JP4639630B2 - Water supply device and refrigerator - Google Patents

Water supply device and refrigerator Download PDF

Info

Publication number
JP4639630B2
JP4639630B2 JP2004126629A JP2004126629A JP4639630B2 JP 4639630 B2 JP4639630 B2 JP 4639630B2 JP 2004126629 A JP2004126629 A JP 2004126629A JP 2004126629 A JP2004126629 A JP 2004126629A JP 4639630 B2 JP4639630 B2 JP 4639630B2
Authority
JP
Japan
Prior art keywords
water supply
float
supply container
flow rate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004126629A
Other languages
Japanese (ja)
Other versions
JP2005308321A (en
Inventor
和幸 濱田
かほる 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004126629A priority Critical patent/JP4639630B2/en
Publication of JP2005308321A publication Critical patent/JP2005308321A/en
Application granted granted Critical
Publication of JP4639630B2 publication Critical patent/JP4639630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/122General constructional features not provided for in other groups of this subclass the refrigerator is characterised by a water tank for the water/ice dispenser

Description

本発明は、水を供給するための給水装置に関するものである。   The present invention relates to a water supply apparatus for supplying water.

従来、この種の給水装置としては、冷蔵室に配置された給水容器の水を下部に形成した開閉弁の動作により、水の自由落下で冷蔵室の下方に形成された冷凍室の製氷装置に給水する方式が広く商品化されている。   Conventionally, this type of water supply device is an ice making device for a freezer compartment that is formed below the refrigerator compartment by free-falling water by the operation of an on-off valve that forms the water of a water supply container arranged in the refrigerator compartment below. Water supply methods are widely commercialized.

しかし、この方式では、給水が進み、給水容器の水位が減少すると共に、一回あたりの給水量も減少し、氷の大きさや数量にバラツキが生じるという課題があった。   However, this method has a problem that water supply advances, the water level of the water supply container decreases, and the amount of water supplied per time also decreases, resulting in variations in the size and quantity of ice.

そこで、近年では給水容器に計量容器を構成し、給水精度の向上を図った仕様のものが開発されている(例えば、特許文献1参照)。   Therefore, in recent years, specifications have been developed in which a measuring container is configured as a water supply container to improve water supply accuracy (for example, see Patent Document 1).

図12は特許文献1に記載された従来の自動製氷装置の給水装置の全体構成図および詳細図である。図12に示すように、冷凍室52は冷蔵室51の下方にあり、冷蔵室51と冷凍室52の間の仕切りにはドアスイッチ62が設置されている。冷蔵室51の下段には給水容器コーナー54が設置されており、冷凍室52には製氷機55が設置されている。給水容器コーナー54の中に計量機構60を含んだ水容器組立58とソレノイド57とカサ61を含む給水路63があり、ソレノイド57は駆動手段であり給水路63の外側から配設しており、ソレノイド57の作動軸は給水路63の壁を通って内部へ露出し、かつ上下方向に稼働可能となっており、又、作動軸の先端にはカサ61が配設されている。カサ61は遮断手段でシリコン系の材質であり、連動シャフト69の下端と同軸線上に位置している。給水路63の下で冷凍室52には製氷皿56がある。水容器組立58は水容器59と計量機構60を含んだキャップ70からなっており、計量機構60は流出孔67と流入孔65とエア抜き74を持つ中ケース71と、活性炭73をもつ上ケース72と、中ケース71内に流入孔65側に流入孔65を塞ぐ流入弁66を持ち、流出孔67側に流出孔67を塞ぐ流出弁68と2つの弁をつなぐ連動シャフト69と、流出弁67側の延長上にスプリング75を配設している。連動シャフト69に下方から力がかからない時は、スプリング75により流入弁66は下がり、流出弁68も下がるため流入孔65は開き、流出孔67は閉じている。給水路63内のソレノイド57が作動すると接続したカサは上方へ動き連動シャフト69を下方より上方へ押す。連動シャフト69に下方から力がかかっている時はスプリング75が縮み流入弁66は上り流出弁68が上るため、流入孔65は閉じ、流出孔67は開いている。上ケース72は中ケース71とネジ又はハメアイにより固定され、中ケース71はキャップ70へネジ又はハメアイにて固定されている。   FIG. 12 is an overall configuration diagram and a detailed diagram of a water supply device of a conventional automatic ice making device described in Patent Document 1. As shown in FIG. 12, the freezer compartment 52 is below the refrigerator compartment 51, and a door switch 62 is installed in the partition between the refrigerator compartment 51 and the refrigerator compartment 52. A water supply container corner 54 is installed in the lower stage of the refrigerator compartment 51, and an ice making machine 55 is installed in the freezer compartment 52. There is a water container assembly 58 including a metering mechanism 60 in a water supply container corner 54, a water supply path 63 including a solenoid 57 and a cap 61, and the solenoid 57 is a driving means and is disposed from the outside of the water supply path 63. The operating shaft of the solenoid 57 is exposed to the inside through the wall of the water supply channel 63 and can be operated in the vertical direction. A cap 61 is disposed at the tip of the operating shaft. The cap 61 is a blocking means made of a silicon-based material, and is positioned on the same axis as the lower end of the interlocking shaft 69. There is an ice tray 56 in the freezer compartment 52 under the water supply path 63. The water container assembly 58 includes a cap 70 including a water container 59 and a metering mechanism 60. The metering mechanism 60 includes an inner case 71 having an outflow hole 67, an inflow hole 65, and an air vent 74, and an upper case having activated carbon 73. 72, an inflow valve 66 for closing the inflow hole 65 on the inflow hole 65 side in the middle case 71, an outflow valve 68 for closing the outflow hole 67 on the outflow hole 67 side, an interlocking shaft 69 for connecting the two valves, and an outflow valve A spring 75 is disposed on the extension on the 67 side. When no force is applied to the interlocking shaft 69 from below, the inflow valve 66 is lowered by the spring 75 and the outflow valve 68 is also lowered, so that the inflow hole 65 is opened and the outflow hole 67 is closed. When the solenoid 57 in the water supply channel 63 is activated, the connected cage moves upward and pushes the interlocking shaft 69 upward from below. When a force is applied to the interlocking shaft 69 from below, the spring 75 is contracted and the inflow valve 66 is raised, and the inflow hole 65 is closed, and the outflow hole 67 is open. The upper case 72 is fixed to the middle case 71 with screws or thread eyes, and the middle case 71 is fixed to the cap 70 with screws or thread eyes.

動作としては、ソレノイド57が動作していない時はカサ61は下におりた状態でこの時スプリング75は伸びて連動シャフト69は下がった状態にある。この時流入孔65は開いているため水容器59内の水は活性炭73を通って、上ケース72内へ入り、流入孔65を通って計量室64の中へ入るが流出孔67は閉じているため計量室64の中は水で満水になる。この時、エア抜き74により流入孔65の水の流れはスムーズである。次にソレノイド57が作動するとカサ61は上り接触して連動シャフト69も上昇し、この時流入孔65は閉じ流出孔67は開くため、計量室64の中の水は流出孔67より排出されるが、新しく水容器59の中からは水は補充されないため、計量室64の中の水のみが、給水路63を通って製氷皿56へ流れるため、定量給水となるが、流出孔67にはエア抜き用の孔がないため流出時間は一定ではない、つまりソレノイド57の動作時間が流出時間のバラツキがあっても、常に定量給水を行なうことが可能である。
特開2002−48445号公報
In operation, when the solenoid 57 is not operating, the cover 61 is in a down state, and at this time, the spring 75 is extended and the interlocking shaft 69 is in a down state. At this time, since the inflow hole 65 is open, the water in the water container 59 passes through the activated carbon 73 and enters the upper case 72 and enters the measuring chamber 64 through the inflow hole 65, but the outflow hole 67 is closed. Therefore, the inside of the measuring chamber 64 is filled with water. At this time, the flow of water in the inflow hole 65 is smooth due to the air vent 74. Next, when the solenoid 57 is actuated, the cap 61 comes into contact with the interlocking shaft 69, and the inflow hole 65 is closed and the outflow hole 67 is opened at this time, so that the water in the measuring chamber 64 is discharged from the outflow hole 67. However, since water is not newly replenished from the water container 59, only the water in the measuring chamber 64 flows to the ice tray 56 through the water supply channel 63, so that it becomes a fixed amount of water supply. Since there is no air vent hole, the outflow time is not constant. In other words, even if the operation time of the solenoid 57 varies in the outflow time, it is possible to always supply a constant amount of water.
JP 2002-48445 A

しかしながら、上記従来の給水装置の構成では、給水容器内に配設された計量機構が複雑であり、高価であるという課題を有していた。   However, the configuration of the conventional water supply apparatus has a problem that the measuring mechanism disposed in the water supply container is complicated and expensive.

本発明は上記従来の課題を解決するもので、簡単な構成で所定の給水精度を達成し得る安価な給水装置を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the cheap water supply apparatus which can achieve a predetermined water supply precision with a simple structure.

上記従来の課題を解決する為に、本発明の給水装置は、給水容器と、前記給水容器内に貯水された水を前記給水容器外に吐出する為の吐出経路と、前記吐出経路の出口に備えられた開閉弁と、前記吐出経路中に設けられた流量調節部とを有し、前記吐出経路の上流端は給水停止となる高さhのところで前記給水容器内に開放され、前記給水容器の底部に前記開閉弁が配置され、前記流量調節部は絞り部と前記絞り部から離間して流量を相対的に増大させる第1位置と前記絞り部に当接して流量を相対的に減少させる第2位置との間で移動可能である流量調節弁とを有し、前記流量調節部は前記吐出経路内の流速による動圧と前記流量調節弁の浮力とにより流量調節をするものである。 In order to solve the above-described conventional problems, a water supply device of the present invention includes a water supply container, a discharge path for discharging water stored in the water supply container to the outside of the water supply container, and an outlet of the discharge path. An opening / closing valve provided and a flow rate adjusting unit provided in the discharge path, and an upstream end of the discharge path is opened into the water supply container at a height h at which water supply is stopped, and the water supply container The on-off valve is disposed at the bottom of the valve, and the flow rate adjusting portion is in contact with the throttle portion and a first position that increases the flow rate relatively away from the throttle portion and the throttle portion, and relatively reduces the flow rate. A flow rate adjusting valve movable between the second position, and the flow rate adjusting unit adjusts the flow rate by dynamic pressure due to a flow velocity in the discharge path and buoyancy of the flow rate adjusting valve.

これによって、流路調節弁の移動によって、給水量の調整ができ、簡単な構成で段階的に給水量を調整することができる。   Accordingly, the amount of water supply can be adjusted by moving the flow path control valve, and the amount of water supply can be adjusted stepwise with a simple configuration.

また、本発明の給水装置は、給水容器と、前記給水容器の下部に備えられ前記給水容器外部に連通する吐出口と、前記吐出口に備えられた開閉弁と、一端が前記給水容器に開口し他端が前記吐出口と連通する吐出経路と、前記吐出経路内に形成された流量調節部とを有し、前記吐出経路の上流端は給水停止となる高さhのところで前記給水容器内に開放され、前記給水容器の底部に前記開閉弁が配置され、前記流量調節部には浮き子と前記浮き子が前記流量調節部から流出するのを防ぐ保持部と前記吐出経路の内径より小さい内径を有した絞り部とからなり、前記浮き子が前記保持部と前記絞り部間を移動可能であり、前記流量調節部は前記吐出経路内の流速による動圧と前記浮き子の浮力とにより流量調節をするとしたものである。 The water supply device of the present invention includes a water supply container, a discharge port provided in a lower part of the water supply container and communicating with the outside of the water supply container, an on-off valve provided in the discharge port, and one end opened to the water supply container. And the other end has a discharge path communicating with the discharge port, and a flow rate adjusting portion formed in the discharge path, and the upstream end of the discharge path has a height h at which water supply is stopped. The opening / closing valve is disposed at the bottom of the water supply container, and the flow rate adjusting unit has a float and a holding unit that prevents the float from flowing out of the flow rate adjusting unit and an inner diameter of the discharge path. A throttle part having an inner diameter, the float is movable between the holding part and the throttle part, and the flow rate adjusting part is formed by dynamic pressure due to a flow velocity in the discharge path and buoyancy of the float. The flow rate is adjusted.

これによって、浮き子が移動することで、流路の面積が変化し、給水量を段階的に調整することができる。   Thereby, the area of the flow path is changed by moving the float, and the amount of water supply can be adjusted stepwise.

本発明の給水装置は、流路の面積を段階的に変化させる流路調節部を設けることで、安価な構成で給水量を調整することができる。   The water supply apparatus of the present invention can adjust the amount of water supply with an inexpensive configuration by providing a flow path adjustment unit that changes the area of the flow path in stages.

請求項1に記載の発明は、給水容器と、前記給水容器内に貯水された水を前記給水容器外に吐出する為の吐出経路と、前記吐出経路の出口に備えられた開閉弁と、前記吐出経路
中に設けられた流量調節部とを備え、前記吐出経路の上流端は給水停止となる高さhのところで前記給水容器内に開放され、前記給水容器の底部に前記開閉弁が配置され、前記流量調節部は前記絞り部から離間して流量を相対的に増大させる第1位置と前記絞り部に当接して流量を相対的に減少させる第2位置との間で移動可能である流量調節弁とを有し、前記流量調節部は前記吐出経路内の流速による動圧と前記流量調節弁の浮力とにより流量調節をするように構成されたことにより、流路調節弁が移動することで給水量を調整することとなり、簡単かつ安価な構成で高い給水精度が得られる。
The invention according to claim 1 is a water supply container, a discharge path for discharging water stored in the water supply container to the outside of the water supply container, an on-off valve provided at an outlet of the discharge path, A flow rate adjusting portion provided in the discharge path, and an upstream end of the discharge path is opened in the water supply container at a height h at which water supply is stopped, and the on-off valve is disposed at the bottom of the water supply container. The flow rate adjusting unit is movable between a first position where the flow rate adjusting unit is separated from the throttle unit and the flow rate is relatively increased, and a second position where the flow rate adjusting unit is in contact with the throttle unit and the flow rate is relatively decreased. And the flow rate adjusting unit is configured to adjust the flow rate according to the dynamic pressure due to the flow velocity in the discharge path and the buoyancy of the flow rate adjusting valve, so that the flow path adjusting valve moves. The amount of water supply will be adjusted with a simple and inexpensive structure. In high water supply accuracy can be obtained.

請求項2に記載の発明は、給水容器と、前記給水容器の下部に備えられ前記給水容器外部に連通する吐出口と、前記吐出口に備えられた開閉弁と、一端が前記給水容器に開口し他端が前記吐出口と連通する吐出経路と、前記吐出経路内に形成された流量調節部とを備え、前記吐出経路の上流端は給水停止となる高さhのところで前記給水容器内に開放され、前記給水容器の底部に前記開閉弁が配置され、前記流量調節部には浮き子と前記浮き子が前記流量調節部から流出するのを防ぐ保持部と前記吐出経路の内径より小さい内径を有した絞り部とが構成されたことにより、浮き子が前記保持部と絞り部間を移動可能であり、前記流量調節部は前記吐出経路内の流速による動圧と前記浮き子の浮力とにより流量調節をすることで、簡単かつ安価な構成で高い給水精度が得られる。 The invention according to claim 2 is a water supply container, a discharge port provided in a lower part of the water supply container and communicating with the outside of the water supply container, an on-off valve provided in the discharge port, and one end opened to the water supply container A discharge path whose other end communicates with the discharge port, and a flow rate adjusting portion formed in the discharge path, and the upstream end of the discharge path is in the water supply container at a height h at which water supply is stopped. Opened, the on-off valve is disposed at the bottom of the water supply container, the flow rate adjusting unit has a float and a holding unit for preventing the float from flowing out of the flow rate adjusting unit, and an inner diameter smaller than the inner diameter of the discharge path The float is movable between the holding part and the throttle part, and the flow rate adjusting part is configured to adjust the dynamic pressure due to the flow velocity in the discharge path and the buoyancy of the float. Easy and inexpensive by adjusting the flow rate with Having a high water accuracy.

請求項3に記載の発明は、請求項に記載の発明に加えて、前記絞り部を通過する水の流れ方向と前記浮き子に働く浮力の方向が異なることにより、水の流速に伴って発生する動圧力によって浮き子の浮力が相殺されることが少なくなり、浮き子の浮力が小さくても浮き子の移動が可能となり、給水容器の小型化ができる。 In addition to the invention according to claim 2 , the invention according to claim 3 is different from the invention according to claim 2 in that the flow direction of water passing through the throttle portion and the direction of buoyancy acting on the float differ from each other with the flow rate of water. The buoyancy of the float is less canceled by the generated dynamic pressure, and the float can be moved even if the float of the float is small, and the water supply container can be downsized.

請求項4に記載の発明は、請求項に記載の発明に加えて、前記絞り部に前記浮き子が当接した状態において、前記絞り部には水が通過する隙間が形成されており、この隙間を通して給水容器内の水が流出することとなり、絞り部に浮き子が当接した状態でも所定の給水量が得られる。 In addition to the invention according to claim 2 , the invention according to claim 4 is formed with a gap through which water passes in the throttle portion in a state where the float is in contact with the throttle portion, The water in the water supply container flows out through this gap, and a predetermined water supply amount can be obtained even when the float is in contact with the throttle portion.

請求項5に記載の発明は、請求項2または3の発明に加えて、前記吐出経路は略L字型に形成されており、前記流路調節部に設けられた前記保持部と前記絞り部は略垂直に設けられたことにより、絞り部を通過する水の流れ方向と浮き子の移動方向が略垂直に構成されることにより、水の流速に伴って発生する動圧力によって浮き子の浮力が相殺されることがほとんどなくなり、浮き子の浮力が小さくても浮き子の移動が可能となり、給水容器の小型化ができる。 According to a fifth aspect of the present invention, in addition to the second or third aspect of the invention, the discharge path is formed in a substantially L shape, and the holding portion and the throttle portion provided in the flow path adjusting portion. Is provided substantially vertically, so that the flow direction of water passing through the constriction and the moving direction of the float are configured to be substantially perpendicular, so that the buoyancy of the float is generated by the dynamic pressure generated with the flow rate of water. Are almost cancelled, and even when the buoyancy of the float is small, the float can be moved, and the water supply container can be downsized.

請求項6に記載の発明は、請求項2から4の発明に加えて、前記浮き子が略球形であり、浮き子が移動を繰り返しても浮き子と絞り部との当接形態は一定となり、同水位における第2位置での給水量は一定となる。 According to a sixth aspect of the present invention, in addition to the second to fourth aspects of the invention, the float is substantially spherical, and the contact form between the float and the throttle portion is constant even when the float is repeatedly moved. The water supply amount at the second position at the same water level is constant.

請求項7に記載の発明は、請求項1から5の発明に加えて、前記絞り部の断面形状が略方形であり、絞り部に浮き子が当接した状態でも、絞り部と浮き子との間に所定の隙間が形成されることとなり、安価な構成で安定した給水量が得られる。   In addition to the inventions of the first to fifth aspects, the invention according to claim 7 has a shape of a cross-section of the throttle portion that is substantially square, and even when the float is in contact with the throttle portion, A predetermined gap is formed between the two, and a stable water supply amount can be obtained with an inexpensive configuration.

請求項8に記載の発明は、請求項1から7の発明に加えて、前記吐出経路の前記給水容器に開口している側の端部は前記吐出口より所定高さ上方に配設されており、所定高さ以下の水を吐出されないことにより、所定水位以下では給水を停止することとなり、給水容器が空状態になる直前での極端な給水量の低下を抑制し、簡単かつ安価な構成で安定した給水量を得ることができる。   According to an eighth aspect of the present invention, in addition to the first to seventh aspects, an end of the discharge path that is open to the water supply container is disposed at a predetermined height above the discharge port. In addition, by not discharging water below a predetermined height, water supply is stopped at a predetermined water level or lower, and an extremely low water supply amount is suppressed immediately before the water supply container is emptied. A stable water supply can be obtained.

請求項9に記載の発明は、請求項1から8の発明に加えて、冷蔵庫本体に形成された冷蔵室と、前記冷蔵室内に配設された給水容器を備え、前記給水容器には請求項1から8のいずれか一項に記載の給水装置が配設されていることにより、安価な構成で安定した給水量を得られる給水装置を備えた冷蔵庫を提供することができる。   The invention according to claim 9 includes, in addition to the inventions according to claims 1 to 8, a refrigerating room formed in the refrigerator main body, and a water supply container disposed in the refrigerating room, and the water supply container is claimed in claim. By providing the water supply device according to any one of 1 to 8, it is possible to provide a refrigerator including a water supply device that can obtain a stable water supply amount with an inexpensive configuration.

請求項10に記載の発明は、請求項1から9の発明に加えて、冷蔵庫本体に形成された冷蔵室と、前記冷蔵室に隣接して備えられた冷凍室と、前記冷凍室に備えられた製氷装置と、前記冷蔵室内に配設された給水容器を備え、前記給水容器には請求項1から9のいずれか一項に記載の給水装置が配設されており、前記給水容器部の前記吐出口は前記製氷装置に連通するよう配設されていることにより、安価な構成で安定した給水量が得られることとなり、氷の大きさや数量のバラツキを低減した製氷装置を備えた冷蔵庫を提供することができる。   The invention of claim 10 is provided in addition to the inventions of claims 1 to 9, a refrigerator compartment formed in a refrigerator body, a freezer compartment provided adjacent to the refrigerator compartment, and the refrigerator compartment. An ice making device and a water supply container arranged in the refrigerator compartment, wherein the water supply device is provided with the water supply device according to any one of claims 1 to 9, wherein Since the discharge port is arranged to communicate with the ice making device, a stable water supply amount can be obtained with an inexpensive configuration, and a refrigerator equipped with an ice making device with reduced variation in ice size and quantity can be provided. Can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における給水装置の断面図である。図2は本発明の実施の形態1における給水容器の断面図である。図3は本発明の実施の形態1における給水装置の要部断面図である。図4は本発明の実施の形態1における給水装置のA−A断面図である。図5は本発明の実施の形態1における水位H1から水位H2までの給水時の浮き子の動作図である。図6は本発明の実施の形態1における水位H2から水位H3までの給水時の浮き子の動作図である。図7は本発明の実施の形態1における給水停止時および水位H3から水位hまでの給水時の浮き子の動作図である。図8は本発明の実施の形態1における一回当りの給水量を示す特性図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a water supply apparatus according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of the water supply container according to Embodiment 1 of the present invention. FIG. 3 is a cross-sectional view of a main part of the water supply device according to Embodiment 1 of the present invention. FIG. 4 is an AA cross-sectional view of the water supply apparatus in Embodiment 1 of the present invention. FIG. 5 is an operation diagram of the float during water supply from the water level H1 to the water level H2 in the first embodiment of the present invention. FIG. 6 is an operation diagram of the float when water is supplied from the water level H2 to the water level H3 in the first embodiment of the present invention. FIG. 7 is an operation diagram of the float when water supply is stopped and water is supplied from the water level H3 to the water level h in the first embodiment of the present invention. FIG. 8 is a characteristic diagram showing the amount of water supply per time in the first embodiment of the present invention.

図1、図2、図3、図4、図5、図6、図7、図8において、冷蔵室51は、冷蔵庫本体1に区画形成されており、冷凍室52は、冷蔵室51の下方に断熱仕切り90により仕切られて区画形成されている。   1, 2, 3, 4, 5, 6, 7, and 8, the refrigerator compartment 51 is partitioned in the refrigerator body 1, and the freezer compartment 52 is below the refrigerator compartment 51. Are partitioned by a heat insulating partition 90.

給水容器100は、冷蔵室51に対して着脱可能に取り付けられており、主に容器本体110と蓋120から構成される。   The water supply container 100 is detachably attached to the refrigerating chamber 51 and mainly includes a container main body 110 and a lid 120.

容器本体110の形状は、上部が開放された略直方体形状の容器であり、冷蔵室51への収納性を高めるために、幅方向寸法が小さく、所定保有水量を確保するために高さ寸法をより大きくした形状であることが望ましい。   The shape of the container main body 110 is a substantially rectangular parallelepiped container having an open top, the width direction dimension is small in order to improve the storage property in the refrigerator compartment 51, and the height dimension is set in order to secure a predetermined amount of retained water. A larger shape is desirable.

容器本体110の底面には、給水容器内の水を流出させるための吐出口111と開閉弁150をスライド可能に固定する開閉弁固定穴112が形成されている。さらに、容器本体110の外面で、吐出口111の近傍外周には中空の円柱形でかつ底面が開放されたガイド113が形成されている。また、容器本体110の底内面で、吐出口111の近傍全周には、突起114が形成され、開閉弁150とのシール性が得られる。   On the bottom surface of the container body 110, there are formed an opening / closing valve fixing hole 112 for slidably fixing the discharge port 111 and the opening / closing valve 150 for allowing water in the water supply container to flow out. Further, on the outer surface of the container main body 110, a guide 113 having a hollow cylindrical shape with an open bottom is formed on the outer periphery in the vicinity of the discharge port 111. Further, on the bottom inner surface of the container main body 110, a protrusion 114 is formed on the entire circumference in the vicinity of the discharge port 111, and a sealing property with the on-off valve 150 is obtained.

さらに、容器本体110の下部近傍にはメッシュ状のガイド115が形成されており、ガイド115の上部には、主に活性炭を主成分とする浄水フィルター116が設置してある。   Further, a mesh-shaped guide 115 is formed in the vicinity of the lower portion of the container main body 110, and a water purification filter 116 mainly composed of activated carbon is installed on the upper portion of the guide 115.

蓋120は、容器本体110の上部開放部を塞ぐように着脱可能に容器本体110に取り付けられている。   The lid 120 is detachably attached to the container body 110 so as to close the upper open portion of the container body 110.

注水口121は、蓋120に形成された開口であり、給水容器100に対して水道水等を手給水する際に使用する。   The water injection port 121 is an opening formed in the lid 120 and is used when manually supplying tap water or the like to the water supply container 100.

吐出経路130は、容器本体110の内部に垂直に構成され、上流端133は、吐出口111から高さhのところで、容器本体110内に開放されており、吐出経路130の下流端136は、吐出口111に連結されており、下流端136内部には開閉弁150が構成されている。   The discharge path 130 is configured to be perpendicular to the inside of the container body 110, the upstream end 133 is open into the container body 110 at a height h from the discharge port 111, and the downstream end 136 of the discharge path 130 is Connected to the discharge port 111, an on-off valve 150 is configured inside the downstream end 136.

流量調節部140は、浮き子141と、吐出経路130の途中に流路中心方向に向けて形成された突起状の保持部142と、吐出経路130の内径より小さい内径を有した絞り部143とからなる。   The flow rate adjusting unit 140 includes a float 141, a protruding holding part 142 formed in the middle of the discharge path 130 toward the center of the flow path, and a throttle part 143 having an inner diameter smaller than the inner diameter of the discharge path 130. Consists of.

浮き子141は、中空の球形で材質としては、比重の軽いポリプロピレン等を使用することが望ましい。ここで、浮き子141は、第1位置144と第2位置145の間を移動可能であるように吐出経路130内の保持部142から絞り部143の間に菅内壁と所定のクリアランスを設けて挿入されている。   The float 141 is preferably a hollow sphere and is made of polypropylene or the like having a light specific gravity. Here, the float 141 is provided with a predetermined clearance from the inner wall of the ridge between the holding portion 142 and the throttle portion 143 in the discharge path 130 so that the float 141 can move between the first position 144 and the second position 145. Has been inserted.

ここで、保持部142が流路の断面に対して占める割合は、所定値以下となっており、さらに絞り部143は、保持部142の下方に形成された略方形の開口である。   Here, the ratio of the holding portion 142 to the cross section of the flow path is equal to or less than a predetermined value, and the throttle portion 143 is a substantially rectangular opening formed below the holding portion 142.

第1位置144は、保持部142の下面に浮き子141の上面が当接する位置である。この第1位置において、保持部142が流路の断面に対して占める割合は、所定値以下となっているので、浮き子141が保持部142と当接した状態でも、十分な流路面積が確保されている。   The first position 144 is a position where the upper surface of the float 141 comes into contact with the lower surface of the holding portion 142. In this first position, since the ratio of the holding portion 142 to the cross section of the flow path is equal to or less than a predetermined value, even when the float 141 is in contact with the holding section 142, a sufficient flow area is obtained. It is secured.

第2位置145は、絞り部143に浮き子141が当接する位置である。この第2位置145において、浮き子141は略球形であり、絞り部143の流路形状が略方形であることから、浮き子141が絞り部143と当接した状態では、絞り部143の四隅部に隙間146が形成されている。   The second position 145 is a position where the float 141 comes into contact with the throttle portion 143. In the second position 145, the float 141 is substantially spherical, and the flow path shape of the throttle portion 143 is substantially square. Therefore, when the float 141 is in contact with the throttle portion 143, the four corners of the throttle portion 143 are provided. A gap 146 is formed in the part.

開閉弁150は、主に吐出口111を開閉するキャップ151と、キャップ151に固定されたシャフト152と、シャフト152の外面でかつキャップ151の下方に取り付けられたスプリング153により構成されている。   The on-off valve 150 mainly includes a cap 151 that opens and closes the discharge port 111, a shaft 152 that is fixed to the cap 151, and a spring 153 that is attached to the outer surface of the shaft 152 and below the cap 151.

ここで、キャップ151は、軟性材料を用いることが望ましく、形状としては、中空の略円柱形であることが望ましい。   Here, it is desirable to use a soft material for the cap 151, and it is desirable that the cap 151 has a hollow, substantially cylindrical shape.

キャップ151の中心近傍でその一端がキャップ151と固定されたシャフト152は、他端にフランジ部152aが形成されている。ここで、シャフト152は、開閉弁固定穴112を貫通しており、キャップ151は容器本体110内部に、フランジ部152aは容器本体110外部に配設されている。   In the vicinity of the center of the cap 151, the shaft 152 having one end fixed to the cap 151 has a flange portion 152a at the other end. Here, the shaft 152 passes through the on-off valve fixing hole 112, the cap 151 is disposed inside the container body 110, and the flange portion 152 a is disposed outside the container body 110.

スプリング153は、容器本体の外面とフランジ部152aの間に配設されており、スプリング153によりキャップ151の下面は、常時突起114に押し付けられている。   The spring 153 is disposed between the outer surface of the container body and the flange portion 152 a, and the lower surface of the cap 151 is always pressed against the protrusion 114 by the spring 153.

給水路160は、断熱仕切り90を貫通し、製氷皿181に給水する給水経路である。形状としては、冷蔵室51側が開放された水皿161を上部に配置し、下方に向けて漸近的に流路面積が小さくなるような形状とすることが好ましく、水皿161は、吐出口111の下方を覆うように配置されている。ここで、開閉弁直下の水皿161には開口162が形成されており、開口162の周りには上方に向けて突起163が形成されている。   The water supply path 160 is a water supply path that penetrates the heat insulating partition 90 and supplies water to the ice tray 181. As a shape, it is preferable that the water tray 161 having the open side of the refrigerating chamber 51 is disposed in the upper part, and the flow path area is asymptotically reduced downward, and the water dish 161 has a discharge port 111. It is arrange | positioned so that the lower part of may be covered. Here, an opening 162 is formed in the water dish 161 immediately below the on-off valve, and a protrusion 163 is formed around the opening 162 upward.

駆動装置170は、断熱仕切り90の内部でかつ水皿161の下方に、シャフト152と同軸上に配置されており、主にソレノイド171と継ぎ手172により構成されている。   The driving device 170 is disposed coaxially with the shaft 152 inside the heat insulating partition 90 and below the water pan 161, and is mainly composed of a solenoid 171 and a joint 172.

ソレノイド171は、ON状態ではシャフト171aが上方にスライドし、OFF状態ではシャフト171aが下方へスライドする。このとき、本実施例では、各給水時にソレノイド171に通電されるON状態の時間は一定である。   In the solenoid 171, the shaft 171 a slides upward in the ON state, and the shaft 171 a slides downward in the OFF state. At this time, in this embodiment, the time of the ON state in which the solenoid 171 is energized during each water supply is constant.

ここで、シャフト171aは、開口162を貫通して水皿161の上方へ突き出ており、シャフト171aの先端には継ぎ手172が構成されている。継ぎ手172の形状としては、シャフト171aの上部に位置する先端部172aを頂点に、下方に向けて漸近的に径を拡大する円錐形状である。   Here, the shaft 171a passes through the opening 162 and protrudes upward from the water dish 161, and a joint 172 is formed at the tip of the shaft 171a. The shape of the joint 172 is a conical shape whose diameter is asymptotically increased downward with the tip 172a positioned at the upper portion of the shaft 171a as the apex.

製氷装置180は、冷凍室52に構成されており、給水された水を蓄えて製氷する製氷皿181と、離氷用の駆動装置182で構成されており、詳細については説明を割愛する。   The ice making device 180 is configured in the freezer compartment 52, and includes an ice making plate 181 that stores the supplied water to make ice, and a drive device 182 for deicing, and a detailed description thereof is omitted.

H1は、満水時における水位と吐出口111までの距離である。   H1 is the distance between the water level and the discharge port 111 when the water is full.

H2は、給水時に浮き子141が第2位置145から第1位置144へ移動を開始する水位と吐出口111までの距離である。   H2 is the distance from the water level at which the float 141 starts moving from the second position 145 to the first position 144 and the discharge port 111 during water supply.

H3は、給水時に浮き子141が第2位置145から第1位置144へ完全に移動する水位と吐出口111までの距離である。   H3 is a distance from the water level at which the float 141 completely moves from the second position 145 to the first position 144 and the discharge port 111 during water supply.

以上のように構成された給水容器について、以下その動作、作用を説明する。   About the water supply container comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷蔵室51から取り外された給水容器100は、蓋120に形成された注水口121から水道水が手給水される。このとき、スプリング153により吐出口111はキャップ151により塞がれていることから、開閉弁150は閉状態であり、吐出口111から水漏れることはない。ここで、開閉弁150が閉状態では、浮き子141はその浮力により上昇して図7に示すように第1位置144にある。   First, the water supply container 100 removed from the refrigerator compartment 51 is manually supplied with tap water from a water inlet 121 formed in the lid 120. At this time, since the discharge port 111 is closed by the cap 151 by the spring 153, the on-off valve 150 is in a closed state, and water does not leak from the discharge port 111. Here, when the on-off valve 150 is in the closed state, the float 141 is lifted by its buoyancy and is in the first position 144 as shown in FIG.

次に、給水が完了して満水状態の給水容器100が冷蔵室51に設置され、製氷が開始され、ソレノイド171がON状態となると継ぎ手172は上方へ移動し、先端部172aがフランジ部152aに当接してシャフト152に固定されたキャップ151を上方に押し上げることで、浄水フィルター116を通過して浄水された水が吐出口111から水皿161へ流出する。このとき浮き子141は、吐出経路130内の流速により生じる動圧が浮き子141の浮力より大きくなることから、図5に示すように第1位置144から第2位置145へ移動する。これにより、隙間146のみが絞り部143における流路面積となる。よって、給水量特性は、図8の第1区間のような特性となる。   Next, when the water supply is completed and the full water supply container 100 is installed in the refrigerator compartment 51, ice making is started, and when the solenoid 171 is turned on, the joint 172 moves upward, and the tip 172a moves to the flange 152a. By pushing up the cap 151 that is in contact with and fixed to the shaft 152, the purified water that has passed through the water purification filter 116 flows out from the discharge port 111 to the water tray 161. At this time, the float 141 moves from the first position 144 to the second position 145 as shown in FIG. 5 because the dynamic pressure generated by the flow velocity in the discharge path 130 becomes larger than the buoyancy of the float 141. As a result, only the gap 146 becomes the flow path area in the throttle portion 143. Therefore, the water supply amount characteristic is the characteristic as in the first section of FIG.

次に、給水容器110の水位がH1からH2の間では、給水開始により浮き子141は、吐出経路130内の流速により生じる動圧と、浮き子141の浮力とが近い値となることから、図6に示すように第1位置144と第2位置145の間を往復する。よって、給水量特性は、図6の第2区間のような特性となる。   Next, when the water level of the water supply container 110 is between H1 and H2, the float 141 has a value close to the dynamic pressure generated by the flow velocity in the discharge path 130 and the buoyancy of the float 141 when water supply starts. As shown in FIG. 6, the vehicle reciprocates between the first position 144 and the second position 145. Therefore, the water supply amount characteristic is the characteristic as in the second section of FIG.

次に、給水容器110の水位がH2以下では、給水が開始されても浮き子141は、吐出経路130内の流速により生じる動圧よりも浮き子141の浮力が大きくなることから、図7に示すように第1位置144にとどまる。これにより、絞り部143の全面積が流路面積となる。よって、給水量特性は、図6の第3区間のような特性となる。   Next, when the water level of the water supply container 110 is equal to or lower than H2, the buoyancy of the float 141 is larger than the dynamic pressure generated by the flow velocity in the discharge path 130 even when water supply is started. It remains in the first position 144 as shown. Thereby, the entire area of the throttle part 143 becomes the flow path area. Therefore, the water supply amount characteristic is the characteristic as in the third section of FIG.

このように、計量容器や本実施例の浮き子141を配設しない自由落下方式の給水装置の場合、給水回数が増えると一回の給水量は徐々に低下するのに対して、本実施例においては、浮き子141と絞り部143が当接もしくは非当接状態となり、流路面積が変化することで、つまり水位の高い状態では流路面積が小さくなり、水位の低い状態では流路面積が大きくなる。   In this way, in the case of a free-fall type water supply device in which the measuring container and the float 141 of this embodiment are not provided, the amount of water supplied once decreases gradually as the number of water supply increases, while this embodiment , The float 141 and the throttle 143 come into contact or non-contact, and the flow area changes, that is, the flow area becomes small when the water level is high, and the flow area becomes low when the water level is low. Becomes larger.

よって、給水量特性が2段階に切り替わることで、給水量精度を所定範囲内に調整することができ、給水量の減少による氷の大きさや個数のバラツキを低減することができる。   Therefore, by switching the water supply amount characteristics in two stages, the accuracy of the water supply amount can be adjusted within a predetermined range, and variations in the size and number of ice due to the decrease in the water supply amount can be reduced.

ここで、自由落下方式の給水量は、給水容器の水位に大きく左右されることから、本実施例のように、幅方向寸法が小さく、所定保有水量を確保するために高さ寸法をより大きくした形状の給水容器では、給水精度の向上効果がより大きく現れる。   Here, the amount of water supplied by the free-fall method is greatly influenced by the water level of the water supply container, so the width dimension is small as in this embodiment, and the height dimension is made larger in order to secure a predetermined amount of retained water. In the water supply container having the shape, the effect of improving the water supply accuracy appears more greatly.

さらに、浮き子141が略球状で、絞り部143が略方形であることから、浮き子141が絞り部143に対して当接、非当接を繰り返しても、当接時の流路面積および非当接時の流路面積はそれぞれ同じ値となり安定した給水量特性が得られる。   Further, since the float 141 is substantially spherical and the throttle portion 143 is substantially square, even if the float 141 repeatedly makes contact and non-contact with the throttle portion 143, the flow path area at the time of contact and The flow area at the time of non-contact is the same value, and a stable water supply amount characteristic is obtained.

次に、給水が進むと、吐出経路130の上流端133が吐出口111から高さhのところで容器本体110内に開放されていることから、水位hの時点で給水は停止することとなり、極端な給水量の減少による氷の大きさや個数のバラツキを低減することができる。   Next, when the water supply proceeds, the upstream end 133 of the discharge path 130 is opened in the container main body 110 at a height h from the discharge port 111, so that the water supply stops at the time of the water level h. It is possible to reduce variations in the size and number of ice pieces due to a significant decrease in the amount of water supply.

以上のように本実施の形態の給水装置は、給水容器100と、給水容器100の下部に備えられ給水容器100外部に連通する吐出口111と、吐出口111に備えられた開閉弁150と、一端が給水容器100に開口し他端が吐出口111と連通する吐出経路130と、吐出経路130内に形成された流量調節部140とを有し、流量調節部140には浮き子141と浮き子141が流量調節部140から流出するのを防ぐ保持部142と吐出経路130の内径より小さい内径を有した絞り部143とからなり、浮き子141が保持部142と絞り部143間を移動可能であることにより、浮き子141の位置により流路面積が切り替わることで給水量精度を所定範囲内に調整することとなり、給水量の減少による氷の大きさや個数のバラツキを低減することができる。   As described above, the water supply apparatus according to the present embodiment includes the water supply container 100, the discharge port 111 provided in the lower part of the water supply container 100 and communicating with the outside of the water supply container 100, the on-off valve 150 provided in the discharge port 111, One end of the water supply container 100 is open and the other end is in communication with the discharge port 111. The flow rate adjustment unit 140 is formed in the discharge route 130. The flow rate adjustment unit 140 has a float 141 and a float. The holding element 142 prevents the child element 141 from flowing out of the flow rate adjusting part 140 and the throttle part 143 having an inner diameter smaller than the inner diameter of the discharge path 130, and the float 141 can move between the holding part 142 and the throttle part 143. As a result, the flow area is switched depending on the position of the float 141, so that the accuracy of the water supply amount is adjusted within the predetermined range. Key can be reduced.

また、本実施の形態では、第2位置145において、浮き子141と絞り部143の間に隙間146が形成されており、隙間146を流路面積とする給水量特性が得られる。   In the present embodiment, a gap 146 is formed between the float 141 and the throttle portion 143 at the second position 145, and a water supply amount characteristic with the gap 146 as the flow path area is obtained.

また、本実施の形態では、浮き子141が略球状で、絞り部143が略方形であり、浮き子141が絞り部143に対して当接、非当接を繰り返しても、当接時の流路面積および非当接時の流路面積はそれぞれ同じ値となり、安定した給水量特性が得られる。   Further, in the present embodiment, the float 141 is substantially spherical and the throttle portion 143 is substantially square. Even when the float 141 repeatedly makes contact and non-contact with the throttle portion 143, The channel area and the channel area when not in contact with each other have the same value, and a stable water supply amount characteristic can be obtained.

また、本実施の形態では、吐出経路130の給水容器110に開口している側の端部133は吐出口111より所定高さh上方に配設されていることにより、所定水位h以下では給水を停止することとなり、給水容器が空状態になる直前での極端な給水量の低下を抑制し、氷の大きさや数量のバラツキを低減できる。   In the present embodiment, the end 133 of the discharge path 130 that is open to the water supply container 110 is disposed above the discharge port 111 by a predetermined height h, so that the water supply is performed at a predetermined water level h or lower. Is stopped, an extreme decrease in the amount of water supply immediately before the water supply container becomes empty can be suppressed, and variations in the size and quantity of ice can be reduced.

(実施の形態2)
図9は本発明の実施の形態2における給水装置の断面図である。図10は本発明の実施の形態2における給水容器の断面図である。図11は本発明の実施の形態2における給水装置の要部断面図である。
(Embodiment 2)
FIG. 9 is a cross-sectional view of a water supply apparatus according to Embodiment 2 of the present invention. FIG. 10 is a cross-sectional view of a water supply container according to Embodiment 2 of the present invention. FIG. 11 is a cross-sectional view of a main part of the water supply device according to Embodiment 2 of the present invention.

吐出経路230は、容器本体110の内部に構成され、略垂直に形成された第1流路231と、略水平に形成された第2流路232とからなる略L字型の管である。   The discharge path 230 is a substantially L-shaped tube that is configured inside the container main body 110 and includes a first channel 231 formed substantially vertically and a second channel 232 formed substantially horizontally.

第1流路231の上流端233は、吐出口111から高さhのところで、容器本体110内に開放されている。   The upstream end 233 of the first flow path 231 is opened in the container main body 110 at a height h from the discharge port 111.

第2流路232の上流端で、第1流路231と第2流路232はつながっており、第2流路の下流端236は、吐出口111に連結されており、下流端236内部には開閉弁150が構成されている。   The first flow path 231 and the second flow path 232 are connected at the upstream end of the second flow path 232, and the downstream end 236 of the second flow path is connected to the discharge port 111, and is located inside the downstream end 236. An on-off valve 150 is configured.

流量調節部240は、浮き子241と、第1流路231の途中に流路中心方向に向けて形成された突起状の保持部242と、第2流路232の内径より小さい内径を有した絞り部243とからなる。   The flow rate adjusting unit 240 has a float 241, a protruding holding part 242 formed in the middle of the first flow path 231 toward the flow path center, and an inner diameter smaller than the inner diameter of the second flow path 232. And a diaphragm 243.

ここで、保持部242が流路の断面に対して占める割合は所定値以下となっており、絞り部243の流路形状は略方形であり、さらに絞り部243の上流端243aは、上方に向けて漸近的に下流に傾く形状をしている。   Here, the ratio of the holding part 242 to the cross section of the flow path is equal to or less than a predetermined value, the flow path shape of the throttle part 243 is substantially square, and the upstream end 243a of the throttle part 243 is located upward. Asymptotically, it has a shape that tilts downstream.

浮き子241は、中空の球形で材質としては、比重の軽いポリプロピレン等を使用することが望ましい。ここで、浮き子241は、第1位置244と第2位置245の間を移動可能であるように第1流路231内の保持部242から絞り部243の間に菅内壁と所定のクリアランスを設けて挿入されている。   The float 241 is preferably made of a hollow sphere and made of polypropylene having a low specific gravity as the material. Here, the float 241 has a predetermined clearance from the inner wall of the collar between the holding portion 242 and the throttle portion 243 in the first flow path 231 so that the float 241 can move between the first position 244 and the second position 245. It is provided and inserted.

第1位置244は、第1流路231内であって突起234の下面に浮き子241の上面が当接する位置である。この第1位置244において、保持部242が流路の断面に対して占める割合は、所定値以下となっているので、浮き子241が保持部242と当接した状態でも、十分な流路面積が確保されている。   The first position 244 is a position in the first flow path 231 where the upper surface of the float 241 contacts the lower surface of the protrusion 234. In this first position 244, since the ratio of the holding portion 242 to the cross section of the flow path is equal to or less than a predetermined value, a sufficient flow path area can be obtained even when the float 241 is in contact with the holding section 242. Is secured.

第2位置245は、第1流路231と第2流路232の交差地点であり、絞り部243の上流端243aに浮き子241が当接する位置である。この第2位置245において、浮き子241は略球形であり、絞り部243の流路形状が略方形であることから、浮き子241が絞り部243の上流端243aと当接した状態では、上流端243aの四隅部に隙間246が形成されている。   The second position 245 is an intersection of the first flow path 231 and the second flow path 232, and is a position where the float 241 contacts the upstream end 243 a of the throttle portion 243. In the second position 245, the float 241 is substantially spherical, and the flow path shape of the throttle portion 243 is substantially square. Therefore, when the float 241 is in contact with the upstream end 243a of the throttle portion 243, the upstream portion 243 Gaps 246 are formed at the four corners of the end 243a.

以上のように構成された給水容器について、以下その動作、作用を説明する。   About the water supply container comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

本実施例では、浮き子241にかかる浮力の方向(上方へ向けて働く力)と、絞り部243近傍で浮き子241にかかる動圧の方向(略水平方向に向けて働く力)が略垂直の関係であることから、浮き子241の浮力つまり浮き子の容積が小さくても所定の水位H2から浮き子241と絞り部243の当接が解除されはじめる。   In the present embodiment, the direction of buoyancy applied to the float 241 (force acting upward) and the direction of dynamic pressure applied to the float 241 near the throttle 243 (force acting in a substantially horizontal direction) are substantially vertical. Therefore, even when the buoyancy of the float 241, that is, the volume of the float is small, the contact between the float 241 and the throttle portion 243 starts to be released from the predetermined water level H2.

さらに、絞り部243の上流端243aは、上方に向けて漸近的に下流方向に傾きを成しているので、図11に示すように、絞り部243の上流端243aに若干はまり込むように当接した浮き子141が絞り部243の上部壁面に引っかかることがなく、浮き子141が開放されやすくなり、所定の水位H2から浮き子241と絞り部243の当接が解除されはじめる。   Further, the upstream end 243a of the throttle portion 243 is inclined asymptotically in the downstream direction upward, so that the upstream end 243a is slightly fitted into the upstream end 243a of the throttle portion 243 as shown in FIG. The float 141 in contact is not caught on the upper wall surface of the throttle portion 243, and the float 141 is easily released, and the contact between the float 241 and the throttle portion 243 starts to be released from a predetermined water level H2.

以上のように本実施の形態の給水容器は、本実施の形態では、絞り部243近傍を通過する水の流れ方向と、浮き子241に働く浮力の方向が、略垂直になるように吐出経路230が構成されており、浮き子241の浮力つまり浮き子の容積が小さくても所定の水位H2から浮き子241と絞り部243の当接が解除されることとなり、給水容器の小型化が可能になる。   As described above, in the present embodiment, the water supply container of the present embodiment has a discharge path so that the flow direction of water passing near the throttle portion 243 and the direction of buoyancy acting on the float 241 are substantially perpendicular. 230, the buoyancy of the float 241, that is, the volume of the float is small, the contact between the float 241 and the throttle portion 243 is released from the predetermined water level H2, and the water supply container can be downsized. become.

以上のように、本発明にかかる給水容器は、容器本体内に浮き子を配設し、給水容器内の水位により、浮き子が給水量を自動的に調整するので、簡単な構造で所定範囲内の安定した給水が行えることから、システムキッチン用のビルトイン製氷装置、自販機、業務用製氷機の用途にも適用できる。   As described above, the water supply container according to the present invention has a float in the container body, and the float automatically adjusts the amount of water supply according to the water level in the water supply container. It can be applied to built-in ice making equipment for system kitchens, vending machines, and commercial ice making machines.

本発明による給水装置の実施例1の断面図Sectional drawing of Example 1 of the water supply apparatus by this invention 本発明による給水容器の実施例1の断面図Sectional drawing of Example 1 of the water supply container by this invention 本発明による給水装置の実施例1の要部断面図Sectional drawing of the principal part of Example 1 of the water supply apparatus by this invention 本発明による給水装置の実施例1のA−A断面図AA sectional view of Example 1 of a water supply apparatus according to the present invention. 本発明による給水装置の実施例1の動作図Operational diagram of embodiment 1 of water supply apparatus according to the present invention 本発明による給水装置の実施例1の動作図Operational diagram of embodiment 1 of water supply apparatus according to the present invention 本発明による給水装置の実施例1の動作図Operational diagram of embodiment 1 of water supply apparatus according to the present invention 本発明による給水装置の実施例1の特性図The characteristic view of Example 1 of the water supply apparatus by this invention 本発明による給水装置の実施例2の断面図Sectional drawing of Example 2 of the water supply apparatus by this invention 本発明による給水容器の実施例2の断面図Sectional drawing of Example 2 of the water supply container by this invention 本発明による給水装置の実施例2の要部断面図Sectional drawing of the principal part of Example 2 of the water supply apparatus by this invention 従来の給水装置の全体構成図および詳細図Overall configuration diagram and detailed diagram of a conventional water supply device

符号の説明Explanation of symbols

h 所定高さ
1 冷蔵庫本体
51 冷蔵室
52 冷凍室
100 給水容器
111 吐出口
130 吐出経路
133 上流端
140 流量調整部
141 浮き子
142 保持部
143 絞り部
144 第1位置
145 第2位置
146 隙間
150 開閉弁
180 製氷装置
230 吐出経路
233 上流端
240 流路調整部
241 浮き子
242 保持部
243 絞り部
244 第1位置
245 第2位置
246 隙間
h Predetermined height 1 Refrigerator body 51 Refrigeration room 52 Freezing room 100 Water supply container 111 Discharge port 130 Discharge path 133 Upstream end 140 Flow rate adjustment part 141 Float 142 Holding part 143 Restriction part 144 First position 145 Second position 146 Gap 150 Opening / closing Valve 180 Ice making device 230 Discharge path 233 Upstream end 240 Flow path adjustment unit 241 Float 242 Holding unit 243 Restriction unit 244 First position 245 Second position 246 Clearance

Claims (10)

給水容器と、前記給水容器内に貯水された水を前記給水容器外に吐出する為の吐出経路と、前記吐出経路の出口に備えられた開閉弁と、前記吐出経路中に設けられた流量調節部とを有し、前記吐出経路の上流端は給水停止となる高さhのところで前記給水容器内に開放され、前記給水容器の底部に前記開閉弁が配置され、前記流量調節部は絞り部と前記絞り部から離間して流量を相対的に増大させる第1位置と前記絞り部に当接して流量を相対的に減少させる第2位置との間で移動可能である流量調節弁とを有し、前記流量調節部は前記吐出経路内の流速による動圧と前記流量調節弁の浮力とにより流量調節をする給水装置。 A water supply container, a discharge path for discharging water stored in the water supply container to the outside of the water supply container, an on-off valve provided at an outlet of the discharge path, and a flow rate adjustment provided in the discharge path And the upstream end of the discharge path is opened in the water supply container at a height h at which water supply is stopped, the on-off valve is disposed at the bottom of the water supply container, and the flow rate adjustment part is a throttle part And a flow rate adjusting valve that is movable between a first position that is spaced apart from the restrictor and relatively increases the flow rate and a second position that is in contact with the restrictor and relatively decreases the flow rate. And the said flow volume adjustment part is a water supply apparatus which adjusts flow volume by the dynamic pressure by the flow velocity in the said discharge path, and the buoyancy of the said flow volume control valve. 給水容器と、前記給水容器の下部に備えられ前記給水容器外部に連通する吐出口と、前記吐出口に備えられた開閉弁と、一端が前記給水容器に開口し他端が前記吐出口と連通する吐出経路と、前記吐出経路内に形成された流量調節部とを有し、前記吐出経路の上流端は給水停止となる高さhのところで前記給水容器内に開放され、前記給水容器の底部に前記開閉弁が配置され、前記流量調節部には浮き子と前記浮き子が前記流量調節部から流出するのを防ぐ保持部と前記吐出経路の内径より小さい内径を有した絞り部とを備え、前記浮き子が前記保持部と前記絞り部間を移動可能であり、前記流量調節部は前記吐出経路内の流速による動圧と前記浮き子の浮力とにより流量調節をする給水装置。 A water supply container; a discharge port provided at a lower portion of the water supply container and communicating with the outside of the water supply container; an on-off valve provided in the discharge port; one end opening to the water supply container and the other end communicating with the discharge port And a flow rate adjusting portion formed in the discharge path, and an upstream end of the discharge path is opened into the water supply container at a height h at which water supply is stopped, and a bottom portion of the water supply container The on-off valve is disposed, and the flow rate adjusting unit includes a float, a holding unit for preventing the float from flowing out of the flow rate adjusting unit, and a throttle unit having an inner diameter smaller than the inner diameter of the discharge path. The float is movable between the holding part and the throttle part, and the flow rate adjusting part adjusts the flow rate by the dynamic pressure due to the flow velocity in the discharge path and the buoyancy of the float. 前記絞り部を通過する水の流れ方向と前記浮き子に働く浮力の方向が異なるものである請求項2に記載の給水装置。   The water supply apparatus according to claim 2, wherein a flow direction of water passing through the throttle portion and a direction of buoyancy acting on the float are different. 前記絞り部に前記浮き子が当接した状態において、前記絞り部には水が通過する隙間が形成されている請求項2に記載の給水装置。   The water supply apparatus according to claim 2, wherein a gap through which water passes is formed in the throttle portion in a state where the float is in contact with the throttle portion. 前記吐出経路は略L字型に形成されており、前記流路調節部に設けられた前記保持部と前記絞り部は略垂直に設けられたものである請求項2または3に記載の給水装置。   The water supply device according to claim 2 or 3, wherein the discharge path is formed in a substantially L shape, and the holding portion and the throttle portion provided in the flow path adjusting portion are provided substantially vertically. . 前記浮き子は略球形である請求項2から4のいずれか一項に記載の給水装置。   The water supply apparatus according to any one of claims 2 to 4, wherein the float is substantially spherical. 前記絞り部の断面形状が略方形である請求項1から5のいずれか一項に記載の給水装置。   The water supply device according to any one of claims 1 to 5, wherein a cross-sectional shape of the throttle portion is a substantially square shape. 前記吐出経路の前記給水容器に開口している側の端部は前記吐出口より所定高さ上方に配設されている項1から7のいずれか一項に記載の給水装置。   Item 8. The water supply apparatus according to any one of Items 1 to 7, wherein an end of the discharge path that is open to the water supply container is disposed at a predetermined height above the discharge port. 冷蔵庫本体に形成された冷蔵室と、前記冷蔵室内に配設された給水容器を備え、前記給水容器には請求項1から8のいずれか一項に記載の給水装置が配設されている冷蔵庫。   A refrigerator having a refrigerator compartment formed in a refrigerator main body and a water supply container arranged in the refrigerator compartment, wherein the water supply apparatus according to any one of claims 1 to 8 is arranged in the water supply container. . 冷蔵庫本体に形成された冷蔵室と、前記冷蔵室に隣接して備えられた冷凍室と、前記冷凍室に備えられた製氷装置と、前記冷蔵室内に配設された給水容器を備え、前記給水容器には請求項1から9のいずれか一項に記載の給水装置が配設されており、前記給水容器の前記吐出口は前記製氷装置に連通するよう配設されている冷蔵庫。   A refrigerating room formed in a refrigerator body, a freezing room provided adjacent to the refrigerating room, an ice making device provided in the freezing room, and a water supply container disposed in the refrigerating room, A refrigerator, wherein the water supply device according to any one of claims 1 to 9 is disposed in the container, and the discharge port of the water supply container is disposed so as to communicate with the ice making device.
JP2004126629A 2004-04-22 2004-04-22 Water supply device and refrigerator Expired - Fee Related JP4639630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004126629A JP4639630B2 (en) 2004-04-22 2004-04-22 Water supply device and refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004126629A JP4639630B2 (en) 2004-04-22 2004-04-22 Water supply device and refrigerator

Publications (2)

Publication Number Publication Date
JP2005308321A JP2005308321A (en) 2005-11-04
JP4639630B2 true JP4639630B2 (en) 2011-02-23

Family

ID=35437287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126629A Expired - Fee Related JP4639630B2 (en) 2004-04-22 2004-04-22 Water supply device and refrigerator

Country Status (1)

Country Link
JP (1) JP4639630B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764288B1 (en) 2006-09-06 2007-10-05 엘지전자 주식회사 Water tank assembly used for refrigertaor
US20140096558A1 (en) * 2012-07-14 2014-04-10 Manitowoc Foodservie Companies, LLC Method and apparatus for sealing a food zone of an ice machine from external contaminants
WO2018162027A1 (en) * 2017-03-06 2018-09-13 Arcelik Anonim Sirketi Improved valve assembly for use in a water dispenser of a refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4870136A (en) * 1971-12-27 1973-09-22
JPS5042428A (en) * 1973-08-20 1975-04-17
JPH0113882Y2 (en) * 1981-02-18 1989-04-24
JP3204790B2 (en) * 1993-04-16 2001-09-04 三菱電機株式会社 Water supply for automatic ice making equipment

Also Published As

Publication number Publication date
JP2005308321A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US5904054A (en) Apparatus for supplying water to an ice tray of a refrigerator
KR0160414B1 (en) Auto drink supplement equipment of water dispenser for a refrigerator
US6959720B2 (en) Over-fueling prevention valve
JP3043286B2 (en) Beverage supply device for refrigerator
US6616017B2 (en) Pressure control device for maintaining a constant predetermined pressure in a container
US20110186149A1 (en) Fill-up control valve device
JP2013528538A (en) Method and apparatus for serving beverages, especially carbonated beverages
KR20090014078A (en) Drinking water server
KR950023941A (en) Water supply device of automatic ice maker
US6913035B2 (en) Water filler for water tank
US20020153044A1 (en) Automatic water level controller with plural outlet float valve
JP4639630B2 (en) Water supply device and refrigerator
US8113231B2 (en) Device for controlling water level
KR101998023B1 (en) Beverage Dispenser
JPH06273019A (en) Water supplier for automatic ice maker
US11511620B2 (en) Ventilation control valve for fuel tank
JP3700158B2 (en) Liquid supply device
JP2968450B2 (en) Valve device
KR0150859B1 (en) Water supply apparatus of automatic ice-maker
JPH09264645A (en) Automated ice making device
JP4543791B2 (en) Ice making equipment for refrigerator
JP7412017B2 (en) Liquid stop mechanism
JP4543790B2 (en) Ice making equipment for refrigerator
JPH094951A (en) Feed water tank
JPH03221769A (en) Water supplier for ice maker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees