
0.1:塩素消費量 (mg/L)
COD:流入下水の有機物濃度(CODとして) (mg/L)
rct:接触時間(min)
:定数
:定数
:定数
下水に対する消毒用の塩素注入率は、塩素消費量r0.1に着目し、この塩素消費量
0.1に残留塩素濃度の警報値(もしくは許容値)Cres_Clを加えた値によって求めるものとする。塩素注入率目標値演算モデル式は以下の(6)である。
r 0.1 = (a 4 · C COD ) · (a 5 · T rct + b 5 ) (5)
r 0.1 : Chlorine consumption (mg / L)
C COD : Organic matter concentration of influent sewage (as COD) (mg / L)
T rct : Contact time (min)
a 4: Constants a 5: Constant b 5: chlorine injection rate for disinfection for constant sewage focuses on chlorine consumption r 0.1, warning of the residual chlorine concentration in the chlorine consumption r 0.1 (or (Allowable value) The value is obtained by adding Cres_Cl . The chlorine injection rate target value calculation model formula is (6) below.

Cl=r0.1+Cres_Cl ・・・(6)
Cl:塩素注入率目標値 (mg/L)
0.1:塩素消費量 (mg/L)
res_Cl:処理水の残留塩素濃度基準値(定数) (mg/L)
次に、図1を用いて、本発明による下水の消毒システムの一実施の形態を詳細に説明する。
R Cl = r 0.1 + C res_Cl (6)
R Cl : Chlorine injection rate target value (mg / L)
r 0.1 : Chlorine consumption (mg / L)
C res_Cl : Residual chlorine concentration reference value (constant) (mg / L) of treated water
Next, an embodiment of a sewage disinfection system according to the present invention will be described in detail with reference to FIG.

図1において、11は下水消毒用の処理槽で、図示左方からの流入下水に対し、消毒設備12から塩素を注入して消毒後、図示右方に処理水として排出する。排出された処理水は河川などに放流される。13は下水の塩素消費量を測定するための採水槽で、この採水槽13には、処理槽11から採水ポンプ14により所定量の下水が採水される。また、この採水槽13には塩素注入機15によって、塩素が種々の注入率で加えられる。16は残留塩素計で、採水槽13内の残留塩素を検出する。すなわち、採水槽13には上述のように、塩素注入機15により種々の注入率で塩素が加えられるが、それぞれの注入率による塩素注入から所定時間後の残留塩素をそれぞれ測定する。   In FIG. 1, reference numeral 11 denotes a treatment tank for sewage disinfection, in which chlorine is injected from the disinfection facility 12 into the inflow sewage from the left side in the figure, and then discharged as treated water on the right side in the figure. The discharged treated water is discharged into rivers. Reference numeral 13 denotes a water collection tank for measuring the chlorine consumption of sewage, and a predetermined amount of sewage is collected from the treatment tank 11 by a water collection pump 14 into the water collection tank 13. Chlorine is added to the water collection tank 13 by a chlorine injector 15 at various injection rates. A residual chlorine meter 16 detects residual chlorine in the water sampling tank 13. That is, as described above, chlorine is added to the water collection tank 13 at various injection rates by the chlorine injector 15, and residual chlorine after a predetermined time from chlorine injection at each injection rate is measured.

17は塩素消費量演算手段で、前記採水ポンプ14による採水流量、塩素注入機15による塩素注入量、残留塩素計16で測定された残留塩素濃度をそれぞれ入力し、下水の塩素消費量を算出する。   17 is a chlorine consumption calculation means, which inputs the sampling flow rate by the sampling pump 14, the chlorine injection amount by the chlorine injector 15, and the residual chlorine concentration measured by the residual chlorine meter 16, respectively, and calculates the chlorine consumption of the sewage. calculate.

塩素消費量演算手段17には、塩素注入機15により採水槽13内の下水に注入された塩素の、種々の注入率が入力され、かつ注入から所定時間経過後の残留塩素が入力されるので、これらの値を用いて、図2で示すグラフを作る。そして、このグラフの不連続点に達するより前の残留塩素が増加する領域のデータで近似曲線(直線a)を求め、これを外挿することによって塩素消費量(b点)を求める。これは、図6で説明したr0.1と同じものである。
The chlorine consumption calculation means 17 is input with various injection rates of chlorine injected into the sewage in the water sampling tank 13 by the chlorine injector 15 and residual chlorine after a predetermined time has elapsed from the injection. The graph shown in FIG. 2 is made using these values. Then, an approximate curve (straight line a) is obtained from data in a region where residual chlorine increases before reaching a discontinuous point in this graph, and the extrapolated curve is used to obtain the chlorine consumption (point b). This is the same as the r 0.1 described in FIG.

このようにして求められた下水の塩素消費量は消毒設備12に出力される。消毒設備12では、入力された下水の塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、この決定された塩素注入率で下水へ塩素を注入する。すなわち、前述した塩素注入率目標値演算モデル式(6)により、塩素注入率を決定し、処理槽11内の下水に対し注入率一定制御で塩素を注入する。   The sewage chlorine consumption thus obtained is output to the disinfection facility 12. In the disinfection facility 12, the chlorine injection rate is determined by adding the injection amount within a range not exceeding the allowable residual chlorine concentration of the discharged water based on the input chlorine consumption of the sewage, and the sewage is discharged to the sewage at the determined chlorine injection rate. Inject chlorine. That is, the chlorine injection rate is determined by the above-described chlorine injection rate target value calculation model equation (6), and chlorine is injected into the sewage in the treatment tank 11 with constant injection rate control.

この結果、処理水(放流水)の残留塩素が少なく、大腸菌群を所定個数以下に確実に低減させる効果的な消毒が可能となった。   As a result, the amount of residual chlorine in the treated water (discharged water) is small, and effective disinfection that reliably reduces the number of coliforms to a predetermined number or less is possible.

次に、図3で示す実施の形態を説明する。この実施の形態では、下水の塩素消費量に影響を与える特性値と、この特性値を変化させた場合の塩素消費量との関係を予め実測値などにより求めてデータベースとしてまとめておき、このデータデースを用いて実際の下水における塩素消費量を求めるようにしている。   Next, the embodiment shown in FIG. 3 will be described. In this embodiment, the relationship between the characteristic value that affects the chlorine consumption of sewage and the chlorine consumption when this characteristic value is changed is obtained in advance as an actual measurement value and compiled as a database. The chlorine consumption in actual sewage is calculated using the source.

この実施の形態では上記特性値として、下水の有機物濃度(COD)および下水と塩素との接触時間を用いる。これらの特性値を得るため、図3に示すように、下水消毒用の処理槽11に流入する下水の流量及び濁度を、流量計21および濁度計22でそれぞれ測定する。測定された下水の流量は接触時間演算手段23に入力され、同じく濁度はCOD演算手段24に入力される。接触時間演算手段23は、入力された流量と予め設定されている処理水の流路容積や定数を用いて、例えば、前述した接触時間演算モデル式(4)により接触時間を簡易的に算出する。また、COD演算手段24は、入力された下水の濁度と予め設定されている定数を用いて、前述した有機物濃度演算モデル式(3)によりCODを算出する。   In this embodiment, the organic substance concentration (COD) of sewage and the contact time between sewage and chlorine are used as the characteristic values. In order to obtain these characteristic values, as shown in FIG. 3, the flow rate and turbidity of sewage flowing into the treatment tank 11 for sewage disinfection are measured by a flow meter 21 and a turbidimeter 22, respectively. The measured sewage flow rate is input to the contact time calculation means 23, and the turbidity is also input to the COD calculation means 24. The contact time calculation means 23 simply calculates the contact time by using, for example, the contact time calculation model equation (4) described above, using the input flow rate and the preset channel volume or constant of the treated water. . Further, the COD calculating means 24 calculates the COD by the organic substance concentration calculating model equation (3) described above using the input sewage turbidity and a preset constant.

25は前述した特性値と、この特性値を変化させた場合の塩素消費量との関係を保持したデータベースであり、そのデータ構成は表1のようになっている。

Figure 0004643365
A database 25 holds the relationship between the characteristic values described above and the chlorine consumption when the characteristic values are changed. The data structure is as shown in Table 1.
Figure 0004643365

すなわち、データベース25には、一方の特性値であるCODの値x1、x2、x3、及びもう一つの特性値である接触時間の値y1、y2、y3に対応して、予め求められた塩素消費量z1〜z33の値が設定されている。   That is, in the database 25, the chlorine consumption determined in advance corresponding to the COD values x1, x2, and x3 as one characteristic value and the contact time values y1, y2, and y3 as the other characteristic values. Values of the quantities z1 to z33 are set.

塩素消費量演算手段27は、接触時間演算手段23から接触時間を入力し、COD演算手段24からCODを入力して、これらの値に対応する塩素消費量をデータベース25から抽出して出力する。   Chlorine consumption calculation means 27 receives the contact time from contact time calculation means 23, receives COD from COD calculation means 24, extracts the chlorine consumption corresponding to these values from database 25, and outputs it.

このようにして求められた下水の塩素消費量は消毒設備12に出力される。消毒設備12では、入力された下水の塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、処理槽11内の下水に対し注入率一定制御で塩素を注入する。   The sewage chlorine consumption thus obtained is output to the disinfection facility 12. In the disinfection facility 12, the chlorine injection rate is determined by adding an injection amount within a range not exceeding the allowable residual chlorine concentration of the discharged water based on the input chlorine consumption of the sewage, and the injection rate for the sewage in the treatment tank 11. Inject chlorine with constant control.

この結果、処理水(放流水)の残留塩素が少なく、大腸菌群を所定個数以下に確実に低減させる効果的な消毒が可能となった。   As a result, the amount of residual chlorine in the treated water (discharged water) is small, and effective disinfection that reliably reduces the number of coliforms to a predetermined number or less is possible.

次に、図4で示す実施の形態を説明する。この実施の形態では、図3で示した実施の形態と同様に、下水の塩素消費量に影響を与える特性値として、下水から測定した濁度および流量に基くCODおよび接触時間を用いている。しかし、図3のデータベース25は用いず、上記濁度および接触時間を用いて、塩素消費量演算手段29により、都度塩素消費量を演算するように構成した。その他の部分は、図3と同様であり、対応する符号を付し、詳細な説明は省略する。   Next, the embodiment shown in FIG. 4 will be described. In this embodiment, as in the embodiment shown in FIG. 3, COD and contact time based on turbidity and flow rate measured from sewage are used as characteristic values that affect the chlorine consumption of sewage. However, the database 25 in FIG. 3 is not used, and the chlorine consumption is calculated each time by the chlorine consumption calculation means 29 using the turbidity and the contact time. Other portions are the same as those in FIG. 3, and corresponding reference numerals are given, and detailed description thereof is omitted.

図4において、塩素消費量演算手段29は、前述した塩素消費量演算モデル式(5)を持っている。そして、下水から流量計21および濁度計22測定された流量および濁度に基き、接触時間演算手段23およびCOD演算手段24で算出されたCODおよび接触時間を入力し、予め設定されている定数を用いて前記塩素消費量演算モデル式(5)により塩素消費量を算出する。   In FIG. 4, the chlorine consumption calculation means 29 has the chlorine consumption calculation model formula (5) described above. Then, based on the flow rate and turbidity measured from the flow meter 21 and turbidimeter 22 from the sewage, the COD and contact time calculated by the contact time calculating means 23 and COD calculating means 24 are input, and preset constants. Is used to calculate the chlorine consumption according to the chlorine consumption calculation model equation (5).

このようにして求められた下水の塩素消費量は消毒設備12に出力される。消毒設備12では、入力された下水の塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、処理槽11内の下水に対し注入率一定制御で塩素を注入する。   The sewage chlorine consumption thus obtained is output to the disinfection facility 12. In the disinfection facility 12, the chlorine injection rate is determined by adding an injection amount within a range not exceeding the allowable residual chlorine concentration of the discharged water based on the input chlorine consumption of the sewage, and the injection rate for the sewage in the treatment tank 11. Inject chlorine with constant control.

この結果、処理水(放流水)の残留塩素が少なく、大腸菌群を所定個数以下に確実に低減させる効果的な消毒が可能となった。   As a result, the amount of residual chlorine in the treated water (discharged water) is small, and effective disinfection that reliably reduces the number of coliforms to a predetermined number or less is possible.

次に、図5で示す実施の形態を説明する。この実施の形態では、特定地域の気象データを用い、この特定地域の下水が流入する複数箇所の消毒設備への各下水流入量をそれぞれ予測し、この予測された下水流入量に基き各消毒設備の塩素消費量の予測値を求め、この求められた塩素消費量の予測値を、通信回線により対応する消毒設備に伝送するように構成している。   Next, the embodiment shown in FIG. 5 will be described. In this embodiment, the meteorological data of a specific area is used to predict each sewage inflow amount to a plurality of sterilization facilities into which sewage flows in this specific area, and each sterilization facility is based on the predicted sewage inflow amount. The predicted value of the chlorine consumption amount is obtained, and the obtained predicted value of the chlorine consumption amount is transmitted to a corresponding disinfection facility through a communication line.

図5において、31A,31B,・・・,31Nは特定地域の下水が流入する複数の処理設備で、それぞれ流入下水を消毒する処理槽11A,11B,・・・,11Nおよび消毒設備12A,12B,・・・,12Nを有し、担当流域から流入する下水に塩素を注入して処理水として排出する。32は流入量予測演算手段で、前記特定地域に関する気象データに基づき、各処理設備31A,31B,・・・,31Nへの流入下水量を及び水質を予測する。すなわち、気象情報により前記特定地域に、何時、どの程度の降雨があるかが予測される。流入量予測手段32はこの気象情報を入力し、特定地域における降雨の程度を判断する。そして、RRL法など公知の流入量予測方法により、特定地域への降雨により流入する各処理設備31A,31B,・・・,31Nへの流入下水量をそれぞれ算出する。また、この予測された流入下水量から、この流入下水の濁度も予測できるので、この濁度もあわせて予測する。   In FIG. 5, 31A, 31B,..., 31N are a plurality of treatment facilities into which sewage from a specific area flows, and treatment tanks 11A, 11B,. ,..., 12N, which injects chlorine into the sewage flowing in from the responsible basin and discharges it as treated water. 32 is an inflow amount predicting calculation means for predicting the inflow sewage amount and water quality to each of the treatment facilities 31A, 31B,..., 31N based on the meteorological data relating to the specific area. That is, it is predicted when and how much rainfall there is in the specific area by weather information. The inflow amount prediction means 32 inputs this weather information and determines the degree of rainfall in the specific area. Then, the inflow sewage amount to each of the treatment facilities 31A, 31B,..., 31N that flows in due to rainfall to the specific area is calculated by a known inflow amount prediction method such as the RRL method. Moreover, since the turbidity of this inflowing sewage can also be predicted from this predicted amount of inflowing sewage, this turbidity is also predicted.

塩素消費量演算手段33は、流入量予測演算手段32から、各処理設備31A,31B,・・・,31N毎の流入下水量および濁度を入力し、各処理設備31A,31B,・・・,31N毎の塩素消費量を演算予測する。すなわち、塩素消費量演算手段33は、流入下水量に基いて前述の接触時間演算モデル式(4)により接触時間を簡易的に算出する。また、入力された下水の濁度に基いて前述の有機物濃度演算モデル式(3)によりCODを算出する。そして、これら接触時間およびCODに基き、前述した塩素消費量演算モデル式(5)により塩素消費量を各処理設備31A,31B,・・・,31N毎に算出する。   The chlorine consumption calculation means 33 inputs the inflow sewage amount and turbidity for each processing equipment 31A, 31B,..., 31N from the inflow prediction calculation means 32, and each processing equipment 31A, 31B,. , 31N is calculated and predicted for chlorine consumption. That is, the chlorine consumption amount calculating means 33 simply calculates the contact time based on the above-described contact time calculation model equation (4) based on the inflow sewage amount. Further, the COD is calculated by the above-mentioned organic substance concentration calculation model formula (3) based on the input sewage turbidity. Based on the contact time and COD, the chlorine consumption is calculated for each of the treatment facilities 31A, 31B,..., 31N by the chlorine consumption calculation model equation (5) described above.

このようにして求められた各処理設備31A,31B,・・・,31N毎の塩素消費量は、インターネットなどの通信回線34を介して、対応する消毒設備12A,12B,・・・,12Nに送信される。各消毒設備12A,12B,・・・,12Nでは、対応する塩素消費量を受信し、その塩素消費量に基いて、放流水の残留塩素許容濃度を越えない範囲の注入量を加えて塩素注入率を決定する。そして、対応する処理槽11A,11B,・・・,11N内の下水に対し注入率一定制御で塩素を注入する。   The chlorine consumption for each of the treatment facilities 31A, 31B,..., 31N thus obtained is sent to the corresponding disinfection facilities 12A, 12B,..., 12N via a communication line 34 such as the Internet. Sent. Each disinfection facility 12A, 12B,..., 12N receives the corresponding chlorine consumption, and adds chlorine injection based on the chlorine consumption, adding an injection amount that does not exceed the allowable residual chlorine concentration of the discharged water. Determine the rate. And chlorine is inject | poured by the injection rate fixed control with respect to the sewage in corresponding processing tank 11A, 11B, ..., 11N.

この結果、処理水(放流水)の残留塩素が少なく、大腸菌群を所定個数以下に確実に低減させる効果的な消毒が可能となった。   As a result, the amount of residual chlorine in the treated water (discharged water) is small, and effective disinfection that reliably reduces the number of coliforms to a predetermined number or less is possible.

このように、地域の気象情報に基き、この地域の下水が流入する複数の消毒設備31A,31B,・・・,31N毎の塩素消費量を、センター側に設けられた流入量予測演算手段32および塩素消費量演算手段33により、集中してそれぞれ演算予測し、その結果得られた各処理設備31A,31B,・・・,31N毎の塩素消費量をインターネットなどの通信回線34を介して、対応する消毒設備12A,12B,・・・,12Nに送信するので、各処理設備31A,31B,・・・,31Nがそれぞれ塩素消費量演算手段を持つ必要は無くなり、設備効率を向上させることが出来る。   Thus, based on the local weather information, the chlorine consumption for each of the plurality of sterilization facilities 31A, 31B,... And the chlorine consumption calculation means 33 concentrates and predicts the calculation, and the chlorine consumption of each processing equipment 31A, 31B,..., 31N obtained as a result is obtained via a communication line 34 such as the Internet. Since it transmits to corresponding disinfection equipment 12A, 12B, ..., 12N, it is not necessary for each processing equipment 31A, 31B, ..., 31N to have chlorine consumption calculation means, respectively, and it can improve equipment efficiency. I can do it.

本発明による下水の消毒システムの一実施の形態を示すシステム構成図である。It is a system configuration figure showing one embodiment of a sewage disinfection system by the present invention. 同上実施の形態における下水の山椒素油肥料を算出するのに用いられるグラフである。It is a graph used for calculating the potato sewage oil fertilizer in embodiment same as the above. 本発明の、データベースを用いる実施の形態を説明するシステム構成図である。It is a system configuration figure explaining an embodiment using a database of the present invention. 本発明の、塩素消費量演算手段により、都度塩素消費量を算出する実施の形態を説明するシステム構成図である。It is a system block diagram explaining embodiment which calculates chlorine consumption each time by the chlorine consumption calculating means of this invention. 本発明の、センター側に設けられた塩素消費量演算手段により、各処理施設毎の塩素消費量を集中して算出する実施の形態を説明するシステム構成図である。It is a system block diagram explaining embodiment which concentrates and calculates the chlorine consumption for every processing facility by the chlorine consumption calculating means provided in the center side of this invention. 塩素注入に伴う残留塩素と大腸菌群との関係を示すグラフである。It is a graph which shows the relationship between the residual chlorine accompanying chlorine injection, and coliform bacteria.

符号の説明Explanation of symbols

11 処理槽
12 消毒設備
17,27,29、33 塩素消費量演算手段
23 接触時間演算手段
24 COD演算手段
25 データベース
DESCRIPTION OF SYMBOLS 11 Treatment tank 12 Disinfection equipment 17,27,29,33 Chlorine consumption calculation means 23 Contact time calculation means 24 COD calculation means 25 Database

Claims (4)

下水に対し塩素を注入して消毒を行う下水の消毒システムであって、
予めとらえておいた前記下水の複数の特性値とこれら各特性値における塩素消費量との関係を保存しているデータベースと、
前記下水から前記特性値を検出する特性値検出手段と、
この特性値入力手段により検出された特性値を入力し、この入力された特性値に対応する塩素消費量を前記データベースから抽出する塩素消費量演算手段と、
この塩素消費量演算手段により求められた塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、この決定された塩素注入率で下水へ塩素を注入する消毒設備と
を備えたことを特徴とする下水の消毒システム。
A sewage disinfection system that disinfects sewage by injecting chlorine,
A database storing a plurality of characteristic values of sewage captured in advance and the relationship between chlorine consumption in each characteristic value;
Characteristic value detecting means for detecting the characteristic value from the sewage,
Chlorine consumption calculating means for inputting the characteristic value detected by the characteristic value input means and extracting the chlorine consumption corresponding to the inputted characteristic value from the database;
Based on the chlorine consumption calculated by this chlorine consumption calculation means, the chlorine injection rate is determined by adding the injection amount in the range that does not exceed the permissible residual chlorine concentration of the discharged water, and the sewage is discharged at this determined chlorine injection rate. A sewage disinfection system comprising a disinfection facility for injecting chlorine.
データベースには、下水の特性を表す特性値として、下水の有機物濃度、及び下水と塩素との接触時間と、これらの複数の値に対応する各塩素消費量とが、予め関係つけられて保存されており、
特性値検出手段として、有機物濃度検出手段、及び測定された下水の流量から接触時間を演算する接触時間演算手段を用いた
ことを特徴とする請求項1に記載の下水の消毒システム。
The database stores the organic matter concentration of sewage, the contact time between sewage and chlorine, and the chlorine consumption corresponding to these multiple values as characteristic values representing the characteristics of sewage in advance. And
The sewage disinfection system according to claim 1, wherein the characteristic value detection means includes an organic substance concentration detection means and a contact time calculation means for calculating a contact time from the measured flow rate of sewage.
下水に対し塩素を注入して消毒を行う下水の消毒システムであって、
前記下水の有機物濃度検出手段、及び下水の流量測定手段で測定された流量に基いて下水と塩素との接触時間を演算する接触時間演算手段と
前記下水の有機物濃度、及び下水と塩素との接触時間を用いて所定の演算モデル式により塩素消費量を求める塩素消費量演算手段と、
この塩素消費量演算手段により求められた塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、この決定された塩素注入率で下水へ塩素を注入する消毒設備と
を備えたことを特徴とする下水の消毒システム。
A sewage disinfection system that disinfects sewage by injecting chlorine,
Contact time calculating means for calculating the contact time between sewage and chlorine based on the flow rate measured by the sewage organic matter concentration detecting means and the flow rate measuring means of the sewage, contact between the organic matter concentration of the sewage, and contact between the sewage and chlorine Chlorine consumption calculation means for obtaining chlorine consumption by a predetermined calculation model formula using time;
Based on the chlorine consumption calculated by this chlorine consumption calculation means, the chlorine injection rate is determined by adding the injection amount in the range that does not exceed the permissible residual chlorine concentration of the discharged water, and the sewage is discharged at this determined chlorine injection rate. A sewage disinfection system comprising a disinfection facility for injecting chlorine.
下水に対し塩素を注入して消毒を行う下水の消毒システムであって、
特定地域の気象データを入力し、この特定地域の下水が流入する複数箇所の消毒設備への各下水流入量を予測し、この予測された下水流入量に基き各消毒設備における消毒対象下水の有機物濃度及び接触時間をそれぞれ予測する流入予測演算手段と、
この流入予測演算手段により予測された各消毒設備における有機物濃度及び接触時間を用いて各消毒設備の塩素消費量の予測値を求める塩素消費量演算手段と、
この塩素消費量演算手段で求められた各消毒設備の塩素消費量の予測値を、通信回線により対応する消毒設備に伝送する伝送手段とを備え、
各消毒設備では、伝送されてきた塩素消費量に基き、放流水の残留塩素許容濃度を超えない範囲の注入量を加えて塩素注入率を決定し、この決定された塩素注入率で下水へ塩素を注入する
ことを特徴とする下水の消毒システム。
A sewage disinfection system that disinfects sewage by injecting chlorine,
Input weather data of a specific area, predict the amount of sewage inflow into multiple sterilization facilities where sewage flows into this specific area, and based on the predicted amount of sewage inflow, organic matter of sewage to be disinfected in each sterilization facility Inflow prediction calculation means for predicting the concentration and the contact time respectively;
Chlorine consumption calculation means for obtaining a predicted value of chlorine consumption of each disinfection facility using the organic substance concentration and contact time in each disinfection facility predicted by this inflow prediction calculation means;
Transmission means for transmitting the predicted value of chlorine consumption of each sterilization facility obtained by this chlorine consumption calculation means to the corresponding sterilization facility via a communication line,
At each disinfection facility, the chlorine injection rate is determined by adding an injection amount that does not exceed the allowable residual chlorine concentration of the effluent based on the chlorine consumption that has been transmitted. Sewage disinfection system characterized by injecting.
JP2005162290A 2005-06-02 2005-06-02 Sewage disinfection system Expired - Fee Related JP4643365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162290A JP4643365B2 (en) 2005-06-02 2005-06-02 Sewage disinfection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162290A JP4643365B2 (en) 2005-06-02 2005-06-02 Sewage disinfection system

Publications (2)

Publication Number Publication Date
JP2006334509A JP2006334509A (en) 2006-12-14
JP4643365B2 true JP4643365B2 (en) 2011-03-02

Family

ID=37555507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162290A Expired - Fee Related JP4643365B2 (en) 2005-06-02 2005-06-02 Sewage disinfection system

Country Status (1)

Country Link
JP (1) JP4643365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7414473B2 (en) * 2019-11-05 2024-01-16 メタウォーター株式会社 Sewage treatment system, sewage treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157192A (en) * 1989-11-14 1991-07-05 Meidensha Corp Constant controller for residual chlorine of treated water
JP2003260468A (en) * 2002-03-11 2003-09-16 Nishihara Environment Technology Inc Sterilizing device
JP2004351326A (en) * 2003-05-29 2004-12-16 Toshiba Corp Water quality monitoring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157192A (en) * 1989-11-14 1991-07-05 Meidensha Corp Constant controller for residual chlorine of treated water
JP2003260468A (en) * 2002-03-11 2003-09-16 Nishihara Environment Technology Inc Sterilizing device
JP2004351326A (en) * 2003-05-29 2004-12-16 Toshiba Corp Water quality monitoring system

Also Published As

Publication number Publication date
JP2006334509A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US10807882B2 (en) Process and device for the treatment of a fluid containing a contaminant
US20040154965A1 (en) Wet and dry weather water flows disinfection system
Chhetri et al. Full scale evaluation of combined sewer overflows disinfection using performic acid in a sea-outfall pipe
US11827533B2 (en) Methods and system for evaluating and maintaining disinfectant levels in a potable water supply
Matsinhe et al. THE EFFECTS OF INTERMITTENT SUPPLY AND HOUSEHOLD STORAGE IN THE QUALITY OF DRINKING WATER IN MAPUTO.
Yu et al. Electrical conductivity in rural domestic sewage: an indication for comprehensive concentrations of influent pollutants and the effectiveness of treatment facilities
JP5129463B2 (en) Water quality abnormality detection method
EP3674267A1 (en) System for recycling wastewater from reverse osmosis filtering processes and method for treating wastewater
KR101117158B1 (en) Model Predictive Control Method of Sequential Disinfection System using Ozone and Chlorine
KR101274983B1 (en) Method and apparatus for determining of the remained chlorine concentration using a sensor, and purified-water treatment system using the same
JP4643365B2 (en) Sewage disinfection system
Ma et al. Role of typical pipes in disinfection chemistry within drinking water distribution system
Carducci et al. Approach to a water safety plan for recreational waters: disinfection of a drainage pumping station as an unconventional point source of fecal contamination
JP3884638B2 (en) Method and apparatus for disinfecting sewage in rainy weather in combined sewers
JP4786278B2 (en) Sewage treatment system
Hoko et al. Investigating opportunities for use of alternative coagulants for drinking water treatment at Morton Jaffray Water Treatment works, Harare, Zimbabwe
Belmino da Silva et al. Comparison of commercial disinfectants and an in loco-produced solution: free residual chlorine decay in human supply waters
Stec-Uddin et al. Evaluation of Peracetic Acid as an Alternative to Chloramine for Effluent Disinfection at the Robert W. Hite Treatment Facility
Reynaert et al. Water Research X
Hadji et al. Wastewater Reuse for Irrigation Purposes: The Case of Aïn Témouchent Region
WO2006054351A1 (en) Sewerage system
Wolska et al. Introduction of an adsorption process into a surface water treatment system and its effect on disinfectant use
JP2009066496A (en) Monitoring method for aeration tank
Mavugara et al. Performance assessment of Mabula municipal wastewater plant: Zvishavane town, Zimbabwe
Reynaert et al. Ensuring Microbial Water Quality for On-site Water Reuse: Importance of Online Sensors for Reliable Operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees