JP4638394B2 - Method for manufacturing adiabatic millimeter wave or submillimeter wave waveguide - Google Patents

Method for manufacturing adiabatic millimeter wave or submillimeter wave waveguide Download PDF

Info

Publication number
JP4638394B2
JP4638394B2 JP2006210971A JP2006210971A JP4638394B2 JP 4638394 B2 JP4638394 B2 JP 4638394B2 JP 2006210971 A JP2006210971 A JP 2006210971A JP 2006210971 A JP2006210971 A JP 2006210971A JP 4638394 B2 JP4638394 B2 JP 4638394B2
Authority
JP
Japan
Prior art keywords
thin film
metal
film body
waveguide
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006210971A
Other languages
Japanese (ja)
Other versions
JP2008042318A (en
Inventor
一房 野田
Original Assignee
株式会社雄島試作研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社雄島試作研究所 filed Critical 株式会社雄島試作研究所
Priority to JP2006210971A priority Critical patent/JP4638394B2/en
Publication of JP2008042318A publication Critical patent/JP2008042318A/en
Application granted granted Critical
Publication of JP4638394B2 publication Critical patent/JP4638394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は断熱性ミリ波またはサブミリ波導波管の製造方法に関する。 The present invention relates to a method of manufacturing an adiabatic millimeter wave or submillimeter wave waveguide.

天体などからミリ波、サブミリ波帯の微弱な信号を受信する受信機システムでは、前記信号を伝送して増幅可能な中間周波数に変換して出力する受信装置を含んでおり、このような受信装置では、低雑音の超伝導素子を用いることが好ましい。
そして、超伝導素子を用いた受信装置では、超伝導素子を超低音に冷却する必要があり、冷凍機を含んで構成されている。
一方、ミリ波、サブミリ波帯の微弱な信号は、一般に、前記受信装置の外部から内部へと導波管により導かれる。
したがって、冷凍機により超伝導素子を超低音に冷却しようとしても、受信装置外の大気の温度(熱)が導波管を伝わって受信装置内に導かれてしまい、導波管を用いた受信装置では超伝導素子を超低音に冷却する上で不利がある。
また、寒冷地で用いられる受信機システムでは、室内の暖かな温度(熱)が導波管を伝わって室外に導かれ、導波管の外端の周辺の雪や氷を溶かし、導波管の外端に凍り付かせ受信を困難とする不利がある。
このような不具合を解消するため、従来、合成樹脂や繊維強化プラスチックからなる管体の内面に、導波路を画成する薄膜を設け、導波管に断熱性を持たせたものが提案されている(例えば、特許文献1、特許文献2)。
特開昭59−226502 特開平7−326910
A receiver system for receiving weak signals in the millimeter wave and submillimeter wave bands from celestial bodies and the like includes a receiver that transmits the signal, converts it to an amplifiable intermediate frequency, and outputs it. Such a receiver Then, it is preferable to use a low-noise superconducting element.
And in the receiver using a superconducting element, it is necessary to cool a superconducting element to a very low sound, and it is comprised including the refrigerator.
On the other hand, weak signals in the millimeter wave and submillimeter wave bands are generally guided from the outside to the inside of the receiving apparatus by a waveguide.
Therefore, even if the superconducting element is cooled to a very low frequency by the refrigerator, the temperature (heat) of the atmosphere outside the receiving device is guided to the receiving device through the waveguide, and reception using the waveguide is performed. The apparatus is disadvantageous in cooling the superconducting element to a very low sound.
In a receiver system used in a cold region, warm indoor temperature (heat) is guided to the outside through the waveguide, melting snow and ice around the outer end of the waveguide, and the waveguide There is a disadvantage that it is difficult to receive by freezing it on the outer edge.
In order to eliminate such problems, conventionally, a thin film that defines a waveguide is provided on the inner surface of a tubular body made of synthetic resin or fiber reinforced plastic, and the waveguide is provided with heat insulation properties. (For example, Patent Document 1 and Patent Document 2).
JP 59-226502 JP 7-326910 A

しかしながら、このような従来の導波管では、合成樹脂や繊維強化プラスチックからなる管体の内面に、メッキや蒸着により薄膜を形成するため、形成すべく導波路の断面積が大きく導波路の長さが小さい場合には、管体の内面に薄膜が付着し易く、製造することができるが、形成すべく導波路の断面積が小さく導波路の長さが大きくなると、管体の内面に薄膜が付着し難く、製造することが困難となる。
本発明はこのような不具合を解決すべく案出されたものであって、本発明の目的は、形成すべく導波路の断面積が小さく導波路の長さが大きい場合でも簡単に製造できる断熱性ミリ波またはサブミリ波導波管の製造方法を提供することにある。
However, in such a conventional waveguide, a thin film is formed by plating or vapor deposition on the inner surface of a tube made of synthetic resin or fiber reinforced plastic. When the thickness is small, the thin film easily adheres to the inner surface of the tube and can be manufactured. However, if the waveguide has a small cross-sectional area and the length of the waveguide is increased, the thin film is formed on the inner surface of the tube. Are difficult to adhere and difficult to manufacture.
The present invention has been devised to solve such problems, and the object of the present invention is to provide a heat insulation that can be easily manufactured even when the waveguide has a small cross-sectional area and a long waveguide length. An object of the present invention is to provide a method for manufacturing a conductive millimeter wave or submillimeter wave waveguide.

前記目的を達成するため本発明の断熱性ミリ波またはサブミリ波導波管の製造方法は、金属材料からなり形成すべき導波路の断面の輪郭と同一形状の断面の輪郭を有する棒材を設け、前記金属材料とは別の材料で導波効率の高い金属材料により前記棒材の外面に、該外面を覆う厚さが2〜3μmの薄膜からなる薄膜体を形成し、前記薄膜体を構成する金属材料よりも高い強度を有しかつ熱伝導率の低い金属材料により前記薄膜体の外面に、該外面を覆う厚さが50〜150μmの金属製筒体を形成し、前記金属製筒体の長手方向の端部に導波管連結用の金属製フランジを接合し、前記金属製筒体の外面に、該外面に密着して該外面を覆い前記薄膜体の形状および前記金属製筒体の形状を保持するに足る強度を有し前記薄膜体を構成する金属材料よりも熱伝導率の小さい合成樹脂からなる合成樹脂製筒体を形成し、互いに一体化された前記棒材、前記薄膜体、前記金属製筒体、前記金属製フランジ、前記合成樹脂製筒体を薬剤に浸漬して前記棒材を溶解させ、前記薄膜体と前記金属製筒体と前記金属製フランジと前記合成樹脂製筒体からなる導波管を得るようにしたことを特徴とする。
また、本発明は、金属材料からなり形成すべき導波路の断面の輪郭と同一形状の断面の輪郭を有する棒材を設け、前記金属材料とは別の材料で導波効率の高い金属材料により前記棒材の外面に、該外面を覆う厚さが2〜3μmの薄膜からなる薄膜体を形成し、前記薄膜体を構成する金属材料よりも高い強度を有しかつ熱伝導率の低い金属材料により前記薄膜体の外面に、該外面を覆い前記薄膜体の形状を保持するに足る剛性を有する厚さが150〜500μmの金属製筒体を形成し、前記金属製筒体の長手方向の端部に導波管連結用の金属製フランジを接合し、前記金属製筒体の外面に、該外面に密着して該外面を覆い前記薄膜体を構成する金属材料よりも熱伝導率の小さい合成樹脂からなる合成樹脂製筒体を形成し、互いに一体化された前記棒材、前記薄膜体、前記金属製筒体、前記金属製フランジ、前記合成樹脂製筒体を薬剤に浸漬して前記棒材を溶解させ、前記薄膜体と前記金属製筒体と前記金属製フランジと前記合成樹脂製筒体からなる導波管を得るようにしたことを特徴とする。
In order to achieve the above object, a method for manufacturing a heat-insulating millimeter-wave or submillimeter-wave waveguide according to the present invention is provided with a bar having the same cross-sectional outline as a waveguide to be formed of a metal material. A thin film body made of a thin film having a thickness of 2 to 3 μm covering the outer surface is formed on the outer surface of the bar member by using a metal material different from the metal material and having a high waveguiding efficiency, thereby forming the thin film body A metal cylinder having a thickness of 50 to 150 μm covering the outer surface is formed on the outer surface of the thin film body with a metal material having higher strength and lower thermal conductivity than the metal material, and the metal cylinder body A metal flange for connecting a waveguide is joined to the longitudinal end of the metal tube, and the outer surface of the metal cylinder is in close contact with the outer surface to cover the outer surface, and the shape of the thin film body and the metal cylinder Metal material which has sufficient strength to hold the shape of the thin film and constitutes the thin film body Forming a synthetic resin cylindrical body made of a synthetic resin having a lower thermal conductivity and integrated with each other, the bar, the thin film body, the metal cylindrical body, the metal flange, and the synthetic resin cylindrical body The rod is dissolved in a drug to obtain a waveguide comprising the thin film body, the metal cylinder, the metal flange, and the synthetic resin cylinder.
In addition, the present invention provides a rod material having a cross-sectional contour that is the same shape as the cross-sectional contour of a waveguide to be formed of a metal material, and is made of a metal material that is different from the metal material and has high waveguide efficiency. A metal material having a strength higher than that of the metal material constituting the thin film body and having a low thermal conductivity is formed on the outer surface of the bar material by forming a thin film body made of a thin film having a thickness of 2 to 3 μm covering the outer surface. To form a metal cylinder having a thickness of 150 to 500 μm having sufficient rigidity to cover the outer surface and maintain the shape of the thin film body on the outer surface of the thin film body, and to end the longitudinal direction of the metal cylinder body A metal flange for connecting a waveguide is joined to the portion, and the outer surface of the metal cylinder is in close contact with the outer surface to cover the outer surface and has a lower thermal conductivity than the metal material constituting the thin film body A synthetic resin cylinder made of resin is formed and integrated with each other The bar, the thin film, the metal cylinder, the metal flange, and the synthetic resin cylinder are immersed in a chemical to dissolve the bar, and the thin film, the metal cylinder, and the metal A waveguide comprising a flange and the synthetic resin cylinder is obtained.

本発明の断熱性ミリ波またはサブミリ波導波管の製造方法によれば、まず、金属材料からなり形成すべき導波路の断面の輪郭と同一形状の断面の輪郭を有する棒材を用意し、この棒材の外面にメッキや蒸着などにより薄膜を形成して薄膜体を得る。
また、棒材の外面に薄膜体を形成し、この薄膜体の外面に金属製筒体、金属製フランジおよび合成樹脂製筒体を形成するので、薄膜体の内部に棒材が位置していることから、薄膜体を変形させることなく金属製筒体および合成樹脂製筒体を薄膜体の外面にしっかりと強固に密着させて形成でき、薄膜体と一体化された金属製筒体、金属製フランジおよび合成樹脂製筒体が簡単に得られる。
その後、棒材を溶解させることで、内側に薄膜体を有する金属製筒体、金属製フランジおよび合成樹脂製筒体、すなわち、断熱性ミリ波またはサブミリ波導波管を簡単に得ることができる。
請求項1記載の発明によれば、金属製筒体により薄膜体が補強され、合成樹脂製筒体により薄膜体の形状および金属製筒体の形状が保持され、金属製フランジを有し金属製筒体と合成樹脂製筒体により断熱性が高められた断熱性ミリ波またはサブミリ波導波管が得られ、請求項2記載の発明によれば、金属製筒体により薄膜体が補強されて薄膜体の形状が保持され、金属製フランジを有し金属製筒体および合成樹脂製筒体により断熱性が高められた断熱性ミリ波またはサブミリ波導波管が得られる。
したがって、棒材の断面積が小さく長さが大きくても棒材の内面ではなく外面に薄膜を形成するので、薄膜を簡単に形成でき、導波路を構成する薄膜体を簡単に得ることができる。
したがって、断熱性を有し、導波路の断面積が小さく導波路の長さが大きいミリ波またはサブミリ波導波管が簡単に確実に得られる。
According to the method for manufacturing a heat-insulating millimeter-wave or sub-millimeter-wave waveguide of the present invention, first, a bar material having the same cross-sectional contour as the cross-sectional contour of the waveguide to be formed of a metal material is prepared, A thin film is obtained by forming a thin film on the outer surface of the bar by plating or vapor deposition.
Moreover, since the thin film body is formed on the outer surface of the bar, and the metal cylinder, the metal flange, and the synthetic resin cylinder are formed on the outer surface of the thin film body, the bar is located inside the thin film body. Therefore, a metal cylinder and a synthetic resin cylinder can be formed by firmly and firmly adhering to the outer surface of the thin film body without deforming the thin film body . A flange and a synthetic resin cylinder are easily obtained.
Thereafter, by dissolving the rod, a metal cylinder having a thin film body inside, a metal flange, and a synthetic resin cylinder, that is, an adiabatic millimeter wave or submillimeter wave waveguide can be easily obtained. .
According to the first aspect of the present invention, the thin film body is reinforced by the metal cylinder, the shape of the thin film body and the shape of the metal cylinder are maintained by the synthetic resin cylinder, and the metal cylinder has a metal flange . A heat-insulating millimeter-wave or submillimeter-wave waveguide with improved heat insulation is obtained by the tubular body and the synthetic resin tubular body. According to the invention of claim 2, the thin-film body is reinforced by the metallic tubular body. The shape of the thin film body is maintained, and a heat insulating millimeter wave or submillimeter wave waveguide having a metal flange and having improved heat insulating properties by a metal cylinder and a synthetic resin cylinder is obtained.
Therefore, even if the cross-sectional area of the bar is small and the length is long, the thin film is formed on the outer surface rather than the inner surface of the bar, so that the thin film can be easily formed and the thin film body constituting the waveguide can be easily obtained. .
Therefore, it is possible to easily and reliably obtain a millimeter wave or submillimeter wave waveguide having heat insulation and having a small cross-sectional area of the waveguide and a long waveguide length.

以下、本発明方法を添付図面に従って説明する。
図1(A)は本発明方法により製造された断熱性導波管の断面正面図、(B)は同断面側面図を示す。
断熱性導波管10(断熱性ミリ波またはサブミリ波導波管)は、合成樹脂製筒体20と、合成樹脂製筒体20の内面に設けられた金属製筒体30と、金属製筒体30の内面に設けられた薄膜体40とで構成されている。
The method of the present invention will be described below with reference to the accompanying drawings.
FIG. 1A is a sectional front view of a heat insulating waveguide manufactured by the method of the present invention, and FIG.
The heat insulating waveguide 10 ( heat insulating millimeter wave or submillimeter wave waveguide ) includes a synthetic resin cylinder 20, a metal cylinder 30 provided on the inner surface of the synthetic resin cylinder 20, and a metal cylinder. 30 and a thin film body 40 provided on the inner surface of 30.

薄膜体40は、導波効率の高い金属材料の薄膜4002からなり、その内側に断面矩形の導波路4004が形成されており、したがって、薄膜体40は断面が矩形の筒状を呈している。
薄膜体40を構成する導波効率の高い金属材料として、例えば、金または銀または銅などが挙げられる。
薄膜4002の厚さは薄いほど導波管の長手方向における熱の伝導を抑制する上で有利となるが、伝送特性や一定品質の薄膜体を確実に量産する観点からすると、薄膜4002の厚さは2〜3μmが好ましい。
The thin film body 40 is made of a metal thin film 4002 having a high waveguiding efficiency, and a waveguide 4004 having a rectangular cross section is formed on the inside thereof. Accordingly, the thin film body 40 has a cylindrical shape with a rectangular cross section.
Examples of the metal material having a high waveguiding efficiency constituting the thin film body 40 include gold, silver, and copper.
The thinner the thin film 4002, the more advantageous in suppressing heat conduction in the longitudinal direction of the waveguide. However, from the viewpoint of reliably mass-producing a thin film body having transmission characteristics and a certain quality, the thickness of the thin film 4002 Is preferably 2 to 3 μm.

金属製筒体30は、薄膜体40を構成する金属材料よりも高い強度を有しかつ薄膜体40を構成する金属材料よりも熱伝導率の小さい金属材料で形成され、このような金属材料として、たとえば、ニッケルが挙げられる。
金属製筒体30は、薄膜体40の外面に密着してこの外面を覆っており、薄膜体40の形状に対応して断面が矩形の筒状を呈している。
金属製筒体30は、薄膜体40を補強しており、薄膜体40と一体になって薄膜体40の剛性を高めており、また、導波路4004の断熱材としても機能している。
この場合、金属製筒体30の厚さは、導波路4004の断面積などにもよるが、50〜150μm程度である。
The metal cylinder 30 is formed of a metal material having higher strength than the metal material constituting the thin film body 40 and having a lower thermal conductivity than the metal material constituting the thin film body 40, and as such a metal material For example, nickel is mentioned.
The metallic cylinder 30 is in close contact with and covers the outer surface of the thin film body 40, and has a rectangular cross section corresponding to the shape of the thin film body 40.
The metal cylinder 30 reinforces the thin film body 40, is integrated with the thin film body 40 to increase the rigidity of the thin film body 40, and also functions as a heat insulating material for the waveguide 4004.
In this case, the thickness of the metal cylinder 30 is about 50 to 150 μm although it depends on the cross-sectional area of the waveguide 4004 and the like.

合成樹脂製筒体20は、薄膜体40を構成する金属材料よりも熱伝導率の小さい合成樹脂材料で形成され、本実施の形態では、金属製筒体30を構成する金属材料よりも熱伝導率の小さい合成樹脂材料で形成され、このような合成樹脂材料として、従来公知の様々な合成樹脂材料が使用可能であり、また、ガラス繊維や炭素繊維と合成樹脂材料とを組み合わせた繊維強化プラスチックなどが挙げられる。
合成樹脂製筒体20は、金属製筒体30の外面に密着して該外面を覆い薄膜体40および金属製筒体30の形状を保持するに足る強度を有しており、したがって、合成樹脂製筒体20は、導波路4004の断熱材として機能し、かつ、薄膜体40および金属製筒体30の補強材(導波路4004の補強材)として機能する。
合成樹脂製筒体20の断面は、薄膜体40および金属製筒体30の断面が矩形枠状であることから薄膜体40および金属製筒体30の形状に対応した矩形の筒状を呈している。
なお、導波路4004の断面形状は例えば円形などであってもよく矩形に限定されず、また、導波路4004は直線状に延在するものでもよく、曲線状に延在するものでもよく、導波路4004に形状に伴って金属製筒体30および合成樹脂製筒体20の形状が決定される。
The synthetic resin cylinder 20 is formed of a synthetic resin material having a thermal conductivity smaller than that of the metal material constituting the thin film body 40. In this embodiment, the synthetic resin cylinder 20 is more thermally conductive than the metal material constituting the metal cylinder 30. It is made of a synthetic resin material with a low rate, and as such a synthetic resin material, various conventionally known synthetic resin materials can be used, and fiber reinforced plastics that are a combination of glass fiber or carbon fiber and a synthetic resin material Etc.
The synthetic resin cylinder 20 has sufficient strength to be in close contact with the outer surface of the metal cylinder 30 to cover the outer surface and maintain the shape of the thin film body 40 and the metal cylinder 30, and therefore the synthetic resin. The cylindrical body 20 functions as a heat insulating material for the waveguide 4004 and functions as a reinforcing material for the thin film body 40 and the metallic cylindrical body 30 (a reinforcing material for the waveguide 4004).
The cross section of the synthetic resin cylinder 20 is a rectangular cylinder corresponding to the shape of the thin film body 40 and the metal cylinder 30 because the thin film body 40 and the metal cylinder 30 have a rectangular frame shape. Yes.
Note that the cross-sectional shape of the waveguide 4004 may be, for example, a circle or the like, and is not limited to a rectangle. The waveguide 4004 may extend linearly or may extend curvedly. The shapes of the metal cylinder 30 and the synthetic resin cylinder 20 are determined according to the shape of the waveguide 4004.

次に、図2(A)乃至(D)を参照して断熱性導波管10の製造方法について説明する。
まず、図2(A)に示すように、金属材料からなり形成すべき導波路4004の断面の輪郭と同一形状の断面の輪郭を有する棒材50を設ける。
なお、棒材50は、中空状であってもよく、中実状であってもよい。
棒材50を構成する金属材料は、後述するように、一体化された棒材50、薄膜体40、金属製筒体30、合成樹脂製筒体20を薬剤に浸漬した際にこの棒材50のみが溶解されものであるため、薄膜体40や金属製筒体30を構成する金属とは異種の金属が用いられる。例えば、薄膜体40が金または銀または銅で形成される場合には、棒材50としてアルミが用いられ、また、薄膜体40が金で形成される場合には、棒材50として真鍮が用いられる。なお、金属製筒体30は、いずれの場合にもニッケルが採用可能である。
Next, a method for manufacturing the heat insulating waveguide 10 will be described with reference to FIGS.
First, as shown in FIG. 2A, a bar member 50 having a cross-sectional outline that is the same shape as the cross-sectional outline of a waveguide 4004 to be formed of a metal material is provided.
The bar 50 may be hollow or solid.
As will be described later, the metal material constituting the bar 50 is the bar 50 when the integrated bar 50, thin film body 40, metal cylinder 30, and synthetic resin cylinder 20 are immersed in the drug. Since only the metal is dissolved, a metal different from the metal constituting the thin film body 40 and the metal cylinder 30 is used. For example, when the thin film body 40 is formed of gold, silver, or copper, aluminum is used as the bar 50, and when the thin film body 40 is formed of gold, brass is used as the bar 50. It is done. Note that nickel can be used for the metal cylinder 30 in any case.

次に、図2(B)に示すように、棒材50を構成する金属材料とは別の材料で導波効率の高い金属材料を、メッキまたは蒸着などにより棒材50の外面に付着させ、棒材50の外面を覆う薄膜4002からなる薄膜体40を形成する。   Next, as shown in FIG. 2 (B), a metal material having a high wave guide efficiency made of a material different from the metal material constituting the bar 50 is attached to the outer surface of the bar 50 by plating or vapor deposition. A thin film body 40 made of a thin film 4002 covering the outer surface of the bar 50 is formed.

次に、図2(C)に示すように、薄膜体40の外面に、薄膜体40を構成する金属材料よりも高い強度を有しかつ薄膜体40を構成する金属材料よりも熱伝導率の小さい金属材料を、メッキまたは蒸着などにより薄膜体40の外面に付着させ、薄膜体40の外面を覆う金属製筒体30を形成する。   Next, as shown in FIG. 2C, the outer surface of the thin film body 40 has higher strength than the metal material constituting the thin film body 40 and has a higher thermal conductivity than the metal material constituting the thin film body 40. A small metal material is attached to the outer surface of the thin film body 40 by plating or vapor deposition to form the metal cylinder 30 that covers the outer surface of the thin film body 40.

次に、図2(D)に示すように、金属製筒体30の外面に薄膜体40を構成する金属材料よりも熱伝導率の小さい材料であるプラスチックを密着し、本実施の形態では、金属製筒体30を構成する金属材料よりも熱伝導率の小さい材料であるプラスチックを密着し、金属製筒体30の外面を覆い薄膜体40および金属製筒体30の形状を保持するに足る強度を有する合成樹脂製筒体20を形成する。
プラスチックとして繊維強化プラスチックを用いる場合には、金属製筒体30の外面に、ガラス繊維や炭素繊維などの強化繊維を巻き付けて積層し、その上から流動状態のプラスチックを塗り固め硬化させ、あるいは、流動状態のプラスチックを含浸させたガラス繊維や炭素繊維などの強化繊維を巻き付けて積層し前記プラスチックを硬化させることが行なわれる。
次に、互いに一体化された棒材50、薄膜体40、金属製筒体30、合成樹脂製筒体20を薬剤に浸漬して棒材50を溶解させ、図2(E)に示す薄膜体40と金属製筒体30と合成樹脂製筒体20からなり薄膜体40の内側に導波路4004が形成された断熱性導波管10を得る。
Next, as shown in FIG. 2 (D), a plastic that is a material having a lower thermal conductivity than the metal material constituting the thin film body 40 is closely attached to the outer surface of the metal cylinder 30, and in this embodiment, A plastic material having a lower thermal conductivity than that of the metal material constituting the metal cylinder 30 is in close contact, and the outer surface of the metal cylinder 30 is covered to hold the shapes of the thin film body 40 and the metal cylinder 30. A synthetic resin cylinder 20 having strength is formed.
When fiber reinforced plastic is used as the plastic, a reinforcing fiber such as glass fiber or carbon fiber is wound around the outer surface of the metal cylinder 30 and laminated, and a plastic in a fluid state is applied and hardened thereon, or A reinforced fiber such as glass fiber or carbon fiber impregnated with plastic in a fluid state is wound and laminated to cure the plastic.
Next, the bar 50, the thin film body 40, the metal cylinder 30, and the synthetic resin cylinder 20 integrated with each other are immersed in a drug to dissolve the bar 50, and the thin film body shown in FIG. The heat insulating waveguide 10 is obtained which is composed of 40, the metal cylinder 30 and the synthetic resin cylinder 20 and in which the waveguide 4004 is formed inside the thin film body 40.

このような製造方法で得られた断熱性導波管10は、導波路4004を構成する金属材料部分は極めて薄い薄膜4002からなる薄膜体40であり、したがって、断熱性導波管10の長手方向において薄膜体40を通しての熱伝導を極めて小さく抑えることが可能となる。
さらに、薄膜体40の外面は、導波路4004を構成する金属材料よりも熱伝導率の小さい材料の金属製筒体30および合成樹脂製筒体20により覆われており、したがって、断熱性導波管10の長手方向において金属製筒体30および合成樹脂製筒体20を通しての熱伝導は極めて小さいことは無論のこと、薄膜体40を通しての熱伝導もより一層小さく抑える上で有利となる。
また、薄膜体40は極めて薄い薄膜4002で形成されているので薄膜体40のみでは導波路4004の形状を保持し難いが、薄膜体40の外面に密着する金属製筒体30により薄膜体40が補強され、かつ、金属製筒体30の外面に密着する合成樹脂製筒体20により導波路4004の形状が保持されることから、導波路4004における伝送が確実になされる。
したがって、天体などからのミリ波、サブミリ波帯の微弱な信号を断熱性導波管10により受信装置へ導く上で極めて有利となる。
In the heat insulating waveguide 10 obtained by such a manufacturing method, the metal material part constituting the waveguide 4004 is a thin film body 40 made of an extremely thin thin film 4002, and therefore, the longitudinal direction of the heat insulating waveguide 10 is In this case, the heat conduction through the thin film body 40 can be kept extremely small.
Furthermore, the outer surface of the thin film body 40 is covered with the metal cylinder body 30 and the synthetic resin cylinder body 20 made of a material having a lower thermal conductivity than the metal material constituting the waveguide 4004, and therefore, the heat insulating waveguide. Of course, the heat conduction through the metal cylinder 30 and the synthetic resin cylinder 20 in the longitudinal direction of the tube 10 is extremely small, and it is advantageous to further reduce the heat conduction through the thin film body 40.
In addition, since the thin film body 40 is formed of an extremely thin film 4002, it is difficult to maintain the shape of the waveguide 4004 with only the thin film body 40, but the thin film body 40 is formed by the metal cylinder 30 that is in close contact with the outer surface of the thin film body 40. Since the shape of the waveguide 4004 is maintained by the synthetic resin cylinder 20 that is reinforced and in close contact with the outer surface of the metal cylinder 30, transmission in the waveguide 4004 is reliably performed.
Therefore, it is extremely advantageous when a weak signal in the millimeter wave or submillimeter wave band from a celestial body or the like is guided to the receiving device by the heat insulating waveguide 10.

次に、作用、効果について説明する。
本発明の断熱性導波管の製造方法では、形成すべき導波路4004の断面の輪郭と同一形状の断面の輪郭を有する棒材50を用意し、この棒材50の外面にメッキまたは蒸着などにより薄膜4002を形成し、薄膜体40を得るようにした。
したがって、形成すべく導波路4004の断面積が小さく導波路4004の長さが大きくても、すなわち、棒材50の断面積が小さく長さが大きくても、棒材50の内面ではなく外面に薄膜4002を形成するので、薄膜4002を簡単に確実に形成でき、薄膜体40を簡単に得ることができる。
また、薄膜体40が単体である場合、薄膜体40を構成する薄膜4002が極めて薄いため、薄膜体40(導波路4004)の形状を変形させることなく薄膜体20の外面に他の材料を密着させて覆うことが極めて困難となるが、本実施の形態では、棒材50の外面に薄膜体40を形成し、この薄膜体40の上に金属製筒体30および合成樹脂製筒体20を形成するので、薄膜体40の内側に密着した棒材50が位置しており、薄膜体40を変形させることなく薄膜体40の外面に確実に密着して該外面を覆う金属製筒体30および合成樹脂製筒体20を簡単に確実に得ることができる。
Next, functions and effects will be described.
In the method for manufacturing a heat insulating waveguide according to the present invention, a bar 50 having the same cross-sectional outline as the cross-sectional outline of the waveguide 4004 to be formed is prepared, and plating or vapor deposition is performed on the outer surface of the bar 50. Thus, the thin film 4002 was formed, and the thin film body 40 was obtained.
Therefore, even if the cross-sectional area of the waveguide 4004 is small and the length of the waveguide 4004 is large to be formed, that is, even if the cross-sectional area of the bar 50 is small and the length is long, it is not on the inner surface of the bar 50 but on the outer surface. Since the thin film 4002 is formed, the thin film 4002 can be easily and reliably formed, and the thin film body 40 can be easily obtained.
In addition, when the thin film body 40 is a single body, the thin film 4002 constituting the thin film body 40 is extremely thin, and thus other materials are adhered to the outer surface of the thin film body 20 without deforming the shape of the thin film body 40 (waveguide 4004). However, in this embodiment, the thin film body 40 is formed on the outer surface of the bar 50, and the metal cylinder body 30 and the synthetic resin cylinder body 20 are formed on the thin film body 40 in this embodiment. Since it is formed, the rod 50 that is in close contact with the inside of the thin film body 40 is located, and without being deformed, the metal cylinder 30 that securely adheres to the outer surface of the thin film body 40 and covers the outer surface. The synthetic resin cylinder 20 can be obtained easily and reliably.

この場合、繊維強化プラスチックを用いると、薄膜体40の内部に棒材50が位置していることから、ガラス繊維や炭素繊維などの強化繊維を金属製筒体30にしっかりと強固に巻き付けて積層できるので、金属製筒体30の外面に確実に密着して薄膜体40および金属製筒体30と一体化し、薄膜体40の形状を保持する合成樹脂製筒体20が簡単に確実に得られる。
なお、合成樹脂製筒体20は、薄膜体40および金属製筒体30が形成された棒材50を型内にセットし、型内にプラスチックを流し込む型成形などによっても形成することができるが、上述の繊維強化プラスチックを用いて合成樹脂製筒体20を得るようにすると、型が不要であるため低コスト化を図る上で有利となる。
そして、最後に棒材50を溶解させることで、薄膜体40、金属製筒体30、合成樹脂製筒体20からなる断熱性導波管10を簡単に得ることができ、したがって、断熱性に優れ断面積が小さく長さが大きい導波路4004を有する導波管を簡単に確実に得ることができる。
この場合、棒材50として、断面が矩形の管体(あるいは導波路の断面が円形の場合には断面が環状の管体など)のような中空状のものを用いると、中実状の棒材50と比べてより簡単に溶解でき、したがって、溶解に要する時間を短縮でき、また、形成すべき導波路の断面が極めて小さい場合でもより確実に溶解させることができ、生産効率を高める上で有利となる。
In this case, when fiber reinforced plastic is used, since the rod 50 is located inside the thin film body 40, a reinforcing fiber such as glass fiber or carbon fiber is tightly wound around the metal cylinder 30 and laminated. Therefore, the synthetic resin cylinder 20 that reliably adheres to the outer surface of the metal cylinder 30 and is integrated with the thin film body 40 and the metal cylinder 30 and maintains the shape of the thin film body 40 can be easily and reliably obtained. .
The synthetic resin cylinder 20 can be formed by molding a rod 50 in which the thin film body 40 and the metal cylinder 30 are formed in a mold and pouring plastic into the mold. If the synthetic resin cylindrical body 20 is obtained using the above-described fiber reinforced plastic, it is advantageous to reduce the cost because a mold is unnecessary.
Then, by finally dissolving the rod member 50, the heat insulating waveguide 10 composed of the thin film body 40, the metal cylinder body 30, and the synthetic resin cylinder body 20 can be easily obtained. A waveguide having a waveguide 4004 with a small cross-sectional area and a large length can be obtained easily and reliably.
In this case, if a hollow member such as a tube having a rectangular cross section (or a tube having a circular cross section when the waveguide has a circular cross section) is used as the rod 50, a solid rod is used. It can be dissolved more easily than 50, so the time required for dissolution can be shortened, and even when the cross-section of the waveguide to be formed is very small, it can be dissolved more reliably, which is advantageous for increasing the production efficiency. It becomes.

次に、第2の実施の形態について説明する。
図3(A)は断熱性導波管のフランジ部分の正面図、(B)は断熱性導波管のフランジ部分の断面図である。
第2の実施の形態は、第1の実施の形態の断熱性導波管10にフランジ60を加えたものである。
すなわち、第2の実施の形態の断熱性導波管10は、第1の実施の形態と同様に、合成樹脂製筒体20、金属製筒体30、薄膜体40とで構成されており、フランジ60は、それら合成樹脂製筒体20、金属製筒体30、薄膜体40の長手方向の端部で金属製筒体30に一体に形成されている。
フランジ60は、断熱性導波管10の端部において断熱性導波管10の延在方向と直交する平面上を延在するように設けられている。
Next, a second embodiment will be described.
3A is a front view of the flange portion of the heat insulating waveguide, and FIG. 3B is a cross-sectional view of the flange portion of the heat insulating waveguide.
In the second embodiment, a flange 60 is added to the heat insulating waveguide 10 of the first embodiment.
That is, the heat-insulating waveguide 10 of the second embodiment is composed of the synthetic resin cylinder 20, the metal cylinder 30, and the thin film body 40, as in the first embodiment. The flange 60 is integrally formed with the metal cylinder 30 at the longitudinal ends of the synthetic resin cylinder 20, the metal cylinder 30, and the thin film body 40.
The flange 60 is provided at the end of the heat insulating waveguide 10 so as to extend on a plane orthogonal to the extending direction of the heat insulating waveguide 10.

このようなフランジ60を有する断熱性導波管10は次のように製造される。
まず、フランジ60が予め形成される。
フランジ60は、図4(A)に正面図で、(B)に断面図で示すように、円板状の本体6002と、本体6002の中心部に貫通形成され金属製筒体30が挿入される角孔6004と、本体6002の外周部に周方向に等間隔をおいて形成された複数のボルト挿通孔6006を有している。
そして、金属製筒体30を形成した後で合成樹脂製筒体20の形成前に、金属製筒体30の端部を、フランジ60の角孔6004に挿入し、はんだ付けやロー付けによりフランジ60を金属製筒体30に接合することなどで製造される。この接合時、フランジ60は薄膜体40に直接接合されず金属製筒体30に接合され、この金属製筒体30は薄膜体40を補強するものであり薄膜体40に比べて強固なものであるため、薄膜体40が熱の影響により変形するなどの不具合が阻止される。
なお、合成樹脂製筒体20の形成時に、フランジ60の背面や外周面を、すなわち、フランジ60の合わせ面以外の箇所を合成樹脂で覆うなど任意である。
また、フランジ60を構成する金属材料は、薄膜体40を構成する金属材料よりも高い強度を有しかつ薄膜体40を構成する金属材料よりも熱伝導率の小さい金属材料が用いられ、したがって、金属製筒体30を構成する金属材料と同一のものが使用可能であり、例えば、ニッケルが使用される。
第2の実施の形態では、極めて薄い薄膜4002からなる導波路4004を有する断熱性導波管10であるにもかかわらず、それらをフランジ60により連結して用いることが可能となる。
The heat insulating waveguide 10 having such a flange 60 is manufactured as follows.
First, the flange 60 is formed in advance.
As shown in a front view in FIG. 4A and a cross-sectional view in FIG. 4B, the flange 60 is formed through a disc-shaped main body 6002 and a central portion of the main body 6002 so that the metal cylinder 30 is inserted. And a plurality of bolt insertion holes 6006 formed at equal intervals in the circumferential direction on the outer peripheral portion of the main body 6002.
After the metal cylinder 30 is formed and before the synthetic resin cylinder 20 is formed, the end of the metal cylinder 30 is inserted into the square hole 6004 of the flange 60, and the flange is formed by soldering or brazing. It is manufactured by joining 60 to the metal cylinder 30. At this time, the flange 60 is not directly joined to the thin film body 40 but is joined to the metal cylinder 30, and the metal cylinder 30 reinforces the thin film body 40 and is stronger than the thin film body 40. For this reason, problems such as deformation of the thin film body 40 due to the influence of heat are prevented.
In addition, at the time of formation of the synthetic resin cylindrical body 20, the back surface and the outer peripheral surface of the flange 60, that is, the portions other than the mating surface of the flange 60 are arbitrarily covered with the synthetic resin.
Further, the metal material constituting the flange 60 is a metal material having higher strength than the metal material constituting the thin film body 40 and having a lower thermal conductivity than the metal material constituting the thin film body 40. The same metal material that constitutes the metal cylinder 30 can be used. For example, nickel is used.
In the second embodiment, even though the heat insulating waveguide 10 has the waveguide 4004 made of an extremely thin thin film 4002, they can be connected by the flange 60 and used.

なお、第1、第2の実施の形態では、合成樹脂製筒体20が、金属製筒体30の外面を覆い薄膜体40および金属製筒体30の形状を保持するに足る強度を有している場合について説明したが、金属製筒体30を、薄膜体40の形状を保持するに足る剛性を有するように形成してもよい。
この場合、金属製筒体30の厚さは、導波路4004の断面積などにもよるが、150〜500μm程度となる。
また、この場合には、第1、第2の実施の形態では、合成樹脂製筒体20が導波路4004の断熱材として機能し、かつ、薄膜体40および金属製筒体30の補強材として機能していたのに対し、合成樹脂製筒体20は主として断熱材として機能することになる。
また、金属製筒体30を、薄膜体40の形状を保持するに足る剛性を有するように形成し、合成樹脂製筒体20を、導波路4004の断熱材として機能させ、かつ、薄膜体40および金属製筒体30の補強材として機能させるようにしてもよい。
また、導波路4004の形状や大きさは目的、用途などに応じて適宜変更される。
また、本発明の製造方法の対象となる断熱性導波管10は、リジットなもの、フレキシブルなものの双方を含むものである。
In the first and second embodiments, the synthetic resin cylinder 20 has sufficient strength to cover the outer surface of the metal cylinder 30 and maintain the shapes of the thin film body 40 and the metal cylinder 30. However, the metal cylinder 30 may be formed so as to have sufficient rigidity to maintain the shape of the thin film body 40.
In this case, the thickness of the metal cylinder 30 is about 150 to 500 μm although it depends on the cross-sectional area of the waveguide 4004 and the like.
In this case, in the first and second embodiments, the synthetic resin cylinder 20 functions as a heat insulating material for the waveguide 4004, and as a reinforcing material for the thin film body 40 and the metal cylinder 30. In contrast to the function, the synthetic resin cylinder 20 mainly functions as a heat insulating material.
Further, the metal cylinder 30 is formed to have sufficient rigidity to hold the shape of the thin film body 40, the synthetic resin cylinder 20 is made to function as a heat insulating material for the waveguide 4004, and the thin film body 40 is formed. Alternatively, it may function as a reinforcing material for the metal cylinder 30.
In addition, the shape and size of the waveguide 4004 are appropriately changed according to the purpose and application.
Moreover, the heat insulating waveguide 10 which is the object of the manufacturing method of the present invention includes both rigid and flexible ones.

(A)は本発明方法により製造された断熱性導波管の断面正面図、(B)は同断面側面図である。(A) is a cross-sectional front view of a heat insulating waveguide manufactured by the method of the present invention, and (B) is a cross-sectional side view of the same. 本発明の断熱性導波管の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the heat insulation waveguide of this invention. (A)フランジを有する断熱性導波管の正面図、(B)は同断面図である。(A) The front view of the heat insulation waveguide which has a flange, (B) is the same sectional drawing. (A)フランジの正面図、(B)は同断面図である。(A) Front view of flange, (B) is a sectional view of the same.

符号の説明Explanation of symbols

10……断熱性導波管、20……合成樹脂製筒体、30……金属製筒体、40……薄膜体、4002……薄膜、4004……導波路、50……棒材、60……フランジ。
DESCRIPTION OF SYMBOLS 10 ... Thermal insulation waveguide, 20 ... Synthetic resin cylinder, 30 ... Metal cylinder, 40 ... Thin film body, 4002 ... Thin film, 4004 ... Waveguide, 50 ... Bar material, 60 ...... Flange.

Claims (11)

金属材料からなり形成すべき導波路の断面の輪郭と同一形状の断面の輪郭を有する棒材を設け、
前記金属材料とは別の材料で導波効率の高い金属材料により前記棒材の外面に、該外面を覆う厚さが2〜3μmの薄膜からなる薄膜体を形成し、
前記薄膜体を構成する金属材料よりも高い強度を有しかつ熱伝導率の低い金属材料により前記薄膜体の外面に、該外面を覆う厚さが50〜150μmの金属製筒体を形成し、
前記金属製筒体の長手方向の端部に導波管連結用の金属製フランジを接合し、
前記金属製筒体の外面に、該外面に密着して該外面を覆い前記薄膜体の形状および前記金属製筒体の形状を保持するに足る強度を有し前記薄膜体を構成する金属材料よりも熱伝導率の小さい合成樹脂からなる合成樹脂製筒体を形成し、
互いに一体化された前記棒材、前記薄膜体、前記金属製筒体、前記金属製フランジ、前記合成樹脂製筒体を薬剤に浸漬して前記棒材を溶解させ、
前記薄膜体と前記金属製筒体と前記金属製フランジと前記合成樹脂製筒体からなる導波管を得るようにした、
ことを特徴とする断熱性ミリ波またはサブミリ波導波管の製造方法。
A bar material having a cross-sectional contour of the same shape as the cross-sectional contour of the waveguide to be formed of a metal material is provided.
A thin film body made of a thin film having a thickness of 2 to 3 μm covering the outer surface is formed on the outer surface of the bar by a metal material different from the metal material and having a high waveguiding efficiency,
A metal cylinder having a thickness of 50 to 150 μm covering the outer surface is formed on the outer surface of the thin film body with a metal material having higher strength than the metal material constituting the thin film body and low thermal conductivity,
Bonding a metal flange for connecting a waveguide to the longitudinal end of the metal cylinder,
From the metal material constituting the thin film body, the outer surface of the metal cylinder body has sufficient strength to cover the outer surface in close contact with the outer surface and hold the shape of the thin film body and the shape of the metal cylinder body Forming a synthetic resin cylinder made of synthetic resin with low thermal conductivity,
The bar material, the thin film body, the metal cylinder, the metal flange, and the synthetic resin cylinder, which are integrated with each other, are immersed in a drug to dissolve the bar,
A waveguide made of the thin film body, the metal cylinder, the metal flange, and the synthetic resin cylinder was obtained.
A method of manufacturing an adiabatic millimeter wave or submillimeter wave waveguide.
金属材料からなり形成すべき導波路の断面の輪郭と同一形状の断面の輪郭を有する棒材を設け、
前記金属材料とは別の材料で導波効率の高い金属材料により前記棒材の外面に、該外面を覆う厚さが2〜3μmの薄膜からなる薄膜体を形成し、
前記薄膜体を構成する金属材料よりも高い強度を有しかつ熱伝導率の低い金属材料により前記薄膜体の外面に、該外面を覆い前記薄膜体の形状を保持するに足る剛性を有する厚さが150〜500μmの金属製筒体を形成し、
前記金属製筒体の長手方向の端部に導波管連結用の金属製フランジを接合し、
前記金属製筒体の外面に、該外面に密着して該外面を覆い前記薄膜体を構成する金属材料よりも熱伝導率の小さい合成樹脂からなる合成樹脂製筒体を形成し、
互いに一体化された前記棒材、前記薄膜体、前記金属製筒体、前記金属製フランジ、前記合成樹脂製筒体を薬剤に浸漬して前記棒材を溶解させ、
前記薄膜体と前記金属製筒体と前記金属製フランジと前記合成樹脂製筒体からなる導波管を得るようにした、
ことを特徴とする断熱性ミリ波またはサブミリ波導波管の製造方法。
A bar material having a cross-sectional contour of the same shape as the cross-sectional contour of the waveguide to be formed of a metal material is provided.
A thin film body made of a thin film having a thickness of 2 to 3 μm covering the outer surface is formed on the outer surface of the bar by a metal material different from the metal material and having a high waveguiding efficiency,
Thickness sufficient to hold the shape of the thin film body on the outer surface of the thin film body with a metal material having higher strength and lower thermal conductivity than the metal material constituting the thin film body Forming a metal cylinder of 150 to 500 μm,
Bonding a metal flange for connecting a waveguide to the longitudinal end of the metal cylinder,
On the outer surface of the metal cylinder, a synthetic resin cylinder made of a synthetic resin having a thermal conductivity smaller than that of the metal material constituting the thin film body covering the outer surface in close contact with the outer surface is formed,
The bar material, the thin film body, the metal cylinder, the metal flange, and the synthetic resin cylinder, which are integrated with each other, are immersed in a drug to dissolve the bar,
A waveguide made of the thin film body, the metal cylinder, the metal flange, and the synthetic resin cylinder was obtained.
A method of manufacturing an adiabatic millimeter wave or submillimeter wave waveguide.
前記薄膜体はメッキまたは蒸着により前記棒材の外面に形成されることを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。   The method of manufacturing a heat insulating millimeter wave or submillimeter wave waveguide according to claim 1 or 2, wherein the thin film body is formed on an outer surface of the bar by plating or vapor deposition. 前記金属製筒体は、メッキまたは蒸着により前記薄膜体の外面に形成されることを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。   3. The method for manufacturing an adiabatic millimeter wave or submillimeter wave waveguide according to claim 1, wherein the metal cylinder is formed on the outer surface of the thin film body by plating or vapor deposition. 前記棒材は中空状を呈していることを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。   The method for manufacturing a heat insulating millimeter wave or submillimeter wave waveguide according to claim 1, wherein the bar has a hollow shape. 前記合成樹脂は繊維強化プラスチックであり、前記合成樹脂製筒体は、前記金属製筒体の外面に、ガラス繊維または炭素繊維からなる強化繊維を巻き付けて積層し、その上から流動状態のプラスチックを塗り固め硬化させ、あるいは、流動状態のプラスチックを含浸させたガラス繊維または炭素繊維からなる強化繊維を巻き付けて積層し前記プラスチックを硬化させることで形成されることを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。 The synthetic resin is a fiber-reinforced plastic, the plastic tubular body, the outer surface of the metallic tubular body, by winding reinforcing fibers made of glass fiber or carbon fiber are stacked, the plastic flow state thereon 3. The resin composition according to claim 1 or 2, characterized in that it is formed by solidifying and curing, or by winding and laminating reinforcing fibers made of glass fibers or carbon fibers impregnated with plastic in a fluid state, and curing the plastics. Manufacturing method of adiabatic millimeter wave or submillimeter wave waveguide. 前記薄膜体を構成する金属材料は、金または銀または銅の何れかであり、前記棒材を構成する金属材料はアルミであることを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。   3. The heat insulating millimeter wave according to claim 1, wherein the metal material forming the thin film body is gold, silver, or copper, and the metal material forming the bar is aluminum. Submillimeter wave waveguide manufacturing method. 前記薄膜体を構成する前記導波効率の高い金属材料は金であり、前記棒材は真鍮であることを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。   3. The method for manufacturing an adiabatic millimeter wave or submillimeter wave waveguide according to claim 1, wherein the metal material having a high waveguiding efficiency constituting the thin film body is gold, and the bar is brass. . 前記金属製筒体を構成する金属材料はニッケルであることを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。   The method for manufacturing a heat insulating millimeter-wave or submillimeter-wave waveguide according to claim 1 or 2, wherein the metal material constituting the metal cylinder is nickel. 前記金属製フランジは、前記金属製筒体を構成する金属材料と同じ材料で形成されている、
ことを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。
The metal flange is formed of the same material as the metal material constituting the metal cylinder.
The method for manufacturing a heat-insulating millimeter wave or submillimeter wave waveguide according to claim 1 or 2.
前記金属製フランジは、円板状の本体と、前記本体の中央に貫通形成され前記金属製筒体の端部が挿入される孔と、前記本体の外周部に設けられた複数のボルト挿通孔とを有し、
前記金属製フランジの前記金属製筒体への接合は、前記孔に前記金属筒体の端部が挿入されてはんだ付けやロー付けが行なわれることでなされる、
ことを特徴とする請求項1または2記載の断熱性ミリ波またはサブミリ波導波管の製造方法。
The metal flange includes a disk-shaped main body, a hole formed through the center of the main body and into which an end of the metal cylinder is inserted, and a plurality of bolt insertion holes provided in the outer peripheral portion of the main body. And
Wherein the bonding of the metallic cylindrical body of the metal flanges, the ends of the metallic tubular member into the hole is made by soldering or brazing is inserted is made,
The method for manufacturing a heat-insulating millimeter wave or submillimeter wave waveguide according to claim 1 or 2.
JP2006210971A 2006-08-02 2006-08-02 Method for manufacturing adiabatic millimeter wave or submillimeter wave waveguide Expired - Fee Related JP4638394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210971A JP4638394B2 (en) 2006-08-02 2006-08-02 Method for manufacturing adiabatic millimeter wave or submillimeter wave waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210971A JP4638394B2 (en) 2006-08-02 2006-08-02 Method for manufacturing adiabatic millimeter wave or submillimeter wave waveguide

Publications (2)

Publication Number Publication Date
JP2008042318A JP2008042318A (en) 2008-02-21
JP4638394B2 true JP4638394B2 (en) 2011-02-23

Family

ID=39176888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210971A Expired - Fee Related JP4638394B2 (en) 2006-08-02 2006-08-02 Method for manufacturing adiabatic millimeter wave or submillimeter wave waveguide

Country Status (1)

Country Link
JP (1) JP4638394B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256385A (en) * 1975-11-05 1977-05-09 Nec Corp Manufacturing of waveguide
JPS5972007U (en) * 1982-11-04 1984-05-16 三菱電機株式会社 waveguide
JPS6111483B2 (en) * 1978-03-03 1986-04-03 Mitsubishi Electric Corp
JPS61238104A (en) * 1985-04-15 1986-10-23 Nippon Telegr & Teleph Corp <Ntt> Silver plated waveguide and its manufacture
JPS63166303A (en) * 1986-12-27 1988-07-09 Nec Corp Manufacture of frp made waveguide
JPH07326910A (en) * 1994-05-31 1995-12-12 Nec Corp Waveguide
JPH11266101A (en) * 1998-03-18 1999-09-28 Mitsubishi Electric Corp Waveguide
JP2007027831A (en) * 2005-07-12 2007-02-01 National Institutes Of Natural Sciences Method of manufacturing heat insulating waveguide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256385A (en) * 1975-11-05 1977-05-09 Nec Corp Manufacturing of waveguide
JPS6111483B2 (en) * 1978-03-03 1986-04-03 Mitsubishi Electric Corp
JPS5972007U (en) * 1982-11-04 1984-05-16 三菱電機株式会社 waveguide
JPS61238104A (en) * 1985-04-15 1986-10-23 Nippon Telegr & Teleph Corp <Ntt> Silver plated waveguide and its manufacture
JPS63166303A (en) * 1986-12-27 1988-07-09 Nec Corp Manufacture of frp made waveguide
JPH07326910A (en) * 1994-05-31 1995-12-12 Nec Corp Waveguide
JPH11266101A (en) * 1998-03-18 1999-09-28 Mitsubishi Electric Corp Waveguide
JP2007027831A (en) * 2005-07-12 2007-02-01 National Institutes Of Natural Sciences Method of manufacturing heat insulating waveguide

Also Published As

Publication number Publication date
JP2008042318A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
WO2014030488A1 (en) Waveguide tube slot antenna and wireless device provided therewith
JP5515984B2 (en) Chassis frame
EP2049861B1 (en) Plastic heat exchanger and method of manufacturing the same
US9378870B2 (en) Superconducting joints
JP4638394B2 (en) Method for manufacturing adiabatic millimeter wave or submillimeter wave waveguide
KR20120011842A (en) Waveguide
US20150211815A1 (en) Thermal Bridge Element and Method for the Production Thereof
JP4601667B2 (en) Heat sink and manufacturing method thereof
WO2004105127B1 (en) Semiconductor die package with increased thermal conduction
JPWO2017115650A1 (en) Method for producing composite molded body
JP2007027831A (en) Method of manufacturing heat insulating waveguide
KR101289331B1 (en) The insulation and device for manufacture
JP5629046B2 (en) Method for manufacturing pipe joint molded member having heat insulating material
JP2007147226A (en) Flexible heat pipe and its manufacturing method
EP2214474B1 (en) Aluminum antenna coil
JP6355914B2 (en) Superconducting coil and method of manufacturing the superconducting coil
EP3644356A1 (en) Cooling structure, cooling structure manufacturing method, power amplifier, and transmitter
JP6211254B2 (en) Waveguide slot array antenna
JP2008304001A (en) Tubular member joint structure and method
JP6557566B2 (en) Waveguide slot antenna
WO2016199700A1 (en) Reactor and method for manufacturing reactor
JPH07326910A (en) Waveguide
GB2119071A (en) Joule-Thomson cooling apparatus
JPS632481B2 (en)
JP4085693B2 (en) Heat pipe and heat pipe adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees