JP4638391B2 - Liquid quality sensor and fixing structure of liquid quality sensor - Google Patents

Liquid quality sensor and fixing structure of liquid quality sensor Download PDF

Info

Publication number
JP4638391B2
JP4638391B2 JP2006202117A JP2006202117A JP4638391B2 JP 4638391 B2 JP4638391 B2 JP 4638391B2 JP 2006202117 A JP2006202117 A JP 2006202117A JP 2006202117 A JP2006202117 A JP 2006202117A JP 4638391 B2 JP4638391 B2 JP 4638391B2
Authority
JP
Japan
Prior art keywords
liquid
liquid quality
quality sensor
groove
central conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006202117A
Other languages
Japanese (ja)
Other versions
JP2008026264A (en
Inventor
剛俊 山浦
政巳 飯田
直治 林田
一彦 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Fujikura Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Mitsubishi Heavy Industries Ltd filed Critical Fujikura Ltd
Priority to JP2006202117A priority Critical patent/JP4638391B2/en
Publication of JP2008026264A publication Critical patent/JP2008026264A/en
Application granted granted Critical
Publication of JP4638391B2 publication Critical patent/JP4638391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、火力発電設備の復水器等、例えば海水が流れる機器からの液漏れ等の液質の変化を検出する液質センサ及び液質センサの固着構造に関する。   The present invention relates to a liquid quality sensor for detecting a change in liquid quality such as a liquid leak from a condenser or the like of a thermal power generation facility, for example, a device through which seawater flows, and a fixing structure of the liquid quality sensor.

従来、火力発電設備等においては、ボイラで発生した蒸気を復水器で冷却凝縮させ、ボイラ水(純水)として循環使用している。ここで、復水器内ボイラ蒸気を冷却する冷却管が設けられ、該冷却管には冷却用の海水が流れているが、該冷却管に亀裂等が生じると、そこから海水が液漏れし、凝縮したボイラ凝縮水に混入し、該凝縮水に塩分が混じって各種配管等を腐食させることになる。そこで、復水器からの海水の液漏れをチェックすべく、各種の海水漏洩検出装置が開発されている(例えば、特許文献1参照)。   Conventionally, in a thermal power generation facility or the like, steam generated in a boiler is cooled and condensed by a condenser and circulated and used as boiler water (pure water). Here, a cooling pipe for cooling the steam in the condenser is provided, and seawater for cooling flows through the cooling pipe. However, when a crack or the like occurs in the cooling pipe, seawater leaks from there. Then, it is mixed in the condensed boiler condensate, and the condensed water is mixed with salt to corrode various pipes. Therefore, various seawater leakage detection devices have been developed to check for seawater leakage from the condenser (see, for example, Patent Document 1).

しかしながら、上記した従来技術の場合、復水器下部に凝縮したボイラ水を採取して液分析を行うため、リークした海水がボイラ水で大幅に希釈され、その分検出感度が低下するという問題がある。又、実際の海水リークは復水器の一部が亀裂して生じるが、上記技術の場合、復水器のどの場所がリークしているかを特定することができず、対応に時間がかかるという、問題がある。   However, in the case of the above-described prior art, since the boiler water condensed at the lower part of the condenser is collected and subjected to liquid analysis, the leaked seawater is significantly diluted with the boiler water, and the detection sensitivity is lowered accordingly. is there. In addition, the actual seawater leak is caused by cracking a part of the condenser, but in the case of the above technology, it is impossible to specify which part of the condenser is leaking, and it takes time to deal with it. ,There's a problem.

そこで、本出願人は、図10に示すような漏れ検出装置を先に提案した(特許文献2)。図10に示すように、従来の漏れ検出装置は、液漏れ検出の対象機器200の下方に設置され、一の方向に平行な第1方向と、該一の方向と交差する第2方向とに配置されて互いに離間する多数の金属線2A〜2H、3A、3Bと、第1方向のいずれかの金属線と第2方向のいずれかの金属線との間の電気伝導度とが大きくなったとき、そのときの各金属線の交差した位置を対象機器の漏れ位置と特定する漏れ位置特定手段201とを備えたものである(特許文献2の図1参照)。   Therefore, the present applicant has previously proposed a leak detection device as shown in FIG. 10 (Patent Document 2). As shown in FIG. 10, the conventional leak detection apparatus is installed below the target device 200 for liquid leak detection, and in a first direction parallel to one direction and a second direction intersecting with the one direction. The electrical conductivity between the metal wires 2A to 2H, 3A, and 3B that are arranged and separated from each other and any metal wire in the first direction and any metal wire in the second direction is increased. At this time, there is provided leak position specifying means 201 for specifying the position where the metal wires intersect at that time as the leak position of the target device (see FIG. 1 of Patent Document 2).

特開2001−141596号公報JP 2001-141596 A 特開2004−144708号公報JP 2004-144708 A

しかしながら、特許文献2にかかる漏れ検出装置は、漏れ検出対象機器の下方に設置され、海水と凝縮水とが落下してくる際の電気伝導率の差による電極間の抵抗の変化を検出しようとしている。この方法では、滴下する水が電極間に入る場合とそうでない場合(空間又は水蒸気が電極間に存在する場合)の電極間の電気的特性の変化に比べて、水で希釈された海水の混入による電気的特性の変化が小さい点、及び滴下する海水を検出するには、センサを面状に、しかも非常に密に張り巡らす必要があり、飛散する海水を容易に検出することができない、という問題がある。   However, the leak detection apparatus according to Patent Document 2 is installed below the leak detection target device, and tries to detect a change in resistance between electrodes due to a difference in electrical conductivity when seawater and condensed water fall. Yes. In this method, seawater diluted with water is mixed in compared to the change in electrical characteristics between the electrodes when dripping water enters between the electrodes and when it does not (space or water vapor exists between the electrodes). In order to detect seawater dripping with small changes in electrical characteristics due to the sensor, it is necessary to stretch the sensor in a plane and very densely, and it is difficult to detect scattered seawater There's a problem.

そこで、飛散する海水を検出可能とするために、図9に示すように、落下水の回収槽中に、一対の中心電極301、外部導体302とこれらを絶縁体303で絶縁し、該絶縁体303にV溝304を設けて、中心導体301の一部を露出させた液漏れ検出センサ300を開発し、例えばTDR(Time Domain Reflectometory)装置(図示せず)により一対の導体間の抵抗を計測することを提案した(特願2005−54910、平成17年2月28日出願)。   Therefore, in order to make it possible to detect the scattered seawater, as shown in FIG. 9, a pair of center electrode 301 and outer conductor 302 are insulated from each other by an insulator 303 in a falling water recovery tank, and the insulator Developed a liquid leak detection sensor 300 in which a V-groove 304 is provided in 303 and a part of the center conductor 301 is exposed. For example, a resistance between a pair of conductors is measured by a TDR (Time Domain Reflectometry) device (not shown). (Japanese Patent Application 2005-54910, filed February 28, 2005).

しかしながら、絶縁体303に露出部305を有する連続した液漏れ検出センサ300の長尺物を形成する際、絶縁体303に露出部305を設けるようにするので、中心に位置する中心導体301を上手く収納することができず、飛び出てしまう、という問題がある。これは、製造時及び使用時の両方において問題となり、適格な測定ができないという、問題がある。
このため、復水器のような広範囲な部分の海水の微小な液漏れを精度よく検出することが困難である、という問題がある。
However, when forming the long part of the continuous liquid leak detection sensor 300 having the exposed portion 305 on the insulator 303, the exposed portion 305 is provided on the insulator 303, so that the central conductor 301 located at the center is well formed. There is a problem that it cannot be stored and jumps out. This is a problem both at the time of manufacture and at the time of use, and there is a problem that a qualified measurement cannot be performed.
For this reason, there is a problem that it is difficult to accurately detect minute liquid leakage of seawater in a wide area such as a condenser.

本発明は、前記問題に鑑み、例えば復水器の海水リーク等の液漏れを高感度で安定して検出することが可能となる液質センサ及び液質センサの固着構造を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a liquid quality sensor capable of stably detecting a liquid leak such as seawater leak of a condenser with high sensitivity and a fixing structure of the liquid quality sensor. And

上述した課題を解決するための本発明の第1の発明は、溶液中の液質の変化を検出する一対の導体からなる液質センサであって、軸方向に連続して形成され、略V字状の開口を有する第1溝部と、該第1溝部に沿って連通して形成してなる第2溝部とを有する絶縁体と、前記第2溝部に埋められる中心導体と、該中心導体を押さえると共に、前記第1溝部側に埋められる前記中心導体まで透液可能な押さえ部材と、前記押さえ部材で中心導体を押さえた状態で、該押さえ部材と絶縁体の全体を覆い、かつ透液性を有する外部導体とを有する液質センサにある。
A first aspect of the present invention for solving the above-described problem is a liquid quality sensor comprising a pair of conductors for detecting a change in liquid quality in a solution, which is formed continuously in the axial direction, and is substantially V An insulator having a first groove having a letter-shaped opening and a second groove formed in communication with the first groove; a central conductor buried in the second groove; and the central conductor with pressing, the a liquid-capable holding member to the center conductor to be filled in the first groove side, the pressing in a state of pressing the central conductor by a member, presser have covered the entire member and the insulator, and liquid permeation And a liquid quality sensor having an external conductor.

第2の発明は、第1の発明において、前記第1溝部と第2溝部とが、軸方向に直線状又は螺旋状に形成されていることを特徴とする液質センサにある。   A second invention is the liquid quality sensor according to the first invention, wherein the first groove portion and the second groove portion are linearly or spirally formed in the axial direction.

第3の発明は、第1又は2の発明において、前記中心導体がニッケル線材を撚り線としてなると共に、前記外部導体がニッケル編状線材であることを特徴とする液質センサにある。   A third invention is the liquid quality sensor according to the first or second invention, wherein the central conductor is a stranded wire made of a nickel wire, and the outer conductor is a knitted nickel wire.

第4の発明は、溶液が貯留される溶液槽の壁面に固着する液質センサの固着構造であって、溶液槽内の液質を検出するために所定間隔を有して層内に配設された請求項1乃至3の何れか一つの液質センサと、前記液質センサの端部に設けられた固着用プラグと、前記溶液槽の外部側から機密性を有しつつ設けられ、前記固着用プラグを接続してなる固着アダプタとを有することを特徴とする液質センサの固着構造にある。   A fourth invention is a structure for fixing a liquid quality sensor that is fixed to a wall surface of a solution tank in which a solution is stored, and is arranged in a layer with a predetermined interval in order to detect the liquid quality in the solution tank. The liquid quality sensor according to any one of claims 1 to 3, a fixing plug provided at an end of the liquid quality sensor, and provided with confidentiality from the outside of the solution tank, The liquid quality sensor fixing structure has a fixing adapter connected to a fixing plug.

本発明によれば、中心導体を確実に設置することができ、液質の変化を広範囲に亙って確実に検出でき、例えば復水器の海水リークを高感度で安定して検出することが可能となる。   According to the present invention, the central conductor can be reliably installed, and a change in liquid quality can be reliably detected over a wide range, for example, seawater leak in a condenser can be detected with high sensitivity and stability. It becomes possible.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.

本発明による実施例1に係る液質センサについて、図面を参照して説明する。
以下、本実施例では、液質センサとして液漏れ検出センサを一例として説明する。
図1は、実施例1に係る液質センサの一具体例である液漏れ検出センサの断面図である。
図1に示すように、本実施例にかかる液漏れ検出センサ10は、溶液中の液質の変化を検出する一対の導体からなる液漏れ検出センサであって、軸方向に連続して形成され、略V字状の開口を有する第1溝部11と、該第1溝部11に沿って連通して形成してなる第2溝部12とを有する絶縁体13と、前記第2溝部12に埋められる芯状の中心導体14と、該中心導体14を押さえると共に、前記第1溝部11側に埋められる押さえ部材15と、前記押さえ部材(例えば線材15a〜15dからなる撚り線)15で中心導体14を押さえた状態で絶縁体13の全体を覆う外部導体16とを有するものである。
A liquid quality sensor according to a first embodiment of the present invention will be described with reference to the drawings.
Hereinafter, in this embodiment, a liquid leak detection sensor will be described as an example of the liquid quality sensor.
FIG. 1 is a cross-sectional view of a liquid leakage detection sensor which is a specific example of the liquid quality sensor according to the first embodiment.
As shown in FIG. 1, a liquid leak detection sensor 10 according to the present embodiment is a liquid leak detection sensor comprising a pair of conductors for detecting a change in liquid quality in a solution, and is formed continuously in the axial direction. The first groove portion 11 having a substantially V-shaped opening, and an insulator 13 having a second groove portion 12 formed so as to communicate with the first groove portion 11, and the second groove portion 12 are buried. The center conductor 14 is held by the core-shaped center conductor 14, the pressing member 15 that holds the central conductor 14, and is buried on the first groove 11 side, and the pressing member (for example, a stranded wire made of wires 15 a to 15 d) 15. It has the outer conductor 16 which covers the whole insulator 13 in the pressed state.

本発明では、中心導体14を設置する第2溝部12と、前記中心導体14を押さえるための押さえ部材15を設置する第1溝部11とを二段構成としており、この二段構成の溝の第1溝部11に押さえ部材15を設置し、この状態で外部導体16により全体を覆うようにすることで、中心導体14の絶縁体13からの飛出しの防止を行なうようにしている。   In the present invention, the second groove portion 12 in which the center conductor 14 is installed and the first groove portion 11 in which the pressing member 15 for holding the center conductor 14 is installed have a two-stage configuration. The pressing member 15 is installed in the one groove portion 11, and the whole is covered with the external conductor 16 in this state, thereby preventing the center conductor 14 from jumping out from the insulator 13.

ここで、本発明で液質変化とは、例えば液質センサが浸漬されている溶液とは異なる溶液の落下及び侵入又は拡散により信号が変化するものに限定されるものではなく、例えばX線等の光や音等の媒体の励起作用によって、前記液質の構成要素を変化(変質又は拡散等)するようなものも含まれる。また、媒体自体が変化する等の経時的な要素の変化も含まれる。   Here, the liquid quality change in the present invention is not limited to the one in which the signal changes due to the drop, intrusion, or diffusion of a solution different from the solution in which the liquid quality sensor is immersed, for example, an X-ray or the like Such a component that changes (degrades, diffuses, etc.) the constituent elements of the liquid quality by the excitation action of a medium such as light or sound is also included. Also included are changes in factors over time, such as changes in the medium itself.

ここで、前記中心導体14は、金属線(特に純ニッケル)を使用し、複数本の線材を撚り線状にしたものとするのが好ましい。   Here, it is preferable that the center conductor 14 is made of a metal wire (particularly pure nickel) and a plurality of wires are formed in a twisted wire shape.

また、前記絶縁体13は、第1溝部11と第2溝部12との二段溝が一体に形成されたものであり、例えばポリエチレン製とするのが好ましい。   Further, the insulator 13 is formed by integrally forming a two-step groove of the first groove portion 11 and the second groove portion 12, and is preferably made of, for example, polyethylene.

前記中心導体14を第2溝部12に入れ、はみ出さないように押さえる押さえ部材15は、絶縁線を複数本撚りあわせたものを用いるようにしている。   The holding member 15 that puts the central conductor 14 in the second groove 12 and holds it so as not to protrude is made of a plurality of insulated wires twisted together.

外部導体16は、金属線(特に純ニッケル)を網状にしたものからなり、前記絶縁体13を介して中心導体14から所定の位置関係を保つようにしている。   The outer conductor 16 is made of a metal wire (especially pure nickel) in a net shape, and maintains a predetermined positional relationship from the center conductor 14 via the insulator 13.

ここで、前記中心導体14の直径と外部導体16の内径との比率としては、例えば2〜5とするのが好ましい。
また、前記外部導体の直径比率としては、液漏れ検出センサ10の全体の直径の例えば0.01〜0.2とするのが好ましい。
また、前記絶縁体13の誘電率(比誘電率/導体比)としては、例えば0.5〜1.5とするのが好ましい。
Here, the ratio between the diameter of the central conductor 14 and the inner diameter of the outer conductor 16 is preferably 2 to 5, for example.
The diameter ratio of the outer conductor is preferably set to 0.01 to 0.2, for example, of the entire diameter of the liquid leak detection sensor 10.
The dielectric constant (relative dielectric constant / conductor ratio) of the insulator 13 is preferably 0.5 to 1.5, for example.

前記絶縁体13の体積抵抗率としては、例えば1010Ω・m以上とするのが好ましい。なお、例えばポリエチレンの場合には、体積抵抗率が1014Ω・m以上が好ましい。
また、前記絶縁体13の比透磁率としては、例えば0.5〜2とするのが好ましい。なお例えばポリエチレン等の樹脂の比透磁率としては、1程度である。
The volume resistivity of the insulator 13 is preferably 10 10 Ω · m or more, for example. For example, in the case of polyethylene, the volume resistivity is preferably 10 14 Ω · m or more.
Further, the relative permeability of the insulator 13 is preferably 0.5 to 2, for example. For example, the relative permeability of a resin such as polyethylene is about 1.

具体的な液漏れ検出センサ10の一例としては、中心導体14の太さを例えば3.5mmとし、外部導体16の太さを0.5mmとし、絶縁体13の外径を12mmとし、外部導体16の外径を13mmとするのが好ましい。   As a specific example of the liquid leak detection sensor 10, the thickness of the central conductor 14 is, for example, 3.5 mm, the thickness of the external conductor 16 is 0.5 mm, the outer diameter of the insulator 13 is 12 mm, and the external conductor The outer diameter of 16 is preferably 13 mm.

また、図2に示すように、第1溝部11及び第2溝部12は軸に沿って直線状であってもよいし、図3に示すように、所定間隔の距離をおいて螺旋形状とするようにしてもよい。
これにより、溝の方向を変化させたい場合に施工時に方向を変化させる必要が無く、容易に施工が可能となる。
Further, as shown in FIG. 2, the first groove portion 11 and the second groove portion 12 may be linear along the axis, or as shown in FIG. You may do it.
Thereby, when changing the direction of a groove | channel, it is not necessary to change a direction at the time of construction, and construction becomes possible easily.

また、図4に示すように、ドラム20に液漏れ検出センサ10を巻きつける際に、製造時にケーブルの溝を施工方向、およびドラム20からの解きだしの方向に合わせて予め設定して製作するようにしてもよい。
すなわち、液漏れ検出センサ10がドラム20を1回転巻きつける長さに対して溝の回転を1回転させるようにし、施工位置に対応した長さごとに溝の方向を変化させるようにしてもよい。
施工時に希望する方向を組み合わせて、溝の方向を調整しながら液漏れ検出センサ10を製造するようにしてもよい。
As shown in FIG. 4, when the liquid leak detection sensor 10 is wound around the drum 20, the cable groove is set in advance according to the construction direction and the unwinding direction from the drum 20 during manufacture. You may do it.
That is, the groove direction may be changed for each length corresponding to the construction position so that the liquid leakage detection sensor 10 rotates the groove one turn with respect to the length for winding the drum 20 once. .
The liquid leak detection sensor 10 may be manufactured while adjusting the direction of the groove by combining desired directions at the time of construction.

この結果、溝の方向を特定の方向にして施工したい場合に、施工時にケーブルを捻る必要が無く、容易に施工が可能となる。   As a result, when it is desired to construct the groove in a specific direction, it is not necessary to twist the cable during construction, and the construction can be easily performed.

ここで、前記押さえ部材15を、撚り線からなるようにしているのは、漏洩により液質の変化を瞬時に感受するように、撚り線の間から漏洩液体が侵入し易くするためである。
また、本発明では押さえ部材15を撚り線からなるものに限定されるものではなく、図5に示すように、例えば押さえ部材15に複数の細孔15aを形成し、該細孔15aを通過した漏洩液体を検知するようにしてもよい。
Here, the reason why the pressing member 15 is made of a stranded wire is to make it easy for a leaked liquid to enter from between the stranded wires so as to instantly sense a change in liquid quality due to leakage.
Further, in the present invention, the pressing member 15 is not limited to one made of a stranded wire, and as shown in FIG. 5, for example, a plurality of pores 15a are formed in the pressing member 15, and the pores 15a are passed. A leaked liquid may be detected.

次に、このような液漏れ検出センサを用いた液質検査装置の一例である液漏れ検出装置の一例を図6に示す。
図6に示すように、液質検査装置の一例である液漏れ検出装置70は、前述の実施例1に係る液漏れ検出センサ10と、前記一対の導線の間にパルス電圧を印加してから各導線の間に反射電圧が戻るまでの時間に基づいて、前記対象機器の液漏れ位置を特定する液漏れ位置特定装置71と具備するものである。復水器101は複数の冷却チューブ101aを有しており、該冷却チューブ101aに冷却水である海水102が流入されている。ボイラからのスチーム106は、冷却チューブ101aで冷却され、凝縮水103となり、復水器101の下部の回収槽で回収される。なお、前記回収槽内には液漏れ検出センサ10が液面から所定の距離をもって浸漬されている。
Next, FIG. 6 shows an example of a liquid leak detection apparatus which is an example of a liquid quality inspection apparatus using such a liquid leak detection sensor.
As shown in FIG. 6, the liquid leakage detection device 70, which is an example of a liquid quality inspection device, applies a pulse voltage between the liquid leakage detection sensor 10 according to the first embodiment and the pair of conductive wires. A liquid leakage position specifying device 71 that specifies the liquid leakage position of the target device based on the time until the reflected voltage returns between the conductive wires is provided. The condenser 101 has a plurality of cooling tubes 101a, and seawater 102 as cooling water flows into the cooling tubes 101a. The steam 106 from the boiler is cooled by the cooling tube 101a, becomes condensed water 103, and is recovered in a recovery tank below the condenser 101. A liquid leak detection sensor 10 is immersed in the recovery tank at a predetermined distance from the liquid surface.

図6において、液漏れ検出センサ10と液漏れ位置特定装置71とは信号線72により連結され、検出結果を情報処理し、モニタ73にその結果を警告として表示することになる。
この表示は、信号強度及びその信号強度から液漏れの有無とその場所等である。
In FIG. 6, the liquid leak detection sensor 10 and the liquid leak position specifying device 71 are connected by a signal line 72, process the detection result, and display the result on the monitor 73 as a warning.
This display indicates the signal intensity, the presence / absence of liquid leakage from the signal intensity, and the location thereof.

図7は、信号線72と回収槽内に施設された液漏れ検出センサ10との固着構造の一例を示している。
図7に示すように、本実施例にかかる液質センサの固着構造50は、例えば復水器の凝縮水を貯留する回収槽の壁51に固着する液質センサの固着構造であって、回収槽内の液質を検出するために所定間隔を有して層内に配設された液漏れ検出センサ10と、前記液漏れ検出センサ10の端部に設けられた固着用プラグ52と、前記回収槽の外部側から機密性を有しつつ壁51に設けられ、前記固着用プラグ52を接続してなる固着アダプタ53とから構成されている。
FIG. 7 shows an example of a fixing structure between the signal line 72 and the liquid leak detection sensor 10 installed in the collection tank.
As shown in FIG. 7, the liquid quality sensor fixing structure 50 according to this embodiment is a liquid quality sensor fixing structure that is fixed to a wall 51 of a recovery tank that stores condensed water of a condenser, for example. In order to detect the liquid quality in the tank, the liquid leak detection sensor 10 disposed in the layer with a predetermined interval, the fixing plug 52 provided at the end of the liquid leak detection sensor 10, and the The fixing adapter 53 is provided on the wall 51 while having confidentiality from the outside of the recovery tank and is connected to the fixing plug 52.

前記固着アダプタ53には複数のOリング54による液シールが設けられており、機密性を保持するようにしている。
そして、固着用プラグ52の嵌合部分の第1コンタクト52aの凹部と中心導体14の先端部とが接続されると共に、ナット55の締結により外部導体16と金属製の固着用プラグ52とが接続され、内部と外部とが共に導通するようにしている。なお、固着用プラグ52内部にはシール部材56が設けられている。
The fixing adapter 53 is provided with a liquid seal by a plurality of O-rings 54 so as to maintain confidentiality.
The concave portion of the first contact 52a in the fitting portion of the fixing plug 52 and the tip of the central conductor 14 are connected, and the outer conductor 16 and the metal fixing plug 52 are connected by fastening the nut 55. Thus, the inside and the outside are both conducted. A sealing member 56 is provided inside the fixing plug 52.

また、固着アダプタ53の中心部分には、第2コンタクト53aが設けられており、液漏れ検出センサ10の中心導体14と導通した第1コンタクト52aの先端部と第2コンタクト53aとの凹部とが接続されていると共に、外部導体16側と導通する固着用プラグ52と固着アダプタ53とがカップリング57を介して締結され、導通を確実となるようにしている。なお、固着アダプタ53には、図6で示すような外部側の信号線72が接続され、液漏れ位置特定装置71に信号を送りここで、検出結果を情報処理して、モニタ73にその結果を警告として表示するようにしている。   Further, a second contact 53a is provided at the central portion of the fixing adapter 53, and a tip portion of the first contact 52a that is electrically connected to the central conductor 14 of the liquid leak detection sensor 10 and a concave portion between the second contact 53a. The fixing plug 52 and the fixing adapter 53 which are connected and are electrically connected to the outer conductor 16 side are fastened via a coupling 57 so as to ensure conduction. Note that an external signal line 72 as shown in FIG. 6 is connected to the fixing adapter 53, and a signal is sent to the liquid leakage position specifying device 71, where the detection result is processed and the result is sent to the monitor 73. Is displayed as a warning.

よって、回収槽の壁51を貫通する際の液漏れ検出センサ10の伝搬特性の低下がなく、しかも機密性が良好になるので、インピーダンス分布から、海水漏洩の程度、および位置を正確に特定することができる。   Therefore, there is no deterioration in the propagation characteristics of the liquid leak detection sensor 10 when penetrating the wall 51 of the recovery tank, and the confidentiality is improved. Therefore, the extent and position of seawater leak are accurately identified from the impedance distribution. be able to.

図8は、図6の液漏れ検出装置70を使用して、海水リークの検知を模擬した場合のTDR計測試験結果を示す例である。
試験は、液漏れ検出センサ10の約10mの区間を750×750mmの容器の中に渦巻状に設置し、循環する純水中に沈めておき、海水を局部的に滴下した場合においてTDR測定を行った。
FIG. 8 is an example showing a TDR measurement test result when the detection of seawater leak is simulated using the liquid leak detection device 70 of FIG.
In the test, a section of about 10 m of the liquid leak detection sensor 10 is spirally installed in a 750 × 750 mm container, submerged in circulating pure water, and TDR measurement is performed when seawater is locally dripped. went.

図8に示すように、水中に浸漬した液漏れ検出センサ10の一部分(4m〜5m及び7m〜8m)においてインピーダンスの変化が発生し、その変化が時間とともに大きくなっていることが判明した。   As shown in FIG. 8, it was found that a change in impedance occurred in a part (4 m to 5 m and 7 m to 8 m) of the liquid leak detection sensor 10 immersed in water, and the change increased with time.

一般に復水器は、長手方向に延びる細管が一平面上でこれと直角な方向に180度曲げられた後、該長手方向へ折り返される構造が繰り返されたものを1ユニットとし、このユニットが上下方向に多数積層された構成になっている。そして、細管の入側から流入した冷却海水は、復水器の外側に吹き付けられるボイラ蒸気を冷却して凝縮水とし、細管の出側から流出するようになっている。前記凝縮水は下方に設置された回収槽に溜められ、その後循環水として再利用される。   In general, a condenser is a unit in which a structure in which a thin tube extending in the longitudinal direction is bent 180 degrees in a direction perpendicular to the same on a single plane and then folded back in the longitudinal direction is defined as one unit. A large number of layers are stacked in the direction. And the cooling seawater which flowed in from the entrance side of a thin tube cools the boiler vapor | steam sprayed on the outer side of a condenser, makes it condensed water, and flows out from the exit side of a thin tube. The condensed water is stored in a recovery tank installed below, and then reused as circulating water.

このような複数の細管において、例えば海水腐食による漏れが発生した場合には、当該腐食箇所から海水が漏れ、回収槽に落下される。回収槽は凝縮水のみであるので、液漏れ検出センサは通常ほぼ一定の値を示しているが、海水が落下するとその落下部分のイオン濃度が変化し、この変化を電気伝導率の変化として検出することで漏れを特定することができる。   In such a plurality of narrow tubes, for example, when leakage due to seawater corrosion occurs, seawater leaks from the corroded portion and falls into the recovery tank. Since the recovery tank is only condensed water, the liquid leak detection sensor usually shows an almost constant value, but when seawater falls, the ion concentration in the falling part changes, and this change is detected as a change in electrical conductivity. You can identify leaks.

以上の実施例においては、液漏れ対象機器として復水器を例示したが、本発明はこれに限定されるものではなく、液漏れと性質の異なる液中に本発明に係る液漏れ検出センサを設置し、TDR装置においてその信号強度を計測することで漏れを的確に検出することができる。   In the above embodiment, the condenser is exemplified as the liquid leakage target device. However, the present invention is not limited to this, and the liquid leakage detection sensor according to the present invention is applied to the liquid having different properties from the liquid leakage. It is possible to accurately detect leakage by installing and measuring the signal intensity in the TDR device.

以上のように、本発明にかかる液質センサは、液漏れを広範囲に亙って確実に検出でき、例えば復水器の海水リークを高感度で安定して検出することに用いて適している。   As described above, the liquid quality sensor according to the present invention can reliably detect a liquid leak over a wide range, and is suitable for, for example, detecting a seawater leak of a condenser with high sensitivity and stability. .

本実施例に係る液漏れ検出センサの概略図である。It is the schematic of the liquid leak detection sensor which concerns on a present Example. 本実施例に係る液漏れ検出センサの斜視図である。It is a perspective view of the liquid leak detection sensor which concerns on a present Example. 本実施例に係る他の液漏れ検出センサの斜視図である。It is a perspective view of the other liquid leak detection sensor which concerns on a present Example. 本実施例に係る押さえ部材の斜視図である。It is a perspective view of the pressing member which concerns on a present Example. 実施例1に係る液漏れ検出センサの断面概略図である。1 is a schematic cross-sectional view of a liquid leak detection sensor according to Embodiment 1. 実施例2に係る液漏れ検出装置の概略図である。6 is a schematic diagram of a liquid leakage detection apparatus according to Embodiment 2. FIG. 実施例2に係る液漏れ検出センサの固着構造を示す概略図である。6 is a schematic diagram illustrating a fixing structure of a liquid leakage detection sensor according to Embodiment 2. FIG. 海水リークの検知を模擬した場合のTDR計測試験結果を示す図である。It is a figure which shows the TDR measurement test result at the time of simulating the detection of seawater leak. 液漏れ検出センサの断面図である。It is sectional drawing of a liquid leak detection sensor. 従来技術のTDR計測試験結果を示す図である。It is a figure which shows the TDR measurement test result of a prior art.

符号の説明Explanation of symbols

10 液漏れ検出センサ
11 第1溝部
12 第2溝部
13 絶縁体
14 中心導体
15 押さえ部材
16 外部導体
101 復水器
102 海水
103 凝縮水
DESCRIPTION OF SYMBOLS 10 Liquid leak detection sensor 11 1st groove part 12 2nd groove part 13 Insulator 14 Center conductor 15 Holding member 16 Outer conductor 101 Condenser 102 Seawater 103 Condensed water

Claims (4)

溶液中の液質の変化を検出する一対の導体からなる液質センサであって、
軸方向に連続して形成され、略V字状の開口を有する第1溝部と、該第1溝部に沿って連通して形成してなる第2溝部とを有する絶縁体と、
前記第2溝部に埋められる中心導体と、
該中心導体を押さえると共に、前記第1溝部側に埋められる前記中心導体まで透液可能な押さえ部材と、
前記押さえ部材で中心導体を押さえた状態で、該押さえ部材と絶縁体の全体を覆い、かつ透液性を有する外部導体とを有する液質センサ。
A liquid quality sensor comprising a pair of conductors for detecting a change in liquid quality in a solution,
An insulator having a first groove formed continuously in the axial direction and having a substantially V-shaped opening; and a second groove formed in communication along the first groove;
A central conductor buried in the second groove,
A pressing member that presses the central conductor and is permeable to the central conductor buried in the first groove,
The pressing in a state of pressing the central conductor by a member, liquid quality sensor and an external conductor having the entire not covered, and liquid-permeable presser and member insulator.
請求項1において、
前記第1溝部と第2溝部とが、軸方向に直線状又は螺旋状に形成されていることを特徴とする液質センサ。
In claim 1,
The liquid quality sensor, wherein the first groove portion and the second groove portion are linearly or spirally formed in the axial direction.
請求項1又は2において、
前記中心導体がニッケル線材を撚り線としてなると共に、前記外部導体がニッケル編状線材であることを特徴とする液質センサ。
In claim 1 or 2,
The liquid sensor according to claim 1, wherein the central conductor is a stranded wire made of a nickel wire, and the outer conductor is a nickel knitted wire.
溶液が貯留される溶液槽の壁面に固着する液質センサの固着構造であって、
溶液槽内の液質を検出するために所定間隔を有して層内に配設された請求項1乃至3の何れか一つの液質センサと、
前記液質センサの端部に設けられた固着用プラグと、
前記溶液槽の外部側から機密性を有しつつ設けられ、前記固着用プラグを接続してなる固着アダプタとを有することを特徴とする液質センサの固着構造。
A fixing structure of a liquid quality sensor that is fixed to a wall surface of a solution tank in which a solution is stored,
The liquid quality sensor according to any one of claims 1 to 3, wherein the liquid quality sensor is disposed in the layer with a predetermined interval for detecting the liquid quality in the solution tank;
A fixing plug provided at an end of the liquid quality sensor;
A fixing structure for a liquid quality sensor, comprising: a fixing adapter provided with confidentiality from the outside of the solution tank and connected to the fixing plug.
JP2006202117A 2006-07-25 2006-07-25 Liquid quality sensor and fixing structure of liquid quality sensor Expired - Fee Related JP4638391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006202117A JP4638391B2 (en) 2006-07-25 2006-07-25 Liquid quality sensor and fixing structure of liquid quality sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006202117A JP4638391B2 (en) 2006-07-25 2006-07-25 Liquid quality sensor and fixing structure of liquid quality sensor

Publications (2)

Publication Number Publication Date
JP2008026264A JP2008026264A (en) 2008-02-07
JP4638391B2 true JP4638391B2 (en) 2011-02-23

Family

ID=39117031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006202117A Expired - Fee Related JP4638391B2 (en) 2006-07-25 2006-07-25 Liquid quality sensor and fixing structure of liquid quality sensor

Country Status (1)

Country Link
JP (1) JP4638391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156277A1 (en) * 2014-04-07 2015-10-15 学校法人北里研究所 Detection device, detection system, detection method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128585A (en) * 1975-04-18 1976-11-09 Furukawa Electric Co Ltd:The Liquid leakage detector cable
JPH0741509U (en) * 1993-12-27 1995-07-21 トーホー設備工業株式会社 Spacer for optical cable
JPH10122935A (en) * 1996-10-16 1998-05-15 Shimizu Corp Observation method and observation device for underground water level and underground water quality
JP2001050855A (en) * 1999-08-06 2001-02-23 Furukawa Electric Co Ltd:The Optical fiber liquid sensor
JP2005024484A (en) * 2003-07-01 2005-01-27 Toshio Horikawa Water leakage detection system and water leakage sensor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128585A (en) * 1975-04-18 1976-11-09 Furukawa Electric Co Ltd:The Liquid leakage detector cable
JPH0741509U (en) * 1993-12-27 1995-07-21 トーホー設備工業株式会社 Spacer for optical cable
JPH10122935A (en) * 1996-10-16 1998-05-15 Shimizu Corp Observation method and observation device for underground water level and underground water quality
JP2001050855A (en) * 1999-08-06 2001-02-23 Furukawa Electric Co Ltd:The Optical fiber liquid sensor
JP2005024484A (en) * 2003-07-01 2005-01-27 Toshio Horikawa Water leakage detection system and water leakage sensor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156277A1 (en) * 2014-04-07 2015-10-15 学校法人北里研究所 Detection device, detection system, detection method, and program
US10330620B2 (en) 2014-04-07 2019-06-25 School Juridical Person Kitasato Institute Detection device, detection system, detection method, and program

Also Published As

Publication number Publication date
JP2008026264A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US8810264B2 (en) Methods and devices for sensing corrosion under insulation (CUI)
JP3387922B2 (en) Corrosion resistant cable
US5865971A (en) Sealing ring with electrochemical sensing electrode
CN108298216A (en) The monitoring system and method for oil storage tank leakage
RU2545485C1 (en) Electroconductive liquid leak sensor
BR122022005676B1 (en) DEFECT DETECTION METHOD
EP3146320B1 (en) Detection apparatus and method
JP4585468B2 (en) Liquid quality sensor, liquid quality detection apparatus and method
US5760590A (en) Cable integrity tester
CN112430817A (en) Split type device and method for buried metal pipeline corrosion parameter test probe
KR20120096349A (en) Duplex pipe line and apparatus for detecting the leakage of that
JP4638391B2 (en) Liquid quality sensor and fixing structure of liquid quality sensor
CA2206224A1 (en) Detection of potential for corrosion of steel reinforced composite pipe
CN111238683A (en) Transformer temperature measuring device
JP4585488B2 (en) Facility method and device for liquid quality sensor
RU2662252C1 (en) Electric conductivity liquids leakage sensor
RU2678920C1 (en) Hydrocarbon fluid leaks sensor
RU2386950C1 (en) Corrosion detector
CN211978163U (en) Transformer temperature measuring device
WO2020139080A1 (en) Corrosion monitoring system and method
JPH04313028A (en) Liquid level measuring method
EP3387407B1 (en) Electric cable detecting presence of liquids
US12007322B2 (en) Corrosion sensors suitable for corrosion under insulation (CUI) detection
RU2143107C1 (en) Gear testing degree of local corrosion of metal structures
US20230109269A1 (en) Corrosion sensors suitable for corrosion under insulation (cui) detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees