JP4642958B2 - Compact high-magnification wide-angle zoom lens - Google Patents

Compact high-magnification wide-angle zoom lens Download PDF

Info

Publication number
JP4642958B2
JP4642958B2 JP2000013803A JP2000013803A JP4642958B2 JP 4642958 B2 JP4642958 B2 JP 4642958B2 JP 2000013803 A JP2000013803 A JP 2000013803A JP 2000013803 A JP2000013803 A JP 2000013803A JP 4642958 B2 JP4642958 B2 JP 4642958B2
Authority
JP
Japan
Prior art keywords
lens
group
positive
negative
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000013803A
Other languages
Japanese (ja)
Other versions
JP2001208970A (en
JP2001208970A5 (en
Inventor
一輝 河村
隆則 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2000013803A priority Critical patent/JP4642958B2/en
Publication of JP2001208970A publication Critical patent/JP2001208970A/en
Publication of JP2001208970A5 publication Critical patent/JP2001208970A5/ja
Application granted granted Critical
Publication of JP4642958B2 publication Critical patent/JP4642958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小型高変倍広角レンズに関するものである。
【0002】
【従来の技術】
高変倍であって、小型化を達成し得るズームレンズとして、物体側から順に正、負、正、正の群を有し、各群を移動させることにより変倍を行なうレンズ系が有効であることが従来より知られている。
【0003】
このように物体側から順に、正、負、正、正の群よりなるズームレンズの従来例として特開昭58−202418号公報の第1,第2実施例のレンズ系、米国特許明細書第4256381号の第1,第2,第3実施例のレンズ系、特開平10−133111号公報の第1,第2実施例のレンズ系が知られている。これらのズームレンズは、広角端の画角2ωが65°を超えるレンズ系であるが変倍比が4倍に達せず高変倍比のズームレンズとはいえない。
【0004】
また、正、負、正、正の群よりなるズームレンズの他の従来例として、特開昭60−26312号公報に記載されている第1,第2実施例のレンズ系、特開昭47−45641号公報に記載されている第1,第2実施例のレンズ系、特開昭56−150717号公報の第1,第2実施例のレンズ系が知られている。しかしこれらレンズ系は、広角端の画角2ωが45°以下であって画角が狭い。
【0005】
更に正、負、正、正の群よりなるズームレンズの他の従来例として、米国特許明細書第4256381号の第4〜第8実施例のレンズ系、米国特許明細書第4299454号の第4実施例、特開昭63−70819号公報の第1〜第4実施例のレンズ系がある。これらレンズ系は変倍比が4を超えるが、テレ端での望遠比が1.4で、レンズ系の全長が長く小型ではない。
【0006】
【発明が解決しようとする課題】
本発明は、正、負、正、正の群の4群構成で、変倍比が4を超える高変倍で、レンズ径が小で、テレ端での望遠比が1.3以下で全長が短く、しかも画角2ωが65°を超えるワイド端からテレ端までの全域で良好な光学性のズームレンズを提供するものである。
【0007】
【課題を解決するための手段】
本発明のズームレンズは、物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、ワイド端からテレ端への変倍に際して、第1群が物体側へ移動し、第2群が第1群との間隔を増大するように移動し、第3群が第2群との間隔を狭くするように移動し、第4群が第3群との間隔がワイド端よりもテレ端の方が狭くなるように移動し、前記第2群が物体側から順に、物体側に凸面を向けた負のメニスカスレンズを有する第1レンズ成分と負レンズを含み正の屈折力を有する第2レンズ成分と負の屈折力を有する第3レンズ成分とよりなり、前記第3群が物体側の面が像側の面よりも強い屈折力を有する正レンズとその像側に最も像側が負レンズである全体として正または負の屈折力を有するレンズ成分とよりなり、前記第4群が正レンズとその像側の負レンズとを有し、前記正レンズと前記負レンズの向かい合う各面が共に物体側に凹面を向けた隣接面を有するものである。
【0008】
ここでレンズ成分とは、1枚又は複数枚のレンズよりなり全体として一つのレンズとしての作用,役割を備えたものであり、複数のレンズよりなる場合接合されていてもまた僅かな空気間隔をおいて分離配置されていてもよい。
【0009】
広角からのズームレンズは、高変倍化するにしたがって、ワイド端やテレ端はもとより、中間の焦点距離域においても、像面や倍率の色収差の変動が大きく光学性能を良好に保つことが困難になる。したがって高変倍比のためには各群の移動とパワーとを適切に選ぶことが重要である。
【0010】
そのため、本発明は前記のように物体側より順に、正、負、正、正の群よりなり、ワイド端からテレ端への変倍に際し、第1群が物体側へ移動し、第2群が第1群との間隔が増大するように移動し、第3群が第2群との間隔が狭くなるように移動し、第4群が第3群との間隔をワイド端よりテレ端が狭くなるようにした。
【0011】
これにより、ワイド側で主として発生する軸外収差を開口絞りの物体側に配置された第1群の正のパワーと第2群の負のパワーとで良好に補正し得るようなパワー配分とし、また、テレ側では第1群を正のパワーとしてテレ端での全長が短くなるようにし、更に第2群の負のパワーと第3群と第4群の正のパワーを近接させることによって主として球面収差、コマ収差を良好に補正できるようなパワー配分を採用した。また、ワイド端からテレ端への変倍に際し、第3群と第4群を物体側へ移動させるようにすれば前記の球面収差、コマ収差の補正作用は一層効果的になる。
【0012】
また、前述の構成の4群ズームレンズは、第2群と第3群の間隔を変化させての変倍作用を大きくすることにより高変倍化できるが、そのためには第2群の負のパワーを強める必要がある。このように第2群のパワーを強めると主としてワイド端での歪曲収差が悪化すると共に変倍時の像面変動や倍率の色収差の変動を招く。
【0013】
本発明は、第2群を物体側より順に物体側に凸面を向けた負のメニスカスレンズを有する第1レンズ成分と、正の第2レンズ成分と正の第3レンズ成分とを夫々空気間隔を挟んで配置した構成にすることによりワイド端での歪曲収差を良好に保ったまままた変倍時の像面変動や倍率の色収差の変動を少なく保ったまま第2群のパワーを強くすることを可能にした。
【0014】
つまり、第2群の第1レンズ成分中に物体側に凸のパワーの強い負のメニスカスレンズを含むようにして第1群にて発生する正の歪曲収差を効果的に補正することができる。しかしそのパワーを強くしすぎると主として非点収差、コマ収差、倍率の色収差の変倍時の変動が大になる。そのため、正の第2レンズ成分中に負レンズを含むようにして第1レンズ成分中の負のメニスカスレンズのパワーを分担することにより前記非点収差、コマ収差、倍率の色収差の変倍時の変動を小さくすると共に第2レンズ成分中の正レンズにより主としてワイド端付近での倍率の色収差とテレ端付近での軸上色収差を良好に補正し得るようにした。
【0015】
また、負の第3レンズ成分により残存する色収差と球面収差、コマ収差とのバランスをコントロールし得るようにした。そして、以上の三つのレンズ成分を夫々空気間隔を挟んで独立して配置することによりレンズ系の収差を良好に確保し得るようにした。
【0016】
また、第2レンズ成分を負レンズと正レンズの2枚のレンズにて、第3レンズ成分を1枚のレンズにて構成することも可能であり、これによりレンズ系のレンズ枚数を少なくすることができ低コスト化と軽量化が可能になる。また第2レンズ成分を負レンズと正レンズを接合させて接合レンズにすることにより枠に組み込んだ時の偏芯による性能劣化を小さくでき安定した性能を確保できる。
【0017】
また、第2群の第1レンズ成分を負のメニスカスレンズ1枚にて構成しても収差の悪化を抑えることができ1枚のレンズのみにて構成することが可能であり、レンズ系のレンズ枚数を削減できる。
【0018】
また、前述の構成の4群ズームレンズにおいて、高変倍化を実現するためには第2群,第3群の変倍作用を強めることが必要である。
【0019】
本発明は第3群を物体側の方が像側より強い曲率の正レンズとその像側に最も像側に配置した負レンズとを含む正または負のレンズ成分を配置することにより主点を第2群に近づけて変倍作用を強くしそれと共にこの第3群と第4群とで球面収差と軸上の色収差をバランス良く補正するようにしている。
【0020】
また第3群の正または負のレンズ成分を正レンズと負レンズを接合して接合レンズにすれば枠に組み込む時の偏芯による性能の劣化を小さくでき安定した性能を確保できる。
【0021】
また、第4群を正レンズとその像側の負レンズの隣接面が共に物体側に凹の面の第1隣接面を配置することにより第1群にて発生する球面収差を良好に補正すると共にワイドからテレにかけての軸外収差の変動を小さく抑えることができる。
【0022】
また、第1隣接面を接合面にすれば高次収差の発生を抑えながら上記の球面収差と軸外収差とを一層良好に補正することが可能である。また前述のように接合すれば枠に組み込む時の偏芯による性能劣化を小さくでき安定した性能を確保できる。
【0023】
また本発明のズームレンズの他の構成は、物体側から順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、ワイド端からテレ端への変倍に際して、前記第1群は物体側へ移動し、前記第2群は前記第1群との間隔が増大するように移動し、前記第3群は前記第2群との間隔が狭くなるように移動し、前記第4群は前記第3群との間隔がワイド端よりもテレ端の方が狭くなるように移動し、前記第2群は物体側から順に、物体側に凸面を向けた負のメニスカスレンズを有する第1レンズ成分と、負レンズを含み全体が正の屈折力を有する第2レンズ成分と、負の屈折力を有する第3レンズ成分とよりなり、各々の成分が空気間隔を挟んで構成され、前記第3群は物体側から順に正レンズと負レンズとからなり、前記第4群は正レンズとその像側に負レンズとを有し正レンズと負レンズの向かい合う面の各々が共に物体側に凹面を向けた第1の隣接面を有し、前記第4群中の最も物体側のレンズが物体側に凸面を向けた正レンズであり光軸から離れるにしたがって屈折力が弱くなる非球面を有すことを特徴とする。
【0024】
上記のズームレンズは、第4群中の最も物体側のレンズを物体側に凸面を向けた正レンズとし、このレンズに光軸から離れるにしたがって屈折力が弱くなる非球面を設けることにより第3群にて発生する球面収差を補正する作用を強めこれにより第3群を2枚のレンズのみにて構成することを可能にした。
【0025】
また、本発明のズームレンズは、下記条件(1)を満足するようにすれば、中間焦点距離域での光学性能を良好に保ちつつ小型高変倍化を達成する上での適切な各群の動きとパワー配置にし得るので好ましい。
(1) 4.3<f1 /|f2 |<6.3
ただし、f1 ,f2 は夫々第1群および第2群の焦点距離である。
【0026】
条件(1)の下限の4.3を超えるとテレ端付近での全長を短くできるが第1群のレンズ径が大になりカメラとして小型化と高変倍化の達成が困難になる。また、条件(1)の上限の6.3を超えると第2群のパワーが強くなり先玉の径を小さくできるが中間主点距離域を含めて収差変動を抑えることが困難になる。
【0027】
また、前述の構成の本発明のズームレンズは、高変倍比小型でありながら一層良好な性能を有するレンズ系を得るためには、第2群が下記条件(2)を満足することが望ましい。
(2) 0.07<|f2 |/fT <0.16
ただし、fT はテレ端におけるズームレンズ全系の焦点距離である。
【0028】
条件(2)の下限の0.07を超えると高変倍化とテレ端での全長の短縮を図ることができるが、第2群で発生する収差が大になりすぎこれを補正するためには第2群のレンズ枚数を増加させなければならない。また、条件(2)の上限の0.16を超えるとレンズ系の性能を保つためには好ましいが、テレ端での全長やレンズ径が大になりカメラとして小型化を達成できない。
【0029】
本発明のズームレンズにおいて、第4群が前述の第1隣接面の他に第1隣接面と同様向かい合う面の各々が共に物体側に凹面を向けた第2隣接面を有することが望ましい。またこの面を接合面としても良い。
【0030】
このように第2隣接面を設けることにより、第1隣接面を設けたことによる第3群で発生する球面収差を補正する作用とワイドからテレにかけての軸外収差の変動を抑制する作用が一層増大するので望ましい。
【0031】
また、本発明のズームレンズにおいて、第3群の最も像側の正のレンズ成分を物体側より正レンズと負レンズとを接合した接合レンズにすれば、前述のように枠に組み込む時の偏芯による性能劣化を抑えることができる。
【0032】
また第2群の正の第2レンズ成分を物体側より正レンズと負レンズを接合レンズにすれば同様の理由により好ましい。
【0033】
本発明のズームレンズにおいて、第4群中に像側の面よりも屈折力の強い面を有するメニスカス状の空気レンズを設けることが望ましい。このような空気レンズを設けることにより、第3群にて発生する球面収差、コマ収差を変倍時の歪曲収差の変動を抑えながら良好に補正することができる。これにより第3群のレンズ枚数を削減することが可能になり、したがって、レンズ系の全長を短くししかも良好な光学性になし得る。
【0034】
本発明のズームレンズにおいて、第2群と第3群の焦点距離が下記条件(3)を満足するようにすれば、レンズ系を安定した性能で高変倍化が可能である。
(3) 0.3<|f2 |/f3 <0.45
【0035】
条件(3)の下限の0.3を超えると第2群での負のパワーが強くなりすぎてワイド付近での軸外収差の発生が大になると共にテレ端でのレンズ系の全長を短くすることが困難になる。また、条件(3)の上限を超えるとテレ端でのレンズ系の全長を短くすることが比較的容易であるがワイド端でのバックフォーカスを確保しながらの性能の維持が困難になる。
【0036】
また、第4群の第1の隣接面の間隔d41が下記条件(4)を満足することが望ましい。
(4) 0≦d41/h≦0.05
ただし、hは最大撮影像高である。上限の0.05を超えると球面収差が補正不足になると共にワイド端からテレ端への変倍の際の軸外収差の変動が大になる。
【0037】
また第4群の第2隣接面の間隔d42は次の条件(5)を満足することが望ましい。
(5) 0≦d42/h≦0.05
上限の0.05を超えると第1の隣接面を超えると同様に球面収差が補正不足になり、軸外収差の変動が大になる。
【0038】
【発明の実施の形態】
次に本発明のズームレンズの実施の形態を下記データを有する各実施例にもとづいて説明する。

Figure 0004642958
Figure 0004642958
【0039】
Figure 0004642958
Figure 0004642958
【0040】
Figure 0004642958
Figure 0004642958
【0041】
Figure 0004642958
Figure 0004642958
【0042】
参考例
f=28.980〜63.962〜135.097 ,Fナンバー=5.002 〜6.213 〜7.289
2ω=76.3°〜36.3°〜17.7°
1 =480.413 d1 =2.500 n1 =1.80518 ν1 =25.43
2 =75.765 d2 =5.158 n2 =1.62041 ν2 =60.29
3 =-181.527 d3 =0.200
4 =45.476 d4 =3.900 n3 =1.74320 ν3 =49.34
5 =107.019 d5 =D1 (可変)
6 =97.657 d6 =1.400 n4 =1.83400 ν4 =37.16
7 =15.325 d7 =6.045
8 =-43.900 d8 =1.100 n5 =1.63980 ν5 =34.46
9 =15.521 d9 =6.761 n6 =1.84666 ν6 =23.78
10=-51.021 d10=0.609
11=-28.428 d11=1.000 n7 =1.77250 ν7 =49.60
12=-1169.686 d12=D2 (可変)
13=∞(絞り) d13=1.000
14=25.610 d14=5.900 n8 =1.62280 ν8 =57.05
15=-14.216 d15=1.000 n9 =1.80610 ν9 =40.92
16=-80.416 d16=D3 (可変)
17=26.571(非球面) d17=7.591 n10=1.48749 ν10=70.23
18=-22.631 (非球面)d18=0.200
19=82.779 d19=5.761 n11=1.70154 ν11=41.24
20=-11.000 d20=2.000 n12=1.83400 ν12=37.16
21=23.314 d21=0.964
22=58.001 d22=2.000 n13=1.84666 ν13=23.78
23=110.688
非球面係数
(第17面)k=-1.8802 ,A4 =7.7264×10-6 ,A6 =8.4057×10-8
8 =-1.7179 ×10-11
(第18面)k=-2.4219 ,A4 =-1.0470 ×10-6 ,A6 =4.0776×10-8
8 =-8.5017 ×10-10
f 28.980 63.962 135.097
1 0.950 14.387 28.677
2 16.900 7.384 1.200
3 6.609 2.941 0.950
B 39.630 61.697 83.991
L(T)=169.91 ,TP(T)=1.26
W =28.98 ,fT =135.1 ,fT /fW =4.66 ,f1 =80.97
2 =-16.24 ,f3 =46.23 ,f4 =61.35 ,f1 /|f2 |=4.98
|f2 |/fT =0.12 ,|f2 |/f3 =0.35 ,h=21.633mm
41=0 ,d41/h=0
【0043】
Figure 0004642958
Figure 0004642958
【0044】
Figure 0004642958
Figure 0004642958
【0045】
Figure 0004642958
Figure 0004642958
【0046】
Figure 0004642958
Figure 0004642958
ただしr1 ,r2 ,・・・ は各レンズ面の曲率半径、d1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数である。
【0047】
実施例1は図1に示す通りの構成で、物体側より正の屈折力の第1群と負の屈折力の第2群と正の屈折力の第3群と正の屈折力の第4群とよりなり、ワイド端よりテレ端への変倍に際して第1群は物体側へ移動し、第2群は第1群との間隔を増大するように移動し、第3群は第2群との間隔が狭くなるように移動し、第4群は第3群との間隔が狭くなるように移動するズームレンズである。
【0048】
また第2群は、物体側から物体側に凸面を向けた負のメニスカスレンズを有する第1レンズ成分と正の屈折力を有する第2レンズ成分(負レンズと正レンズとよりなり全体として負の屈折力を有するレンズ成分)と負の屈折力を有する第3レンズ成分(負レンズと正レンズとからなるレンズ成分)とからなり、絞りを挟んで第3群は物体側の面が像側の面より強い屈折力を有する正レンズとその像側に最も像側のレンズが負レンズであるレンズ成分(正レンズと負レンズとを接合した接合レンズ成分)とからなり、第4群は物体側に正レンズとその像側の負レンズを有しており(物体側から正レンズと負レンズよりなる第1レンズ成分を有しており)、この正レンズと負レンズの互いに向かい合っている両面が物体側に凹面を向けた第1の隣接面である。またこの第4群は前記第1レンズ成分と両凸レンズよりなるレンズ成分(第2レンズ成分)と正レンズと負のメニスカスレンズとよりなるレンズ成分(第3レンズ成分)を有している。この第3レンズ成分の正レンズと負のメニスカスレンズとの互いに向かい合った両面が物体側に凹面を向けた第2隣接面である。
【0049】
この実施例1のズームレンズは条件(1)〜(5)のすべての条件を満足する。
【0050】
実施例2は、図2に示す通りの構成で、第2群の負の第3レンズ成分が負レンズと正レンズを接合した接合レンズであり、また第4群の第1レンズ成分の正レンズと負レンズとが接合され、また第3レンズ成分の正レンズと負レンズとが接合され、したがって第1および第2隣接面がいずれも接合面である点で実施例1と相違する。
【0051】
また実施例2は条件(1),(2),(3)を満足する。
【0052】
実施例3は図3に示す通りで、第2群の第3レンズ成分が負レンズ1枚よりなり、第4群が正レンズよりなる第1レンズ成分と、正レンズと負レンズを接合した接合レンズの第2レンズ成分と正レンズと負レンズを接合した接合レンズとよりなり、第1,第2隣接面は接合面である点で実施例1と相違する。
【0053】
この実施例3は条件(1),(2),(3)を満足する。
【0054】
実施例4は図4に示す通りの構成で、実施例3と同じ構成のズームレンズである。
【0055】
この実施例4は条件(1),(2),(3)を満足する。
【0056】
参考例は図5に示す通りの構成で、第2群が負のメニスカスレンズの第1レンズ成分と負レンズと正レンズとを接合した接合レンズの第2レンズ成分と負レンズの第3レンズ成分とよりなり、第3群が正レンズと負レンズを接合レンズよりなるレンズ成分のみつまり正レンズと負レンズのみからなり、第4群が正レンズの第1レンズ成分と正レンズと負レンズを接合した接合レンズの第2レンズ成分と正のメニスカスレンズの第3レンズ成分とよりなる。また第4群の第1レンズ成分(両凸レンズ)が非球面レンズである。
【0057】
この参考例は条件(1),(2),(3)を満足する。
【0058】
この参考例は非球面を用いておりこれによって極めて少ないレンズ枚数で良好な性能を有するズームレンズを実現したものである。
【0059】
実施例6〜9は夫々図6〜9に示す通りで、実施例3と類似の構成のズームレンズである。
【0060】
これら実施例は、いずれも条件(1),(2),(3)を満足する。
以上述べた実施例1〜9の収差状況は図10〜18に示す通りで、いずれも良好な光学性能を有する。
尚収差図中、上段はワイド端、中段は中間焦点距離、下段はテレ端に対するものである。
【0061】
本発明の参考例に設けられている非球面の形状は、光軸方向をx軸、光軸に直角な方向をy軸とした時、下記の式にて表わされる。
x=(y2/r)/[1+{1−(1+k)(y/r)21/2
+A44+A66+A88+・・・
ただし、rは基準球面の曲率半径、k、A4、A6、A8・・・は非球面係数である。
【0062】
次に述べるズームレンズも本発明の目的を達成する。
【0063】
(1)特許請求の範囲の請求項1又は2に記載するズームレンズで下記条件(2)を満足することを特徴とする小型高変倍広角ズームレンズ。
(2) 0.07<|f2 |/fT <0.16
【0064】
(2)特許請求の範囲の請求項1又は3あるいは前記の(1)の項に記載するズームレンズで、更に物体側より正レンズと負レンズを含み互いに向かい合う面がいずれも物体側に凹面を向けた第2の隣接面である小型高変倍広角ズームレンズ。
【0065】
(3)特許請求の範囲の請求項1又は2あるいは前記の(1)又は(2)の項のズームレンズで、第3群の最も像側が負レンズである正の屈折力のレンズ成分が物体側から順に正レンズと負レンズからなる接合レンズである小型高変倍広角ズームレンズ。
【0066】
(4)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2)又は(3)の項に記載するズームレンズで、第2群中の第2レンズ成分が物体側から順に負レンズと正レンズからなる小型高変倍広角ズームレンズ。
【0067】
(5)前記の(4)の項に記載するズームレンズで、第2群中の第2レンズ成分の負レンズと正レンズが接合された接合レンズである小型高変倍広角ズームレンズ。
【0068】
(6)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4)又は(5)の項に記載するズームレンズで、第2群中の第3レンズ成分が負レンズ1枚よりなる小型高変倍広角ズームレンズ。
【0069】
(7)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5)又は(6)の項に記載するズームレンズで、第4群中に像側の面よりも物体側の面がより強い屈折力を有するメニスカス形状の空気レンズを有する小型高変倍広角ズームレンズ。
【0070】
(8)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5)又は(6)の項に記載するズームレンズで、下記条件(3)を満足する小型高変倍広角ズームレンズ。
(3) 0.3<|f2 |/f3 <0.45
【0071】
(9)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7)又は(8)の項に記載するズームレンズで、下記条件(4)を満足する小型高変倍広角ズームレンズ。
(4) 0≦d42/h≦0.05
【0072】
(10)前記の(2)の項に記載するズームレンズで、下記条件(5)を満足する小型高変倍広角ズームレンズ。
(5) 0≦d42/h≦0.05
【0073】
(11)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7)又は(8)の項に記載するズームレンズで、第1隣接面が接合面である小型高変倍広角ズームレンズ。
【0074】
(12)前記の(2)の項に記載するズームレンズで、第2隣接面が接合面である小型高変倍広角ズームレンズ。
【0075】
(13)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11)又は(12)の項に記載するズームレンズで、変倍比が4を超える小型高変倍広角ズームレンズ。
【0076】
(14)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11)又は(12)の項に記載するズームレンズで、変倍比が4.6を超える小型高変倍広角ズームレンズ。
【0077】
(15)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13)あるいは(14)の項に記載するズームレンズで、望遠比が1.3以下である小型高変倍広角ズームレンズ。
【0078】
(16)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13)あるいは(14)の項に記載するズームレンズで、望遠比が1.26以下である小型高変倍広角ズームレンズ。
【0079】
(17)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13),(14),(15)又は(16)の項に記載するズームレンズで、画角2ωが65°を超える小型高変倍広角ズームレンズ。
【0080】
(18)特許請求の範囲の請求項1,2又は3あるいは前記の(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13),(14),(15)又は(16)の項に記載するズームレンズで、画角2ωが75°を超える小型高変倍広角ズームレンズ。
【0081】
【発明の効果】
本発明によれば、変倍比が4を超える高変倍で、テレ端での望遠比が1.3で全長が短く、ワイド端での画角が65°以上の広角で変倍域全体で良好な性能の小型高変倍広角ズームレンズを実現し得る。
【図面の簡単な説明】
【図1】本発明の実施例1の構成を示す図
【図2】本発明の実施例2の構成を示す図
【図3】本発明の実施例3の構成を示す図
【図4】本発明の実施例4の構成を示す図
【図5】本発明の実施例5の構成を示す図
【図6】本発明の実施例6の構成を示す図
【図7】本発明の実施例7の構成を示す図
【図8】本発明の実施例8の構成を示す図
【図9】本発明の実施例9の構成を示す図
【図10】本発明の実施例1の収差曲線図
【図11】本発明の実施例2の収差曲線図
【図12】本発明の実施例3の収差曲線図
【図13】本発明の実施例4の収差曲線図
【図14】本発明の実施例5の収差曲線図
【図15】本発明の実施例6の収差曲線図
【図16】本発明の実施例7の収差曲線図
【図17】本発明の実施例8の収差曲線図
【図18】本発明の実施例9の収差曲線図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compact high variable magnification wide-angle lens.
[0002]
[Prior art]
As a zoom lens that is highly variable and that can achieve miniaturization, a lens system that has positive, negative, positive, and positive groups in order from the object side, and performs zooming by moving each group is effective. It has been known for some time.
[0003]
In this manner, in order from the object side, as a conventional example of a zoom lens composed of a positive group, a negative group, a positive group, and a positive group, the lens system of the first and second examples of Japanese Patent Laid-Open No. 58-202418, US A lens system according to first, second and third embodiments of Japanese Patent No. 4256381 and a lens system of first and second embodiments of Japanese Patent Laid-Open No. 10-133111 are known. These zoom lenses are lens systems in which the angle of view 2ω at the wide-angle end exceeds 65 °, but the zoom ratio does not reach 4 times and cannot be said to be a zoom lens with a high zoom ratio.
[0004]
Further, as another conventional example of a zoom lens composed of positive, negative, positive, and positive groups, the lens system of the first and second embodiments described in Japanese Patent Laid-Open No. 60-26312, A lens system according to first and second embodiments disclosed in Japanese Patent No. -45641 and a lens system according to first and second embodiments disclosed in Japanese Patent Laid-Open No. 56-150717 are known. However, these lens systems have a narrow angle of view with a field angle 2ω at the wide-angle end of 45 ° or less.
[0005]
Furthermore, as other conventional examples of zoom lenses composed of positive, negative, positive, and positive groups, lens systems of Examples 4 to 8 of U.S. Pat. No. 4,256,381, No. 4 of U.S. Pat. No. 4,299,454. Examples include the lens systems of Examples 1 to 4 of JP-A-63-70819. These lens systems have a zoom ratio of more than 4, but the telephoto ratio at the telephoto end is 1.4, and the total length of the lens system is long and not small.
[0006]
[Problems to be solved by the invention]
The present invention is a four-group configuration of positive, negative, positive, and positive groups, with a high zoom ratio exceeding 4 and a small lens diameter, with a telephoto ratio of 1.3 or less at the telephoto end. And a zoom lens having good optical properties in the entire region from the wide end to the tele end where the angle of view 2ω exceeds 65 °.
[0007]
[Means for Solving the Problems]
    The zoom lens of the present invention has, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a positive refractive power. The first group moves to the object side, and the second group moves to increase the distance from the first group when zooming from the wide end to the tele end. Moves so as to narrow the distance from the second group, the fourth group moves so that the distance from the third group becomes narrower at the tele end than at the wide end, and the second group moves from the object side. In order, the first lens component having a negative meniscus lens having a convex surface facing the object side, the second lens component including a negative lens and having a positive refractive power, and the third lens component having a negative refractive power, The third group is a positive lens whose surface on the object side has a stronger refractive power than the surface on the image side, and a negative lens on the image side closest to the image side. Overall positiveOr negativeThe fourth lens unit has a positive lens and a negative lens on the image side thereof, and the surfaces facing the positive lens and the negative lens both have concave surfaces facing the object side. It has an adjacent surface.
[0008]
Here, the lens component is composed of one or a plurality of lenses and has the function and role as a single lens as a whole. May be arranged separately.
[0009]
As zoom lenses from wide angles increase in magnification, it is difficult to maintain good optical performance due to large variations in chromatic aberration of the image plane and magnification, not only at the wide end and tele end, but also in the intermediate focal length range. become. Therefore, it is important to appropriately select the movement and power of each group for a high zoom ratio.
[0010]
Therefore, the present invention is composed of positive, negative, positive and positive groups in order from the object side as described above, and the first group moves to the object side upon zooming from the wide end to the tele end, and the second group. Moves so that the distance from the first group increases, the third group moves so that the distance from the second group becomes narrow, and the fourth group moves the distance from the third group from the wide end to the tele end. I tried to narrow it.
[0011]
Thereby, the power distribution is such that off-axis aberrations mainly occurring on the wide side can be corrected well with the positive power of the first group and the negative power of the second group arranged on the object side of the aperture stop, Also, on the tele side, the first group is positive power so that the total length at the tele end is shortened, and further, the negative power of the second group and the positive power of the third group and the fourth group are brought close to each other. A power distribution that can correct spherical aberration and coma well is adopted. Further, when the third lens group and the fourth lens group are moved to the object side at the time of zooming from the wide end to the telephoto end, the spherical aberration and coma aberration correcting action becomes more effective.
[0012]
In addition, the four-group zoom lens having the above-described configuration can be highly zoomed in by increasing the zooming effect by changing the distance between the second group and the third group. It is necessary to increase power. When the power of the second lens group is increased in this way, distortion at the wide end mainly deteriorates, and image plane variation at the time of zooming and chromatic aberration of magnification are caused.
[0013]
The present invention provides a first lens component having a negative meniscus lens having a convex surface facing the object side in order from the object side to the object side, a positive second lens component, and a positive third lens component. By adopting a sandwiched arrangement, it is possible to increase the power of the second lens group while maintaining good distortion at the wide end and also maintaining small variations in image plane and magnification chromatic aberration during zooming. Made possible.
[0014]
That is, it is possible to effectively correct positive distortion occurring in the first group by including a negative meniscus lens having a strong convex power on the object side in the first lens component of the second group. However, if the power is increased too much, fluctuations during zooming of astigmatism, coma aberration, and chromatic aberration of magnification become large. Therefore, the power of the negative meniscus lens in the first lens component is shared by including the negative lens in the positive second lens component, thereby changing the astigmatism, coma aberration, and chromatic aberration of magnification at the time of zooming. The chromatic aberration of magnification mainly near the wide end and the longitudinal chromatic aberration near the tele end can be favorably corrected by the positive lens in the second lens component while reducing the size.
[0015]
The balance between the remaining chromatic aberration, spherical aberration, and coma aberration can be controlled by the negative third lens component. Then, the above three lens components are arranged independently with an air gap therebetween, so that the aberration of the lens system can be secured satisfactorily.
[0016]
It is also possible to configure the second lens component with two lenses, a negative lens and a positive lens, and the third lens component with one lens, thereby reducing the number of lenses in the lens system. Can be reduced in cost and weight. In addition, by joining the negative lens and the positive lens to form a cemented lens as the second lens component, it is possible to reduce performance degradation due to eccentricity when incorporated in the frame, and to secure stable performance.
[0017]
Further, even if the first lens component of the second group is composed of a single negative meniscus lens, it is possible to suppress the deterioration of aberration, and it can be composed of only one lens. The number of sheets can be reduced.
[0018]
Further, in the four-group zoom lens having the above-described configuration, it is necessary to increase the zooming action of the second group and the third group in order to realize high zooming.
[0019]
    The present invention includes a positive lens that includes a positive lens having a curvature that is stronger on the object side than on the image side and a negative lens disposed closest to the image side on the image side.Or negativeBy arranging the lens components, the principal point is brought closer to the second group to increase the zooming action, and the third group and the fourth group correct spherical aberration and axial chromatic aberration in a balanced manner. Yes.
[0020]
    The third group positiveOr negativeIf a positive lens and a negative lens are cemented to form a cemented lens, the deterioration in performance due to eccentricity when incorporated into the frame can be reduced, and stable performance can be secured.
[0021]
Further, by arranging the first adjacent surface which is a concave surface on the object side of the positive lens and the adjacent surface of the negative lens on the image side in the fourth group, spherical aberration generated in the first group is corrected well. At the same time, fluctuations in off-axis aberrations from wide to telephoto can be reduced.
[0022]
Further, if the first adjacent surface is a cemented surface, it is possible to correct the spherical aberration and off-axis aberration more satisfactorily while suppressing the occurrence of high-order aberrations. Moreover, if it joins as mentioned above, the performance degradation by eccentricity at the time of incorporating in a frame can be made small, and the stable performance can be ensured.
[0023]
According to another configuration of the zoom lens of the present invention, in order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, The fourth group has a positive refractive power, and when zooming from the wide end to the tele end, the first group moves to the object side, and the second group has an increased distance from the first group. The third group moves so that the distance from the second group becomes narrower, and the fourth group moves so that the distance from the third group becomes narrower at the tele end than at the wide end. The second lens unit sequentially includes, from the object side, a first lens component having a negative meniscus lens having a convex surface facing the object side, and a second lens component including a negative lens and having a positive refractive power as a whole. , And a third lens component having negative refractive power, each component being configured with an air gap in between, Is composed of a positive lens and a negative lens in order from the object side, and the fourth group has a positive lens and a negative lens on the image side thereof, and each of the facing surfaces of the positive lens and the negative lens has a concave surface facing the object side. A first abutment surface, and the lens closest to the object side in the fourth group is a positive lens having a convex surface facing the object side, and has an aspheric surface whose refractive power decreases with increasing distance from the optical axis. It is characterized by.
[0024]
In the zoom lens described above, the lens on the most object side in the fourth lens group is a positive lens having a convex surface directed toward the object side, and this lens is provided with an aspheric surface whose refractive power becomes weaker as the distance from the optical axis increases. The action of correcting the spherical aberration generated in the group is strengthened, and this makes it possible to configure the third group with only two lenses.
[0025]
Further, if the zoom lens of the present invention satisfies the following condition (1), each group suitable for achieving small size and high zoom ratio while maintaining good optical performance in the intermediate focal length region. This is preferable because the movement and power arrangement can be achieved.
(1) 4.3 <f1 / | F2 | <6.3
Where f1 , F2 Are the focal lengths of the first group and the second group, respectively.
[0026]
If the lower limit of 4.3 of the condition (1) is exceeded, the total length near the telephoto end can be shortened, but the lens diameter of the first group becomes large and it becomes difficult to achieve miniaturization and high zoom ratio as a camera. If the upper limit of 6.3 of condition (1) is exceeded, the power of the second lens group becomes strong and the diameter of the front lens can be reduced, but it is difficult to suppress aberration fluctuations including the intermediate principal point distance region.
[0027]
In addition, the zoom lens of the present invention having the above-described configuration is preferably configured such that the second lens group satisfies the following condition (2) in order to obtain a lens system having a higher zoom ratio and a smaller size. .
(2) 0.07 <| f2 | / FT <0.16
Where fT Is the focal length of the entire zoom lens system at the telephoto end.
[0028]
If the lower limit of 0.07 of the condition (2) is exceeded, it is possible to increase the zoom ratio and shorten the total length at the telephoto end. However, in order to correct this, the aberration generated in the second group becomes too large. Needs to increase the number of lenses in the second group. If the upper limit of 0.16 of the condition (2) is exceeded, it is preferable to maintain the performance of the lens system. However, the total length and lens diameter at the tele end are increased, and the camera cannot be downsized.
[0029]
In the zoom lens according to the present invention, it is desirable that the fourth group has a second adjacent surface having a concave surface facing the object side in addition to the first adjacent surface described above. Further, this surface may be used as a bonding surface.
[0030]
By providing the second adjacent surface in this way, the effect of correcting the spherical aberration generated in the third group due to the provision of the first adjacent surface and the effect of suppressing the fluctuation of off-axis aberration from wide to telephoto are further increased. This is desirable because it increases.
[0031]
In the zoom lens according to the present invention, if the positive lens component on the most image side in the third group is a cemented lens in which a positive lens and a negative lens are cemented from the object side, the deviation when incorporated in the frame as described above. Performance degradation due to the wick can be suppressed.
[0032]
For the same reason, it is preferable to use a positive second lens component of the second group as a cemented lens from the object side.
[0033]
In the zoom lens of the present invention, it is desirable to provide a meniscus air lens having a surface having a refractive power stronger than that of the image side surface in the fourth lens group. By providing such an air lens, spherical aberration and coma generated in the third group can be corrected well while suppressing fluctuations in distortion during zooming. As a result, the number of lenses in the third group can be reduced, and therefore the overall length of the lens system can be shortened and good optical performance can be achieved.
[0034]
In the zoom lens according to the present invention, if the focal lengths of the second group and the third group satisfy the following condition (3), the lens system can achieve high zooming with stable performance.
(3) 0.3 <| f2 | / FThree <0.45
[0035]
Exceeding the lower limit of 0.3 of condition (3), the negative power in the second lens unit becomes too strong, causing off-axis aberrations in the vicinity of the wide angle, and shortening the total length of the lens system at the telephoto end. It becomes difficult to do. If the upper limit of the condition (3) is exceeded, it is relatively easy to shorten the total length of the lens system at the tele end, but it becomes difficult to maintain performance while ensuring the back focus at the wide end.
[0036]
The distance d between the first adjacent surfaces of the fourth group41Preferably satisfies the following condition (4).
(4) 0 ≦ d41/H≦0.05
Here, h is the maximum photographed image height. When the upper limit of 0.05 is exceeded, the spherical aberration becomes insufficiently corrected and the fluctuation of off-axis aberrations during zooming from the wide end to the tele end becomes large.
[0037]
The distance d between the second adjacent surfaces of the fourth group42It is desirable to satisfy the following condition (5).
(5) 0 ≦ d42/H≦0.05
When the upper limit of 0.05 is exceeded, the spherical aberration is undercorrected as well as exceeding the first adjacent surface, and the fluctuation of off-axis aberration becomes large.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the zoom lens of the present invention will be described based on each example having the following data.
Figure 0004642958
Figure 0004642958
[0039]
Figure 0004642958
Figure 0004642958
[0040]
Figure 0004642958
Figure 0004642958
[0041]
Figure 0004642958
Figure 0004642958
[0042]
Reference example
f = 28.980-63.962-135.097, F number = 5.002-6.213-7.289
2ω = 76.3 ° -36.3 ° -17.7 °
r1 = 480.413 d1 = 2.500 n1 = 1.80518 ν1 = 25.43
r2 = 75.765 d2 = 5.158 n2 = 1.62041 ν2 = 60.29
rThree = -181.527 dThree = 0.200
rFour = 45.476 dFour = 3.900 nThree = 1.74320 νThree = 49.34
rFive = 107.019 dFive = D1 (variable)
r6 = 97.657 d6 = 1.400 nFour = 1.83400 νFour = 37.16
r7 = 15.325 d7 = 6.045
r8 = -43.900 d8 = 1.100 nFive = 1.63980 νFive = 34.46
r9 = 15.521 d9 = 6.761 n6 = 1.84666 ν6 = 23.78
rTen= -51.021 dTen= 0.609
r11= -28.428 d11= 1.000 n7 = 1.77250 ν7 = 49.60
r12= -1169.686 d12= D2 (variable)
r13= ∞ (aperture) d13= 1.000
r14= 25.610 d14= 5.900 n8 = 1.62280 ν8 = 57.05
r15= -14.216 d15= 1.000 n9 = 1.80610 ν9 = 40.92
r16= -80.416 d16= DThree (variable)
r17= 26.571 (aspherical surface) d17= 7.591 nTen= 1.48749 νTen= 70.23
r18= -22.631 (Aspherical surface) d18= 0.200
r19= 82.779 d19= 5.761 n11= 1.70154 ν11= 41.24
r20= -11.000 d20= 2.000 n12= 1.83400 ν12= 37.16
rtwenty one= 23.314 dtwenty one= 0.964
rtwenty two= 58.001 dtwenty two= 2.000 n13= 1.84666 ν13= 23.78
rtwenty three= 110.688
Aspheric coefficient
(Seventeenth surface) k = -1.8802, AFour = 7.7264 × 10-6  , A6 = 8.4057 × 10-8
            A8 = -1.7179 x10-11
(18th surface) k = -2.4219, AFour = -1.0470 x10-6  , A6 = 4.0776 × 10-8
            A8 = -8.5017 x10-Ten
f 28.980 63.962 135.097
D1           0.950 14.387 28.677
D2           16.900 7.384 1.200
DThree           6.609 2.941 0.950
fB           39.630 61.697 83.991
L (T) = 169.91, TP (T) = 1.26
fW = 28.98, fT = 135.1, fT / FW = 4.66, f1 = 80.97
f2 = -16.24, fThree = 46.23, fFour = 61.35, f1 / | F2 | = 4.98
| f2 | / FT = 0.12, | f2 | / FThree = 0.35, h = 21.633mm
d41 =0, d41/ H = 0
[0043]
Figure 0004642958
Figure 0004642958
[0044]
Figure 0004642958
Figure 0004642958
[0045]
Figure 0004642958
Figure 0004642958
[0046]
Figure 0004642958
Figure 0004642958
Where r1 , R2 , ... are the radius of curvature of each lens surface, d1 , D2 , ... are the thickness of each lens and the lens interval, n1 , N2 , ... are the refractive indices of each lens, ν1 , Ν2 , ... are Abbe numbers of each lens.
[0047]
The first embodiment is configured as shown in FIG. 1, and from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. The first group moves to the object side upon zooming from the wide end to the tele end, the second group moves to increase the distance from the first group, and the third group is the second group. The fourth lens group is a zoom lens that moves so that the distance between the third lens group and the third lens group decreases.
[0048]
    The second group includes a first lens component having a negative meniscus lens having a convex surface from the object side toward the object side and a second lens component having a positive refractive power (a negative lens and a positive lens as a whole are negative. Lens component having a refractive power) and a third lens component having a negative refractive power (a lens component made up of a negative lens and a positive lens). A positive lens with a refractive power stronger than the surface and the lens closest to the image side is the negative lens.A certain lens componentThe fourth lens group has a positive lens on the object side and a negative lens on the image side (consisting of a positive lens and a negative lens from the object side). The first lens component has a first lens component), and both surfaces of the positive lens and the negative lens facing each other are first adjacent surfaces having a concave surface facing the object side. The fourth group includes a lens component (second lens component) composed of the first lens component and a biconvex lens, and a lens component (third lens component) composed of a positive lens and a negative meniscus lens. The opposite surfaces of the positive lens and negative meniscus lens of the third lens component are the second adjacent surfaces with the concave surface facing the object side.
[0049]
The zoom lens of Example 1 satisfies all the conditions (1) to (5).
[0050]
In the second embodiment, the negative third lens component of the second group is a cemented lens in which a negative lens and a positive lens are cemented, and the positive lens of the first lens component of the fourth group is configured as shown in FIG. And the negative lens are cemented, and the positive lens and the negative lens of the third lens component are cemented, so that the first and second adjacent surfaces are both cemented surfaces.
[0051]
In Example 2, the conditions (1), (2), and (3) are satisfied.
[0052]
In Example 3, as shown in FIG. 3, the third lens component of the second group is composed of one negative lens, the first lens component of which the fourth group is composed of a positive lens, and the cemented structure in which the positive lens and the negative lens are cemented together. The second lens component of the lens and a cemented lens obtained by cementing a positive lens and a negative lens are different from the first embodiment in that the first and second adjacent surfaces are cemented surfaces.
[0053]
This Example 3 satisfies the conditions (1), (2), and (3).
[0054]
Example 4 is a zoom lens having the same configuration as that of Example 3 as shown in FIG.
[0055]
This Example 4 satisfies the conditions (1), (2), and (3).
[0056]
    Reference example5 has a configuration as shown in FIG. 5, and the second lens unit includes a first lens component of a negative meniscus lens, a second lens component of a cemented lens in which a negative lens and a positive lens are cemented, and a third lens component of the negative lens. The third group is composed of only a lens component composed of a positive lens and a negative lens, that is, a positive lens and a negative lens, and the fourth group is composed of a first lens component of the positive lens, a positive lens, and a negative lens. It consists of the second lens component of the lens and the third lens component of the positive meniscus lens. The first lens component (biconvex lens) of the fourth group is an aspheric lens.
[0057]
    thisReference exampleSatisfies the conditions (1), (2), and (3).
[0058]
    thisReference exampleUses an aspherical surface, thereby realizing a zoom lens having good performance with a very small number of lenses.
[0059]
Examples 6 to 9 are zoom lenses having configurations similar to those of Example 3 as shown in FIGS.
[0060]
These examples all satisfy the conditions (1), (2), and (3).
The aberration states of Examples 1 to 9 described above are as shown in FIGS. 10 to 18 and all have good optical performance.
In the aberration diagrams, the upper row is for the wide end, the middle row is for the intermediate focal length, and the lower row is for the telephoto end.
[0061]
    Of the present inventionReference exampleThe shape of the aspherical surface provided in is expressed by the following equation when the optical axis direction is the x axis and the direction perpendicular to the optical axis is the y axis.
    x = (y2/ R) / [1+ {1- (1 + k) (y / r)2}1/2]
            + AFouryFour+ A6y6+ A8y8+ ...
    Where r is the radius of curvature of the reference sphere, k, AFour, A6, A8... Are aspherical coefficients.
[0062]
The zoom lens described below also achieves the object of the present invention.
[0063]
(1) A compact high-magnification wide-angle zoom lens that satisfies the following condition (2) in the zoom lens according to claim 1 or 2.
(2) 0.07 <| f2 | / FT <0.16
[0064]
(2) In the zoom lens according to claim 1 or 3 of the claims or the above-mentioned item (1), both surfaces including a positive lens and a negative lens from the object side and facing each other are concave on the object side. A small, high-magnification, wide-angle zoom lens that faces the second adjacent surface.
[0065]
(3) In the zoom lens according to claim 1 or 2 in the claims, or the zoom lens according to (1) or (2), the lens component having a positive refractive power whose most image side in the third group is a negative lens is an object. A compact high-magnification wide-angle zoom lens that is a cemented lens consisting of a positive lens and a negative lens in order from the side.
[0066]
(4) In the zoom lens according to claim 1, 2 or 3, or (1), (2) or (3), the second lens component in the second group is on the object side. A compact, high-magnification, wide-angle zoom lens consisting of a negative lens and a positive lens.
[0067]
(5) A compact high-magnification wide-angle zoom lens that is a cemented lens in which the negative lens and the positive lens of the second lens component in the second group are cemented in the zoom lens described in the above section (4).
[0068]
(6) The zoom lens according to claim 1, 2 or 3, or (1), (2), (3), (4) or (5), wherein A compact high-magnification wide-angle zoom lens whose third lens component consists of a single negative lens.
[0069]
(7) A zoom lens according to claim 1, 2 or 3, or (1), (2), (3), (4), (5) or (6), A compact high-magnification wide-angle zoom lens having a meniscus air lens having a refractive power stronger on the object side than on the image side.
[0070]
(8) A zoom lens according to claim 1, 2 or 3, or (1), (2), (3), (4), (5) or (6), A compact high-magnification wide-angle zoom lens that satisfies the following condition (3).
(3) 0.3 <| f2 | / FThree <0.45
[0071]
(9) Claim 1, 2 or 3 of the claims or the above (1), (2), (3), (4), (5), (6), (7) or (8) A compact high-magnification wide-angle zoom lens that satisfies the following condition (4):
(4) 0 ≦ d42/H≦0.05
[0072]
(10) A compact high-magnification wide-angle zoom lens satisfying the following condition (5), according to the zoom lens described in (2) above.
(5) 0 ≦ d42/H≦0.05
[0073]
(11) Claims 1, 2 or 3 of the claims or the above (1), (2), (3), (4), (5), (6), (7) or (8) A small high-magnification / wide-angle zoom lens, wherein the first adjacent surface is a cemented surface.
[0074]
(12) The zoom lens according to (2), wherein the second adjacent surface is a cemented surface.
[0075]
(13) Claims 1, 2 or 3 of the claims or (1), (2), (3), (4), (5), (6), (7), (8), (9) A zoom lens described in the item (10), (11) or (12), wherein the zoom ratio is a high-magnification zoom lens with a zoom ratio exceeding 4.
[0076]
(14) Claims 1, 2 or 3 of the claims or the above (1), (2), (3), (4), (5), (6), (7), (8), (9) A zoom lens described in the item (10), (11) or (12), wherein the zoom ratio is a high-magnification wide-angle zoom lens with a zoom ratio exceeding 4.6.
[0077]
(15) Claims 1, 2 or 3 of the claims or the above (1), (2), (3), (4), (5), (6), (7), (8), (9) A zoom lens according to (10), (11), (12), (13) or (14), wherein the telephoto ratio is 1.3 or less.
[0078]
(16) Claims 1, 2 or 3 of the claims or the above (1), (2), (3), (4), (5), (6), (7), (8), (9) A zoom lens according to (10), (11), (12), (13) or (14), wherein the telephoto ratio is 1.26 or less.
[0079]
(17) Claims 1, 2 or 3 of the claims or the above (1), (2), (3), (4), (5), (6), (7), (8), The zoom lens according to (9), (10), (11), (12), (13), (14), (15) or (16), and having a small and high field angle 2ω exceeding 65 ° Variable magnification wide-angle zoom lens.
[0080]
(18) Claims 1, 2 or 3 of the claims or (1), (2), (3), (4), (5), (6), (7), (8), The zoom lens according to (9), (10), (11), (12), (13), (14), (15), or (16), and a small and high zoom lens with an angle of view 2ω exceeding 75 ° Variable magnification wide-angle zoom lens.
[0081]
【The invention's effect】
According to the present invention, the zoom ratio is a high zoom ratio exceeding 4; the telephoto ratio at the tele end is 1.3; the total length is short; the wide angle of view at the wide end is 65 ° or more; Thus, it is possible to realize a small high-magnification wide-angle zoom lens with good performance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a second embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a third embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of a fourth embodiment of the present invention.
FIG. 5 is a diagram showing a configuration of a fifth embodiment of the present invention.
FIG. 6 is a diagram showing a configuration of a sixth embodiment of the present invention.
FIG. 7 is a diagram showing a configuration of a seventh embodiment of the present invention.
FIG. 8 is a diagram showing a configuration of an eighth embodiment of the present invention.
FIG. 9 is a diagram showing a configuration of a ninth embodiment of the present invention.
FIG. 10 is an aberration curve diagram of Example 1 of the present invention.
FIG. 11 is an aberration curve diagram of Example 2 of the present invention.
FIG. 12 is an aberration curve diagram of Example 3 of the present invention.
FIG. 13 is an aberration curve diagram of Example 4 of the present invention.
FIG. 14 is an aberration curve diagram of Example 5 of the present invention.
FIG. 15 is an aberration curve diagram of Example 6 of the present invention.
FIG. 16 is an aberration curve diagram of Example 7 of the present invention.
FIG. 17 is an aberration curve diagram of Example 8 of the present invention.
FIG. 18 is an aberration curve diagram of Example 9 of the present invention.

Claims (15)

物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、ワイド端からテレ端への変倍に際して、第1群が物体側へ移動し、第2群が第1群との間隔を増大するように移動し、第3群が第2群との間隔が狭くなるように移動し、第4群が第3群との間隔がワイド端よりもテレ端の方が狭くなるように移動し、前記第2群が物体側から順に、物体側に凸面を向けた負のメニスカスレンズである第1レンズ成分と負レンズと正レンズとからなり正の屈折力を有する第2レンズ成分と負レンズと正レンズ又は一つの負レンズからなる負の屈折力を有する第3レンズ成分とよりなり、各々の成分が空気間隔を挟んで構成され、前記第3群が物体側の面が像側の面よりも強い屈折力を有する正レンズとその像側に正レンズと像側の負レンズである全体として正または負の屈折力を有するレンズ成分とよりなり、前記第4群が正レンズとその像側の負レンズとを有し、前記正レンズと前記負レンズの向かい合う各面が共に物体側に凹面を向けた第1の隣接面を有し、且つ、前記第4群が、前記第1の隣接面よりも像側に、更に物体側より正レンズと負レンズを含み互いに向かい合う面がいずれも物体側に凹面を向けた第2の隣接面を有し、下記条件(1)、(4)、(5)を満足する小型高変倍広角ズームレンズ。
(1) 4.3<f1 /|f2 |<6.3
(4) 0≦d41/h≦0.05
(5) 0≦d42/h≦0.05
ただし、f1 ,f2 は夫々第1群,第2群の焦点距離、d41は第4群の第1の隣接面の間隔、d42は第4群の第2の隣接面の間隔、hは最大撮影像高である。
In order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. When zooming from the wide end to the tele end, the first group moves to the object side, the second group moves so as to increase the distance from the first group, and the third group is the distance from the second group. The fourth group moves so that the distance from the third group is narrower at the tele end than at the wide end, and the second group has a convex surface on the object side in order from the object side. A negative meniscus lens having a negative refractive power composed of a first lens component, a negative lens and a positive lens, and a second lens component having a positive refractive power and a negative lens and a positive lens or one negative lens. It is composed of a third lens component, and each component is configured with an air gap in between, and the third group has an object side surface on the image side A positive lens having a refractive power stronger than that of the surface, a positive lens on the image side, and a lens component having a positive or negative refractive power as a whole. A negative lens on the image side, each of the opposing surfaces of the positive lens and the negative lens has a first adjacent surface with a concave surface facing the object side, and the fourth group includes the first lens Further, the surfaces adjacent to each other including the positive lens and the negative lens from the object side have a second adjacent surface with the concave surface facing the object side, and the following conditions (1) and (4) ) And (5) satisfying (5).
(1) 4.3 <f 1 / | f 2 | <6.3
(4) 0 ≦ d 41 /h≦0.05
(5) 0 ≦ d 42 /h≦0.05
Where f 1 and f 2 are the focal lengths of the first group and the second group, respectively, d 41 is the distance between the first adjacent surfaces of the fourth group, d 42 is the distance between the second adjacent surfaces of the fourth group, h is the maximum photographed image height.
下記条件(2)を満足することを特徴とする請求項1の小型高変倍広角ズームレンズ。
(2) 0.07<|f2 |/fT <0.16
ただし、f2 は第2群の焦点距離、fT はテレ端におけるズームレンズ全系の焦点距離である。
2. The compact high variable magnification wide-angle zoom lens according to claim 1, wherein the following condition (2) is satisfied.
(2) 0.07 <| f 2 | / f T <0.16
Here, f 2 is the focal length of the second group, and f T is the focal length of the entire zoom lens system at the telephoto end.
物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、ワイド端からテレ端への変倍に際して、第1群が物体側へ移動し、第2群が第1群との間隔を増大するように移動し、第3群が第2群との間隔が狭くなるように移動し、第4群が第3群との間隔がワイド端よりもテレ端の方が狭くなるように移動し、前記第2群が物体側から順に、物体側に凸面を向けた負のメニスカスレンズである第1レンズ成分と負レンズと正レンズとからなり正の屈折力を有する第2レンズ成分と負レンズと正レンズ又は一つの負レンズからなる負の屈折力を有する第3レンズ成分とよりなり、各々の成分が空気間隔を挟んで構成され、前記第3群が物体側の面が像側の面よりも強い屈折力を有する正レンズとその像側に正レンズと像側の負レンズである全体として正または負の屈折力を有するレンズ成分とよりなり、該正または負の屈折力のレンズ成分が物体側から順に正レンズと負レンズからなる接合レンズであり、前記第4群が正レンズとその像側の負レンズとを有し、前記正レンズと前記負レンズの向かい合う各面が共に物体側に凹面を向けた第1の隣接面を有し、且つ、前記第4群が、前記第1の隣接面よりも像側に、更に物体側より正レンズと負レンズを含み互いに向かい合う面がいずれも物体側に凹面を向けた第2の隣接面を有し、下記条件(4)、(5)を満足する小型高変倍広角ズームレンズ。
(4) 0≦d41/h≦0.05
(5) 0≦d42/h≦0.05
ただし、d41は第4群の第1の隣接面の間隔、d42は第4群の第2の隣接面の間隔、hは最大撮影像高である。
In order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. When zooming from the wide end to the tele end, the first group moves to the object side, the second group moves so as to increase the distance from the first group, and the third group is the distance from the second group. The fourth group moves so that the distance from the third group is narrower at the tele end than at the wide end, and the second group has a convex surface on the object side in order from the object side. A negative meniscus lens having a negative refractive power composed of a first lens component, a negative lens and a positive lens, and a second lens component having a positive refractive power and a negative lens and a positive lens or one negative lens. It is composed of a third lens component, and each component is configured with an air gap in between, and the third group has an object side surface on the image side A positive lens having a refractive power stronger than the surface, a positive lens on the image side, and a lens component having a positive or negative refractive power as a whole, and a lens having the positive or negative refractive power The component is a cemented lens composed of a positive lens and a negative lens in order from the object side, and the fourth group includes a positive lens and a negative lens on the image side, and the surfaces facing the positive lens and the negative lens are both A first adjacent surface having a concave surface facing the object side, and the fourth group is located on the image side of the first adjacent surface, and further includes a positive lens and a negative lens on the object side, and faces each other. Have a second adjacent surface with the concave surface facing the object side and satisfy the following conditions (4) and (5).
(4) 0 ≦ d 41 /h≦0.05
(5) 0 ≦ d 42 /h≦0.05
Here, d 41 is the distance between the first adjacent surfaces of the fourth group, d 42 is the distance between the second adjacent surfaces of the fourth group, and h is the maximum photographed image height.
物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、ワイド端からテレ端への変倍に際して、第1群が物体側へ移動し、第2群が第1群との間隔を増大するように移動し、第3群が第2群との間隔が狭くなるように移動し、第4群が第3群との間隔がワイド端よりもテレ端の方が狭くなるように移動し、前記第2群が物体側から順に、物体側に凸面を向けた負のメニスカスレンズである第1レンズ成分と負レンズと正レンズとからなり正の屈折力を有する第2レンズ成分と負レンズと正レンズ又は一つの負レンズからなる負の屈折力を有する第3レンズ成分とよりなり、各々の成分が空気間隔を挟んで構成され、前記第2レンズ成分の前記負レンズと前記正レンズが接合された接合レンズを構成し、前記第3群が物体側の面が像側の面よりも強い屈折力を有する正レンズとその像側に正レンズと像側の負レンズである全体として正または負の屈折力を有するレンズ成分とよりなり、前記第4群が正レンズとその像側の負レンズとを有し、前記正レンズと前記負レンズの向かい合う各面が共に物体側に凹面を向けた第1の隣接面を有し、且つ、前記第4群が、前記第1の隣接面よりも像側に、更に物体側より正レンズと負レンズを含み互いに向かい合う面がいずれも物体側に凹面を向けた第2の隣接面を有し、下記条件(4)、(5)を満足する小型高変倍広角ズームレンズ。
(4) 0≦d41/h≦0.05
(5) 0≦d42/h≦0.05
ただし、d41は第4群の第1の隣接面の間隔、d42は第4群の第2の隣接面の間隔、hは最大撮影像高である。
In order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. When zooming from the wide end to the tele end, the first group moves to the object side, the second group moves so as to increase the distance from the first group, and the third group is the distance from the second group. The fourth group moves so that the distance from the third group is narrower at the tele end than at the wide end, and the second group has a convex surface on the object side in order from the object side. A negative meniscus lens having a negative refractive power composed of a first lens component, a negative lens and a positive lens, and a second lens component having a positive refractive power and a negative lens and a positive lens or one negative lens. Each of the components is formed with an air gap in between, and the negative lens of the second lens component is And a positive lens in which the third lens unit has a refractive power stronger than the surface on the object side than the surface on the image side, and a negative lens on the image side. A lens component having a positive or negative refractive power as a whole, the fourth group includes a positive lens and a negative lens on the image side thereof, and each surface facing the positive lens and the negative lens is Both have a first adjacent surface with a concave surface facing the object side, and the fourth group is located closer to the image side than the first adjacent surface and further includes a positive lens and a negative lens from the object side. A small high-magnification wide-angle zoom lens that has a second adjacent surface with a concave surface facing the object side and satisfies the following conditions (4) and (5).
(4) 0 ≦ d 41 /h≦0.05
(5) 0 ≦ d 42 /h≦0.05
Here, d 41 is the distance between the first adjacent surfaces of the fourth group, d 42 is the distance between the second adjacent surfaces of the fourth group, and h is the maximum photographed image height.
請求項1乃至の何れか一項に記載するズームレンズで、第2群中の第3レンズ成分が負レンズ1枚よりなることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 4, miniature high magnification wide-angle zoom lens, wherein the third lens component in the second group consists of one negative lens. 請求項1乃至の何れか一項に記載するズームレンズで、第4群中に像側の面よりも物体側の面がより強い屈折力を有するメニスカス形状の空気レンズを有することを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 5, and characterized in that the surface on the object side from the surface on the image side during the fourth group has an air lens of meniscus shape having a stronger refractive power A compact high-magnification wide-angle zoom lens. 物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、ワイド端からテレ端への変倍に際して、第1群が物体側へ移動し、第2群が第1群との間隔を増大するように移動し、第3群が第2群との間隔が狭くなるように移動し、第4群が第3群との間隔がワイド端よりもテレ端の方が狭くなるように移動し、前記第2群が物体側から順に、物体側に凸面を向けた負のメニスカスレンズである第1レンズ成分と負レンズと正レンズとからなり正の屈折力を有する第2レンズ成分と負レンズと正レンズ又は一つの負レンズからなる負の屈折力を有する第3レンズ成分とよりなり、各々の成分が空気間隔を挟んで構成され、前記第3群が物体側の面が像側の面よりも強い屈折力を有する正レンズとその像側に正レンズと像側の負レンズである全体として正または負の屈折力を有するレンズ成分とよりなり、前記第4群が正レンズとその像側の負レンズとを有し、前記正レンズと前記負レンズの向かい合う各面が共に物体側に凹面を向けた第1の隣接面を有し、且つ、前記第4群が、前記第1の隣接面よりも像側に、更に物体側より正レンズと負レンズを含み互いに向かい合う面がいずれも物体側に凹面を向けた第2の隣接面を有し、下記条件(3)、(4)、(5)を満足する小型高変倍広角ズームレンズ。
(3) 0.3<|f2 |/f3 <0.45
(4) 0≦d41/h≦0.05
(5) 0≦d42/h≦0.05
ただし、f2 ,f3 は夫々第2群,第3群の焦点距離、d41は第4群の第1の隣接面の間隔、d42は第4群の第2の隣接面の間隔、hは最大撮影像高である。
In order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. When zooming from the wide end to the tele end, the first group moves to the object side, the second group moves so as to increase the distance from the first group, and the third group is the distance from the second group. The fourth group moves so that the distance from the third group is narrower at the tele end than at the wide end, and the second group has a convex surface on the object side in order from the object side. A negative meniscus lens having a negative refractive power composed of a first lens component, a negative lens and a positive lens, and a second lens component having a positive refractive power and a negative lens and a positive lens or one negative lens. It is composed of a third lens component, and each component is configured with an air gap in between, and the third group has an object side surface on the image side A positive lens having a refractive power stronger than that of the surface, a positive lens on the image side, and a lens component having a positive or negative refractive power as a whole. A negative lens on the image side, each of the opposing surfaces of the positive lens and the negative lens has a first adjacent surface with a concave surface facing the object side, and the fourth group includes the first lens Further, the surfaces adjacent to each other including the positive lens and the negative lens from the object side have a second adjacent surface with the concave surface facing the object side, and the following conditions (3) and (4) ) And (5) satisfying (5).
(3) 0.3 <| f 2 | / f 3 <0.45
(4) 0 ≦ d 41 /h≦0.05
(5) 0 ≦ d 42 /h≦0.05
Where f 2 and f 3 are the focal lengths of the second group and the third group, respectively, d 41 is the distance between the first adjacent surfaces of the fourth group, d 42 is the distance between the second adjacent surfaces of the fourth group, h is the maximum photographed image height.
請求項1乃至の何れか一項に記載するズームレンズで、第1の隣接面が接合面であることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 7, compact high magnification wide-angle zoom lens in which the first abutment surface is characterized in that it is a joint surface. 物体側より順に、正の屈折力を有する第1群と、負の屈折力を有する第2群と、正の屈折力を有する第3群と、正の屈折力を有する第4群とよりなり、ワイド端からテレ端への変倍に際して、第1群が物体側へ移動し、第2群が第1群との間隔を増大するように移動し、第3群が第2群との間隔が狭くなるように移動し、第4群が第3群との間隔がワイド端よりもテレ端の方が狭くなるように移動し、前記第2群が物体側から順に、物体側に凸面を向けた負のメニスカスレンズである第1レンズ成分と負レンズと正レンズとからなり正の屈折力を有する第2レンズ成分と負レンズと正レンズ又は一つの負レンズからなる負の屈折力を有する第3レンズ成分とよりなり、各々の成分が空気間隔を挟んで構成され、前記第3群が物体側の面が像側の面よりも強い屈折力を有する正レンズとその像側に正レンズと像側の負レンズである全体として正または負の屈折力を有するレンズ成分とよりなり、前記第4群が正レンズとその像側の負レンズとを有し、前記正レンズと前記負レンズの向かい合う各面が共に物体側に凹面を向けた第1の隣接面を有し、且つ、前記第4群が、前記第1の隣接面よりも像側に、更に物体側より正レンズと負レンズを含み互いに向かい合う面がいずれも物体側に凹面を向けた第2の隣接面を有し、前記第2の隣接面が接合面であり、下記条件(4)、(5)’を満足することを特徴とする小型高変倍広角ズームレンズ。
(4) 0≦d41/h≦0.05
(5)’ 0=d42/h
ただし、d41は第4群の第1の隣接面の間隔、d42は第4群の第2の隣接面の間隔、hは最大撮影像高である。
In order from the object side, a first group having a positive refractive power, a second group having a negative refractive power, a third group having a positive refractive power, and a fourth group having a positive refractive power. When zooming from the wide end to the tele end, the first group moves to the object side, the second group moves so as to increase the distance from the first group, and the third group is the distance from the second group. The fourth group moves so that the distance from the third group is narrower at the tele end than at the wide end, and the second group has a convex surface on the object side in order from the object side. A negative meniscus lens having a negative refractive power composed of a first lens component, a negative lens and a positive lens, and a second lens component having a positive refractive power and a negative lens and a positive lens or one negative lens. It is composed of a third lens component, and each component is configured with an air gap in between, and the third group has an object side surface on the image side A positive lens having a refractive power stronger than that of the surface, a positive lens on the image side, and a lens component having a positive or negative refractive power as a whole. A negative lens on the image side, each of the opposing surfaces of the positive lens and the negative lens has a first adjacent surface with a concave surface facing the object side, and the fourth group includes the first lens Further, the surfaces facing each other including the positive lens and the negative lens from the object side have a second adjacent surface with the concave surface facing the object side, and the second adjacent surface is joined. A compact high-magnification wide-angle zoom lens characterized by satisfying the following conditions (4) and (5) ′.
(4) 0 ≦ d 41 /h≦0.05
(5) '0 = d 42 / h
Here, d 41 is the distance between the first adjacent surfaces of the fourth group, d 42 is the distance between the second adjacent surfaces of the fourth group, and h is the maximum photographed image height.
請求項1乃至の何れか一項に記載するズームレンズで、変倍比が4を超えることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 9, small high magnification wide-angle zoom lens, wherein the zoom ratio is greater than 4. 請求項1乃至の何れか一項に記載するズームレンズで、変倍比が4.6を超えることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 9, small high magnification wide-angle zoom lens, wherein the zoom ratio is greater than 4.6. 請求項1乃至11の何れか一項に記載するズームレンズで、望遠比が1.3以下であることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 11, small high magnification wide-angle zoom lens, wherein the telephoto ratio is 1.3 or less. 請求項1乃至11の何れか一項に記載するズームレンズで、望遠比が1.26以下であることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 11, small high magnification wide-angle zoom lens, wherein the telephoto ratio is 1.26 or less. 請求項1乃至13の何れか一項に記載するズームレンズで、画角2ωが65°を超えることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 13, small high magnification wide-angle zoom lens angle 2ω is equal to or more than 65 °. 請求項1乃至13の何れか一項に記載するズームレンズで、画角2ωが75°を超えることを特徴とする小型高変倍広角ズームレンズ。In the zoom lens according to any one of claims 1 to 13, small high magnification wide-angle zoom lens angle 2ω is equal to or more than 75 °.
JP2000013803A 2000-01-24 2000-01-24 Compact high-magnification wide-angle zoom lens Expired - Fee Related JP4642958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000013803A JP4642958B2 (en) 2000-01-24 2000-01-24 Compact high-magnification wide-angle zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013803A JP4642958B2 (en) 2000-01-24 2000-01-24 Compact high-magnification wide-angle zoom lens

Publications (3)

Publication Number Publication Date
JP2001208970A JP2001208970A (en) 2001-08-03
JP2001208970A5 JP2001208970A5 (en) 2007-01-25
JP4642958B2 true JP4642958B2 (en) 2011-03-02

Family

ID=18541342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013803A Expired - Fee Related JP4642958B2 (en) 2000-01-24 2000-01-24 Compact high-magnification wide-angle zoom lens

Country Status (1)

Country Link
JP (1) JP4642958B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931136B2 (en) 2007-05-22 2012-05-16 オリンパスイメージング株式会社 Zoom lens
JP6467900B2 (en) * 2014-12-16 2019-02-13 リコーイメージング株式会社 Zoom lens system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886963A (en) * 1994-09-19 1996-04-02 Canon Inc Zoom lens
JPH10133112A (en) * 1996-10-25 1998-05-22 Nikon Corp Large-diameter zoom lens
JPH1164729A (en) * 1997-08-19 1999-03-05 Minolta Co Ltd Zoom lens having camera shake correction function
JPH1164728A (en) * 1997-08-19 1999-03-05 Minolta Co Ltd Zoom lens having camera shake correction function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886963A (en) * 1994-09-19 1996-04-02 Canon Inc Zoom lens
JPH10133112A (en) * 1996-10-25 1998-05-22 Nikon Corp Large-diameter zoom lens
JPH1164729A (en) * 1997-08-19 1999-03-05 Minolta Co Ltd Zoom lens having camera shake correction function
JPH1164728A (en) * 1997-08-19 1999-03-05 Minolta Co Ltd Zoom lens having camera shake correction function

Also Published As

Publication number Publication date
JP2001208970A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
JP3710609B2 (en) Small zoom lens
JP3686178B2 (en) Zoom lens
JP3416690B2 (en) Small zoom lens
JP3230523B2 (en) Internal focusing zoom lens
JP4313864B2 (en) Zoom lens
US6498688B2 (en) Zoom lens system
JPH1020193A (en) Zoom lens
JPH0527166A (en) Two-group zoom lens
JP3486457B2 (en) High magnification zoom lens including wide angle range
JP3369598B2 (en) Zoom lens
JP3394624B2 (en) Zoom lens
JP3733355B2 (en) Zoom lens
JP2002365549A (en) Zoom lens and optical equipment having the same
JPH112762A (en) Zoom lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JPH116958A (en) Zoom lens
JP4360088B2 (en) Zoom lens
JPH0640170B2 (en) High-magnification wide-angle zoom lens
JPH05127082A (en) Small-sized zoom lens
JP2676367B2 (en) Small variable focal length lens
JP2576607B2 (en) Small zoom lens
JPH11211982A (en) Zoom lens
JP4642958B2 (en) Compact high-magnification wide-angle zoom lens
JPH10282415A (en) Zoom lens
JP6549762B2 (en) Zoom lens

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees