JP4639497B2 - Method for refining high carbon steel - Google Patents

Method for refining high carbon steel Download PDF

Info

Publication number
JP4639497B2
JP4639497B2 JP2001076556A JP2001076556A JP4639497B2 JP 4639497 B2 JP4639497 B2 JP 4639497B2 JP 2001076556 A JP2001076556 A JP 2001076556A JP 2001076556 A JP2001076556 A JP 2001076556A JP 4639497 B2 JP4639497 B2 JP 4639497B2
Authority
JP
Japan
Prior art keywords
vacuum
molten steel
concentration
steel
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001076556A
Other languages
Japanese (ja)
Other versions
JP2002275525A (en
Inventor
正一 渡邉
宏泰 森岡
茂之 鍋島
正規 錦織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001076556A priority Critical patent/JP4639497B2/en
Publication of JP2002275525A publication Critical patent/JP2002275525A/en
Application granted granted Critical
Publication of JP4639497B2 publication Critical patent/JP4639497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば工具鋼、軸受鋼あるいはタイヤコード用鋼などの高炭素鋼の精錬方法に関する。
【0002】
【従来の技術】
これまで高炭素鋼の溶製は、主に、転炉において粗脱炭を行った後、RH式又はDH式真空脱ガス装置を用いて二次精錬することによって行われてきた。それは、未脱酸もしくは半脱酸の溶鋼を高真空下で撹拌し、CO反応を誘発させることにより、脱炭・脱水素・脱酸等を高度に行うことが出来るためである。しかしながら高炭素鋼および特殊鋼の需要が増加してくると、RH式又はDH式脱ガス設備のみでは生産に限界が生じる。そこで既存の設備を有効に利用するため、通常はステンレス鋼の精錬に主に使用されているVOD設備においても高炭素鋼の溶製を行う技術が必要となって来た。VODに類似の設備を用いて高炭素鋼を溶製する技術としては、特公平1−46563号公報にも示されているように、雰囲気圧力を30〜150Torr(3.95〜19.74kPa)とし、底部より不活性ガスを吹き込み、強烈なCO反応を誘発して脱酸・脱非金属介在物処理を行う技術がある。
【0003】
【発明が解決しようとする課題】
特公平1−46563号公報に開示された発明は、取鍋の上端に真空排気装置に排気ダクトを介して接続された上部気密カバーをかぶせ、取鍋上方空間の圧力を30〜150torrという比較的低真空度に保ちながら、取鍋底部から不活性ガスを吹きこんでCOガス沸騰反応を誘発して溶鋼とスラグを撹拌するというものである。
【0004】
しかし、VOD設備を用いて、最終的には1torr(131.6Pa)もの高真空度に到るまでの真空処理に上記の方法を適用すると、下記のような問題が生じ操業が困難となるという不具合が発生した。
【0005】
VOD設備は、特公平1−46563号公報に開示される設備とは異なり、取鍋全体を真空容器内に収容して減圧処理を行うように構成されている。このようなVOD設備を用いて特公平1−46563号公報に示されているように、真空下で取鍋底部から不活性ガスを吹き込むことによって、強烈なCO反応を誘発させると、真空下でキルド処理を行った際に、急激なCO反応が起ってスラグおよび溶鋼が泡立って膨張し、真空容器中にスラグおよび溶鋼を飛散させる、いわゆる、オーバーフローと称するトラブルが生じていた。スラグや溶鋼が真空容器内に飛散すると、取鍋底部に設けられたスライディングノズルの駆動部を焼損させたり、次チャージの処理ができなくなるなどの不具合が生じていた。
【0006】
本発明は、脱炭炉等において粗脱炭を行った後の高炭素溶鋼を、VOD設備を用いる真空下で二次精錬する際に、高炭素域においても、脱炭反応に伴う急激なガス発生によるオーバーフロー(取鍋からのスラグや溶鋼の流出)を発生させることなく安定的に処理する技術を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、上記問題点を解決するためになされたもので、VOD設備を用いて送酸昇熱処理又は真空キルド処理を行う際に、オーバーフローを防止するためには、溶鋼中の急激なCO反応を防止すれば良いと考え、そのためには、送酸昇熱中又はキルド処理中の溶鋼が十分に脱酸されていれば良いと考えた。例えば、Alにより脱酸する場合では、キルド処理中の溶鋼にAlが十分に溶解していれば、溶鋼中の酸素はAlの燃焼に消費され、急激なCO反応を伴うオーバーフローは生じないはずであるとの考えから本発明に至った。すなわち本発明は、VOD設備を用いて高炭素鋼を真空精錬するにあたり、該真空精錬の開始前に溶鋼中のC濃度を測定し、真空容器内圧力下での溶鋼中のC濃度と平衡する酸素活量を求め、その酸素活量と平衡する脱酸材濃度を求めた後、該脱酸材濃度以上になるように前記溶鋼中に脱酸材を添加してから真空精錬を行うことを特徴とする高炭素鋼の精錬方法である。ここで脱酸材とは通常溶鋼の脱酸に使用されるAl,Si,Ti等を指す。
【0008】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。図1は溶鋼中C,Al濃度を横軸に、縦軸に平衡酸素活量を示したグラフである。VOD設備を用いて高炭素鋼を真空精錬を開始する際に、サンプリングを行って、溶鋼中のC%を測定し、そのC%と平衡する酸素活量から必要な限界脱酸元素濃度(%)を求める(図1では例として脱硫元素にAlを用いた場合を示す。)。Alを追加投入し、キルド中のAl濃度を限界Al濃度(%)以上に常に保つことによって、脱炭反応を防止する。そして脱炭反応に伴うCOガスの発生を抑止することにより、オーバーフロー(スラグ及び地金の真空タンク内への流出)発生を防止する。例えば、図1中に破線1,2,3で示すように真空度が100Torr(13.16kPa)で、[C]=0.45%の時、限界Al濃度=0.015%である。従って、キルド中のAl濃度を常に0.015%以上に保って操業すればよい。
【0009】
ここに、真空精錬とはVOD設備を用いた減圧下での処理全体を指す。すなわち、脱水素反応や脱酸生成物の浮上分離処理の他、合金材の添加・溶解処理、Al添加と上吹酸素ランスからの酸素吹精による溶鋼の昇熱処理、スラグによる溶鋼の脱硫あるいは脱酸処理を含むものである。
【0010】
【実施例】
転炉において脱炭精錬した溶鋼に、取鍋への出鋼時に加炭剤を添加し、[C]濃度を0.45%とし、この溶鋼をVOD設備にて脱ガスと脱酸生成物の浮上分離を主目的とする真空精錬を行った。なお、溶鋼量は180tonであった。真空精錬を開始する前に溶鋼サンプルを採取し[C]の分析を行った。このとき[C]濃度は0.45質量%であった。操業標準での真空精錬時の到達真空度は100torr(131.6Pa)であったため、この圧力下で0.45質量%の[C]と平衡するよう鋼中酸素活量a0を図1のグラフから求め、この鋼中酸素活量a0と平衡する溶鋼中[Al]濃度は0.015質量%と見積られた。そこで、真空精錬を開始する前に溶鋼中にAlを添加して溶鋼中[Al]濃度を0.030質量%に調整して真空精錬を開始し、到達真空度100torr(131.6Pa)で15分間の真空精錬を行った。この結果、溶鋼やスラグのオーバーフローを生ずることなく、操業することができた。
【0011】
比較例として[C]=0.45質量%の溶鋼にAlを添加することなく真空精錬を開始し、到達真空度が100torr(131.6Pa)となってから0.030質量%相当のAlを添加する処理を行った。真空精錬終了後に真空容器の上蓋を開放して、取鍋を真空容器から取り出したところ、容器内に大量の溶鋼が吹きこぼれており、取鍋底のポーラスプラグにガスを供給するための配管の一部が焼損しているのが発見された。
【0012】
【発明の効果】
本発明を実施することにより、高炭素鋼のVOD真空処理をオーバーフロートラブル無く安定的に行うことが出来、これまでオーバーフロートラブルのために生じていた、真空容器中へ飛散したスラグ・溶鋼の回収作業に伴う操業阻害、取鍋底部の配管類の焼損等の種々の問題を発生させることなく、安定的な処理が可能となった。
【図面の簡単な説明】
【図1】[C]、[Al]%と平衡酸素活量との関係を示すグラフである。
【符号の説明】
1、2、3 破線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for refining high carbon steel such as tool steel, bearing steel, or tire cord steel.
[0002]
[Prior art]
Up to now, the melting of high carbon steel has been mainly carried out by secondary refining using an RH type or DH type vacuum degassing apparatus after rough decarburization in a converter. This is because decarburization, dehydrogenation, deoxidation, and the like can be performed at high levels by stirring undeoxidized or semi-deoxidized molten steel under high vacuum to induce a CO reaction. However, as the demand for high carbon steel and special steel increases, production is limited only by the RH or DH degassing equipment. Therefore, in order to effectively use the existing equipment, a technique for melting high carbon steel has been required even in the VOD equipment which is usually used mainly for refining stainless steel. As a technique for melting high carbon steel using equipment similar to VOD, the atmospheric pressure is set to 30 to 150 Torr (3.95 to 19.74 kPa), as shown in Japanese Patent Publication No. 1-46563. In addition, there is a technique for performing deoxidation / denonmetal inclusion treatment by injecting an inert gas from the bottom to induce a strong CO reaction.
[0003]
[Problems to be solved by the invention]
In the invention disclosed in Japanese Examined Patent Publication No. 1-46563, the upper end of the ladle is covered with an upper hermetic cover connected to the vacuum exhaust device via an exhaust duct, and the pressure in the upper space of the ladle is 30 to 150 torr. While maintaining a low degree of vacuum, an inert gas is blown from the bottom of the ladle to induce a CO gas boiling reaction to stir the molten steel and slag.
[0004]
However, if the above method is applied to the vacuum processing up to a high vacuum level of 1 torr (131.6 Pa) using the VOD equipment, the following problems occur and the operation becomes difficult. A malfunction occurred.
[0005]
Unlike the facility disclosed in Japanese Patent Publication No. 1-46563, the VOD facility is configured to accommodate the entire ladle in a vacuum vessel and perform a decompression process. When an intense CO reaction is induced by blowing an inert gas from the bottom of the ladle under vacuum, as shown in Japanese Patent Publication No. 1-46563 using such VOD equipment, When the killing process was performed, a sudden CO reaction occurred, and the slag and molten steel foamed and expanded, causing a so-called overflow problem in which the slag and molten steel were scattered in the vacuum vessel. When slag or molten steel was scattered in the vacuum vessel, there were problems such as burning the sliding nozzle drive provided at the bottom of the ladle and making it impossible to process the next charge.
[0006]
In the present invention, when a high carbon molten steel after rough decarburization in a decarburization furnace or the like is subjected to secondary refining under a vacuum using a VOD facility, a rapid gas accompanying a decarburization reaction also in a high carbon region. An object of the present invention is to provide a technique for stably processing without generating overflow (slag from a ladle or outflow of molten steel).
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and in order to prevent overflow when performing acid feed heat treatment or vacuum kill treatment using a VOD facility, a rapid CO reaction in molten steel is required. In order to do so, it was considered that the molten steel being heated by acid supply or being killed should be sufficiently deoxidized. For example, in the case of deoxidation with Al, if Al is sufficiently dissolved in the molten steel being killed, oxygen in the molten steel should be consumed for the combustion of Al and no overflow with a rapid CO reaction should occur. The present invention has been reached from the idea that there is. That is, in the present invention, when high-carbon steel is vacuum-refined using a VOD facility, the C concentration in the molten steel is measured before the start of the vacuum refining, and is balanced with the C concentration in the molten steel under the pressure in the vacuum vessel. After obtaining the oxygen activity , obtaining the concentration of the deoxidizing material that is in equilibrium with the oxygen activity , adding the deoxidizing material to the molten steel so that the concentration of the deoxidizing material is equal to or higher, and then performing vacuum refining. This is a feature of refining high carbon steel. Here, the deoxidizing material refers to Al, Si, Ti, etc. that are usually used for deoxidizing molten steel.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a graph showing the concentration of C and Al in molten steel on the horizontal axis and the equilibrium oxygen activity on the vertical axis. When starting vacuum refining of high-carbon steel using VOD equipment, sampling is performed to measure C% in molten steel, and the necessary deoxidation element concentration (%) from the oxygen activity in equilibrium with the C% (FIG. 1 shows an example in which Al is used as a desulfurization element.). The decarburization reaction is prevented by adding additional Al and constantly maintaining the Al concentration in the killed above the limit Al concentration (%). And the generation | occurrence | production of overflow (outflow of slag and a bullion into the vacuum tank) is prevented by suppressing generation | occurrence | production of CO gas accompanying a decarburization reaction. For example, as indicated by broken lines 1, 2 and 3 in FIG. 1, when the degree of vacuum is 100 Torr (13.16 kPa) and [C] = 0.45%, the limit Al concentration = 0.015%. Therefore, it is only necessary to keep the Al concentration in the killed at 0.015% or more.
[0009]
Here, vacuum refining refers to the entire process under reduced pressure using a VOD facility. In other words, in addition to the dehydrogenation reaction and the floating separation treatment of the deoxidized product, the alloy material addition / dissolution treatment, the addition of Al and the heat treatment of the molten steel by oxygen blowing from the top blowing oxygen lance, the desulfurization or desulfurization of the molten steel by slag Includes acid treatment.
[0010]
【Example】
A carburizing agent is added to the molten steel decarburized and refined in the converter at the time of steel removal to the ladle, the [C] concentration is set to 0.45%, and this molten steel is degassed and deoxidized by a VOD facility. Vacuum refining was carried out mainly for floating separation. The amount of molten steel was 180 tons. Before starting the vacuum refining, a molten steel sample was taken and analyzed for [C]. At this time, the [C] concentration was 0.45% by mass. Since the ultimate vacuum at the time of vacuum refining at the operation standard was 100 torr (131.6 Pa), the oxygen activity a 0 in the steel was adjusted to equilibrate with 0.45% by mass of [C] under this pressure as shown in FIG. Obtained from the graph, the [Al] concentration in the molten steel in equilibrium with the oxygen activity a 0 in the steel was estimated to be 0.015% by mass. Therefore, before starting the vacuum refining, Al is added to the molten steel, and the [Al] concentration in the molten steel is adjusted to 0.030% by mass to start the vacuum refining, and the final vacuum is 100 torr (131.6 Pa). Vacuum refining for a minute was performed. As a result, it was possible to operate without causing overflow of molten steel or slag.
[0011]
As a comparative example, vacuum refining was started without adding Al to the molten steel with [C] = 0.45 mass%, and Al equivalent to 0.030 mass% was reached after the ultimate vacuum reached 100 torr (131.6 Pa). The process to add was performed. After the vacuum refining was completed, the top of the vacuum vessel was opened and the ladle was removed from the vacuum vessel. A large amount of molten steel was blown into the vessel, and part of the piping for supplying gas to the porous plug at the bottom of the ladle Was found to be burned out.
[0012]
【The invention's effect】
By carrying out the present invention, VOD vacuum treatment of high carbon steel can be performed stably without overflow trouble, and recovery work of slag / molten steel scattered in the vacuum vessel, which has occurred due to overflow trouble so far Stable treatment became possible without causing various problems such as operation hindrance and burning of piping at the bottom of the ladle.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between [C], [Al]% and equilibrium oxygen activity.
[Explanation of symbols]
1, 2, 3 dashed line

Claims (1)

VOD設備を用いて高炭素鋼を真空精錬するにあたり、該真空精錬の開始前に溶鋼中のC濃度を測定し、真空容器内圧力下での溶鋼中のC濃度と平衡する酸素活量を求め、その酸素活量と平衡する脱酸材濃度を求めた後、該脱酸材濃度以上になるように前記溶鋼中に脱酸材を添加してから真空精錬を行うことを特徴とする高炭素鋼の精錬方法。When vacuum refining high carbon steel using VOD equipment, C concentration in the molten steel is measured before the start of vacuum refining, and the oxygen activity that balances with the C concentration in the molten steel under the pressure in the vacuum vessel is obtained. High-carbon, characterized in that after obtaining a deoxidizer concentration that balances with its oxygen activity, vacuum refining is performed after the deoxidizer is added to the molten steel so that the deoxidizer concentration is equal to or higher than the deoxidizer concentration Steel refining method.
JP2001076556A 2001-03-16 2001-03-16 Method for refining high carbon steel Expired - Fee Related JP4639497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076556A JP4639497B2 (en) 2001-03-16 2001-03-16 Method for refining high carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076556A JP4639497B2 (en) 2001-03-16 2001-03-16 Method for refining high carbon steel

Publications (2)

Publication Number Publication Date
JP2002275525A JP2002275525A (en) 2002-09-25
JP4639497B2 true JP4639497B2 (en) 2011-02-23

Family

ID=18933468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076556A Expired - Fee Related JP4639497B2 (en) 2001-03-16 2001-03-16 Method for refining high carbon steel

Country Status (1)

Country Link
JP (1) JP4639497B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959744A (en) * 1995-08-24 1997-03-04 Kawasaki Steel Corp High carbon steel wire rod excellent in wire drawability and aging resistance and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959744A (en) * 1995-08-24 1997-03-04 Kawasaki Steel Corp High carbon steel wire rod excellent in wire drawability and aging resistance and its production

Also Published As

Publication number Publication date
JP2002275525A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP3176374B2 (en) Method for producing low carbon molten steel by vacuum degassing decarburization
JP6330707B2 (en) Melting method of low nitrogen steel
JP4639497B2 (en) Method for refining high carbon steel
JP4207820B2 (en) How to use vacuum degassing equipment
JP5217478B2 (en) Method of melting ultra-low carbon steel
KR100270109B1 (en) The denitriding method of molten metal
NO153861B (en) PROCEDURE FOR PREVENTATIVE PREVENTIONAL PENUMATIC REFINING UNDER THE SURFACE OF A STEEL MELT.
JP3843589B2 (en) Melting method of high nitrogen stainless steel
JP4042672B2 (en) Manufacturing method of high clean steel
JP2000212641A (en) High speed vacuum refining of molten steel
JP2880842B2 (en) How to make clean steel
JP3674422B2 (en) Melting method of high cleanliness low carbon steel
TWI817507B (en) Refining method of molten iron
JP7480751B2 (en) METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL
JPS5834527B2 (en) Teirinyousennoseizohouhou
JPH10298634A (en) Method for reduction-refining stainless steel
JP5010086B2 (en) Vacuum processing of molten metal with simultaneous stripping by helium injection.
JP4207817B2 (en) Dehydrogenation treatment method for molten steel
JPH08302419A (en) Refining method of molten steel
JPH04318119A (en) Production of high clean steel
JPH0128807B2 (en)
JP3570569B2 (en) Refining method of molten metal
JP2020109203A (en) METHOD FOR REFINING Cr-CONTAINING STEEL
EP0023759A1 (en) Method of recycling steel scrap
JPH04214817A (en) Method for smelting extremely low carbon and extremely low nitrogen steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees