JP4642250B2 - Method for producing porous film - Google Patents

Method for producing porous film Download PDF

Info

Publication number
JP4642250B2
JP4642250B2 JP2001037491A JP2001037491A JP4642250B2 JP 4642250 B2 JP4642250 B2 JP 4642250B2 JP 2001037491 A JP2001037491 A JP 2001037491A JP 2001037491 A JP2001037491 A JP 2001037491A JP 4642250 B2 JP4642250 B2 JP 4642250B2
Authority
JP
Japan
Prior art keywords
film
porous film
molecular weight
parts
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001037491A
Other languages
Japanese (ja)
Other versions
JP2002240157A (en
Inventor
豊 岸井
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2001037491A priority Critical patent/JP4642250B2/en
Publication of JP2002240157A publication Critical patent/JP2002240157A/en
Application granted granted Critical
Publication of JP4642250B2 publication Critical patent/JP4642250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質フィルムの製造方法に関する。本発明の製造方法により得られた多孔質フィルムは、例えば、各種フィルター、吸液素材、気体や液体の導通材、電池用セパレータなどに好ましく使用される。
【0002】
ポリオレフィン粒子のような樹脂粉末を用いて多孔質フィルムを製造する方法としては、例えば、金型に樹脂粉末を充填しこれを加熱焼結し、得られた焼結体をフィルム状に切削する方法がある。この他に、板状若しくはフィルム状の支持体の上に、樹脂粉末を直接塗布し、これを加熱焼結する方法でも、多孔質フィルムを製造することができる。前記後者の方法において、粒径100μm以下の樹脂粉末を使用する時は、凝集を防止するために、分散媒を使用することもある。例えば、特開平4−292856号公報および特開平4−296447号公報では、樹脂粉末を有機系および水系分散媒と共に混合して分散物を調製し、これを支持体上に塗布してシート状に成形し、これを徐々に加熱して前記分散媒を蒸発除去し、その後焼結して多孔質フィルムを作製している。しかし、この製造方法により得られる多孔質フィルムの厚みは300μm程度と厚めである。この製造方法で、薄膜フィルムを得るために、分散媒を少なくして支持体上に塗布し、前記分散媒の蒸発除去を行うと、この工程でクラックが生じやすく、得られる多孔質フィルムが欠陥品となる。また、この製造方法において、塗工機等で連続して塗工した場合、機械の振動等によりクラックが発生しやすいため、塗工速度を上げることができない。このように、この製造方法では、クラックを生じることなく薄膜の多孔質フィルムを製造することが困難であった。
【0003】
【発明が解決しようとする課題】
本発明は、このような事情に鑑みなされたもので、クラックを生じることなく薄膜の多孔質フィルムを製造することが可能な製造方法の提供を、その目的とする。
【0004】
【課題を解決するための手段】
前記目的を達成するために、本発明の多孔質フィルムの製造方法は、ポリオレフィン粒子粉末と不揮発性溶媒との混合物をフィルム状に成形し、これを加熱焼結し、その後、前記不揮発性溶媒を除去するという製造方法である。この製造方法によれば、クラックを生じることなく薄膜の多孔質フィルムを製造することができる。この製造方法において、多孔質フィルムは、例えば、10から100μmの厚みで製造される。
【0005】
【発明の実施の形態】
本発明において、前記ポリオレフィン粒子は、粘度平均分子量が10万以上で1600万以下の超高分子量ポリオレフィン粒子が好ましい。特に好ましくは、酸性雰囲気、アルカリ性雰囲気および酸化還元雰囲気で高い化学的安定性を示すことから、前記粘度平均分子量の超高分子量ポリエチレン(UHPE)および超高分子量ポリプロピレンである。焼結後の粒子形状保持の観点から、前記粘度平均分子量の好ましい範囲は、30万から1000万の範囲である。1000万以下であれば、焼結時間が短時間でも粒子相互が容易に結合し、短時間でフィルム状にすることが可能である。前記ポリオレフィン粒子の平均粒子径は、5から50μmの範囲にあることが好ましい。5μm以上であれば、粒子結合による体積収縮が大きくなく、クラックの発生をより効果的に防止できる。また、50μm以下であれば、焼結前の分散物(スラリー)において、ポリオレフィン粒子の沈降速度がそんなに大きくならず、攪拌することなしに均一な分散状態とすることが可能である。前記ポリオレフィン粒子の特に好ましい平均粒子径範囲は、10から30μmの範囲である。
【0006】
前記不揮発性溶媒としては、例えば、ノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィンなどの脂肪族炭化水素または環式炭化水素、沸点がこれらに対応する鉱油留分、およびアルキルジフェニルエーテルなどの芳香族炭化水素系合成油があげられる。前記不揮発性溶媒は、40℃の動粘度が5から70cStのものが好ましい。前記動粘度が5以上であれば加熱焼結時の揮発が低く、70以下であれば、前記溶媒の抽出を長時間かけづに行うことができる。前記動粘度の特に好ましい範囲は、10から65cStの範囲である。前記溶媒の好ましい例は、流動パラフィン、アルキルジフェニルエーテルである。
【0007】
前記ポリオレフィン粒子粉末と前記不揮発性溶媒の混合割合は、特に制限されず、その種類等により適宜決定されるが、前記粒子粉末100質量部に対し、前記溶媒80から500質量部の範囲が好ましい。80質量部以上であれば、前記粒子の凝集を防止でき、また500質量部以下であれば、焼結時に前記粒子が粒子形状を保持しやすくなる。この混合には、例えば、プロペラミキサー、タービンミキサー、ディソルバーなどの一般の攪拌機を使用できる。なお、前記粒子が凝集している場合は、高速回転高剪断型攪拌分散機を使用すればよい。
【0008】
前記ポリオレフィン粒子と前記不揮発性溶媒との混合物は、支持体上にフィルム状に塗布され、加熱焼結される。前記支持体としては、例えば、耐熱性フィルム、金属製ベルトなどのような、焼結時の温度で寸法が変化しないものであれば特に限定されない。前記耐熱性フィルムとしては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、ポリテトラフルオロエチレンフィルム等がある。焼結温度は、ポリオレフィン粒子の融点以上の温度である。焼結時間は、必要とされる厚み、空孔率などにより適宜調整される。例えば、超高分子量ポリエチレンを使用する場合、焼結温度は135℃以上が好ましい。
【0009】
焼結後のフィルムからの前記不揮発性溶媒の除去には、例えば、ヘキサン、ヘプタン等の脂肪族溶媒、メタノール、エタノール等のアルコール類、クロロホルム、塩化メチレン等のハロゲン化溶媒等が使用される。これらの溶媒に焼結後のフィルムを浸漬すれば前記不揮発性溶媒を抽出除去できる。そして、さらにフィルムを加熱して前記除去用の溶媒を蒸発除去する。この蒸発除去時に、フィルムを固定し、寸法が変化しないようにすることが好ましい。固定すれば、前記蒸発除去時のフィルムの収縮が防止される。
【0010】
このようにして、多孔質フィルムが製造できる。この多孔質フィルムを、さらに薄膜化もしくは高強度化したい場合は、延伸や圧延などをしてもよい。
【0011】
【実施例】
つぎに、本発明の実施例について、比較例と併せて説明する。
【0012】
(実施例1)
粘度平均分子量300万のUHPE粉末a(平均粒子径70μm、ヘキスト社製、商品名ホスタレンGUR4186)を390メッシュのふるいにかけて、粗大粒子を除去し、平均粒子径20μmのUHPE粉末を得た。このUHPE100質量部に対し、流動パラフィン(動粘度65cSt、松村石油社製、商品名スモイルP300)を170質量部添加し、ミキサーで攪拌混合してスラリー状物を得た。このスラリー状物を、PETフィルム上に、隙間50μmのドクターブレード装置を使用して塗布した。その後、熱風乾燥機を用い、150℃で15分間焼結した。その後、室温まで自然冷却し、PETフィルムを除去した。得られたフィルムを固定冶具(有効長さ:縦横5×5cm)に挟み、ヘプタン中に浸漬して流動パラフィンを抽出除去した。そして、このフィルムをヘプタンから引き上げ、前記固定冶具に挟んだ状態で室温に放置し、ヘプタンを蒸発除去し、多孔質フィルムを得た。
【0013】
(実施例2)
流動パラフィンの抽出除去時に、固定冶具を使用しなかった以外は、実施例1と同様にして多孔質フィルムを作製した。
【0014】
(実施例3)
前記平均粒子径20μmのUHPE粉末100質量部に対し前記流動パラフィン300質量部を添加した以外は、実施例1と同様にして多孔質フィルムを作製した。
【0015】
(実施例4)
前記平均粒子径20μmのUHPE粉末100質量部に対し前記流動パラフィン90質量部を添加した以外は、実施例1と同様にして多孔質フィルムを作製した。
【0016】
(実施例5)
粘度平均分子量200万のUHPE粉末b(三井化学社製、商品名ミペロンXM−221U、平均粒子径30μm)100質量部に対し、前記流動パラフィン170質量部を添加してミキサーで攪拌混合し、スラリー状物を得た。この後、実施例1と同様の条件で同様の操作を行い、多孔質フィルムを作製した。
【0017】
(実施例6)
前記UHPE粉末aを200メッシュのふるいを用いて粗大粒子を除去し、平均粒子径45μmのUHPE粉末を得た。このUHPE粉末100質量部に前記流動パラフィン170質量部を添加し、ミキサーで攪拌混合してスラリー状物を得た。この後、実施例1と同様の条件で同様の操作を行い多孔質フィルムを製造した。
【0018】
(実施例7)
焼結条件を150℃で30分間とした以外は、実施例1と同様にして多孔質フィルムを作製した。
【0019】
(実施例8)
ドクターブレード装置の隙間を12.5μmにし、焼結条件を140℃で5分間とした以外は、実施例1と同様にして多孔質フィルムを作製した。
【0020】
(実施例9)
焼結条件を150℃で5分間とした以外は、実施例8と同様にして多孔質フィルムを作製した。
【0021】
(実施例10)
粘度平均分子量1000万のUHPE粉末c(三井化学社製、商品名ハイゼックスミリオン630M、平均粒子径180μm)を390メッシュのふるいにかけて粗大粒子を除去し、平均粒子径35μmのUHPE粉末を得た。このUHPE粉末100質量部に対し前記流動パラフィン170質量部を添加し、ミキサーで攪拌混合してスラリー状物を得た。このスラリー状物をPETフィルム上に、隙間100μmのドクターブレード装置を用いて塗布した。この後は、実施例1と同様の条件で同様の操作をして、多孔質フィルムを作製した。
【0022】
(比較例1)
前記平均粒子径20μmのUHPE粉末100質量部にイソプロパノール170質量部を添加し、ミキサーで攪拌混合してスラリー状物を得た。このスラリー状物をPETフィルム上に、隙間30μmのドクターブレード装置を用いて塗布した。その後、熱風乾燥機を用い、150℃で20分間焼結し、その後、室温まで自然冷却し、PETフィルムを除去し、多孔質フィルムを得た。
【0023】
(比較例2)
前記UHPE粉末b100質量部にトルエン200質量部を添加し、ミキサーで攪拌混合して、スラリー状物を調製し、これをシート状に成形した。これを恒温器内に入れ、60℃で30分間加熱してトルエンを蒸発させ、その後、150℃で30分間焼結して、多孔質フィルムを作製した。
【0024】
このようにして作製した実施例1から10および比較例1,2の各多孔質フィルムについて、厚み、空孔率およびクラックの有無を下記の方法で調べた。この結果を下記の表1に示す。
【0025】
(フィルム厚み)
フィルム厚みは、1/1000mmダイヤルゲージを用いて測定した。
【0026】
(空孔率)
多孔質フィルムの面積S(cm2)、膜厚d(cm)、質量m(g)の測定値と、使用材料の比重rから、下記の式を用いて算出した。
空孔率(体積%)=(1−((m/r)/(S×d)))×100
【0027】
(クラックの有無)
多孔質フィルムを光学顕微鏡で観察し、短径100μm以上の穴があるものをクラック有りと評価した。
【0028】

Figure 0004642250
【0029】
前記表1から分かるように、実施例の多孔質フィルムは、フィルム厚みが薄いにもかかわらず、クラックが発生しなかった。これに対し、比較例の多孔質フィルムではクラックが発生した。
【0030】
【発明の効果】
以上のように、本発明の多孔質フィルムの製造方法によれば、クラックが発生することなく薄膜の多孔質フィルムを製造することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a porous film. The porous film obtained by the production method of the present invention is preferably used for various filters, liquid-absorbing materials, gas or liquid conducting materials, battery separators, and the like.
[0002]
As a method for producing a porous film using a resin powder such as polyolefin particles, for example, a method of filling a resin powder in a mold, heating and sintering the mold, and cutting the obtained sintered body into a film shape There is. In addition, a porous film can be produced by a method in which a resin powder is directly applied on a plate-like or film-like support and heated and sintered. In the latter method, when a resin powder having a particle size of 100 μm or less is used, a dispersion medium may be used in order to prevent aggregation. For example, in JP-A-4-292856 and JP-A-4-296447, a resin powder is mixed with an organic and aqueous dispersion medium to prepare a dispersion, and this is applied onto a support to form a sheet. It is molded and gradually heated to evaporate and remove the dispersion medium, and then sintered to produce a porous film. However, the thickness of the porous film obtained by this manufacturing method is as thick as about 300 μm. In this manufacturing method, in order to obtain a thin film, when the dispersion medium is reduced and applied on a support and the dispersion medium is removed by evaporation, cracks are likely to occur in this step, and the resulting porous film is defective. It becomes goods. Moreover, in this manufacturing method, when it coats continuously with a coating machine etc., since it is easy to generate | occur | produce a crack by the vibration etc. of a machine, a coating speed cannot be raised. Thus, with this manufacturing method, it was difficult to manufacture a thin porous film without causing cracks.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object thereof is to provide a production method capable of producing a thin porous film without causing cracks.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a porous film of the present invention comprises forming a mixture of polyolefin particle powder and a non-volatile solvent into a film, heat-sintering the mixture, and then adding the non-volatile solvent to the film. It is a manufacturing method of removing. According to this manufacturing method, a thin porous film can be manufactured without causing cracks. In this production method, the porous film is produced, for example, with a thickness of 10 to 100 μm.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the polyolefin particles are preferably ultra-high molecular weight polyolefin particles having a viscosity average molecular weight of 100,000 or more and 16 million or less. Particularly preferable are ultra high molecular weight polyethylene (UHPE) and ultra high molecular weight polypropylene having the above-mentioned viscosity average molecular weight because they exhibit high chemical stability in an acidic atmosphere, an alkaline atmosphere and an oxidation-reduction atmosphere. From the viewpoint of maintaining the particle shape after sintering, the preferred range of the viscosity average molecular weight is in the range of 300,000 to 10,000,000. If it is 10 million or less, the particles can be easily bonded to each other even if the sintering time is short, and a film can be formed in a short time. The average particle diameter of the polyolefin particles is preferably in the range of 5 to 50 μm. If it is 5 micrometers or more, the volume shrinkage by particle | grain coupling | bonding is not large and generation | occurrence | production of a crack can be prevented more effectively. Moreover, if it is 50 micrometers or less, in the dispersion | distribution (slurry) before sintering, the sedimentation speed | velocity | rate of polyolefin particle | grains will not become so much, and it can be made into a uniform dispersion state, without stirring. A particularly preferred average particle diameter range of the polyolefin particles is in the range of 10 to 30 μm.
[0006]
Examples of the non-volatile solvent include aliphatic hydrocarbons or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, and liquid paraffin, mineral oil fractions having boiling points corresponding to these, and aromatics such as alkyl diphenyl ethers. Examples include hydrocarbon-based synthetic oils. The non-volatile solvent preferably has a kinematic viscosity at 40 ° C. of 5 to 70 cSt. If the kinematic viscosity is 5 or more, volatilization during heat sintering is low, and if it is 70 or less, the solvent can be extracted over a long period of time. A particularly preferred range for the kinematic viscosity is in the range of 10 to 65 cSt. Preferred examples of the solvent are liquid paraffin and alkyl diphenyl ether.
[0007]
The mixing ratio of the polyolefin particle powder and the non-volatile solvent is not particularly limited and is appropriately determined depending on the type and the like, but is preferably in the range of 80 to 500 parts by mass of the solvent with respect to 100 parts by mass of the particle powder. When the amount is 80 parts by mass or more, aggregation of the particles can be prevented, and when the amount is 500 parts by mass or less, the particles easily maintain a particle shape during sintering. For this mixing, for example, a general stirrer such as a propeller mixer, a turbine mixer, or a dissolver can be used. When the particles are agglomerated, a high-speed rotation and high shear type stirring and dispersing machine may be used.
[0008]
The mixture of the polyolefin particles and the non-volatile solvent is applied in the form of a film on a support and heated and sintered. The support is not particularly limited as long as the support does not change in size at the sintering temperature, such as a heat resistant film or a metal belt. Examples of the heat resistant film include a polyethylene terephthalate (PET) film, a polyimide film, and a polytetrafluoroethylene film. The sintering temperature is a temperature equal to or higher than the melting point of the polyolefin particles. The sintering time is appropriately adjusted depending on the required thickness, porosity, and the like. For example, when ultra high molecular weight polyethylene is used, the sintering temperature is preferably 135 ° C. or higher.
[0009]
For removal of the non-volatile solvent from the sintered film, for example, an aliphatic solvent such as hexane or heptane, an alcohol such as methanol or ethanol, a halogenated solvent such as chloroform or methylene chloride, or the like is used. The non-volatile solvent can be extracted and removed by immersing the sintered film in these solvents. Then, the film is further heated to evaporate and remove the removal solvent. At the time of this evaporation removal, it is preferable to fix the film so that the dimensions do not change. If fixed, shrinkage of the film during evaporation removal is prevented.
[0010]
In this way, a porous film can be produced. When it is desired to further reduce the thickness or strength of the porous film, it may be stretched or rolled.
[0011]
【Example】
Next, examples of the present invention will be described together with comparative examples.
[0012]
Example 1
A UHPE powder a (average particle size 70 μm, manufactured by Hoechst, trade name Hostalen GUR4186) having a viscosity average molecular weight of 3 million was passed through a 390 mesh sieve to remove coarse particles to obtain a UHPE powder having an average particle size of 20 μm. To 100 parts by mass of this UHPE, 170 parts by mass of liquid paraffin (kinematic viscosity 65 cSt, manufactured by Matsumura Oil Co., Ltd., trade name Smoyl P300) was added, and the mixture was stirred and mixed with a mixer to obtain a slurry. This slurry was applied onto a PET film using a doctor blade device with a gap of 50 μm. Then, it sintered for 15 minutes at 150 degreeC using the hot air dryer. Then, it naturally cooled to room temperature and removed the PET film. The obtained film was sandwiched between fixed jigs (effective length: vertical and horizontal 5 × 5 cm) and immersed in heptane to extract and remove liquid paraffin. Then, this film was pulled up from heptane and left at room temperature with being sandwiched between the fixing jigs, and heptane was removed by evaporation to obtain a porous film.
[0013]
(Example 2)
A porous film was produced in the same manner as in Example 1 except that no fixing jig was used at the time of extraction and removal of liquid paraffin.
[0014]
(Example 3)
A porous film was produced in the same manner as in Example 1 except that 300 parts by mass of the liquid paraffin was added to 100 parts by mass of the UHPE powder having an average particle size of 20 μm.
[0015]
Example 4
A porous film was produced in the same manner as in Example 1 except that 90 parts by mass of the liquid paraffin was added to 100 parts by mass of the UHPE powder having an average particle diameter of 20 μm.
[0016]
(Example 5)
To 100 parts by mass of UHPE powder b having a viscosity average molecular weight of 2 million (trade name Mipperon XM-221U, average particle size 30 μm, manufactured by Mitsui Chemicals), 170 parts by mass of the above liquid paraffin is added and stirred and mixed with a mixer. A product was obtained. Then, the same operation was performed on the same conditions as Example 1, and the porous film was produced.
[0017]
(Example 6)
Coarse particles were removed from the UHPE powder a using a 200-mesh sieve to obtain UHPE powder having an average particle diameter of 45 μm. To 100 parts by mass of this UHPE powder, 170 parts by mass of the above liquid paraffin was added and stirred and mixed with a mixer to obtain a slurry. Then, the same operation was performed on the conditions similar to Example 1, and the porous film was manufactured.
[0018]
(Example 7)
A porous film was produced in the same manner as in Example 1 except that the sintering conditions were 150 ° C. for 30 minutes.
[0019]
(Example 8)
A porous film was produced in the same manner as in Example 1 except that the gap of the doctor blade device was 12.5 μm and the sintering condition was 140 ° C. for 5 minutes.
[0020]
Example 9
A porous film was produced in the same manner as in Example 8 except that the sintering condition was 150 ° C. for 5 minutes.
[0021]
(Example 10)
A UHPE powder c having a viscosity average molecular weight of 10 million (made by Mitsui Chemicals, trade name: Hi-Z Million 630M, average particle size: 180 μm) was passed through a 390 mesh sieve to remove coarse particles, thereby obtaining a UHPE powder having an average particle size of 35 μm. 170 parts by mass of the liquid paraffin was added to 100 parts by mass of the UHPE powder, and the mixture was stirred and mixed with a mixer to obtain a slurry. This slurry was applied onto a PET film using a doctor blade device having a gap of 100 μm. Thereafter, the same operation was performed under the same conditions as in Example 1 to produce a porous film.
[0022]
(Comparative Example 1)
170 parts by mass of isopropanol was added to 100 parts by mass of UHPE powder having an average particle size of 20 μm, and the mixture was stirred and mixed with a mixer to obtain a slurry. This slurry was applied onto a PET film using a doctor blade device with a gap of 30 μm. Then, using a hot air dryer, it sintered for 20 minutes at 150 degreeC, Then, it naturally cooled to room temperature, the PET film was removed, and the porous film was obtained.
[0023]
(Comparative Example 2)
200 parts by mass of toluene was added to 100 parts by mass of the UHPE powder b, and the mixture was stirred and mixed with a mixer to prepare a slurry, which was formed into a sheet. This was put in a thermostat, heated at 60 ° C. for 30 minutes to evaporate toluene, and then sintered at 150 ° C. for 30 minutes to prepare a porous film.
[0024]
The porous films of Examples 1 to 10 and Comparative Examples 1 and 2 thus produced were examined for thickness, porosity, and presence of cracks by the following methods. The results are shown in Table 1 below.
[0025]
(Film thickness)
The film thickness was measured using a 1/1000 mm dial gauge.
[0026]
(Porosity)
It calculated using the following formula | equation from the measured value of area S (cm < 2 >) of porous film, film thickness d (cm), and mass m (g), and specific gravity r of the material used.
Porosity (volume%) = (1 − ((m / r) / (S × d))) × 100
[0027]
(Presence of cracks)
The porous film was observed with an optical microscope, and a sample having a hole having a short diameter of 100 μm or more was evaluated as having a crack.
[0028]
Figure 0004642250
[0029]
As can be seen from Table 1, cracks did not occur in the porous films of the examples although the film thickness was thin. On the other hand, cracks occurred in the porous film of the comparative example.
[0030]
【The invention's effect】
As described above, according to the method for producing a porous film of the present invention, a thin film porous film can be produced without generating cracks.

Claims (5)

粘度平均分子量が30万〜1000万の範囲であり、かつ、平均粒子径が5〜50μmの範囲の超高分子量ポリオレフィン粒子粉末と不揮発性溶媒との混合物を、焼結時の温度で寸法が変化しない支持体上に塗布してフィルム状に成形し、これを加熱焼結し、その後、前記不揮発性溶媒を除去する厚みが10から100μmの範囲の多孔質フィルムの製造方法。Ranges viscosity average molecular weight of from 300,000 to 10,000,000, and a mixture of ultra-high molecular weight polyolefin particles and non-volatile solvents ranging average particle size of 5 to 50 [mu] m, the dimensions at a temperature in the sintering changes A method for producing a porous film having a thickness in the range of 10 to 100 μm , which is coated on a non-supporting substrate , formed into a film, heated and sintered, and then the nonvolatile solvent is removed. 不揮発性溶媒が、脂肪族炭化水素、環式炭化水素および鉱油留分の少なくとも一つである請求項1記載の製造方法。  The process according to claim 1, wherein the non-volatile solvent is at least one of an aliphatic hydrocarbon, a cyclic hydrocarbon, and a mineral oil fraction. 不揮発性溶媒が、ノナン、デカン、ウンデカン、ドデカン、デカリンおよび流動パラフィンからなる群から選択される少なくとも一つである請求項1記載の製造方法。  The production method according to claim 1, wherein the non-volatile solvent is at least one selected from the group consisting of nonane, decane, undecane, dodecane, decalin, and liquid paraffin. 前記超高分子量ポリオレフィン粒子粉末と前記不揮発性溶媒の混合割合は、前記粒子粉末100質量部に対し、前記溶媒80から500質量部の範囲である請求項1から3のいずれか一項に記載の製造方法。The mixing ratio of the non-volatile solvent with ultra-high molecular weight polyolefin particles, the relative particle powder 100 parts by weight, according to any one of claims 1 to 3 wherein the solvent 80 in the range of 500 parts by weight Production method. 前記フィルム状に成形する工程が、前記超高分子量ポリオレフィン粒子粉末と前記不揮発性溶媒の混合物を支持体上にフィルム状に塗布することにより行われる請求項1から4のいずれか一項に記載の製造方法。Shaping the film shape, the according to any one of claims 1 to 4 which is carried out by applying a mixture of the non-volatile solvent with ultra-high molecular weight polyolefin particles onto a film-like support Production method.
JP2001037491A 2001-02-14 2001-02-14 Method for producing porous film Expired - Fee Related JP4642250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001037491A JP4642250B2 (en) 2001-02-14 2001-02-14 Method for producing porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001037491A JP4642250B2 (en) 2001-02-14 2001-02-14 Method for producing porous film

Publications (2)

Publication Number Publication Date
JP2002240157A JP2002240157A (en) 2002-08-28
JP4642250B2 true JP4642250B2 (en) 2011-03-02

Family

ID=18900609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001037491A Expired - Fee Related JP4642250B2 (en) 2001-02-14 2001-02-14 Method for producing porous film

Country Status (1)

Country Link
JP (1) JP4642250B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883763B2 (en) * 2006-02-27 2012-02-22 日東電工株式会社 Porous sheet manufacturing method and porous sheet obtained by the manufacturing method
JP5529435B2 (en) * 2009-04-16 2014-06-25 日東電工株式会社 Method for producing porous sheet and porous sheet
TWI787379B (en) * 2017-11-08 2022-12-21 日商東洋紡股份有限公司 Production method of polyethylene-based resin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954927A (en) * 1973-02-05 1976-05-04 Sun Ventures, Inc. Method of making porous objects of ultra high molecular weight polyethylene
JPS58109540A (en) * 1981-12-24 1983-06-29 Mitsubishi Plastics Ind Ltd Preparation of porous body
JPS62199631A (en) * 1986-02-26 1987-09-03 Toyo Cloth Kk Production of polyolefin porous membrane
JP2001508479A (en) * 1997-01-11 2001-06-26 ミクロディン モデュルバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシャフト Porous molded body made of thermoplastic polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954927A (en) * 1973-02-05 1976-05-04 Sun Ventures, Inc. Method of making porous objects of ultra high molecular weight polyethylene
JPS58109540A (en) * 1981-12-24 1983-06-29 Mitsubishi Plastics Ind Ltd Preparation of porous body
JPS62199631A (en) * 1986-02-26 1987-09-03 Toyo Cloth Kk Production of polyolefin porous membrane
JP2001508479A (en) * 1997-01-11 2001-06-26 ミクロディン モデュルバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンデイトゲゼルシャフト Porous molded body made of thermoplastic polymer

Also Published As

Publication number Publication date
JP2002240157A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
Kleger et al. 3D printing of salt as a template for magnesium with structured porosity
KR102580897B1 (en) Thickness-limited electrospray deposition
US3954927A (en) Method of making porous objects of ultra high molecular weight polyethylene
US2806256A (en) Method of making microporous film
Blümel et al. Increasing flowability and bulk density of PE-HD powders by a dry particle coating process and impact on LBM processes
CN108699259A (en) Gel containing ANF and nanocomposite
EP3315478A1 (en) Precursor material for additive manufacturing of ceramic parts and methods of producing the same
CN111357061A (en) Polymer matrix composites comprising dielectric particles and methods of making the same
JP4642250B2 (en) Method for producing porous film
Greaves et al. Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: Progress and challenges
Ozden-Yenigun et al. Molecular basis for solvent dependent morphologies observed on electrosprayed surfaces
WO2021006820A1 (en) Immersion precipitation three-dimensional printing
Kotobuki Properties of Al2O3 Pastes Using Inorganic Na2SiO3 Binder and Organic Binder for Direct Ink Writing
CN109071357B (en) Method of adding graphene-based additives to targets used in coatings applying laser ablation
Russell et al. Gelation-based feed-stock technologies for HVOF thermal spray development: Micro-composite powder preparation and HVOF coating microstructure
JP4187314B2 (en) Method for producing porous metal body
Wu et al. Printing parameters and strengthening mechanism of pneumatic injection additive manufacturing with iron powder slurry
JPH0790153B2 (en) Polyolefin permeable membrane and method for producing the same
JPH04270185A (en) High-molecular solid solution binder for processing metal and ceramic powder
Abdulhameed et al. Preparation and characterisation of inexpensive porous kaolin hollow fibre as ceramic membrane supports for gas separation application
NO342507B1 (en) A method for forming av body comprising at least one through-going passage
Wang et al. Fabrication of heterogeneous macroporous materials based on a sequential electrostatic deposition process
CA3199826A1 (en) Method for the manufacture of a self-standing graphene oxide or reduced graphene oxide film
CN113203724A (en) Single-layer close-packed nano-particle hole array structure and preparation method and application thereof
Xie et al. Wetting behaviors of hyperbranched polymer composites within ordered porous template under vibration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees