JP4633770B2 - Sludge dewatering system - Google Patents

Sludge dewatering system Download PDF

Info

Publication number
JP4633770B2
JP4633770B2 JP2007217433A JP2007217433A JP4633770B2 JP 4633770 B2 JP4633770 B2 JP 4633770B2 JP 2007217433 A JP2007217433 A JP 2007217433A JP 2007217433 A JP2007217433 A JP 2007217433A JP 4633770 B2 JP4633770 B2 JP 4633770B2
Authority
JP
Japan
Prior art keywords
flocculant
sludge
solution
flocculant solution
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007217433A
Other languages
Japanese (ja)
Other versions
JP2009050756A (en
Inventor
正文 間
洋一 井上
徳司 種田
勉 市川
登 柴崎
伸浩 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishihara Environmental Technology Co Ltd
Original Assignee
Nishihara Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishihara Environmental Technology Co Ltd filed Critical Nishihara Environmental Technology Co Ltd
Priority to JP2007217433A priority Critical patent/JP4633770B2/en
Publication of JP2009050756A publication Critical patent/JP2009050756A/en
Application granted granted Critical
Publication of JP4633770B2 publication Critical patent/JP4633770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

この発明は、汚泥を脱水処理して低含水率の脱水汚泥を生成する汚泥脱水システムにおいて、汚泥に凝集剤溶液を添加後、汚泥脱水機で脱水処理する汚泥脱水システムに関するものである。   The present invention relates to a sludge dewatering system for dewatering a sludge to produce a dehydrated sludge having a low water content, in which a flocculant solution is added to the sludge and then dewatered by a sludge dewatering machine.

従来、下水等の汚水を汚水処理装置で浄化処理を行った際には、初沈汚泥、余剰汚泥、消化汚泥等の種々の汚泥が発生するが、これらの汚泥は含水率が高く、このままでは処分が容易ではない。そこで、一般に、これらの汚泥(以下、被処理汚泥という。)には、汚泥脱水機によって、脱水汚泥と分離液に固液分離する脱水処理が行われる。また、被処理汚泥は、懸濁粒子と水との混合物であり、この懸濁粒子が集合して汚泥フロックを形成して大型化(フロック化)して存在しているものと、ほとんど集合せずに微細な懸濁粒子として存在しているものとが混在している。被処理汚泥をそのまま汚泥脱水機で脱水処理すると、フロック化していない微細な懸濁粒子が分離液側に流れ出し、分離液の性状(濁質、発泡状況、色度等)が悪くなり、分離性能が低い。このため、被処理汚泥に凝集剤を供給・添加して、汚泥フロックを大型化させてから汚泥脱水機で脱水処理が行われるのが通常である。   Conventionally, when sewage such as sewage is purified with a sewage treatment device, various types of sludge such as primary sludge, surplus sludge, digested sludge, etc. are generated. Disposal is not easy. Therefore, in general, these sludges (hereinafter, to be treated sludge) are subjected to a dehydration process in which the sludge is separated into a dehydrated sludge and a separated liquid by a sludge dehydrator. In addition, sludge to be treated is a mixture of suspended particles and water, and these suspended particles aggregate to form sludge flocs and become larger (flocced), and almost all aggregates. Without being present as fine suspended particles. If the sludge to be treated is dewatered as it is with a sludge dewatering machine, fine suspended particles that are not flocked flow out to the separation liquid side, and the properties of the separation liquid (turbidity, foaming status, chromaticity, etc.) deteriorate and separation performance Is low. For this reason, the flocculant is usually supplied to and added to the sludge to be treated to increase the size of the sludge floc, and then the dewatering process is performed by the sludge dehydrator.

特許文献1に、遠心脱水機(汚泥脱水機)を用いた汚泥処理装置(汚泥脱水システム)の一例が示されている。この特許文献1の汚泥処理装置は、汚泥タンクに貯留された原汚泥(被処理汚泥)を遠心脱水機に移送して当該遠心脱水機で分離液と脱水ケーキに固液分離する構成であって、移送中の汚泥に無機凝集剤(無機凝集剤溶液)を注入し、さらに両性ポリマー(両性高分子凝集剤溶液)を注入して汚泥フロックの形成を促した後、遠心脱水機で固液分離する装置である。また、この汚泥処理装置では、分離液のpHを測定するpH計と分離液中の泡の色度を測定する色度計を備えており、これらの測定値に応じて、無機凝集剤と両性ポリマーの2種類の凝集剤の被処理汚泥への注入量を制御するようになっている。   Patent Document 1 discloses an example of a sludge treatment apparatus (sludge dewatering system) using a centrifugal dewatering machine (sludge dewatering machine). The sludge treatment apparatus of Patent Document 1 is configured to transfer raw sludge (treated sludge) stored in a sludge tank to a centrifugal dehydrator and perform solid-liquid separation into a separated liquid and a dehydrated cake with the centrifugal dehydrator. Injecting inorganic flocculant (inorganic flocculant solution) into the sludge being transferred, and then injecting amphoteric polymer (amphoteric polymer flocculant solution) to promote the formation of sludge flocs, followed by solid-liquid separation with a centrifugal dehydrator It is a device to do. In addition, this sludge treatment apparatus is equipped with a pH meter that measures the pH of the separation liquid and a chromaticity meter that measures the chromaticity of bubbles in the separation liquid. According to these measured values, the inorganic flocculant and the amphoteric The amount of the two types of polymer flocculants injected into the treated sludge is controlled.

特許文献2においても、汚泥(被処理汚泥)に金属塩からなる第1凝集剤(無機凝集剤溶液)を添加して撹拌し、さらにカチオン系あるいは両性系高分子凝集剤からなる第2凝集剤(カチオン系あるいは両性系高分子凝集剤溶液)を添加して撹拌してから脱水機で脱水処理する汚泥の脱水方法が示されている。いずれの特許文献の場合においても、被処理汚泥に無機凝集剤溶液を添加して、被処理汚泥のpHを調整した後に、高分子凝集剤溶液を添加して汚泥フロックの形成を促すようになっている。   Also in Patent Document 2, a first flocculant (inorganic flocculant solution) made of a metal salt is added to sludge (treated sludge) and stirred, and further a second flocculant made of a cationic or amphoteric polymer flocculant. A method of dewatering sludge in which (cationic or amphoteric polymer flocculant solution) is added and stirred and then dehydrated with a dehydrator is shown. In any case, after adding an inorganic flocculant solution to the treated sludge and adjusting the pH of the treated sludge, the polymer flocculant solution is added to promote the formation of sludge flocs. ing.

通常、被処理汚泥中の微細な懸濁粒子は、その表面が負に帯電している場合が多く、負に帯電した懸濁粒子同士では、互いに反発し合う力が働いてしまっている。この反発し合う力は、分子同士が引き合う力である分子間力よりも大きく、このため汚泥フロックの形成が妨げられる一つの要因となっている。被処理汚泥に無機凝集剤溶液を注入すると、懸濁粒子表面の電子が奪われて負の帯電が中和されて分子間力が働きやすくなり、微細な懸濁粒子同士が小さな汚泥フロックを形成するようになる。さらに、被処理汚泥に高分子凝集剤溶液を添加することにより、小さな汚泥フロックに高分子鎖が付着し、その高分子鎖同士が架橋化等することによって、汚泥フロックが大型化する。このような処理がなされた被処理汚泥を汚泥脱水機で脱水処理することで、含水率が低い脱水汚泥と、性状の良好な分離液を得ることができる。特許文献1および特許文献2のいずれにおいても、無機凝集剤は、高分子凝集剤の凝集作用を補助するために被処理汚泥に供給している要素が大きい。   Usually, the fine suspended particles in the sludge to be treated often have negatively charged surfaces, and the negatively charged suspended particles act to repel each other. This repulsive force is greater than the intermolecular force, which is the force that attracts molecules, and this is one factor that prevents the formation of sludge flocs. When an inorganic flocculant solution is injected into the sludge to be treated, electrons on the surface of suspended particles are taken away, the negative charge is neutralized, intermolecular force is easy to work, and fine suspended particles form small sludge flocs. To come. Furthermore, by adding the polymer flocculant solution to the treated sludge, the polymer chains adhere to the small sludge flocs, and the polymer chains are cross-linked to increase the size of the sludge flocs. By subjecting the treated sludge thus treated to dehydration treatment with a sludge dehydrator, a dehydrated sludge having a low water content and a separated liquid having good properties can be obtained. In both Patent Document 1 and Patent Document 2, the inorganic flocculant has a large element that is supplied to the treated sludge in order to assist the flocculant action of the polymer flocculant.

一方、最近では、カチオン系高分子凝集剤や両性系高分子凝集剤の性能が大幅に向上してきており、被処理汚泥に無機凝集剤溶液を添加してpH調整を行わずとも、被処理汚泥中の微細な懸濁粒子表面の負の帯電にカチオン基が吸着する等で中和可能な高分子凝集剤が開発されている。このため、被処理汚泥に対してこれらの高分子凝集剤のみを注入して汚泥フロックを形成させて汚泥脱水機で脱水処理を行う汚泥脱水システムを適用しているケースが増えてきている。   On the other hand, recently, the performance of cationic polymer flocculants and amphoteric polymer flocculants has been greatly improved, and the sludge to be treated can be treated without adjusting the pH by adding an inorganic flocculant solution to the treated sludge. Polymer flocculants that can be neutralized by adsorbing cationic groups to the negative charge on the surface of fine suspended particles have been developed. For this reason, the case where the sludge dehydration system which inject | pours only these polymer flocculants with respect to a to-be-processed sludge, forms sludge floc, and dehydrates with a sludge dehydrator is increasing.

特開平8−71600号公報JP-A-8-71600 特開平10−230300号公報Japanese Patent Laid-Open No. 10-230300

下水等の汚水を生物処理によって浄化する汚水処理システムに流入する原水である汚水の水質は、常に一定ではなく、日毎にあるいは時間毎に変動する。このため、これらの汚水処理システムで発生する初沈汚泥、余剰汚泥等の性状も変動する。また、これらの汚泥を発酵槽で処理した消化汚泥の性状も変動する。これらの汚泥を被処理汚泥として汚泥脱水システムで脱水処理する場合、被処理汚泥の性状の変化は、汚泥フロックの形成し易さに大きな影響を与える。そのときによって、被処理汚泥に少量の凝集剤溶液を注入するだけで十分に汚泥フロックが形成できる場合もあれば、被処理汚泥に多量に凝集剤溶液を注入しなければ汚泥フロックが十分に形成されない場合もある。このため、通常の汚泥脱水システムでは、汚泥脱水機で脱水処理された結果である脱水汚泥の含水率や分離液の性状を目視や実測で確認し、それらの結果に応じて凝集剤溶液の被処理汚泥への注入量を調整することで対応している。   The quality of sewage, which is raw water flowing into a sewage treatment system that purifies sewage such as sewage by biological treatment, is not always constant, but varies from day to day or from hour to hour. Therefore, primary sludge generated in these wastewater treatment system also varies properties such as excess sludge. Moreover, the property of the digested sludge which processed these sludge in the fermenter also fluctuates. When these sludges are treated as sludge and are dehydrated by a sludge dewatering system, the change in the properties of the treated sludge greatly affects the ease with which sludge flocs are formed. Depending on the situation, a sludge floc can be formed sufficiently by simply injecting a small amount of the flocculant solution into the treated sludge, or a sludge floc can be sufficiently formed unless a large amount of the flocculant solution is injected into the treated sludge. It may not be done. For this reason, in a normal sludge dewatering system, the moisture content of the dewatered sludge and the properties of the separated liquid, which are the results of the dewatering treatment by the sludge dewatering machine, are confirmed visually or by actual measurement, and the flocculant solution coating is determined according to those results. This can be done by adjusting the amount injected into the treated sludge.

ところで、被処理汚泥に供給する凝集剤溶液は、凝集性能の高い高価な凝集剤を用いた方が、凝集性能の低い安価な凝集剤よりも汚泥懸濁物質粒子の凝集(汚泥フロックの形成)が促進される傾向にはある。しかし、凝集性能の高い高価な凝集剤が絶対的に効果的というわけではない。むしろ、凝集剤溶液を供給する被処理汚泥のそのときの性状に合った凝集剤を適用することが、汚泥フロックの形成をより促進することになる。種々の性状の被処理汚泥に対応するために、多種類の凝集剤を、その凝集剤の種類毎に従来の撹拌機を備えた貯留槽を用意し、各貯留槽で凝集剤溶液を生成して貯留しておき、そのときに合った凝集剤溶液を選んで供給する構成も考えられなくもない。しかし、凝集剤は以下に示すような特徴を有していることから、そのような構成を適用しても非常に非効率なものとなってしまい、非現実的である。   By the way, the coagulant solution supplied to the sludge to be treated is more cohesive with sludge suspended material particles (formation of sludge flocs) when using an expensive coagulant with high coagulation performance than with an inexpensive coagulant with low coagulation performance. Tend to be promoted. However, expensive flocculants with high flocculation performance are not absolutely effective. Rather, the application of a flocculant suitable for the properties of the treated sludge supplying the flocculant solution further promotes the formation of sludge flocs. In order to cope with the sludge to be treated of various properties, a storage tank equipped with a conventional stirrer is prepared for each type of flocculant, and a flocculant solution is generated in each storage tank. leave reservoir Te, nor no configuration is also considered that supplies to choose suits flocculant solution at that time. However, since the flocculant has the following characteristics, even if such a configuration is applied, it becomes very inefficient and unrealistic.

一般的に、凝集剤は、粒状・粉末状等の固形(以下、粒状等という)で袋詰めされた状態で製造・販売されている。そして、袋詰めの状態のままで保管しておき、使用するときに水に溶解させて凝集剤溶液にして使用するようになっている。これは、凝集剤は水に溶解させた状態で放置すると凝集性能が時間と共に劣化していく性能を有しているためである。特に高分子凝集剤の場合においては、数日で凝集剤溶液としては使用できないレベルまで凝集性能が低下してしまう。しかも、凝集性能の高い凝集剤のほとんどは高分子凝集剤である。このため、前記のような多種類の凝集剤溶液を貯留しておくと、使い切る前に凝集性能が低下してしまって使い物にならない凝集剤溶液が多量に発生してしまい、ランニングコストが大幅に嵩んでしまう。   In general, the flocculant is manufactured and sold in a state of being packed in a solid form (hereinafter referred to as a granular form) such as a granular form or a powder form. And it keeps in the state of bag packing, and when using it, it is made to melt | dissolve in water and is used as a flocculant solution. This is because the aggregating agent has a performance in which the aggregating performance deteriorates with time when left in a state dissolved in water. Particularly in the case of the polymeric coagulant, aggregation ability to a level which can not be used as a flocculant solution in a few days is reduced. Moreover, most of the flocculants having high flocculant performance are polymer flocculants. For this reason, if many kinds of flocculant solutions as described above are stored, the flocculant performance decreases before it is used up, and a large amount of flocculant solution that does not become useful is generated, which greatly increases the running cost. It becomes bulky.

また、粒状等の凝集剤は、水に短時間で溶解するものではない。従来、粒状等の凝集剤から凝集剤溶液を生成するに当たっては、粒状等の凝集剤を供給する凝集剤供給機と溶解水を供給する溶解水供給管と撹拌機を備えた凝集剤溶液槽を用いる。凝集剤溶液槽内に所定濃度で貯留可能量の凝集剤溶液を生成するための溶解水と凝集剤を供給し、撹拌機で撹拌混合して時間を掛けて凝集剤を溶解させ、凝集剤溶液槽内に凝集剤溶液を生成する。特に、適用する凝集剤が高分子凝集剤の場合においては、溶解するまでに数時間を要する。粒状等の高分子凝集剤は、高分子鎖が絡まり合った状態で固体化しており、水に溶解させるには、その粒の表層が水を吸収して膨潤し、高分子鎖が水中に剥離し、水が内側の層(2層目)に浸透・吸収して膨潤し、その内側の層の高分子鎖が剥離するといった順序で、粒状等の中心まで溶解するプロセスを経るためである。このため、多種類の凝集剤を保存期間の長い粒状等の状態で貯留しておき、被処理汚泥に供給するときに溶解水に溶解させて短時間で凝集剤溶液を生成して供給することは、従来の撹拌機を備えた貯留槽では極めて困難である。   Further, the flocculant such as particulates does not dissolve in water in a short time. Conventionally, when a flocculant solution is produced from a granular flocculant, a flocculant solution tank having a flocculant supply machine for supplying granular flocculant, a dissolved water supply pipe for supplying dissolved water, and a stirrer is provided. Use. Supply the dissolved water and flocculant to produce a flocculating agent solution with a predetermined concentration in the flocculant solution tank, stir and mix with a stirrer, dissolve the flocculant over time, and flocculant solution A flocculant solution is produced in the bath. In particular, when the flocculant to be applied is a polymer flocculant, it takes several hours to dissolve. Granular polymer flocculants are solidified in a state where polymer chains are entangled, and in order to dissolve in water, the surface layer of the particles absorbs water and swells, and the polymer chains peel into water This is because water passes through the inner layer (second layer) and swells by being absorbed, and the polymer chain of the inner layer is peeled off in order, so that it passes through the process of dissolving to the center such as granular form. For this reason, many kinds of flocculants are stored in a granular state or the like having a long storage period, and when supplied to the treated sludge, the flocculant solution is generated in short time and supplied. Is extremely difficult in a storage tank equipped with a conventional stirrer.

そこで、従来は、事前に汚泥脱水機で脱水処理する対象の被処理汚泥を頻繁にサンプリングし、これらの被処理汚泥に対して平均的な脱水性能が得られる適応範囲の広い凝集剤を選定していた。選定された凝集剤は、従来のように大容量の貯留槽で凝集剤溶液にして貯留しておいて、適宜、被処理汚泥に供給するようにしていた。また、被処理汚泥の性状が多少変化した場合には、凝集剤溶液の供給量を増やすことで、凝集作用を補完するようにしていた。また、この汎用性の高い凝集剤の選定では、汚泥脱水機で脱水処理された脱水汚泥の含水率、分離液の性状だけではなく、費用対効果も重視される。   Therefore, conventionally, the sludge to be dewatered with a sludge dewatering machine is frequently sampled in advance, and a flocculant with a wide range of application that can obtain an average dewatering performance for these sludges to be treated is selected. It was. The selected flocculant is stored as a flocculant solution in a large-capacity storage tank as in the past, and is appropriately supplied to the treated sludge. Moreover, when the property of the to-be-processed sludge has changed a little, the coagulating action was complemented by increasing the supply amount of the coagulant solution. In selecting a highly versatile flocculant, not only the water content of the dewatered sludge dehydrated by the sludge dehydrator and the properties of the separated liquid, but also cost-effectiveness is emphasized.

しかし、被処理汚泥の性状が通常時に比べて急激に変化した非常時の場合、適応範囲の広い凝集剤溶液では供給量をいくら増やしても脱水性能が向上せず、汚泥フロックの形成が進まないまま汚泥脱水機で脱水処理されてしまい、脱水汚泥の含水率が十分に低下せず、また分離液の性状が低下してしまうことがあった。このような状況の場合、特許文献1や特許文献2記載のような無機凝集剤を被処理汚泥に注入して被処理汚泥のpHを調整する工程を追加しても、被処理汚泥中の懸濁粒子同士の弱い分子間力では補完することは困難であり、問題となっていた。   However, in the event of an emergency in which the properties of the treated sludge have changed abruptly compared to normal times, the dewatering performance does not improve and the formation of sludge flocs does not progress with the flocculant solution with a wide application range, no matter how much the supply amount is increased. As a result, the water content of the dewatered sludge is not sufficiently lowered, and the properties of the separated liquid may be lowered. In such a situation, even if a process for adjusting the pH of the treated sludge by adding an inorganic flocculant as described in Patent Document 1 or Patent Document 2 to the treated sludge is added, it is difficult to supplement the weak intermolecular forces of grains pollution, it has been a problem.

高分子凝集剤の場合、粒状等の固形状のもののほか、濃縮液状(エマルジョン状態)のものもあるが、濃縮液状態であっても高分子鎖同士が絡まり合った状態であり、従来の撹拌機を備えた凝集剤溶液槽に溶解水と共に投入して撹拌混合して、粒状等の高分子凝集剤よりは短時間で溶解して凝集剤溶液を生成できるが、それでも被処理汚泥の急激な性状変化時に即座に対応できるとはいい難く、問題となっていた。さらに、濃縮液状の高分子凝集剤は、粒状等の固形状のものに比べて短時間で劣化してしまうものであり、保存できる期間も短く、被処理汚泥の急激な性状変化時のような非常時にのみ使用するのに適しているとはいい難く問題となっていた。   In the case of polymer flocculants, in addition to solids such as granules, there are also concentrated liquids (emulsion state), but even in the concentrated liquid state, the polymer chains are entangled and conventional stirring The flocculant solution tank equipped with a machine is mixed with dissolved water and stirred and mixed, so that it can be dissolved in a shorter time than a polymer flocculant such as a granular form to produce a flocculant solution. It was difficult to say that it was possible to respond immediately when the properties changed, which was a problem. Furthermore, the concentrated liquid polymer flocculant deteriorates in a short time compared to solid particles such as granules, and the storage period is also short, as in the case of a sudden change in the properties of the sludge to be treated. It was difficult to say that it was suitable for use only in an emergency.

一方、脱水処理する処理場の都合で、複数の種類の被処理汚泥を同じ汚泥脱水システムで脱水処理する場合や、汚水処理システムが設置されている複数の施設から発生する被処理汚泥を、1箇所の脱水処理場に集約し、一括処理する場合もあるが、通常、各汚水処理システムから発生する被処理汚泥は性状が異なる。これらの場合においては、処理された脱水汚泥の性状や、分離液の性状を見て、被処理汚泥への凝集剤溶液の注入量を調整している。また、同じ汚泥脱水システム内の同じ所から引き抜かれる被処理汚泥であっても引き抜かれた日時によって性状が変動する。この被処理汚泥を汚泥脱水システムで脱水処理する場合においても、処理された脱水汚泥の性状や、分離液の性状を見て、被処理汚泥への凝集剤溶液の注入量を調整している。   On the other hand, due to the convenience of the treatment plant to be dewatered, when multiple types of sludge to be treated are dehydrated by the same sludge dewatering system, or to be treated sludge generated from a plurality of facilities where the sewage treatment system is installed, 1 In some cases, the wastewater is collected at a certain dewatering treatment plant and processed in a lump, but usually the treated sludge generated from each sewage treatment system has different properties. In these cases, the amount of the flocculant solution injected into the treated sludge is adjusted in view of the properties of the treated dewatered sludge and the properties of the separation liquid. Moreover, even if it is the to-be-processed sludge extracted from the same place in the same sludge dehydration system, a property changes with the date and time with which it was extracted. Even when this treated sludge is dehydrated by the sludge dewatering system, the amount of the flocculant solution injected into the treated sludge is adjusted by looking at the properties of the treated dewatered sludge and the properties of the separated liquid.

しかし、これらの場合においても、一種類の凝集剤で注入量を変えるだけで、種々の汚泥に対して凝集性能を発揮させ、脱水汚泥の含水率を所定の数値以下にすることは難しく、被処理汚泥の種類によっては脱水汚泥の脱水が不十分な場合があり、問題となっていた。   However, even in these cases, it is difficult to exhibit the coagulation performance for various sludges by changing the injection amount with one type of coagulant, and to make the moisture content of the dewatered sludge below a predetermined value. depending on the type of processing the sludge there is a case dehydration of the dewatered sludge is insufficient, it has been a problem.

この発明は、上記のような課題を解決するためになされたものであって、凝集剤溶液を注入した被処理汚泥を汚泥脱水機で分離液と脱水汚泥に分離する脱水処理を行う汚泥脱水システムであり、被処理汚泥の性状が急激に変化した場合や、多種類の汚泥を被処理汚泥として脱水処理する場合であっても所定の脱水汚泥の含水率や分離液の性状を所定範囲に維持することが可能な汚泥脱水システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a sludge dewatering system that performs a dewatering process in which a sludge to be treated into which a flocculant solution has been injected is separated into a separation liquid and a dewatered sludge by a sludge dewatering machine. Even when the properties of the sludge to be treated change drastically or when various types of sludge are dehydrated as treated sludge, the moisture content of the prescribed dewatered sludge and the properties of the separated liquid are maintained within the prescribed ranges. It aims at providing the sludge dehydration system which can be done.

上記課題を解決するために、被処理汚泥を分離液と脱水汚泥に分離する汚泥脱水機および該汚泥脱水機へ被処理汚泥を供給する汚泥供給管を備えた汚泥脱水工程と、凝集剤および溶解水から生成した凝集剤溶液を凝集剤溶液供給管で前記被処理汚泥に供給する第1凝集剤供給工程と、第1凝集剤供給工程の凝集剤とは異なる凝集剤と溶解水を撹拌混合して凝集剤溶液を生成する凝集剤溶液タンク、筒状容器と、該筒状容器内に配設された円筒スクリーンと、該円筒スクリーン内に配設された一つまたは二つ以上の押圧部材と、該押圧部材を保持する保持部材と、該保持部材を介して前記押圧部材を前記円筒スクリーンの内面に沿って移動させる駆動機とを備え、前記凝集剤溶液タンクから導入した凝集剤溶液をスクリーンろ過すると共に、凝集剤溶液中の凝集剤を溶解する凝集剤溶解機および該凝集剤溶解機から流出する凝集剤溶液を前記被処理汚泥に供給する凝集剤溶液供給管を備えた第2凝集剤供給工程とからなり、被処理汚泥に第1凝集剤供給工程または第1凝集剤供給工程と第2凝集剤供給工程の両方で凝集剤溶液を供給することを特徴とする。 In order to solve the above-mentioned problems, a sludge dehydrator for separating the treated sludge into a separating liquid and a dewatered sludge, a sludge dewatering step comprising a sludge supply pipe for supplying the treated sludge to the sludge dewaterer, a coagulant and a dissolution agent The flocculant solution generated from water is stirred and mixed with a flocculant different from the flocculant in the first flocculant supply step and the first flocculant supply step for supplying the flocculant solution to the treated sludge through the flocculant solution supply pipe. A flocculant solution tank for generating a flocculant solution, a cylindrical container, a cylindrical screen disposed in the cylindrical container, and one or more pressing members disposed in the cylindrical screen; A holding member that holds the pressing member, and a drive unit that moves the pressing member along the inner surface of the cylindrical screen via the holding member, and the screen uses the flocculant solution introduced from the flocculant solution tank. While filtering, I and a second coagulant supply step of the flocculant solution discharged from the coagulant dissolver and coagulant dissolver which dissolves the flocculant solution in with a coagulant solution supply pipe for supplying the object to be processed sludge Ri, characterized that you supply a flocculant solution in both the first coagulant supply step or first coagulant supply step and the second coagulant supply process to be treated sludge.

本発明の請求項2の汚泥脱水システムは、第1凝集剤供給工程の凝集剤溶液供給管と第2凝集剤供給工程の凝集剤溶液供給管とが合流接続していることを特徴とする。   The sludge dewatering system according to claim 2 of the present invention is characterized in that the coagulant solution supply pipe in the first coagulant supply process and the coagulant solution supply pipe in the second coagulant supply process are joined together.

本発明の請求項3の汚泥脱水システムは、凝集剤溶解機から流出した凝集剤溶液の粘度を測定する粘度計と、該粘度計の測定値に応じて、低速で起動して上昇させる前記駆動機回転を制御する制御器とを備えたことを特徴とする。 The sludge dewatering system according to claim 3 of the present invention is a viscometer that measures the viscosity of the flocculant solution that has flowed out of the flocculant dissolver, and the drive that starts and raises at a low speed according to the measured value of the viscometer. And a controller for controlling the rotation of the machine .

この発明に係る汚泥脱水システムによれば、汚泥供給管によって被処理汚泥を汚泥脱水機に供給し、脱水汚泥と分離液に分離する汚泥脱水工程と、凝集剤と溶解水から凝集剤溶液を生成し、凝集剤溶液供給管で凝集剤溶液を被処理汚泥に供給する第1凝集剤供給工程と、凝集剤溶液タンクで凝集剤と溶解水を撹拌混合して凝集剤溶液を生成し、その凝集剤溶液を凝集剤溶解機でスクリーンろ過するとともに凝集剤溶液中の凝集剤を溶解し、凝集剤溶液供給管で凝集剤溶液を被処理汚泥に供給する第2凝集剤供給工程とからなることにより、以下に示す効果がある。
(1)通常時使用する適応範囲の広い凝集剤溶液を第1凝集剤供給工程によって被処理汚泥に供給し、被処理汚泥の性状が急激に変化した際に使用する第1凝集剤供給工程の凝集剤とは種類や特性の異なる非常時用の凝集剤溶液を第2凝集剤供給工程によって被処理汚泥に供給することが可能となる。これにより、適応範囲の広い凝集剤は、大容量の凝集剤溶液槽で溶解水とともに時間を掛けて撹拌混合して粒状等の未溶解粒を溶解させ、凝集剤溶液槽に貯留し、通常時、被処理汚泥に必要量供給することができる。また、非常時用の凝集剤は、通常時は、溶解水に溶解させずに貯蔵しておき、非常時に、その凝集剤を溶解水とともに小容量の凝集剤溶液タンクで短時間撹拌混合して未溶解の凝集剤(以下、これを未溶解粒という。)を含む凝集剤溶液を生成し、さらに凝集剤溶解機でその凝集剤溶液をスクリーンろ過して凝集剤の未溶解粒をスクリーンで捕捉し、その未溶解粒を溶解処理して凝集剤溶液に溶解させることで、必要なときに短時間で十分溶解された凝集剤溶液を生成して被処理汚泥に供給することができる。通常時には、適応範囲の広い凝集剤溶液をその被処理汚泥の性状に応じて必要量供給して、被処理汚泥中の懸濁粒子の汚泥フロック形成を促すことができ、被処理汚泥の性状が急激に変化した場合には、短時間で非常時用の凝集剤溶液を生成して被処理汚泥に供給して汚泥フロック形成を促すことができる。これにより、被処理汚泥を汚泥脱水機で脱水後の脱水汚泥の含水率および分離液の性状を所定範囲で維持することができる効果がある。
(2)非常時用の凝集剤を従来の撹拌機を備えた大容量の凝集剤溶液槽で予め、時間をかけて溶解水に溶解させて凝集剤溶液を生成して貯留しておく必要がないため、非常時用の凝集剤溶液の凝集性能が時間経過とともに劣化していき、凝集剤溶液として使用不適になるまでに被処理汚泥の性状があまり変化せず、非常時用の凝集剤溶液を使用し切れずに廃棄してしまう無駄を回避することができる効果がある。
(3)通常時、非常時用の凝集剤は、溶解水で溶解させずに貯蔵することができ、必要なときに短時間でその凝集剤を溶解水で未溶解粒が十分溶解された凝集剤溶液を生成することができることから、非常時用の凝集剤を凝集性能が高い状態のまま長時間保存することができる効果がある。
(4)第1凝集剤供給工程により適応範囲の広い凝集剤溶液を被処理汚泥に供給し、被処理汚泥中の微細な懸濁粒子をある程度凝集させて小さな汚泥フロックを形成させ、さらに第2凝集剤供給工程により非常時用の凝集剤溶液を被処理汚泥に注入して、ある程度凝集されている小さな汚泥フロック同士を凝集させて大きな汚泥フロックの形成を促すことができる。これにより、脱水処理する対象の被処理汚泥の性状が急激に変化した場合に被処理汚泥に供給する非常用の凝集剤に高価な凝集剤を適用しても、その非常用の凝集剤溶液の供給量をより少なくしながらも、脱水汚泥の含水率および分離液の濁度等を所定範囲で維持することができ、ランニングコストを抑制できる効果がある。
(5)初沈汚泥、余剰汚泥、消化汚泥等、種類の異なる汚泥を被処理汚泥として同じ汚泥脱水システムで脱水処理する場合や、異なる原水を浄化する汚水処理システムから発生する被処理汚泥を1箇所の汚泥脱水システムで一括処理する場合においても、その処理する被処理汚泥の種類や性状に応じて、第1凝集剤供給工程で適応範囲の広い凝集剤溶液を、第2凝集剤供給工程で第1凝集剤供給工程の凝集剤とは種類や特性の異なる非常時用の凝集剤溶液を、それぞれ供給することによって、どのような種類、性状の被処理汚泥を脱水処理する場合でも、脱水汚泥の含水率および分離液の性状を所定範囲に維持することができる効果があり、しかも凝集剤に掛かるランニングコストを極力抑制することができる効果がある。
さらに、第2凝集剤供給工程の凝集剤溶解機を、筒状容器内に円筒スクリーンを配設し、その円筒スクリーン内に凝集剤溶液タンクから凝集剤溶液を導入してスクリーンろ過し、駆動機によって保持部材を介して一つまたは二つ以上の押圧部材を円筒スクリーン内面に沿って移動させることで円筒スクリーン内面に付着する凝集剤(未溶解粒)を押圧して溶解させる構成としたことにより、凝集剤タンクで粒状等の凝集剤と溶解水を短時間で撹拌混合するだけでは、溶解し切れない凝集剤の未溶解粒を確実に溶解させることができる効果がある。特に、溶解水に容易に溶解しない高分子凝集剤を第2凝集剤供給工程の凝集剤に適用する場合に大きな効果がある。
According to the sludge dewatering system according to the present invention, the sludge is supplied to the sludge dewatering machine through the sludge supply pipe, and the sludge dewatering step for separating the sludge into the dehydrated sludge and the separated liquid, and the flocculant solution is generated from the flocculant and the dissolved water. The flocculant solution is supplied to the sludge to be treated by the flocculant solution supply pipe, and the flocculant and dissolved water are stirred and mixed in the flocculant solution tank to produce the flocculant solution. And a second flocculant supply step of dissolving the flocculant in the flocculant solution and dissolving the flocculant in the flocculant solution and supplying the flocculant solution to the sludge to be treated by the flocculant solution supply pipe. There are the following effects.
(1) A flocculant solution having a wide application range that is normally used is supplied to the treated sludge by the first flocculant supplying step, and the first flocculant supplying step used when the properties of the treated sludge are rapidly changed. It is possible to supply an emergency coagulant solution having a different kind and characteristics from the coagulant to the sludge to be treated by the second coagulant supply process. As a result, the flocculant having a wide range of application can be stirred and mixed with dissolved water in a large-capacity flocculant solution tank to dissolve undissolved particles such as granules and stored in the flocculant solution tank. The required amount can be supplied to the treated sludge. The emergency coagulant is usually stored without being dissolved in dissolved water. In an emergency, the coagulant is stirred and mixed in a small volume coagulant solution tank together with dissolved water for a short time. A flocculant solution containing undissolved flocculant (hereinafter referred to as undissolved particles) is generated, and the flocculant solution is screen filtered with a flocculant dissolver to capture the undissolved particles of flocculant with the screen. Then, the undissolved particles are dissolved and dissolved in the flocculant solution, whereby a flocculant solution sufficiently dissolved in a short time can be generated and supplied to the treated sludge when necessary. Normally, a necessary amount of flocculant solution with a wide range of application can be supplied according to the properties of the treated sludge to promote the formation of sludge flocs of suspended particles in the treated sludge. In the case of a sudden change, an emergency coagulant solution can be generated and supplied to the treated sludge in a short time to promote sludge floc formation. Thereby, there exists an effect which can maintain the moisture content of the dewatered sludge after dewatering a to-be-processed sludge with a sludge dehydrator, and the property of a separated liquid in a predetermined range.
(2) The coagulant for emergency needs to be preliminarily dissolved in dissolved water in a large-capacity coagulant solution tank equipped with a conventional stirrer to generate and store the coagulant solution. Therefore, the coagulant performance of the emergency coagulant solution will deteriorate over time, and the properties of the treated sludge will not change so much until it becomes unusable as a coagulant solution. There is an effect that it is possible to avoid waste that is discarded without being used up.
(3) The flocculant for normal use and emergency can be stored without dissolving with dissolved water, and when necessary, the flocculant is agglomerated with undissolved particles sufficiently dissolved in dissolved water in a short time. Since the agent solution can be generated, there is an effect that the emergency coagulant can be stored for a long time while the coagulation performance is high.
(4) A flocculant solution having a wide application range is supplied to the sludge to be treated in the first flocculant supply step, and fine suspended particles in the sludge to be treated are aggregated to some extent to form small sludge flocs. In the coagulant supply process, an emergency coagulant solution can be injected into the sludge to be treated, and small sludge flocs that have been coagulated to some extent can be aggregated to promote the formation of large sludge flocs. As a result, even if an expensive flocculant is applied to the emergency flocculant supplied to the treated sludge when the property of the treated sludge to be dewatered changes suddenly, the emergency flocculant solution While reducing the supply amount, the moisture content of the dewatered sludge and the turbidity of the separated liquid can be maintained within a predetermined range, and the running cost can be suppressed.
(5) When sludge of different types, such as primary sludge, surplus sludge, digested sludge, etc., is treated with the same sludge dewatering system as treated sludge, or treated sludge generated from a sewage treatment system that purifies different raw water is 1 Even in the case of batch treatment with the sludge dewatering system at the location, depending on the type and properties of the treated sludge to be treated, a flocculant solution having a wide range of application in the first flocculant supply step is used in the second flocculant supply step. In the case of dewatering the sludge to be treated of any kind and property by supplying the emergency coagulant solution having different types and characteristics from the flocculant in the first flocculant supply step, the dewatered sludge The water content and the properties of the separation liquid can be maintained within a predetermined range, and the running cost applied to the flocculant can be suppressed as much as possible.
Further, the flocculant dissolving machine in the second flocculant supply step is arranged such that a cylindrical screen is arranged in a cylindrical container, the flocculant solution is introduced into the cylindrical screen from the flocculant solution tank, and the screen is filtered. By moving one or two or more pressing members along the inner surface of the cylindrical screen through the holding member, the flocculant (undissolved particles) adhering to the inner surface of the cylindrical screen is pressed and dissolved. There is an effect that the undissolved particles of the flocculant that cannot be completely dissolved can be surely dissolved by simply stirring and mixing the flocculant such as particles and dissolved water in a flocculant tank in a short time. In particular, there is a great effect when a polymer flocculant that is not easily dissolved in dissolved water is applied to the flocculant in the second flocculant supply step.

請求項2記載の発明に係る汚泥脱水システムによれば、以下に示す効果がある。
(1)第1凝集剤供給工程の凝集剤溶液供給管と第2凝集剤供給工程の凝集剤溶液供給管とを合流接続したことにより、2種類の凝集剤溶液を混ぜ合わせて様々な特性を有する凝集剤溶液を生成することができる。例えば、混合することで化学的反応が起こり、凝集剤の組成が変化し、汚泥懸濁物質の負極性帯電の中和作用が強化される場合、汚泥懸濁物質への高分子糸の吸着性能が強化される場合、高分子糸同士の架橋結合が強化される場合等、生成された凝集剤溶液は、単に2種類の凝集剤を別々に被処理汚泥に供給する場合に比べ、凝集性能が飛躍的に向上する効果がある。また、様々な性状の被処理汚泥に対して、最適な特性の凝集剤溶液を供給することができる効果がある。
(2)第1凝集剤供給工程に適応範囲の広い高分子凝集剤を適用し、第2凝集剤供給工程に第1凝集剤供給工程の凝集剤とは種類や特性の異なる非常時用の高分子凝集剤を適用し、通常時は、第1凝集剤供給工程からの適応範囲の広い高分子凝集剤溶液を被処理汚泥に適量供給して、脱水処理を行うようにすることができる。そして、被処理汚泥の性状が急激に変化したときに、第2凝集剤供給工程で非常時用の高分子凝集剤を凝集剤溶液タンクによって溶解水と共に短時間撹拌混合し、凝集剤溶解機で高分子凝集剤の未溶解粒を溶解処理し、非常時用の高分子凝集剤溶液を生成して適応範囲の広い高分子凝集剤溶液に混合して、被処理汚泥に供給することができる。これにより、非常時用の高分子凝集剤の高分子鎖と、適応範囲の広い高分子凝集剤の高分子鎖の混ぜ合わされた凝集剤溶液中の分布状況を均一化させてから、被処理汚泥に供給することができるため、ばらつきが無く、平均的に汚泥フロックの形成を促すことができる効果がある。
The sludge dewatering system according to the invention of claim 2 has the following effects.
(1) Since the flocculant solution supply pipe in the first flocculant supply process and the flocculant solution supply pipe in the second flocculant supply process are joined and connected, two kinds of flocculant solutions are mixed and various characteristics are obtained. A flocculant solution having the same can be produced. For example, when a chemical reaction occurs by mixing, the composition of the flocculant changes, and the neutralization action of the negative charge of the sludge suspended material is strengthened, the adsorption performance of the polymer yarn to the sludge suspended material The resulting flocculant solution has a cohesive performance as compared to the case where the two types of flocculant are separately supplied to the treated sludge, such as when the cross-linking between polymer yarns is strengthened. There is a dramatic improvement effect. Moreover, there exists an effect which can supply the flocculant solution of an optimal characteristic with respect to the to-be-processed sludge of various properties.
(2) A polymer flocculant having a wide application range is applied to the first flocculant supply step, and the second flocculant supply step is different in type and characteristics from the flocculant in the first flocculant supply step. A molecular flocculant is applied, and at normal times, an appropriate amount of a polymer flocculant solution having a wide application range from the first flocculant supply step can be supplied to the sludge to be treated for dehydration. When the property of the sludge to be treated changes suddenly, the polymer flocculant for emergency in the second flocculant supply step is stirred and mixed with the dissolved water for a short time by the flocculant solution tank, and the flocculant dissolver is used. The undissolved particles of the polymer flocculant can be dissolved to produce an emergency polymer flocculant solution, mixed with the polymer flocculant solution having a wide range of application, and supplied to the treated sludge. In this way, the distribution state in the coagulant solution in which the polymer chain of the polymer coagulant for emergency and the polymer chain of the polymer coagulant having a wide range of application is mixed is made uniform, and then the sludge to be treated is treated. Therefore, there is no variation and it is possible to promote the formation of sludge flocs on average.

請求項3記載の発明に係る汚泥脱水システムによれば、凝集剤溶解機で溶解された凝集剤溶液の粘度を測定する粘度計と、その粘度計の測定値に応じて、低速で起動して上昇させる前記駆動機回転を制御する制御器を備えたことにより、以下に示す効果がある。

According to the sludge dewatering system according to the invention described in claim 3, the viscometer that measures the viscosity of the flocculant solution dissolved by the flocculant dissolver , and starts at a low speed according to the measured value of the viscometer. By providing the controller for controlling the rotation of the driving machine to be raised , the following effects can be obtained.

実施の形態1.
図1は、実施の形態1における汚泥脱水システムのフロー図であり、図2は凝集剤溶解機のA−A線断面図であり、図3は、凝集剤溶解機のB−B線断面図である。この実施の形態1の汚泥脱水システムは、被処理汚泥を分離液と脱水汚泥に分離する汚泥脱水機1および該汚泥脱水機1へ被処理汚泥を供給する汚泥供給管2を備えた汚泥脱水工程と、凝集剤と溶解水を撹拌混合して凝集剤溶液を生成する凝集剤溶液槽4A,4Bおよび前記凝集剤溶液を前記被処理汚泥に供給する凝集剤溶液供給管(以下、第1の凝集剤溶液供給管という。)5を備えた第1凝集剤供給工程と、凝集剤と溶解水を撹拌混合して凝集剤溶液を生成する凝集剤溶液タンク6および前記凝集剤溶液を導入してスクリーンろ過すると共に、凝集剤溶液中の凝集剤を溶解する凝集剤溶解機8ならびに該凝集剤溶解機8から流出する凝集剤溶液を前記被処理汚泥に供給する凝集剤溶液供給管(以下、第2の凝集剤溶液供給管という。)9を備えた第2凝集剤供給工程とから主に構成されている。
Embodiment 1 FIG.
FIG. 1 is a flow diagram of the sludge dewatering system according to the first embodiment, FIG. 2 is a cross-sectional view along line AA of the coagulant dissolver, and FIG. 3 is a cross-sectional view along line BB of the coagulant dissolver. It is. The sludge dewatering system according to Embodiment 1 includes a sludge dewatering machine 1 that separates treated sludge into a separating liquid and dewatered sludge, and a sludge dewatering process that includes a sludge supply pipe 2 that supplies the treated sludge to the sludge dewatering machine 1. And flocculant solution tanks 4A and 4B that produce a flocculant solution by stirring and mixing the flocculant and dissolved water, and a flocculant solution supply pipe that supplies the flocculant solution to the treated sludge (hereinafter referred to as first flocculant). A first flocculant supply step having 5), a flocculant solution tank 6 for producing a flocculant solution by stirring and mixing the flocculant and dissolved water, and introducing the flocculant solution into the screen. The flocculant dissolver 8 that dissolves the flocculant in the flocculant solution and the flocculant solution supply pipe (hereinafter referred to as the second flocculant solution supply pipe) that supplies the flocculant solution flowing out from the flocculant dissolver 8 to the treated sludge. This is called a flocculant solution supply pipe. It is mainly composed of a second coagulant supply process with.

汚泥脱水機1は遠心脱水機からなっており、その汚泥脱水機1の汚泥流入口に接続された汚泥供給管2には、被処理汚泥を汚泥脱水機1に供給する汚泥供給ポンプ3が設けられている。なお、汚泥脱水機1は、遠心脱水機のほかにベルトプレス脱水機、スクリュープレス脱水機、回転加圧脱水機等が適用可能である。また、広義の汚泥脱水機として、浮上濃縮機や遠心濃縮機等も適用可能である。   The sludge dewatering machine 1 is a centrifugal dewatering machine, and the sludge supply pipe 2 connected to the sludge inlet of the sludge dewatering machine 1 is provided with a sludge supply pump 3 for supplying the sludge to be treated to the sludge dewatering machine 1. It has been. In addition to the centrifugal dehydrator, a belt press dehydrator, a screw press dehydrator, a rotary pressure dehydrator or the like can be applied to the sludge dehydrator 1. In addition, as a sludge dehydrator in a broad sense, a flotation concentrator, a centrifugal concentrator, or the like is also applicable.

第1凝集剤供給工程の凝集剤溶液槽4A,4Bは、粒状・粉末状等のいわゆる粒状等の凝集剤(以下、第1凝集剤という。)を凝集剤溶液槽4A,4Bのそれぞれに供給する凝集剤供給機10A,10Bと、前記第1凝集剤を溶解する溶解水を凝集剤溶液槽4A,4Bのそれぞれに供給する溶解水供給管12A,12Bと、前記第1凝集剤と前記溶解水を撹拌混合する撹拌機14A,14Bとを備えており、撹拌機14A,14Bによる第1凝集剤と溶解水との撹拌混合によって凝集剤溶液(以下、第1凝集剤溶液という。)を生成するようになっている。凝集剤供給機10A,10Bは、下端に凝集剤供給口102A,102Bを備えるホッパー状容器101A,101Bと、凝集剤供給口102A,102Bに配設される駆動機を備える供給口開閉器103A,103Bにより構成されている。供給口開閉器103A,103Bは、スライドシャッター構造、フラッパー弁構造、バタフライ弁構造、噛み合わせギア構造等、凝集剤供給口102A,102Bを開閉制御可能であれば、どのような構造であってもよい。なお、凝集剤供給口102A,102Bは、凝集剤溶液槽4A,4B内で気化した湿気が浸入しやすく凝集剤の粒同士が固まってしまう恐れがあるので、ドライエアを供給すること等を行って乾燥状態を維持することが望ましい。溶解水供給管12A,12Bには制御弁13A,13Bが設けられており、これらの制御弁13A,13Bを介して凝集剤溶液槽4A,4B内に溶解水を供給するようになっている。その溶解水としては、水道水のほか、地下水、工業用水、ろ過水、雨水利用水、再生水等が適用可能であり、前記の粒状等の第1凝集剤を溶解可能な水であればよい。   The flocculant solution tanks 4A and 4B in the first flocculant supply process supply so-called granular flocculants (hereinafter referred to as first flocculants) such as granules and powders to the flocculant solution tanks 4A and 4B. Coagulant supplying machines 10A and 10B, dissolved water supply pipes 12A and 12B for supplying dissolved water for dissolving the first coagulant to the coagulant solution tanks 4A and 4B, the first coagulant and the dissolution Stirrers 14A and 14B for stirring and mixing water are provided, and a flocculant solution (hereinafter referred to as a first flocculant solution) is generated by stirring and mixing the first flocculant and dissolved water by the stirrers 14A and 14B. It is supposed to be. The flocculant supply machines 10A and 10B include hopper-like containers 101A and 101B having flocculant supply ports 102A and 102B at the lower ends, and supply port switches 103A and the like having drive units disposed in the flocculant supply ports 102A and 102B. 103B. The supply port switches 103A and 103B may have any structure as long as the flocculant supply ports 102A and 102B can be controlled to open and close, such as a slide shutter structure, a flapper valve structure, a butterfly valve structure, and a meshing gear structure. Good. The flocculant supply ports 102A and 102B are liable to infiltrate the moisture vaporized in the flocculant solution tanks 4A and 4B, so that the flocculant particles may be solidified. It is desirable to maintain a dry state. The dissolved water supply pipes 12A and 12B are provided with control valves 13A and 13B, and the dissolved water is supplied into the flocculant solution tanks 4A and 4B via these control valves 13A and 13B. As the dissolved water, in addition to tap water, ground water, industrial water, filtered water, rainwater use water, reclaimed water, and the like can be applied, and any water that can dissolve the first flocculant such as the above-described particles may be used.

凝集剤供給機10A,10Bから凝集剤溶液槽4A,4Bに供給する凝集剤としては、無機凝集剤と高分子凝集剤が適用可能である。無機系凝集剤には、ポリ塩化アルミニウム、ポリ硫酸第二鉄、塩化第二鉄、硫酸アルミニウム、塩化アルミニウム等がある。また、高分子凝集剤には、カチオン系ポリマーのメタアクリル酸エステル系(メタクリル酸ジメチルアミノエチル等)、アクリル酸エステル系(アクリル酸ジメチルアミノエチル等)など、両性系ポリマーの例えば、アクリル酸ジメチルアミノエチルとアクリル酸等との共重合体などがある。被処理汚泥中の懸濁物質の粒子の凝集を促進する作用を有する粒状等の薬剤であれば、どのようなものでも適用可能である。   An inorganic flocculant and a polymer flocculant are applicable as the flocculant supplied from the flocculant feeders 10A and 10B to the flocculant solution tanks 4A and 4B. The inorganic flocculant, polyaluminum chloride, ferric polysulfate, ferric chloride, aluminum sulfate, aluminum chloride, and the like. The polymer flocculant includes amphoteric polymers such as methacrylic acid ester (eg, dimethylaminoethyl methacrylate) and acrylic acid ester (eg, dimethylaminoethyl acrylate), such as dimethyl acrylate. Examples include copolymers of aminoethyl and acrylic acid. Any agent can be applied as long as it is a granular agent having an action of promoting aggregation of suspended particles in the treated sludge.

凝集剤溶液槽4A,4B内で生成された第1凝集剤溶液を汚泥供給管2の被処理汚泥に供給する第1の凝集剤溶液供給管5は、前記凝集剤溶液槽4A,4Bのそれぞれに分岐接続された分岐管部5A,5Bを有して凝集剤溶液槽4A,4Bのそれぞれと汚泥供給管2の汚泥供給ポンプ3の下流側とを接続している。前記分岐管部5A,5Bのそれぞれには開閉制御弁15,16が設けられている。また、第1の凝集剤溶液供給管5における分岐管部5A,5Bの合流部よりも下流側には、溶液圧送ポンプ17が設けられ、この溶液圧送ポンプ17によって凝集剤溶液槽4A,4Bの一方の第1凝集剤溶液が汚泥供給管2の被処理汚泥に供給されるようになっている。   The first flocculant solution supply pipe 5 that supplies the first flocculant solution generated in the flocculant solution tanks 4A and 4B to the sludge to be treated in the sludge supply pipe 2 is provided in each of the flocculant solution tanks 4A and 4B. The flocculant solution tanks 4A and 4B are connected to the downstream side of the sludge supply pump 3 of the sludge supply pipe 2. Open / close control valves 15 and 16 are provided in the branch pipe portions 5A and 5B, respectively. Further, a solution pressure pump 17 is provided on the downstream side of the junction portion of the branch pipe portions 5A and 5B in the first flocculant solution supply pipe 5, and the solution pressure feed pump 17 allows the flocculant solution tanks 4A and 4B to be disposed. one of the first coagulant solution are supplied to the treated sludge sludge feed pipe 2.

第2凝集剤供給工程の凝集剤溶液タンク6は、第1凝集剤供給工程の凝集剤溶液槽4A,4Bよりも小容量のタンクが適用され、第1凝集剤溶液とは種類や特性が異なり、被処理汚泥の性状が通常時に比べて急激に変化した場合などの非常時に適している凝集剤(以下、第2凝集剤という。)の溶液(以下、第2凝集剤溶液という。)を生成するものである。通常時の凝集剤溶液タンク6は内部が空あるいは溶解水のみの状態に維持されるようになっており、その凝集剤溶液タンク6の上部には、第1凝集剤供給工程の凝集剤供給機10A,10Bと同様に凝集剤投入口181を有するホッパー状容器180と供給口開閉器182とからなる凝集剤供給機18が配設されている。この凝集剤供給機18は、粒状等の第2凝集剤を貯蔵し、前記非常時にのみ第2凝集剤を凝集剤溶液タンク6内に供給するようになっている。また、凝集剤溶液タンク6には、第2凝集剤を溶解する溶解水が前記非常時に溶解水供給管19から制御弁20を介して供給されるようになっており、その第2凝集剤と溶解水を撹拌混合する撹拌機21が設けられている。   The flocculant solution tank 6 in the second flocculant supply step is a tank having a smaller capacity than the flocculant solution tanks 4A and 4B in the first flocculant supply step, and is different in type and characteristics from the first flocculant solution. A solution (hereinafter referred to as a second flocculant solution) of a flocculant (hereinafter referred to as a second flocculant solution) suitable for an emergency such as a case where the property of the treated sludge has changed abruptly compared to the normal time is generated. To do. The normal flocculant solution tank 6 is maintained in an empty state or only with dissolved water, and the flocculant supply tank in the first flocculant supply step is disposed above the flocculant solution tank 6. Similar to 10A and 10B, a flocculant supply machine 18 including a hopper-like container 180 having a flocculant inlet 181 and a supply port switch 182 is disposed. The flocculant supply machine 18 stores the second flocculant such as particles and supplies the second flocculant into the flocculant solution tank 6 only in the emergency. The flocculant solution tank 6 is supplied with dissolved water for dissolving the second flocculant from the dissolved water supply pipe 19 via the control valve 20 in the emergency, and the second flocculant and A stirrer 21 for stirring and mixing the dissolved water is provided.

ここで、前記第1凝集剤としては、例えば、無機凝集剤および高分子凝集剤の少なくとも一方の凝集剤を適用し、前記第2凝集剤は、第1凝集剤では凝集作用を発揮しにくい被処理汚泥の性状が急激に変化した場合において高い凝集性能を発揮する高分子凝集剤を適用する。     Here, as the first flocculant, for example, at least one flocculant of an inorganic flocculant and a polymer flocculant is applied, and the second flocculant is a coating that hardly exhibits a flocculant action with the first flocculant. properties of the treated sludge to apply polymeric flocculants to exhibit high cohesive performance in case of changes abruptly.

第2凝集剤供給工程の凝集剤溶液タンク6で生成された第2凝集剤溶液は、凝集剤溶液タンク6と凝集剤溶解機8とを接続する凝集剤溶液移送管7に設けられた圧送ポンプ22によって、凝集剤溶解機8に圧送するようになっている。ここで、第2凝集剤供給工程の凝集剤溶液タンク6は、第1凝集剤供給工程の凝集剤溶液槽4A,4Bとは異なり、容量が小さく、タンク内に供給される第2凝集剤と溶解水とを比較的短時間だけ撹拌機21で撹拌混合し、圧送ポンプ22の圧送力で凝集剤溶解機8に送られるようになっている。このため、粒状等の第2凝集剤は、凝集剤溶液タンク6で全量は溶解しきれず、未溶解粒が残存した状態のまま、凝集剤溶解機8に送られることになる。なお、圧送ポンプ22には、渦巻ポンプに代表される遠心型ポンプ、一軸ねじポンプに代表される容積型ポンプ等、凝集剤溶液を圧送可能であればどのようなポンプでも適用可能であるが、この凝集剤溶液には未溶解粒が相当量含まれていることがあるので、容積型ポンプの適用が望ましい。   The second flocculant solution generated in the flocculant solution tank 6 in the second flocculant supply step is a pump that is provided in the flocculant solution transfer pipe 7 that connects the flocculant solution tank 6 and the flocculant dissolver 8. By 22, it is pumped to the flocculant dissolver 8. Here, unlike the flocculant solution tanks 4A and 4B in the first flocculant supply step, the flocculant solution tank 6 in the second flocculant supply step has a small capacity and the second flocculant supplied into the tank. The dissolved water is stirred and mixed by a stirrer 21 for a relatively short time, and is sent to the flocculant dissolver 8 by the pumping force of the pump 22. For this reason, the second coagulant such as particles cannot be completely dissolved in the coagulant solution tank 6 and is sent to the coagulant dissolver 8 with the undissolved particles remaining. The pumping pump 22 may be any pump that can pump the coagulant solution, such as a centrifugal pump typified by a vortex pump and a positive displacement pump typified by a single screw pump. because this coagulant solution may contain undissolved grains considerable amount, the application of positive displacement pump is desirable.

凝集剤溶解機8は、図2および図3に示すように、円筒形の筒状容器80と、該筒状容器80内に配設されて第2凝集剤溶液をろ過する円筒スクリーン85と、該円筒スクリーン85の内面に付着する凝集剤の未溶解粒を溶解処理する一つまたは二つ以上の押圧部材86と、該押圧部材86の両端を保持する保持部材87A,87Bと、該保持部材87A,87Bを介して前記押圧部材86を前記円筒スクリーン85の内面に沿って移動させる駆動機88とを備えた構造となっている。   As shown in FIGS. 2 and 3, the flocculant dissolver 8 includes a cylindrical tubular container 80, a cylindrical screen 85 that is disposed in the tubular container 80 and filters the second flocculant solution, One or two or more pressing members 86 for dissolving undissolved particles of the flocculant adhering to the inner surface of the cylindrical screen 85, holding members 87A and 87B for holding both ends of the pressing member 86, and the holding members It has a structure including a drive unit 88 that moves the pressing member 86 along the inner surface of the cylindrical screen 85 through 87A and 87B.

さらに詳述すると、筒状容器80は両端にフランジ部80A,80Bを有しており、これらのフランジ部80A,80Bにシール部材(図示せず)を介してフランジ蓋81A,81Bをボルト・ナット82A,82Bで固着している。そして、一方のフランジ蓋81Aに設けられた凝集剤溶液流入口81Cに前記凝集剤溶液移送管7の出口が接続されている。また、筒状容器80の内周面には、スクリーン保持部材を兼ねた円環状の左右一対の仕切部材83A,83Bが設けられている。これらの仕切部材83A,83Bに前記円筒スクリーン85の両端が支持されている。筒状容器80の内部は、仕切部材83A,83Bと円筒スクリーン85によって、一次室84Aと二次室84Bとに区分形成されている。   More specifically, the cylindrical container 80 has flange portions 80A and 80B at both ends, and flange lids 81A and 81B are bolts and nuts to the flange portions 80A and 80B via seal members (not shown). It is fixed by 82A and 82B. The outlet of the flocculant solution transfer pipe 7 is connected to a flocculant solution inlet 81C provided on one flange lid 81A. Further, on the inner peripheral surface of the cylindrical container 80, a pair of left and right annular partition members 83A and 83B that also serve as a screen holding member are provided. Both ends of the cylindrical screen 85 are supported by the partition members 83A and 83B. The inside of the cylindrical container 80 is divided into a primary chamber 84A and a secondary chamber 84B by partition members 83A and 83B and a cylindrical screen 85.

そして、圧送ポンプ22の圧送力によって、前記凝集剤溶液流入口81Cから一次室84Aに流入した第2凝集剤溶液を円筒スクリーン85でろ過して前記二次室84Bに流入させた後、前記筒状容器80に設けられた凝集剤溶液流出口80Cから第2の凝集剤溶液供給管9に流出させて第1の凝集剤溶液供給管5を流れる第1凝集剤溶液と合流させるようになっている。したがって、凝集剤溶解機8の凝集剤溶液流出口80Cは第2の凝集剤溶液供給管9によって第1の凝集剤溶液供給管5に溶液圧送ポンプ17の下流側で接続されている。   The second flocculant solution that has flowed into the primary chamber 84A from the flocculant solution inlet 81C is filtered through the cylindrical screen 85 by the pressure feed force of the pressure feed pump 22 and then flowed into the secondary chamber 84B. From the flocculant solution outlet 80C provided in the cylindrical container 80 to the second flocculant solution supply pipe 9 to be merged with the first flocculant solution flowing through the first flocculant solution supply pipe 5. Yes. Accordingly, the flocculant solution outlet 80 </ b> C of the flocculant dissolver 8 is connected to the first flocculant solution supply pipe 5 on the downstream side of the solution pump 17 by the second flocculant solution supply pipe 9.

駆動機88は、凝集剤溶液流入口81Cを有するフランジ蓋81Aと反対側のフランジ蓋81Bの外側に配設され、駆動機88の駆動軸88Aは円筒スクリーン85の中心部に延びて先端部が前記フランジ蓋81Aにベアリング89を介して支持されている。前記駆動軸88Aには、該駆動軸88Aと一体回転する左右一対の保持部材87A,87Bが設けられ、該保持部材87A,87B間に跨って前記駆動軸88Aに平行する一つまたは二つ以上(図2では4個)の押圧部材86が軸支されている。これらの押圧部材86は、前記駆動軸88Aの回転により前記円筒スクリーン85の内周面に沿って周回し、該円筒スクリーン85の内面に付着した第2凝集剤溶液中の未溶解粒を円筒スクリーン85の内面との間で押圧して溶解処理するようになっている。   The driving device 88 is disposed outside the flange lid 81B opposite to the flange lid 81A having the flocculant solution inlet 81C, and the driving shaft 88A of the driving device 88 extends to the center of the cylindrical screen 85 and has a tip portion. The flange lid 81A is supported via a bearing 89. The drive shaft 88A is provided with a pair of left and right holding members 87A and 87B that rotate integrally with the drive shaft 88A, and one or more parallel to the drive shaft 88A across the holding members 87A and 87B. (Four pieces in FIG. 2) are pivotally supported. These pressing members 86 circulate along the inner peripheral surface of the cylindrical screen 85 by the rotation of the drive shaft 88A, and undissolved particles in the second flocculant solution adhering to the inner surface of the cylindrical screen 85 are cylindrical screen. It melt | dissolves by pressing between 85 inner surfaces.

押圧部材86は、保持部材87A,87Bによって両端が支持される軸部861とその軸部861の外周面を覆い、未溶解粒を直接押圧する接触部862とで構成され、軸部861は、保持部材87A,87Bとバネ等の付勢部材で円筒スクリーン85側に付勢されるように支持されている。保持部材87A,87Bと押圧部材86との構成であるが、押圧部材86が円筒スクリーン85の内面を接触状態で移動するように構成してもよいが、この場合、押圧部材86等の磨耗が早まる恐れがある。第2凝集剤溶液が円筒スクリーン85でスクリーンろ過される際に未溶解粒が堆積していくことで円筒スクリーン85内面に薄膜が形成されてくるので、押圧部材86がその薄膜を押圧可能な程度に円筒スクリーン85に非接触状態で移動するように構成すると、磨耗の問題も解消できて望ましい。駆動機88は、電動機等の動力源の回転数を減速させる減速機88Bが組み込まれており、この減速機88Bを介して駆動軸88Aに伝達されるようになっている。駆動機88の動力源が電動機の場合は、その回転数をインバータで制御することが望ましい。   The pressing member 86 includes a shaft portion 861 supported at both ends by the holding members 87A and 87B and a contact portion 862 that covers the outer peripheral surface of the shaft portion 861 and directly presses undissolved particles. The holding members 87A and 87B and a biasing member such as a spring are supported so as to be biased toward the cylindrical screen 85 side. Although the holding members 87A and 87B and the pressing member 86 are configured, the pressing member 86 may be configured to move in contact with the inner surface of the cylindrical screen 85. In this case, however, the pressing member 86 and the like are worn away. There is a risk of getting ahead. Since a thin film is formed on the inner surface of the cylindrical screen 85 by depositing undissolved particles when the second flocculant solution is screen filtered by the cylindrical screen 85, the pressing member 86 can press the thin film. Further, it is desirable that the cylindrical screen 85 be moved in a non-contact state because the problem of wear can be solved. The drive unit 88 incorporates a speed reducer 88B that decelerates the rotational speed of a power source such as an electric motor, and is transmitted to the drive shaft 88A via the speed reducer 88B. When the power source of the drive machine 88 is an electric motor, it is desirable to control the rotation speed with an inverter.

以上において、第2凝集剤供給工程の凝集剤供給機18の供給口開閉器182、溶解水供給管19の制御弁20、撹拌機21、圧送ポンプ22、駆動機88は、制御器23によって制御されるようになっている。   In the above, the supply port switch 182 of the flocculant supply machine 18 in the second flocculant supply process, the control valve 20 of the dissolved water supply pipe 19, the stirrer 21, the pressure feed pump 22, and the driving machine 88 are controlled by the controller 23. It has come to be.

次に、実施の形態1における汚泥脱水システムの作用を説明する。第1凝集剤供給工程の凝集剤供給機10A,10Bの供給口開閉器103A,103Bおよび溶解水供給管12A,12Bの制御弁13A,13Bを開くと、凝集剤溶液槽4A,4Bのそれぞれに、凝集剤供給機10A,10Bから第1凝集剤が供給されると共に、溶解水供給管12A,12Bから溶解水が供給され、第1凝集剤と溶解水とが撹拌機14A,14Bで十分な時間をもって撹拌混合されることによって、十分に溶解処理された第1凝集剤溶液が生成される。その第1凝集剤溶液は、第1の凝集剤溶液供給管5系統の開閉制御弁15,16のいずれか一方を開く(例えば、開閉制御弁15を開く)ことにより、溶液圧送ポンプ17で第1の凝集剤溶液供給管5を介して汚泥供給管2の被処理汚泥に圧送供給される。そして、凝集剤溶液槽4A内の第1凝集剤溶液が空になったとき、開閉制御弁15を閉じ、開閉制御弁16を開くことで、凝集剤溶液槽4Bに貯留されている第1凝集剤溶液を被処理汚泥に供給しつつ、凝集剤溶液槽4Aでは、新たに第1凝集剤溶液の生成が行われている。このようにして第1凝集剤溶液が添加された被処理汚泥は汚泥供給管2から汚泥脱水機1に供給される。これにより、第1凝集剤供給工程が遂行され、汚泥脱水機1による通常の汚泥脱水処理が行われる。なお、通常の汚泥脱水処理時に第2凝集剤供給工程の凝集剤溶液タンク6は空(あるいは溶解水のみ貯留されている)の状態となっている。   Next, the operation of the sludge dewatering system in the first embodiment will be described. When the supply port switches 103A and 103B of the coagulant supply machines 10A and 10B and the control valves 13A and 13B of the dissolved water supply pipes 12A and 12B are opened in the first coagulant supply process, the coagulant solution tanks 4A and 4B are opened. The first flocculant is supplied from the flocculant supply machines 10A and 10B, and the dissolved water is supplied from the dissolved water supply pipes 12A and 12B. The first flocculant and the dissolved water are sufficient by the stirrers 14A and 14B. By stirring and mixing with time, a first flocculant solution that has been sufficiently dissolved is produced. The first flocculant solution is opened by the solution pressure feed pump 17 by opening one of the open / close control valves 15 and 16 of the first flocculant solution supply pipe 5 system (for example, opening the open / close control valve 15). 1 is fed to the sludge to be treated in the sludge supply pipe 2 through the coagulant solution supply pipe 5. When the first flocculant solution in the flocculant solution tank 4A becomes empty, the first flocculant solution tank 4B is stored by closing the open / close control valve 15 and opening the open / close control valve 16. In the flocculant solution tank 4A, the first flocculant solution is newly generated while supplying the agent solution to the treated sludge. In this way, the treated sludge to which the first flocculant solution has been added is supplied from the sludge supply pipe 2 to the sludge dewatering machine 1. Thereby, a 1st flocculant supply process is performed and the normal sludge dehydration process by the sludge dehydrator 1 is performed. Note that the flocculant solution tank 6 in the second flocculant supply step is empty (or only dissolved water is stored) during normal sludge dewatering treatment.

通常の汚泥脱水処理時において、被処理汚泥の性状が通常時に比べて急激に変化したこと(非常時)を施設管理者等が目視等で確認した場合には、制御器23を操作し、第2凝集剤供給工程を作動させる。制御器23からの出力信号によって第2凝集剤供給工程の凝集剤供給機18の供給口開閉器182が開かれると共に溶解水供給管19の制御弁20が開弁されることにより、空の状態となっていた凝集剤溶液タンク6内に、凝集剤供給機18から凝集性能の高い粒状等の第2凝集剤(高分子凝集剤)が供給されると共に、溶解水供給管19から溶解水が供給される(凝集剤溶液タンク6内が空ではなく、溶解水のみが貯留されている状態であった場合には、貯留されている溶解水量に見合うだけの量の第2凝集剤が供給された後に溶解水供給管19からの溶解水の供給を開始する。なお、このときの第2凝集剤と溶解水の供給量の比率で溶解処理後の凝集剤溶液の濃度が変わる。凝集剤溶液の濃度の調整方法であるが、溶解水供給管19に定流量弁や流量制御弁を設けて凝集剤溶液タンク6への溶解水の供給流量を一定になるように調整し、第2凝集剤の所定時間当たりの凝集剤溶液タンク6への供給量を、供給口開閉器182を制御して変化させることで、凝集剤溶液タンク6で生成される凝集剤溶液の濃度を自在に調整することができる。しかし、この方法に限定されるわけではなく、凝集剤溶液の濃度の調整が可能であれば、どのような方法でも適用可能である。)。凝集剤溶液タンク6内に供給された第2凝集剤と溶解水は、制御器23からの出力信号で起動している撹拌機21で短時間だけ撹拌混合される。これにより、凝集剤溶液タンク6内で生成された未溶解粒が残存する第2凝集剤溶液は、圧送ポンプ22により凝集剤溶液移送管7を流れて凝集剤溶解機8の筒状容器80内の一次室84Aに流入される。一次室84A内に流入した第2凝集剤溶液は円筒スクリーン85を通過するが、該通過時に第2凝集剤溶液中の未溶解粒が円筒スクリーン85の内面に付着・捕捉される。   When a facility manager or the like visually confirms that the properties of the treated sludge have changed abruptly compared to normal (emergency) during normal sludge dewatering treatment, the controller 23 is operated, 2. Activate the flocculant supply process. When the supply port switch 182 of the flocculant supply machine 18 in the second flocculant supply step is opened and the control valve 20 of the dissolved water supply pipe 19 is opened by the output signal from the controller 23, the empty state is obtained. In the flocculant solution tank 6, the second flocculant (polymer flocculant) having a high flocculation performance is supplied from the flocculant supply machine 18 and dissolved water is supplied from the dissolved water supply pipe 19. (If the inside of the flocculant solution tank 6 is not empty and only dissolved water is stored, the second flocculant is supplied in an amount corresponding to the amount of dissolved water stored. After that, supply of dissolved water from the dissolved water supply pipe 19 is started, and the concentration of the flocculant solution after the dissolution treatment varies depending on the ratio of the second flocculant and the amount of dissolved water supplied at this time. The concentration of the dissolved water is fixed to the dissolved water supply pipe 19. An amount valve and a flow rate control valve are provided to adjust the supply flow rate of the dissolved water to the flocculant solution tank 6 so that the supply amount of the second flocculant to the flocculant solution tank 6 per predetermined time is By controlling and changing the supply port switch 182, the concentration of the flocculant solution produced in the flocculant solution tank 6 can be freely adjusted, but the present invention is not limited to this method, and the flocculant solution is not limited to this method. Any method can be applied as long as the concentration of the agent solution can be adjusted.) The second flocculant and dissolved water supplied into the flocculant solution tank 6 are stirred and mixed for a short time by the stirrer 21 activated by the output signal from the controller 23. As a result, the second flocculant solution in which the undissolved particles generated in the flocculant solution tank 6 remain flows through the flocculant solution transfer pipe 7 by the pressure feed pump 22 and enters the cylindrical container 80 of the flocculant dissolver 8. Into the primary chamber 84A. The second flocculant solution that has flowed into the primary chamber 84 </ b> A passes through the cylindrical screen 85, and undissolved particles in the second flocculant solution are attached to and captured by the inner surface of the cylindrical screen 85 during the passage.

円筒スクリーン85の内面に付着した未溶解粒は、円筒スクリーン85の内周面に沿って周回する方向に駆動機88で駆動されている押圧部材86によって、円筒スクリーン85の内面との間で押圧されて、未溶解粒表層の膨潤部分が押し潰されることにより高分子鎖が分離し、分離した高分子鎖が第2凝集剤溶液と共に円筒スクリーン85を通過して二次室84Bに流入する。   Undissolved particles adhering to the inner surface of the cylindrical screen 85 are pressed between the inner surface of the cylindrical screen 85 by a pressing member 86 driven by a driving device 88 in a direction that circulates along the inner peripheral surface of the cylindrical screen 85. Then, the swollen portion of the undissolved particle surface layer is crushed to separate the polymer chains, and the separated polymer chains pass through the cylindrical screen 85 together with the second flocculant solution and flow into the secondary chamber 84B.

二次室84Bに流入した第2凝集剤溶液は、圧送ポンプ22が起動している限り、筒状容器80の凝集剤溶液流出口80Cから定流量で第2の凝集剤溶液供給管9に流出する。その凝集剤溶液供給管9から第1の凝集剤溶液供給管5内の第1凝集剤溶液に第2凝集剤溶液が供給される。このようにして、第1の凝集剤溶液供給管5では第1凝集剤溶液と第1凝集剤溶液とは種類や特性の異なる非常時用の第2凝集剤溶液とが混合され、その混合凝集剤溶液が第1の凝集剤溶液供給管5から汚泥供給管2の被処理汚泥に注入される。このとき、第1凝集剤溶液と第2凝集剤溶液が混合されるが、単なる混合ではなく、適用する第1凝集剤と第2凝集剤の種類によって様々な特性の混合凝集剤溶液が生成される。例えば、混合することで化学的反応が起こり、凝集剤の組成が変化し、汚泥懸濁物質の負極性帯電の中和作用が強化される場合、汚泥懸濁物質への高分子糸の吸着性能が強化される場合、高分子糸同士の架橋結合が強化される場合等、生成された凝集剤溶液は凝集性能が大幅に向上する。これにより、通常の第1凝集剤溶液を供給しただけでは、汚泥懸濁物質粒子の凝集がうまく促進されない非常時の被処理汚泥であっても、この新たに生成された凝集剤溶液を供給することで、強力な凝集作用によって被処理汚泥中の汚泥懸濁物質粒子を凝集させて汚泥脱水機1に供給することができるので、効率よく脱水処理され、脱水後の脱水汚泥の含水率および分離液の性状を所定範囲で維持することができる。   The second flocculant solution that has flowed into the secondary chamber 84B flows out from the flocculant solution outlet 80C of the cylindrical container 80 to the second flocculant solution supply pipe 9 at a constant flow rate as long as the pump 22 is activated. To do. The second flocculant solution is supplied from the flocculant solution supply pipe 9 to the first flocculant solution in the first flocculant solution supply pipe 5. In this way, in the first flocculant solution supply pipe 5, the first flocculant solution and the second flocculant solution for emergencies having different types and characteristics are mixed, and the mixed flocculence is obtained. solution is injected from the first coagulant solution supply tube 5 to be treated sludge sludge feed pipe 2. At this time, the first flocculant solution and the second flocculant solution are mixed, but it is not simple mixing, and mixed flocculant solutions having various characteristics are generated depending on the types of the first flocculant and the second flocculant to be applied. The For example, when a chemical reaction occurs by mixing, the composition of the flocculant changes, and the neutralization action of the negative charge of the sludge suspended material is strengthened, the adsorption performance of the polymer yarn to the sludge suspended material The flocculating performance of the produced flocculant solution is greatly improved, for example, when the cross-linking bond between the polymer yarns is reinforced. Thereby, even if it is the to-be-processed sludge at the time of an emergency in which aggregation of sludge suspended solid particle is not accelerated | stimulated well only by supplying the normal 1st flocculant solution, this newly produced flocculant solution is supplied. Thus, the sludge suspended solid particles in the treated sludge can be agglomerated and supplied to the sludge dewatering machine 1 by a strong agglomeration action, so that the water content and separation of the dewatered sludge after dewatering can be efficiently performed. The properties of the liquid can be maintained within a predetermined range.

なお、第2凝集剤供給工程の作動方法についてであるが、汚泥脱水機1で脱水処理された後の分離液の濁質等の水質を測定する水質測定器(図示せず。)を設置し、水質測定器と制御器23とを信号線で接続することで、分離液の性状が所定値以上に急激に変化したときに、第2凝集剤供給工程を作動させる自動制御が行えるようにしてもよい。以上のような実施の形態1における汚泥脱水システムは、設置する現場環境によっては、例えば、以下のような使用の仕方をすることも可能である。   In addition, although it is about the operation | movement method of a 2nd flocculant supply process, the water quality measuring device (not shown) which measures water quality, such as a turbidity of the separated liquid after spin-drying | dehydration processing by the sludge dehydrator 1, is installed. By connecting the water quality measuring instrument and the controller 23 with a signal line, automatic control for operating the second coagulant supply process can be performed when the properties of the separation liquid change abruptly to a predetermined value or more. Also good. The sludge dewatering system in the first embodiment as described above can be used, for example, as follows depending on the site environment where it is installed.

汚水を生物処理によって浄化処理する汚水処理システムでは、各処理段階でそれぞれ性状の異なる汚泥(初沈汚泥、余剰汚泥、消化汚泥等)が発生する。これらの汚泥の種類毎に専用の汚泥脱水システムを設置してそれぞれ脱水処理することが本来望ましいが、設置スペース等の問題から現実的には難しい。1つの汚泥脱水システムで複数種類の汚泥をタイムシェアリングして被処理汚泥として汚泥脱水機1に供給し、脱水処理する場合が多い。例えば、図4では、汚泥脱水システムで余剰汚泥と消化汚泥の2種類の汚泥を被処理汚泥としてタイムシェアリングして、汚泥脱水機1に供給している。図4では、18hourから6hoursまでは消化汚泥を、9hourから15hourまでは余剰汚泥を、それぞれ被処理汚泥として汚泥脱水機1に供給している。そして、汚泥供給管長等の問題から、汚泥脱水機1へ供給する被処理汚泥の種類を瞬時に切り替えることは困難であり、この図4の場合では、6hourから9hourまでと、15hourから18hourまでの間は、余剰汚泥と消化汚泥が混ざり合った混合汚泥が被処理汚泥として汚泥脱水機1に供給されることになる。例えば、余剰汚泥を脱水処理時には、通常時使用する第1凝集剤溶液を余剰汚泥に供給し、消化汚泥を脱水処理時には、さらに第2凝集剤溶液も供給して第1凝集剤溶液と混合させて凝集性能を向上させた混合凝集剤溶液を消化汚泥に供給するようにして脱水汚泥の含水率を所定値以上に維持できる。なお、混合汚泥に対しては、混合汚泥の性状に応じて、第1凝集剤溶液のみの供給か、第2凝集剤溶液との混合凝集剤溶液の供給かを選択し、混合比率に関しても、実際に調整しながら選定していくとよい。   In a sewage treatment system that purifies sewage by biological treatment, sludges having different properties (primary sludge, surplus sludge, digested sludge, etc.) are generated at each treatment stage. Although it is inherently desirable to install a dedicated sludge dewatering system for each type of sludge and perform dewatering treatment, it is actually difficult due to problems such as installation space. In many cases, a plurality of types of sludge are time-shared by one sludge dewatering system, supplied to the sludge dewatering machine 1 as a treated sludge, and dehydrated. For example, in FIG. 4, two types of sludge, surplus sludge and digested sludge, are time-shared as sludge to be treated and supplied to the sludge dewatering machine 1 in the sludge dewatering system. In FIG. 4, digested sludge is supplied to the sludge dewatering machine 1 as treated sludge from 18 hours to 6 hours and surplus sludge from 9 hours to 15 hours, respectively. It is difficult to instantaneously switch the type of sludge to be treated to be supplied to the sludge dewatering machine 1 due to problems such as the sludge supply pipe length. In the case of FIG. 4, from 6 hours to 9 hours and from 15 hours to 18 hours. In the meantime, mixed sludge in which excess sludge and digested sludge are mixed is supplied to the sludge dewatering machine 1 as treated sludge. For example, when the excess sludge is dehydrated, the first flocculant solution that is normally used is supplied to the excess sludge, and when the digested sludge is dehydrated, the second flocculant solution is also supplied and mixed with the first flocculant solution. Thus, the water content of the dewatered sludge can be maintained at a predetermined value or more by supplying the mixed flocculant solution with improved coagulation performance to the digested sludge. For mixed sludge, depending on the nature of the mixed sludge, select whether to supply only the first flocculant solution or the mixed flocculant solution with the second flocculant solution, and also regarding the mixing ratio, It is good to select while actually adjusting.

一方、設置スペースの問題や効率上の問題から、汚水処理システムが設置されている施設内には汚泥脱水システムを設置せず、複数個所の汚水処理システムから発生する汚泥を1箇所に集約し、それを被処理汚泥として1つの汚泥脱水システムで一括して脱水処理する形態がある。この場合においては、異なる原水を浄化処理した汚水処理システムから発生する汚泥であるため、各汚水処理システムでその汚泥の性状は異なる場合が多い。汚泥脱水システムで処理する被処理汚泥の性状は変化しやすく、凝集しやすい汚泥と凝集しにくい汚泥との差が大きい。通常の被処理汚泥の性状の場合には、第1凝集剤供給工程で第1凝集剤溶液のみを被処理汚泥に供給し、汚泥脱水機1で脱水処理を行うようにする。そして、被処理汚泥の性状が急激に変化した場合には、第2凝集剤溶液を供給し、第1凝集剤溶液と混合した混合凝集剤を被処理汚泥に供給して汚泥脱水機1で脱水処理を行うようにするとよい。   On the other hand, due to problems of installation space and efficiency, the sludge dewatering system is not installed in the facility where the sewage treatment system is installed, and sludge generated from multiple sewage treatment systems is consolidated in one place. There exists a form which carries out the dehydration process collectively with one sludge dehydration system as the to-be-processed sludge. In this case, since the sludge is generated from a sewage treatment system that purifies different raw water, the properties of the sludge are often different in each sewage treatment system. The properties of the sludge to be treated by the sludge dewatering system are likely to change, and there is a large difference between sludge that tends to aggregate and sludge that does not easily aggregate. In the case of the properties of normal sludge to be treated, only the first flocculant solution is supplied to the sludge to be treated in the first flocculant supply step, and the dewatering process is performed by the sludge dehydrator 1. And when the property of the to-be-processed sludge changes rapidly, the 2nd flocculant solution is supplied, the mixed flocculant mixed with the 1st flocculant solution is supplied to the to-be-processed sludge, and it dehydrates with the sludge dehydrator 1. It is advisable to perform processing.

なお、この実施の形態1の汚泥脱水システムでは、汚泥脱水機1に通常の遠心脱水機を適用しているが、これに代えて、機内注入型の遠心脱水機を適用してもよい。実施の形態1で適用している通常の汚泥供給管2内で被処理汚泥に凝集剤溶液を供給するタイプの遠心脱水機の場合、汚泥供給管2内を移送中に凝集剤溶液の凝集作用によって汚泥フロックが形成されている被処理汚泥が高速回転している遠心脱水機の外胴内に供給されたとき、高速回転の加速力で撹拌されて汚泥フロックが崩壊してしまい、このままでは脱水性能が低下してしまう。通常、この対策として、外胴内で一度崩壊した汚泥フロックを再形成させるため、凝集剤溶液の被処理汚泥への供給量を予め必要量以上に過剰供給にするようにしている。これによって、汚泥供給管2内で被処理汚泥中に汚泥フロックが形成された後でも凝集作用を未だ発揮していない凝集剤が残存するようにしておくことができ、被処理汚泥が外胴内に供給されて汚泥フロックが崩壊したときに、残存する凝集剤が凝集作用を発揮して再度汚泥フロックを形成させることで、遠心脱水機での脱水性能を高い水準に維持可能となっている。しかし、この方法は、凝集剤溶液を過剰に供給する必要があるため、ランニングコストが嵩んでしまうという問題を抱えていた。   In the sludge dewatering system of the first embodiment, a normal centrifugal dewatering machine is applied to the sludge dewatering machine 1, but an in-machine injection type centrifugal dewatering machine may be applied instead. In the case of a centrifugal dehydrator of the type that supplies the coagulant solution to the sludge to be treated in the normal sludge supply pipe 2 applied in the first embodiment, the coagulant action of the coagulant solution during transfer through the sludge supply pipe 2 When the treated sludge in which sludge flocs are formed is fed into the outer cylinder of a centrifugal dehydrator that rotates at high speed, the sludge flocs are destroyed by stirring with the acceleration force of high-speed rotation. Performance will be degraded. Usually, as a countermeasure, in order to re-form sludge flocs once collapsed in the outer cylinder, the supply amount of the flocculant solution to the treated sludge is previously excessively supplied more than necessary. As a result, it is possible to leave a flocculant that has not yet exhibited the coagulation action even after sludge flocs are formed in the sludge to be treated in the sludge supply pipe 2, and the treated sludge remains in the outer cylinder. When the sludge floc is supplied and the sludge floc is collapsed, the remaining flocculant exerts the aggregating action to form the sludge floc again, so that the dewatering performance in the centrifugal dehydrator can be maintained at a high level. However, this method has a problem that the running cost increases because it is necessary to supply the flocculant solution excessively.

このような問題点を解消するために開発されたのが機内注入型の遠心脱水機である。この遠心脱水機は、一部が外胴内に挿入され、汚泥供給管2から被処理汚泥を受け入れて外胴内に供給する汚泥流入管部を内管と外管とからなる二重管構造としている。また、外胴に挿入されていない部分の外管の外周面に第1の凝集剤溶液供給管5が接続する凝集剤流入口が設けられ、内管には被処理汚泥が流れ、内管と外管との間の空間には凝集剤溶液が流れるようになっている。これにより、被処理汚泥と凝集剤溶液は、外胴内に供給された段階で接触することになり、外胴の加速力で素早く混合され、そこで汚泥フロックが形成されるようになっているので、凝集剤溶液を過剰供給する必要がなく、ランニングコストが大幅に低減できる効果を機内注入型の遠心脱水機は有している。   Was developed in order to solve such a problem is a flight injection type centrifugal dehydrator of. This centrifugal dehydrator has a double-pipe structure in which a sludge inflow pipe part is inserted into the outer cylinder and receives the treated sludge from the sludge supply pipe 2 and supplies it into the outer cylinder. It is said. In addition, a flocculant inflow port to which the first flocculant solution supply pipe 5 is connected is provided on the outer peripheral surface of the outer pipe at a portion not inserted into the outer cylinder, and the sludge to be treated flows into the inner pipe, A flocculant solution flows in the space between the outer tube. As a result, the sludge to be treated and the flocculant solution come into contact with each other when supplied to the outer cylinder, and are quickly mixed by the acceleration force of the outer cylinder, so that sludge flocs are formed there. The in-machine injection type centrifugal dehydrator has the effect that the running cost can be significantly reduced without excessive supply of the flocculant solution.

以上のように、実施の形態1における汚泥脱水システムによれば、汚泥供給管2によって被処理汚泥を汚泥脱水機1に供給し、脱水汚泥と分離液に分離する汚泥脱水工程と、凝集剤溶液槽4A,4Bで第1凝集剤と溶解水を撹拌機14A,14Bにより撹拌混合して第1凝集剤溶液を生成し、第1の凝集剤溶液供給管5で第1凝集剤溶液を被処理汚泥に供給する第1凝集剤供給工程と、凝集剤溶液タンク6で第2凝集剤と溶解水を撹拌機21により撹拌混合して第2凝集剤溶液を生成し、その第2凝集剤溶液を凝集剤溶解機8でスクリーンろ過するとともに第2凝集剤溶液中の凝集剤を溶解処理し、第2の凝集剤溶液供給管9で第2凝集剤溶液を被処理汚泥に供給する第2凝集剤供給工程とからなることにより、以下に示す効果がある。
(1)通常時使用する適用適応範囲の広い凝集剤溶液を第1凝集剤供給工程によって被処理汚泥に供給し、被処理汚泥の性状が急激に変化した際に使用する第1凝集剤供給工程の凝集剤とは種類や特性の異なる非常時用の凝集剤溶液を第2凝集剤供給工程によって被処理汚泥に供給することが可能となる。これにより、汎用性の高い凝集剤は、大容量の凝集剤溶液槽4A,4Bで溶解水とともに時間を掛けて撹拌混合して粒状等の未溶解粒を溶解させ、凝集剤溶液槽4A,4Bに貯留し、通常時、被処理汚泥に必要量供給することができる。また、非常時用の第2凝集剤は、通常時は、溶解水に溶解させずに貯蔵しておき、非常時に、その第2凝集剤を溶解水とともに小容量の凝集剤溶液タンク6で短時間撹拌混合して未溶解を含む凝集剤溶液を生成し、さらに凝集剤溶解機8でその凝集剤溶液をスクリーンろ過して凝集剤の未溶解粒をスクリーン85で捕捉し、その未溶解粒を溶解処理して凝集剤溶液に溶解させることで、必要なときに短時間で十分溶解された凝集剤溶液を生成して被処理汚泥に供給することができる。通常時には、適応範囲の広い凝集剤溶液をその被処理汚泥の性状に応じて必要量供給して、被処理汚泥中の懸濁粒子の汚泥フロック形成を促すことができ、被処理汚泥の性状が急激に変化した場合には、短時間で非常時用の凝集剤溶液を生成して被処理汚泥に供給して汚泥フロック形成を促すことができる。これにより、被処理汚泥を汚泥脱水機で脱水後の脱水汚泥の含水率および分離液の性状を所定範囲で維持することができる効果がある。
(2)非常時用の凝集剤を従来の撹拌機を備えた大容量の凝集剤溶液槽で予め、時間をかけて溶解水に溶解させて凝集剤溶液を生成して貯留しておく必要がないため、非常時用の凝集剤溶液の凝集性能が時間経過とともに劣化していき、凝集剤溶液として使用不適になるまでに被処理汚泥の性状があまり変化せず、非常時用の凝集剤溶液を使用し切れずに廃棄してしまう無駄を回避することができる効果がある。
(3)通常時、非常時用の凝集剤は、溶解水で溶解させずに貯蔵することができ、必要なときに短時間でその凝集剤を溶解水で未溶解粒が十分溶解された凝集剤溶液を生成することができることから、非常時用の凝集剤を凝集性能が高い状態のまま長時間保存することができる効果がある。
(4)初沈汚泥、余剰汚泥、消化汚泥等、種類が異なる汚泥を被処理汚泥として同じ汚泥脱水システムで脱水処理する場合や、異なる原水を浄化する汚水処理システムから発生する被処理汚泥を1箇所の汚泥脱水システムで一括処理する場合においても、その処理する被処理汚泥の種類や性状に応じて、第1凝集剤供給工程で適用範囲の広い凝集剤溶液を、第2凝集剤供給工程で第1凝集剤供給工程の凝集剤とは種類や特性の異なる非常時用の凝集剤溶液を、それぞれ供給することによって、どのような種類、性状の被処理汚泥を脱水処理する場合でも、脱水汚泥の含水率および分離液の性状を所定範囲に維持することができる効果があり、しかも凝集剤に係るランニングコストを極力抑制することができる効果がある。
(5)第1凝集剤供給工程の凝集剤溶液供給管5と第2凝集剤供給工程の凝集剤溶液供給管9とを合流接続したことにより、2種類の凝集剤溶液を混ぜ合わせて様々な特性を有する凝集剤溶液を生成することができる。例えば、混合することで化学的反応が起こり、凝集剤の組成が変化し、汚泥懸濁物質の負極性帯電の中和作用が強化される場合、汚泥懸濁物質への高分子糸の吸着性能が強化される場合、高分子糸同士の架橋結合が強化される場合等、生成された凝集剤溶液は、単に2種類の凝集剤を別々に被処理汚泥に供給する場合に比べ、凝集性能が飛躍的に向上する効果がある。また、様々な性状の被処理汚泥に対して、最適な特性の凝集剤溶液を供給することができる効果がある。
(6)第1凝集剤供給工程に適応範囲の広い高分子凝集剤を適用し、第2凝集剤供給工程に第1凝集剤供給工程の凝集剤とは種類や特性の異なる非常時用の高分子凝集剤を適用し、通常時は、第1凝集剤供給工程からの適用範囲の広い高分子凝集剤溶液を被処理汚泥に適量供給して、脱水処理を行うようにすることができる。そして、被処理汚泥の性状が急激に変化したときに、第2凝集剤供給工程で非常時用の高分子凝集剤を凝集剤溶液タンク6によって溶解水と共に短時間撹拌混合し、凝集剤溶解機8で高分子凝集剤の未溶解粒を溶解処理し、非常時用の高分子凝集剤溶液を生成して適用範囲の広い高分子凝集剤溶液に混合して、被処理汚泥に供給することができる。これにより、非常時用の高分子凝集剤の高分子鎖と、適応範囲の広い高分子凝集剤の高分子鎖の混ぜ合わされた凝集剤溶液中の分布状況を均一化させてから、被処理汚泥に供給することができるため、ばらつきが無く、平均的に汚泥フロックの形成を促すことができる効果がある。
(7)第2凝集剤供給工程の凝集剤溶解機8を、筒状容器80内に円筒スクリーン85を配設し、その円筒スクリーン85内に凝集剤溶液タンク6から凝集剤溶液を導入してスクリーンろ過し、駆動機88によって保持部材87A,87Bを介して一つまたは二つ以上の押圧部材86を円筒スクリーン85内面に沿って移動させることで円筒スクリーン85内面に付着する凝集剤の未溶解粒を押圧して溶解させる構成としたことにより、凝集剤溶液タンク6で粒状等の凝集剤と溶解水を短時間で撹拌混合するだけでは、溶解し切れない凝集剤の未溶解粒を確実に溶解させることができる効果がある。特に、溶解水に容易に溶解しない高分子凝集剤を第2凝集剤供給工程の凝集剤に適用する場合に大きな効果がある。
(8)一般に、特殊な性状の被処理汚泥に対して高い凝集性能を発揮する凝集剤は高価なものが多い。この実施の形態1の汚泥脱水システムにおいて、第1凝集剤に適応範囲の広い安価であるがほどほどの凝集性能の凝集剤を適用し、第2凝集剤に高価であるが非常時の被処理汚泥に高い凝集性能を発揮する凝集剤を適用した場合においては、高価な凝集剤の使用量を極力削減しつつ、汚泥脱水機1で脱水処理される脱水汚泥の含水率や分離液の性状を所定範囲内に維持することができるので、被処理汚泥の性状変化に対応することができながらも、ランニングコストの大幅な低減も図ることができる効果がある。
As described above, according to the sludge dewatering system in the first embodiment, the sludge dewatering step of supplying the sludge to be treated to the sludge dewatering machine 1 through the sludge supply pipe 2 and separating it into the dewatered sludge and the separated liquid, and the flocculant solution The first flocculant and dissolved water are stirred and mixed by the stirrers 14A and 14B in the tanks 4A and 4B to form the first flocculant solution, and the first flocculant solution supply pipe 5 treats the first flocculant solution. The first flocculant supply step for supplying the sludge, the second flocculant and the dissolved water are stirred and mixed by the stirrer 21 in the flocculant solution tank 6 to generate a second flocculant solution, and the second flocculant solution is The second flocculant is filtered by the flocculant dissolver 8 and the flocculant in the second flocculant solution is dissolved, and the second flocculant solution is supplied to the treated sludge by the second flocculant solution supply pipe 9. By comprising the supply process, the following effects are obtained.
(1) The 1st flocculant supply process used when the flocculant solution with the wide applicable application range normally used is supplied to a to-be-processed sludge by a 1st flocculant supply process, and the property of a to-be-processed sludge changes rapidly. It is possible to supply an emergency coagulant solution having different types and characteristics from the coagulant to the sludge to be treated by the second coagulant supply process. As a result, the highly versatile flocculant is stirred and mixed with dissolved water in the large-capacity flocculant solution tanks 4A and 4B over time to dissolve undissolved particles such as granules, and the flocculant solution tanks 4A and 4B. In normal times, the required amount can be supplied to the treated sludge. Further, the second flocculant for emergency is normally stored without being dissolved in the dissolved water, and the second flocculant is stored together with the dissolved water in a small capacity flocculant solution tank 6 in an emergency. The flocculant solution containing undissolved is produced by stirring and mixing for a period of time. Further, the flocculant solution is screen filtered by the flocculant dissolver 8, and the undissolved particles of the flocculant are captured by the screen 85. By dissolving and dissolving in the flocculant solution, a flocculant solution sufficiently dissolved in a short time can be generated and supplied to the treated sludge when necessary. Normally, a necessary amount of flocculant solution with a wide range of application can be supplied according to the properties of the treated sludge to promote the formation of sludge flocs of suspended particles in the treated sludge. In the case of a sudden change, an emergency coagulant solution can be generated and supplied to the treated sludge in a short time to promote sludge floc formation. Thereby, there exists an effect which can maintain the moisture content of the dewatered sludge after dewatering a to-be-processed sludge with a sludge dehydrator, and the property of a separated liquid in a predetermined range.
(2) The coagulant for emergency needs to be preliminarily dissolved in dissolved water in a large-capacity coagulant solution tank equipped with a conventional stirrer to generate and store the coagulant solution. Therefore, the coagulant performance of the emergency coagulant solution will deteriorate over time, and the properties of the treated sludge will not change so much until it becomes unusable as a coagulant solution. There is an effect that it is possible to avoid waste that is discarded without being used up.
(3) The flocculant for normal use and emergency can be stored without dissolving with dissolved water, and when necessary, the flocculant is agglomerated with undissolved particles sufficiently dissolved in dissolved water in a short time. Since the agent solution can be generated, there is an effect that the emergency coagulant can be stored for a long time while the coagulation performance is high.
(4) When sludge of different types, such as primary sludge, surplus sludge, digested sludge, etc., is treated with the same sludge dewatering system as treated sludge, or treated sludge generated from a sewage treatment system that purifies different raw water is 1 Even in the case of collective treatment with the sludge dewatering system at the location, depending on the type and properties of the treated sludge to be treated, a flocculant solution having a wide application range in the first flocculant supply step is used in the second flocculant supply step. In the case of dewatering the sludge to be treated of any kind and property by supplying the emergency coagulant solution having different types and characteristics from the flocculant in the first flocculant supply step, the dewatered sludge The moisture content and the properties of the separation liquid can be maintained within a predetermined range, and the running cost of the flocculant can be suppressed as much as possible.
(5) Since the flocculant solution supply pipe 5 in the first flocculant supply step and the flocculant solution supply pipe 9 in the second flocculant supply step are joined and connected, the two kinds of flocculant solutions are mixed and variously mixed. A flocculant solution having properties can be produced. For example, when a chemical reaction occurs by mixing, the composition of the flocculant changes, and the neutralization action of the negative charge of the sludge suspended material is strengthened, the adsorption performance of the polymer yarn to the sludge suspended material The resulting flocculant solution has a cohesive performance as compared to the case where the two types of flocculant are separately supplied to the treated sludge, such as when the cross-linking between polymer yarns is strengthened. There is a dramatic improvement effect. Moreover, there exists an effect which can supply the flocculant solution of an optimal characteristic with respect to the to-be-processed sludge of various properties.
(6) A polymer flocculant having a wide range of application is applied to the first flocculant supply step, and the second flocculant supply step is different in type and characteristics from the flocculant in the first flocculant supply step. A molecular flocculant is applied, and in normal times, an appropriate amount of a polymer flocculant solution having a wide application range from the first flocculant supply step can be supplied to the sludge to be treated to perform dehydration. Then, when the properties of the sludge to be treated change suddenly, the polymer flocculant for emergency in the second flocculant supply step is stirred and mixed together with the dissolved water by the flocculant solution tank 6 for a short time. In Step 8, the undissolved particles of the polymer flocculant are dissolved, a polymer flocculant solution for emergencies is generated, mixed with the polymer flocculant solution having a wide range of application, and supplied to the treated sludge. it can. In this way, the distribution state in the coagulant solution in which the polymer chain of the polymer coagulant for emergency and the polymer chain of the polymer coagulant having a wide range of application is mixed is made uniform, and then the sludge to be treated is treated. Therefore, there is no variation and it is possible to promote the formation of sludge flocs on average.
(7) In the flocculant dissolving machine 8 in the second flocculant supply step, a cylindrical screen 85 is disposed in the cylindrical container 80, and the flocculant solution is introduced into the cylindrical screen 85 from the flocculant solution tank 6. The screen is filtered, and one or more pressing members 86 are moved along the inner surface of the cylindrical screen 85 via the holding members 87A and 87B by the driving device 88, so that the flocculant adhering to the inner surface of the cylindrical screen 85 is not dissolved. By adopting a structure in which the particles are pressed and dissolved, the undissolved particles of the flocculant that cannot be completely dissolved can be surely obtained by simply stirring and mixing the flocculant such as particles and the dissolved water in the flocculant solution tank 6 in a short time. There is an effect that can be dissolved. In particular, there is a great effect when a polymer flocculant that is not easily dissolved in dissolved water is applied to the flocculant in the second flocculant supply step.
(8) In general, many flocculants exhibiting high flocculation performance with respect to the treated sludge having special properties are expensive. In the sludge dewatering system according to the first embodiment, an inexpensive coagulant having a wide range of application is applied to the first coagulant, and moderate coagulation performance is applied. When a flocculant exhibiting high flocculation performance is applied, the water content of the dewatered sludge dehydrated by the sludge dewatering machine 1 and the properties of the separation liquid are specified while reducing the amount of expensive flocculant used as much as possible. Since it can be maintained within the range, there is an effect that the running cost can be significantly reduced while being able to cope with the change in the properties of the sludge to be treated.

実施の形態2.
図5は、実施の形態2における汚泥脱水システムを示すフロー図であり、図1と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態2の汚泥脱水システムは、前記実施の形態1の汚泥脱水システムとは、第2の凝集剤溶液供給管9に第1の凝集剤溶液供給管5が合流接続している点が大きく異なる。その他、汚泥脱水システムの構成や動作等に関しては、実施の形態1と概ね同様である。
Embodiment 2. FIG.
FIG. 5 is a flowchart showing the sludge dewatering system in the second embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. The sludge dewatering system according to the second embodiment is different from the sludge dewatering system according to the first embodiment in that the first flocculant solution supply pipe 5 is joined to the second flocculant solution supply pipe 9. to differ greatly. In addition, the configuration and operation of the sludge dewatering system is substantially the same as in the first embodiment.

以上のように、この実施の形態2の汚泥脱水システムによれば、実施の形態1で示した様々な効果に加えて、以下の効果がある。この汚泥脱水システムでは、通常時、第1凝集剤供給工程によって第1凝集剤溶液のみが被処理汚泥に供給され、被処理汚泥の性状が急激に変化した場合、第2凝集剤供給工程で第2凝集剤を生成し、第1凝集剤溶液と混合して生成した混合凝集剤溶液が被処理汚泥に供給されるようになっており、第1凝集剤溶液と第2凝集剤溶液の混合比率によって様々な特性の混合凝集剤溶液を生成可能となっている。この実施の形態2では、第2の凝集剤溶液供給管9に第1の凝集剤溶液供給管5が合流する配管構成となっていることから、第1凝集剤溶液と第2凝集剤溶液の両方が供給されているときは、第2凝集剤溶液側の方が流れやすくなっている。このため、混合凝集剤溶液を生成する際、第2凝集剤溶液の混合比率を高くしやすく、第2凝集剤溶液の混合比率の高い混合凝集剤溶液の方が、性状が急激に変化したときの被処理汚泥に対して有効に作用するような場合においては、この実施の形態2の構成は特に効果がある。   As described above, according to the sludge dewatering system of the second embodiment, in addition to the various effects shown in the first embodiment, there are the following effects. In this sludge dewatering system, normally, only the first flocculant solution is supplied to the treated sludge by the first flocculant supply step, and when the property of the treated sludge changes suddenly, the second flocculant supply step 2 The flocculant is produced and mixed with the first flocculant solution, so that the mixed flocculant solution is supplied to the sludge to be treated, and the mixing ratio of the first flocculant solution and the second flocculant solution This makes it possible to produce mixed flocculant solutions having various characteristics. In the second embodiment, since the first flocculant solution supply pipe 5 is joined to the second flocculant solution supply pipe 9, the first flocculant solution and the second flocculant solution are mixed. When both are supplied, the second flocculant solution side is easier to flow. For this reason, when the mixed flocculant solution is generated, it is easy to increase the mixing ratio of the second flocculant solution, and when the properties of the mixed flocculant solution having a high mixing ratio of the second flocculant solution change more rapidly. In the case of effectively acting on the treated sludge, the configuration of the second embodiment is particularly effective.

実施の形態3.
図6は、実施の形態3における汚泥脱水システムを示すフロー図であり、図1と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態3の汚泥脱水システムは、前記実施の形態1の汚泥脱水システムとは、第1凝集剤供給工程の第1凝集剤溶液を生成するための構成に、第2凝集剤供給工程と同様、凝集剤溶液タンク6B、凝集剤溶解機8B、圧送ポンプ22B、制御器23B等を適用した点が大きく異なる。その他、汚泥脱水システムの構成や動作等に関しては、実施の形態1と概ね同様である。また、第1凝集剤供給工程による第1凝集剤溶液の生成プロセスについては、第2凝集剤溶液の生成プロセスと同様である。
Embodiment 3 FIG.
FIG. 6 is a flowchart showing the sludge dewatering system according to the third embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. The sludge dewatering system according to the third embodiment is different from the sludge dewatering system according to the first embodiment in the configuration for generating the first flocculant solution in the first flocculant supply step, Similarly, the point that the flocculant solution tank 6B, the flocculant dissolver 8B, the pressure pump 22B, the controller 23B, and the like are applied is greatly different. In addition, the configuration and operation of the sludge dewatering system is substantially the same as in the first embodiment. Moreover, the production | generation process of the 1st flocculant solution by a 1st flocculant supply process is the same as the production | generation process of a 2nd flocculant solution.

以上のように、この実施の形態3の汚泥脱水システムによれば、実施の形態1で示した様々な効果に加えて、以下の効果がある。実施の形態1の第1凝集剤供給工程のように大容量の凝集剤溶解槽4A,4Bを複数台設置する構成は、設置面積が大きい。これに対し、この実施の形態3の第1凝集剤供給工程では、小容量の凝集剤溶液タンク6Bと凝集剤溶解機8Bの主要構成であるため、設置面積が小さく、汚泥脱水システムの設置に当たって面積の制約があるところにおいては大きな効果がある。また、被処理汚泥の性状が非常時の状態で長く継続し、第1凝集剤溶液の使用量が通常の場合よりも大幅に減少してしまった場合においても、実施の形態1の大容量の凝集剤溶解槽4A,4Bによる構成では、貯留されている第1凝集剤溶液の凝集性能が低下していてしまう問題が生じるが、実施の形態3の第1凝集剤供給工程の構成では、短時間で第1凝集剤溶液を生成して被処理汚泥に供給するため、第1凝集剤溶液の凝集性能が低下することがないという効果がある。   As described above, according to the sludge dewatering system of the third embodiment, in addition to the various effects shown in the first embodiment, there are the following effects. The configuration in which a plurality of large-capacity flocculant dissolution tanks 4A and 4B are installed as in the first flocculant supply process of the first embodiment has a large installation area. On the other hand, in the first coagulant supply process of the third embodiment, since it is a main configuration of the small-capacity coagulant solution tank 6B and the coagulant dissolver 8B, the installation area is small and the sludge dewatering system is installed. There is a great effect where the area is limited. Moreover, even when the property of the sludge to be treated continues for a long time in an emergency state, and the amount of the first flocculant solution used is greatly reduced as compared with the normal case, the large capacity of the first embodiment is increased. In the configuration using the flocculant dissolution tanks 4A and 4B, there is a problem that the aggregation performance of the stored first flocculant solution is deteriorated. However, in the configuration of the first flocculant supply process of the third embodiment, the shortness is short. Since the first flocculant solution is generated in time and supplied to the treated sludge, there is an effect that the flocculant performance of the first flocculant solution does not deteriorate.

実施の形態4.
図7は、実施の形態4における汚泥脱水システムを示すフロー図であり、図1と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態4の汚泥脱水システムは、前記実施の形態1の汚泥脱水システムとは、第1の凝集剤溶液供給管5と第2の凝集剤溶液供給管9のそれぞれを汚泥供給管2に対して個々に接続した点、そして汚泥供給管2の第1の凝集剤溶液供給管5の接続箇所よりも下流側に第2の凝集剤溶液供給管9を接続した点が大きく異なる。
Embodiment 4 FIG.
FIG. 7 is a flowchart showing the sludge dewatering system in the fourth embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. The sludge dewatering system according to the fourth embodiment is different from the sludge dewatering system according to the first embodiment in that each of the first flocculant solution supply pipe 5 and the second flocculant solution supply pipe 9 is used as the sludge supply pipe 2. The point which connected individually and the point which connected the 2nd flocculant solution supply pipe 9 to the downstream rather than the connection location of the 1st flocculant solution supply pipe 5 of the sludge supply pipe 2 differ greatly.

この実施の形態4の汚泥脱水システムでは、第1凝集剤溶液と第2凝集剤溶液を混ぜ合せずに個別に被処理汚泥に対して供給するようになっている。つまり、通常時は、被処理汚泥に対して第1凝集剤溶液供給工程から第1凝集剤溶液を供給し、被処理汚泥中の懸濁物質粒子の凝集を促進して汚泥脱水機1で脱水処理を行う。そして、被処理汚泥の性状が急激に変化して第1凝集剤溶液を供給しても懸濁物質粒子の汚泥フロック形成が不十分である場合には、第2凝集剤供給工程で第2凝集剤溶液を生成して被処理汚泥に補助的に供給し、成長が不十分な汚泥フロックのさらなる成長を促して、脱水処理後の脱水汚泥の含水率や分離液の性状を所定範囲内に維持するようになっている。なお、脱水処理する被処理汚泥の性状変化の傾向によっては、通常時は、被処理汚泥に対して第1凝集剤溶液のみを供給し、被処理汚泥の性状が急激に変化したときには、第2凝集剤溶液のみを供給するようにしてもよい。その他の汚泥脱水システムの構成や動作等に関しては、実施の形態1と概ね同様である。   In the sludge dewatering system of Embodiment 4, the first flocculant solution and the second flocculant solution are individually supplied to the treated sludge without being mixed. In other words, normally, the first flocculant solution is supplied from the first flocculant solution supply step to the treated sludge, and the suspended sludge particles in the treated sludge are promoted to be dehydrated by the sludge dewatering machine 1. Process. If the sludge floc formation of the suspended solid particles is insufficient even when the properties of the sludge to be treated are suddenly changed and the first flocculant solution is supplied, the second flocculant is supplied in the second flocculant supply step. Produce solution and supplementally supply to treated sludge, promote further growth of sludge flocs with insufficient growth, and maintain dehydrated sludge moisture content and separation liquid properties within specified range after dehydration treatment It is supposed to be. Depending on the tendency of the property change of the treated sludge to be dewatered, normally, only the first flocculant solution is supplied to the treated sludge, and when the property of the treated sludge changes suddenly, the second Only the flocculant solution may be supplied. Other configurations and operations of the sludge dewatering system are substantially the same as those in the first embodiment.

以上のように、この実施の形態4の汚泥脱水システムによれば、実施の形態1で示された(5)および(6)を除く様々な効果が得ることができることに加え、次に示す効果がある。被処理汚泥の性状が急激に変化し、第1凝集剤溶液のみでは汚泥フロックの形成が不十分な場合であっても、非常時用として第2凝集剤溶液を追加供給するだけで汚泥フロックの形成が十分である場合においては、混合凝集剤の混合比率の制御等を制御器23で制御する必要がないので、実施の形態1に比べて制御が簡単になり、制御器23等のイニシャルコストを低減できる効果がある。   As described above, according to the sludge dewatering system of the fourth embodiment, various effects other than (5) and (6) shown in the first embodiment can be obtained, and the following effects are also obtained. There is. Even if the properties of the sludge to be treated change abruptly and the formation of sludge flocs is insufficient with only the first flocculant solution, the sludge flocs can only be added by supplying the second flocculant solution as an emergency. When the formation is sufficient, it is not necessary to control the mixing ratio of the mixed flocculant by the controller 23. Therefore, the control becomes simpler than the first embodiment, and the initial cost of the controller 23 and the like is reduced. Is effective.

実施の形態5.
図8は、実施の形態5における汚泥脱水システムを示すフロー図であり、図5と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態5の汚泥脱水システムは、前記実施の形態2の汚泥脱水システムとは、汚泥供給管2の第1の凝集剤溶液供給管5の接続箇所よりも上流側に第2の凝集剤溶液供給管9を接続した点が大きく異なる。その他、汚泥脱水システムの構成や動作等に関しては、実施の形態4と概ね同様である。
Embodiment 5 FIG.
FIG. 8 is a flowchart showing the sludge dewatering system in the fifth embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. The sludge dewatering system according to the fifth embodiment is different from the sludge dewatering system according to the second embodiment in that the second flocculant is located upstream of the connection point of the first flocculant solution supply pipe 5 in the sludge supply pipe 2. The difference is that the solution supply pipe 9 is connected. In addition, the configuration and operation of the sludge dewatering system is substantially the same as in the fourth embodiment.

以上のように、この実施の形態5の汚泥脱水システムによれば、実施の形態4で示した様々な効果のほかに、第1凝集剤として適用する凝集剤と第2凝集剤として適用する凝集剤の特性の違い等の要因によって、非常時に追加供給する第2凝集剤を通常時に使用する第1凝集剤よりも先に被処理汚泥に供給した方が汚泥フロックの形成促進に有効である場合に特に効果がある。   As described above, according to the sludge dewatering system of the fifth embodiment, in addition to the various effects shown in the fourth embodiment, the flocculant applied as the first flocculant and the flocculant applied as the second flocculant. When it is more effective to promote the formation of sludge flocs by supplying the second flocculant to be additionally supplied in the event of emergency to the treated sludge before the first flocculant to be used at normal times due to factors such as differences in the characteristics of the agent Is particularly effective.

実施の形態6.
図9は、実施の形態6における汚泥脱水システムを示すフロー図であり、図7と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態6の汚泥脱水システムは、前記実施の形態4の汚泥脱水システムとは、第1凝集剤供給工程の第1凝集剤溶液を生成するための構成に、第2凝集剤供給工程と同様、凝集剤溶液タンク6B、凝集剤溶解機8B、圧送ポンプ22B、制御器23B等を適用した点が大きく異なる。その他、汚泥脱水システムの構成や動作等に関しては、実施の形態4と概ね同様である。また、第1凝集剤供給工程による第1凝集剤溶液の生成プロセスについては、第2凝集剤溶液の生成プロセスと同様である。
Embodiment 6 FIG.
FIG. 9 is a flowchart showing the sludge dewatering system in the sixth embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. The sludge dewatering system according to the sixth embodiment is different from the sludge dewatering system according to the fourth embodiment in the configuration for generating the first flocculant solution in the first flocculant supplying step, Similarly, the point that the flocculant solution tank 6B, the flocculant dissolver 8B, the pressure pump 22B, the controller 23B, and the like are applied is greatly different. In addition, the configuration and operation of the sludge dewatering system is substantially the same as in the fourth embodiment. Moreover, the production | generation process of the 1st flocculant solution by a 1st flocculant supply process is the same as the production | generation process of a 2nd flocculant solution.

以上のように、この実施の形態6の汚泥脱水システムによれば、実施の形態4で示した様々な効果に加えて、実施の形態3に示した特有の効果も得られる。   As described above, according to the sludge dewatering system of the sixth embodiment, in addition to the various effects shown in the fourth embodiment, the specific effects shown in the third embodiment can also be obtained.

実施の形態7
図10は、実施の形態7における汚泥脱水システムを示すフロー図であり、図1と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態7の汚泥脱水システムは、1本の汚泥供給管2から複数基(図10では3基)の汚泥脱水機1A,1B,1Cに被処理汚泥を分流供給する点、第2凝集剤供給工程の凝集剤溶解機8から流出する第2凝集剤溶液を凝集剤溶液供給タンク25に一時貯留可能とした点が前記実施の形態1と大きく異なる。
Embodiment 7
FIG. 10 is a flowchart showing the sludge dewatering system in the seventh embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. The sludge dewatering system according to the seventh embodiment is configured to supply the sludge to be treated to a plurality of sludge dewaterers 1A, 1B, and 1C (three in FIG. 10) from one sludge supply pipe 2, and the second aggregation The point that the second flocculant solution flowing out from the flocculant dissolver 8 in the agent supply step can be temporarily stored in the flocculant solution supply tank 25 is largely different from that of the first embodiment.

この実施の形態7の汚泥脱水システムにおいて、汚泥供給管2は各汚泥脱水機1A,1B,1Cに接続された分岐供給管部2A,2B,2Cを有し、これらの分岐供給管部2A,2B,2Cのそれぞれに汚泥供給ポンプ3A,3B,3Cが設けられた構造となっている。そして、前記分岐供給管部2A,2B,2Cのそれぞれには、第1の凝集剤溶液供給管5下流側の分岐供給管部5C,5D,5Eが接続され、該分岐供給管部5C,5D,5Eのそれぞれに溶液圧送ポンプ17A,17B,17Cが設けられている。また、凝集剤溶解機8の凝集剤溶液流出系統には凝集剤溶液供給タンク25が配設されている。この凝集剤溶液タンク25には、凝集剤溶解機8の凝集剤溶液流出口80Cから流出する第2凝集剤溶液を凝集剤溶液供給タンク25に流入させる第2の凝集剤溶液供給管24と、凝集剤溶液供給タンク25から流出する第2凝集剤溶液を第1の凝集剤溶液供給管5系統の第1凝集剤溶液に供給する第2の凝集剤溶液供給管26とが接続されている。第2の凝集剤溶液供給管26は、これの分岐供給管部26A,26B,26Cが第1の凝集剤溶液供給管5の分岐供給管部5C,5D,5Eにそれぞれ接続されている。そして、第2の凝集剤溶液供給管26の分岐供給管部26A,26B,26Cのそれぞれに溶液圧送ポンプ27A,27B,27Cが設けられている。   In the sludge dewatering system according to the seventh embodiment, the sludge supply pipe 2 has branch supply pipe portions 2A, 2B, 2C connected to the sludge dehydrators 1A, 1B, 1C. The sludge supply pumps 3A, 3B, and 3C are provided in the 2B and 2C, respectively. The branch supply pipes 2A, 2B, 2C are connected to branch supply pipes 5C, 5D, 5E on the downstream side of the first flocculant solution supply pipe 5, and the branch supply pipes 5C, 5D. , 5E are respectively provided with solution pumps 17A, 17B, 17C. Further, a flocculant solution supply tank 25 is disposed in the flocculant solution outflow system of the flocculant dissolver 8. In this flocculant solution tank 25, a second flocculant solution supply pipe 24 that causes the second flocculant solution flowing out from the flocculant solution outlet 80C of the flocculant dissolver 8 to flow into the flocculant solution supply tank 25, and A second flocculant solution supply pipe 26 that supplies the second flocculant solution flowing out from the flocculant solution supply tank 25 to the first flocculant solution of the first flocculant solution supply pipe 5 system is connected. The second flocculant solution supply pipe 26 has branch supply pipe portions 26A, 26B, and 26C connected to the branch supply pipe portions 5C, 5D, and 5E of the first flocculant solution supply pipe 5, respectively. Then, solution pumps 27A, 27B, and 27C are provided in the branch supply pipe portions 26A, 26B, and 26C of the second flocculant solution supply pipe 26, respectively.

次に、実施の形態7における汚泥脱水システムの作用を説明する。汚泥脱水工程においては、汚泥供給管2を流れる被処理汚泥が汚泥供給管2の分岐供給管部2A,2B,2Cからそれぞれの系統の汚泥供給ポンプ3A,3B,3Cにより複数基の汚泥脱水機1A,1B,1Cに分配供給される。これと同時に、第1凝集剤供給工程では、凝集剤溶液槽4A,4Bのいずれか一方から第1の凝集剤溶液供給管5に流入した第1凝集剤溶液が、第1の凝集剤溶液供給管5の分岐供給管部5C,5D,5Eそれぞれの系統の溶液圧送ポンプ17A,17B,17Cによって汚泥供給管2の分岐供給管部2A,2B,2Cに供給される。これにより、第1凝集剤溶液が注入された被処理汚泥が汚泥脱水機1A,1B,1Cのそれぞれに分配供給されるため、被処理汚泥中の懸濁粒子の汚泥フロック形成が促進されて汚泥脱水機1A,1B,1Cでは、被処理汚泥を分離液と脱水汚泥とに効率よく分離することができると共に、脱水後の脱水汚泥の含水率および分離液の性状を所定範囲で維持することができる。   Next, the operation of the sludge dewatering system in the seventh embodiment will be described. In the sludge dewatering process, the sludge to be treated flowing through the sludge supply pipe 2 is supplied from the branch supply pipe portions 2A, 2B, 2C of the sludge supply pipe 2 with a plurality of sludge supply pumps 3A, 3B, 3C. 1A, 1B and 1C are distributed and supplied. At the same time, in the first flocculant supply step, the first flocculant solution flowing into the first flocculant solution supply pipe 5 from either one of the flocculant solution tanks 4A and 4B is supplied to the first flocculant solution. The branched supply pipe parts 5C, 5D, 5E of the pipe 5 are supplied to the branched supply pipe parts 2A, 2B, 2C of the sludge supply pipe 2 by the solution pressure feed pumps 17A, 17B, 17C of the respective systems. As a result, the treated sludge injected with the first flocculant solution is distributed and supplied to each of the sludge dewatering machines 1A, 1B, and 1C, so that the sludge floc formation of the suspended particles in the treated sludge is promoted and the sludge is promoted. In the dehydrators 1A, 1B, and 1C, the sludge to be treated can be efficiently separated into the separation liquid and the dewatered sludge, and the moisture content of the dewatered sludge after the dewatering and the properties of the separation liquid can be maintained within a predetermined range. it can.

以上は通常時の汚泥脱水処理であり、被処理汚泥の性状が急激に変化した場合の非常時には第2凝集剤供給工程が実行される。第2凝集剤供給工程では、前記実施の形態1の場合と同様に凝集剤溶液タンク6で生成された第2凝集剤溶液が凝集剤溶解機8に流入して溶解処理される。溶解処理後の第2凝集剤溶液は、凝集剤溶解機8から第2の凝集剤溶液供給管24に流出することにより、凝集剤溶液供給タンク25に移送されて一時的に貯留される。その凝集剤溶液供給タンク25に貯留された第2凝集剤溶液は、第2の凝集剤溶液供給管26系統の溶液圧送ポンプ27A,27B,27Cの起動により、凝集剤溶液供給管26の分岐供給管部26A,26B,26Cから第1の凝集剤溶液供給管5の分岐供給管部5C,5D,5Eにそれぞれ分配供給される。   The above is the sludge dewatering process at the normal time, and the second flocculant supply step is executed in an emergency when the properties of the treated sludge change rapidly. In the second flocculant supply step, the second flocculant solution generated in the flocculant solution tank 6 flows into the flocculant dissolver 8 and is dissolved as in the case of the first embodiment. After the dissolution treatment, the second flocculant solution is transferred from the flocculant dissolver 8 to the second flocculant solution supply pipe 24 to be transferred to the flocculant solution supply tank 25 and temporarily stored. The second flocculant solution stored in the flocculant solution supply tank 25 is branched and supplied to the flocculant solution supply pipe 26 by the activation of the solution pumps 27A, 27B and 27C of the second flocculant solution supply pipe 26 system. The pipe parts 26A, 26B, and 26C are distributed and supplied to the branch supply pipe parts 5C, 5D, and 5E of the first flocculant solution supply pipe 5, respectively.

このようにして、第1の凝集剤溶液供給管5の分岐供給管部5C,5D,5Eでは、第1凝集剤溶液と第2凝集剤溶液が混合され、実施の形態1の場合と同様、様々な特性の混合凝集剤溶液を生成することができる。その混合凝集剤溶液が汚泥供給管2の分岐供給管部2A,2B,2Cに分流する被処理汚泥に供給された後、その被処理汚泥が汚泥脱水機1A,1B,1Cのそれぞれに分配供給される。これにより、被処理汚泥の性状が急激に変化した場合でも、複数基の汚泥脱水機1A,1B,1Cでは、被処理汚泥を分離液と脱水汚泥とに効率よく分離することができると共に、脱水後の脱水汚泥の含水率および分離液の性状を所定範囲で維持することができる。その他、汚泥脱水システムの構成や動作等に関しては、実施の形態1と概ね同様である。   In this way, in the branch supply pipe portions 5C, 5D, and 5E of the first flocculant solution supply pipe 5, the first flocculant solution and the second flocculant solution are mixed. As in the case of the first embodiment, Mixed flocculant solutions with various properties can be produced. After the mixed flocculant solution is supplied to the to-be-treated sludge diverted to the branch supply pipe portions 2A, 2B and 2C of the sludge supply pipe 2, the to-be-treated sludge is distributed and supplied to each of the sludge dehydrators 1A, 1B and 1C. Is done. As a result, even when the properties of the treated sludge change rapidly, the plurality of sludge dewatering machines 1A, 1B, 1C can efficiently separate the treated sludge into the separation liquid and the dewatered sludge, and the dewatering. The water content of the later dewatered sludge and the properties of the separated liquid can be maintained within a predetermined range. In addition, the configuration and operation of the sludge dewatering system is substantially the same as in the first embodiment.

以上のように、実施の形態7における汚泥脱水システムによれば、前記実施の形態1と同様の効果に加え、以下に示す効果がある。実施の形態1における第2凝集剤供給工程では、1本の第1の凝集剤溶液供給管5に第2凝集剤溶液を供給する構成であったため、凝集剤溶液タンク6から凝集剤溶解機8に第2凝集剤溶液を圧送する圧送ポンプ22の圧送力を利用して第1の凝集剤溶液供給管5に直接供給することが可能であった。これに対して、この実施の形態7の場合では、第2凝集剤供給工程は、複数個所の第1の凝集剤供給管5の分岐供給管部5C,5D,5Eへ第2凝集剤溶液を供給する必要があるが、凝集剤溶解機8から分岐供給管部5C,5D,5Eへ第2の凝集剤溶液供給管24に分岐管部を設けて圧送ポンプ22の圧送力で直接供給しようとしても、各分岐管部の配管抵抗を均等にすることは困難であり、各分岐管部への第2凝集剤溶液の供給量にばらつきが発生する問題があった。   As described above, according to the sludge dewatering system in the seventh embodiment, in addition to the same effects as those in the first embodiment, there are the following effects. In the second flocculant supply step in the first embodiment, since the second flocculant solution is supplied to one first flocculant solution supply pipe 5, the flocculant dissolver 8 is provided from the flocculant solution tank 6. In addition, it was possible to directly supply the second flocculant solution to the first flocculant solution supply pipe 5 using the pumping force of the pump 22 that pumps the second flocculant solution. On the other hand, in the case of the seventh embodiment, in the second flocculant supply step, the second flocculant solution is supplied to the branch supply pipe portions 5C, 5D, 5E of the first flocculant supply pipe 5 at a plurality of locations. Although it is necessary to supply, a branch pipe part is provided in the second flocculant solution supply pipe 24 from the flocculant dissolver 8 to the branch supply pipe parts 5C, 5D, and 5E to try to supply directly by the pumping force of the pump 22. However, it is difficult to equalize the pipe resistance of each branch pipe part, and there is a problem that the supply amount of the second flocculant solution to each branch pipe part varies.

この実施の形態7の汚泥脱水システムの構成とすることにより、凝集剤溶解機8で溶解処理した第2凝集剤溶液を凝集剤溶液供給タンク25に一時貯留し、各分岐供給管部26A,26B,26Cに設けた溶液圧送ポンプ27A,27B,27Cによって第1の凝集剤溶液供給管5の分岐管部5C,5D,5Eへ圧送供給するようにしたことから、第2凝集剤溶液を供給量のばらつきなく必要量供給することができる。また、溶解処理された第2凝集剤溶液を凝集剤溶液供給タンク25に一時貯留することが可能となったことにより、何らかの不具合によって一時的に凝集剤溶解機8の制御が不安定になり、溶解濃度等にばらつきが発生した場合においても、凝集剤溶液供給タンク25内で一時的に貯留されるときに所定量の第2凝集剤溶液が混合される状況になるので、溶解濃度等のばらつきを均一化できる効果もある。   By adopting the configuration of the sludge dewatering system of the seventh embodiment, the second flocculant solution dissolved by the flocculant dissolver 8 is temporarily stored in the flocculant solution supply tank 25, and each branch supply pipe section 26A, 26B is stored. , 26C, the second coagulant solution is supplied to the branch pipe portions 5C, 5D, 5E of the first coagulant solution supply pipe 5 by the solution pressure pumps 27A, 27B, 27C. The required amount can be supplied without variation. In addition, since the second flocculant solution that has been dissolved can be temporarily stored in the flocculant solution supply tank 25, the control of the flocculant dissolver 8 becomes temporarily unstable due to some trouble, Even when there is a variation in the dissolution concentration, etc., since a predetermined amount of the second flocculant solution is mixed when temporarily stored in the flocculant solution supply tank 25, the variation in the dissolution concentration, etc. There is also an effect that can be made uniform.

なお、汚泥脱水システムを実施の形態2の場合と同様、第2の凝集剤溶液供給管の分岐供給管部26A,26B,26Cを汚泥供給管2の分岐供給管部2A,2B,2Cにそれぞれ接続し、第1の凝集剤溶液供給管5の分岐管部5C,5D,5Eを第2の凝集剤溶液供給管の分岐供給管部26A,26B,26Cにそれぞれ接続した構成としてもよく、この場合、実施の形態2で示した効果に加えて、実施の形態7特有の効果の効果が得られる。また、実施の形態3で示した第1凝集剤供給工程に凝集剤溶液タンク6B、凝集剤溶解機8B、圧送ポンプ22B、制御器23B等を適用した場合、実施の形態3特有の効果も同時に得られる。   As in the case of the second embodiment, the sludge dewatering system includes the branch supply pipe portions 26A, 26B, and 26C of the second flocculant solution supply pipe as branch supply pipe portions 2A, 2B, and 2C of the sludge supply pipe 2, respectively. The branch tube portions 5C, 5D, 5E of the first flocculant solution supply pipe 5 may be connected to the branch supply pipe portions 26A, 26B, 26C of the second flocculant solution supply pipe, respectively. In this case, in addition to the effects shown in the second embodiment, the effects unique to the seventh embodiment can be obtained. Further, when the flocculant solution tank 6B, the flocculant dissolver 8B, the pumping pump 22B, the controller 23B, and the like are applied to the first flocculant supply step shown in the third embodiment, the effects unique to the third embodiment are also obtained. can get.

実施の形態8.
図11は、実施の形態8における汚泥脱水システムを示すフロー図であり、図10と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。前記実施の形態7では、第1の凝集剤溶液供給管5を汚泥供給管2に接続し、その第1の凝集剤溶液供給管5に第2の凝集剤溶液供給管26を接続して、第1の凝集剤溶液供給管5を流れる第1凝集剤溶液に第2の凝集剤溶液供給管26から第2凝集剤溶液を供給し、その第1凝集剤溶液と第2凝集剤溶液の混合凝集剤溶液を第1の凝集剤溶液供給管5から汚泥供給管2の被処理汚泥に供給するようにしたが、この実施の形態8の汚泥脱水システムでは、実施の形態4の場合と同様に、第1の凝集剤溶液供給管5と第2の凝集剤溶液供給管26を汚泥供給管2に個々に接続した点が前記実施の形態7と大きく異なる。
Embodiment 8 FIG.
FIG. 11 is a flowchart showing the sludge dewatering system in the eighth embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. In the seventh embodiment, the first flocculant solution supply pipe 5 is connected to the sludge supply pipe 2, and the second flocculant solution supply pipe 26 is connected to the first flocculant solution supply pipe 5. The second flocculant solution is supplied from the second flocculant solution supply pipe 26 to the first flocculant solution flowing through the first flocculant solution supply pipe 5, and the first flocculant solution and the second flocculant solution are mixed. The flocculant solution is supplied from the first flocculant solution supply pipe 5 to the sludge to be treated in the sludge supply pipe 2. In the sludge dewatering system according to the eighth embodiment, as in the case of the fourth embodiment. The point that the first flocculant solution supply pipe 5 and the second flocculant solution supply pipe 26 are individually connected to the sludge supply pipe 2 is greatly different from the seventh embodiment.

すなわち、この実施の形態8における汚泥脱水システムは、前記実施の形態7の汚泥脱水システムにおいて、第2の凝集剤溶液供給管26の分岐供給管部26A,26B,26Cを、第1の凝集剤溶液供給管5の分岐供給管部5C,5D,5Eが汚泥供給管2の分岐供給管部2A,2B,2Cに接続している位置よりも下流側で接続した構成としている。これにより、実施の形態4で示した効果に加えて、前記実施の形態7の構成特有の効果も得られる。なお、実施の形態5の場合と同様、第2の凝集剤溶液供給管26の分岐供給管部26A,26B,26Cを、第1の凝集剤溶液供給管5の分岐供給管部5C,5D,5Eが汚泥供給管2の分岐供給管部2A,2B,2Cに接続している位置よりも上流側で接続した構成とすることも可能であり、この場合は、実施の形態5で示された効果に加えて、実施の形態7での構成特有の効果も得られる。   That is, the sludge dewatering system according to the eighth embodiment is the same as the sludge dewatering system of the seventh embodiment except that the branch supply pipe portions 26A, 26B, and 26C of the second flocculant solution supply pipe 26 are replaced with the first flocculant. The branch supply pipe portions 5C, 5D, and 5E of the solution supply pipe 5 are connected on the downstream side of the position where they are connected to the branch supply pipe portions 2A, 2B, and 2C of the sludge supply pipe 2. Thus, in addition to the effects shown in the fourth embodiment, the configuration characteristic of the effect of the seventh embodiment can be obtained. As in the case of the fifth embodiment, the branch supply pipe portions 26A, 26B, and 26C of the second flocculant solution supply pipe 26 are connected to the branch supply pipe portions 5C, 5D, and 5C of the first flocculant solution supply pipe 5. It is also possible to adopt a configuration in which 5E is connected upstream of the position where the sludge supply pipe 2 is connected to the branch supply pipe portions 2A, 2B, 2C. In this case, the configuration shown in Embodiment 5 is used. In addition to the effects, effects unique to the configuration of the seventh embodiment can also be obtained.

なお、その他の汚泥脱水システムの構成や動作等に関しては、実施の形態4と概ね同様である。また、実施の形態6で示した第1凝集剤供給工程に凝集剤溶液タンク6B、凝集剤溶解機8B、圧送ポンプ22B、制御器23B等を適用した場合、実施の形態6特有の効果も同時に得られる。   Note that the configuration and operation of other sludge dewatering systems are substantially the same as those in the fourth embodiment. Further, when the flocculant solution tank 6B, the flocculant dissolving machine 8B, the pumping pump 22B, the controller 23B, and the like are applied to the first flocculant supply step shown in the sixth embodiment, the effects unique to the sixth embodiment are simultaneously obtained. can get.

実施の形態9.
図12は、実施の形態9における汚泥脱水システムを示すフロー図であり、図10と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。前記実施の形態7の汚泥脱水システムでは、複数基の汚泥脱水機1A,1B,1Cを同一種のもので構成している。これに対して、実施の形態9の汚泥脱水システムでは、複数基の汚泥脱水機を異なる種類で構成している点、および複数種類の汚泥脱水機のうち、脱水性能が劣る汚泥脱水機に対する第1の凝集剤溶液供給管にのみ、第2凝集剤溶液を供給している点が大きく異なる。
Embodiment 9 FIG.
FIG. 12 is a flowchart showing the sludge dewatering system in the ninth embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. In the sludge dewatering system of the seventh embodiment, a plurality of sludge dewaterers 1A, 1B, and 1C are formed of the same type. On the other hand, in the sludge dewatering system of the ninth embodiment, a plurality of sludge dewaterers are configured in different types, and among the multiple types of sludge dewaterers, the sludge dewaterer with poor dewatering performance is used. The difference is that the second flocculant solution is supplied only to one flocculant solution supply pipe.

実施の形態7では、汚泥脱水機1A,1B,1Cともに遠心脱水機を適用しているが、この実施の形態9の汚泥脱水システムでは、汚泥脱水機1Cに代えて、脱水性能の劣るベルトプレス脱水機を汚泥脱水機1Dとして適用している。また、凝集剤溶解機8の凝集剤溶液流出口80Cと第1の凝集剤溶液供給管5の下流側分岐管部5Eのみを第2の凝集剤溶液供給管9で接続している。これにより、この第2の凝集剤溶液供給管9から第2凝集剤溶液を第1の凝集剤溶液供給管5の分岐供給管部5Eだけで第1凝集剤溶液と合流させ、第1凝集剤溶液と第2凝集剤溶液の混合凝集剤溶液を汚泥供給管2の分岐供給管部2Cから汚泥脱水機(ベルトプレス脱水機)1Dにのみ供給し、他の汚泥脱水機1A,1Bには第1凝集剤溶液のみ供給するようにしている。   In the seventh embodiment, the centrifugal dehydrator is applied to each of the sludge dewaterers 1A, 1B, and 1C. In the sludge dewatering system of the ninth embodiment, instead of the sludge dewaterer 1C, a belt press having poor dewatering performance. The dehydrator is applied as the sludge dehydrator 1D. Further, only the flocculant solution outlet 80 </ b> C of the flocculant dissolver 8 and the downstream branch pipe portion 5 </ b> E of the first flocculant solution supply pipe 5 are connected by the second flocculant solution supply pipe 9. As a result, the second flocculant solution is merged with the first flocculant solution from the second flocculant solution supply pipe 9 only by the branch supply pipe portion 5E of the first flocculant solution supply pipe 5, thereby The mixed flocculant solution of the solution and the second flocculant solution is supplied only from the branch supply pipe portion 2C of the sludge supply pipe 2 to the sludge dehydrator (belt press dehydrator) 1D, and the other sludge dehydrators 1A and 1B are supplied with the first Only one flocculant solution is supplied.

この実施の形態9における汚泥脱水システムによれば、以下に示す効果がある。既存の汚泥脱水システムにさらに汚泥脱水機を追加する場合や、複数台の汚泥脱水機を有する汚泥脱水システムで、劣化等によって汚泥脱水機を交換する際、諸事情から全てを交換できず、既設と新設の汚泥脱水機が混在する場合では、汚泥脱水機によって、脱水汚泥の含水率、分離液の性状を所定範囲内とするために必要な被処理汚泥中の汚泥フロックの形成度合いに差が発生する。例えば、ベルトプレス脱水機(汚泥脱水機1D)は、遠心脱水機(汚泥脱水機1A,1B)に比べて、被処理汚泥中の汚泥フロックをさらに大きく形成させないと、脱水後の脱水汚泥の含水率、分離液の性状を所定範囲内とすることは難しい。しかし、ベルトプレス脱水機(汚泥脱水機1D)に合わせた種類の凝集剤を選定したり、凝集剤溶液の供給量を増量して全ての汚泥脱水機1A,1B,1Dへ供給したりすることは、ランニングコストが嵩むので、好ましくない。   The sludge dewatering system according to the ninth embodiment has the following effects. When adding a sludge dewatering machine to an existing sludge dewatering system, or when replacing a sludge dewatering system with multiple sludge dewatering machines due to deterioration, etc. And the newly installed sludge dewatering machine, there is a difference in the degree of sludge floc formation in the treated sludge necessary to keep the moisture content of the dewatered sludge and the properties of the separated liquid within the specified range. appear. For example, if the belt press dewatering machine (sludge dewatering machine 1D) does not form a larger sludge floc in the treated sludge than the centrifugal dewatering machines (sludge dewatering machines 1A and 1B), the water content of the dewatered sludge after dewatering It is difficult to keep the ratio and the properties of the separation liquid within the predetermined ranges. However, select the type of flocculant suitable for the belt press dewatering machine (sludge dewatering machine 1D) or increase the supply amount of the flocculant solution and supply it to all the sludge dewatering machines 1A, 1B, 1D. Is not preferable because of increased running cost.

この実施の形態9の汚泥脱水システムは、被処理汚泥の汚泥フロックの形成を特に促してやる必要がある汚泥脱水機(ベルトプレス脱水機)1Dへ供給する被処理汚泥にだけ、第1凝集剤溶液と第2凝集剤溶液を混合して生成した混合凝集剤溶液を供給し、汚泥フロックのさらなる形成を促進させることで、全ての汚泥脱水機1A,1B,1Dにおける脱水後の脱水汚泥の含水率、分離液の性状を所定範囲内とすることができる。また、汚泥脱水機1A,1B,1Dの性能差が小さい場合には、通常時の性状の被処理汚泥を脱水処理するときであって、第1凝集剤供給工程から1種類の凝集剤溶液を被処理汚泥に供給するだけで、全ての汚泥脱水機が脱水汚泥の含水率、分離液の性状を所定範囲内とすることが可能であるときには、性能の劣る汚泥脱水機1Dに対しても第1凝集剤溶液のみを供給するようにする。そして、被処理汚泥の性状が急激に変化して汚泥脱水機1Dでは所定範囲内の脱水汚泥、分離液に脱水処理することができないときには、第2凝集剤溶液を第1凝集剤溶液に供給して凝集性能が強化された混合凝集剤溶液を生成して、汚泥脱水機1Dに供給する被処理汚泥にのみ混合凝集剤溶液を供給することで、汚泥脱水機1Dでも所定範囲内の含水率の脱水汚泥、所定範囲内の性状の分離液を維持するようにするとよい。なお、その他の汚泥脱水システムの構成や動作等に関しては、実施の形態1と概ね同様である。   The sludge dewatering system according to the ninth embodiment is the first flocculant solution only for the sludge to be treated supplied to the sludge dewatering machine (belt press dewatering machine) 1D that needs to particularly promote the formation of the sludge floc of the treated sludge. Water content of dewatered sludge after dewatering in all sludge dewatering machines 1A, 1B, 1D by supplying a mixed flocculant solution produced by mixing the second flocculant solution and the second flocculant solution to promote further formation of sludge flocs The properties of the separation liquid can be within a predetermined range. Further, when the performance difference between the sludge dehydrators 1A, 1B, and 1D is small, it is a time to dehydrate the treated sludge having the normal properties, and one kind of flocculant solution is added from the first flocculant supply step. When all the sludge dewatering machines can keep the water content of the dewatered sludge and the properties of the separated liquid within the predetermined range simply by supplying them to the treated sludge, the sludge dewatering machine 1D with poor performance can be used as well. Only one flocculant solution is supplied. When the properties of the sludge to be treated change drastically and the sludge dewatering machine 1D cannot dehydrate the dewatered sludge and separation liquid within a predetermined range, the second flocculant solution is supplied to the first flocculant solution. By producing a mixed flocculant solution with enhanced coagulation performance and supplying the mixed flocculant solution only to the treated sludge supplied to the sludge dewatering machine 1D, the sludge dewatering machine 1D also has a water content within a predetermined range. It is advisable to maintain dehydrated sludge and a separated liquid having a property within a predetermined range. The configuration and operation of the other sludge dewatering system are substantially the same as those in the first embodiment.

以上、この実施の形態9の汚泥脱水システムによれば、実施の形態1で示した様々な効果に加えて、被処理汚泥の汚泥フロックの形成を特に促してやる必要がある汚泥脱水機(ベルトプレス脱水機)1Dへ供給する被処理汚泥にだけ、第1凝集剤溶液と第2凝集剤溶液を混合して生成した混合凝集剤溶液を供給し、汚泥フロックのさらなる形成を促進させることで、全ての汚泥脱水機1A,1B,1Dにおける脱水後の脱水汚泥の含水率、分離液の性状を所定範囲内とすることが可能となる効果がある。なお、汚泥脱水システムを実施の形態2の場合と同様、第2の凝集剤溶液供給管9を汚泥供給管2の分岐供給管部2Cに接続し、第1の凝集剤溶液供給管5の分岐管部5Eを第2の凝集剤溶液供給管9に接続した構成としてもよく、この場合、実施の形態2で示した効果に加えて、この実施の形態9特有の効果の効果が得られる。また、実施の形態3で示した第1凝集剤供給工程に凝集剤溶液タンク6B、凝集剤溶解機8B、圧送ポンプ22B、制御器23B等を適用した場合、実施の形態3特有の効果も同時に得られる。   As described above, according to the sludge dewatering system of the ninth embodiment, in addition to the various effects shown in the first embodiment, the sludge dewatering machine (belt press) that needs to particularly promote the formation of the sludge floc of the treated sludge. Dehydrator) By supplying the mixed flocculant solution produced by mixing the first flocculant solution and the second flocculant solution only to the treated sludge supplied to 1D, and promoting the further formation of sludge floc, The water content of the dewatered sludge after dewatering in the sludge dewatering machines 1A, 1B, and 1D and the properties of the separated liquid can be within the predetermined ranges. As in the case of the second embodiment, the second flocculant solution supply pipe 9 is connected to the branch supply pipe portion 2C of the sludge supply pipe 2 and the first flocculant solution supply pipe 5 is branched. The pipe portion 5E may be connected to the second flocculant solution supply pipe 9, and in this case, in addition to the effects shown in the second embodiment, the effects unique to the ninth embodiment can be obtained. Further, when the flocculant solution tank 6B, the flocculant dissolver 8B, the pumping pump 22B, the controller 23B, and the like are applied to the first flocculant supply step shown in the third embodiment, the effects unique to the third embodiment are also obtained. can get.

実施の形態10.
図13は、実施の形態10における汚泥脱水システムを示すフロー図であり、図12と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。前記実施の形態9の汚泥脱水システムでは、第2の凝集剤溶液供給管9を第1の凝集剤溶液供給管5の分岐供給管部5Eに接続して、その分岐供給管部5Eで第1凝集剤溶液と第2凝集剤溶液を合流させて汚泥供給管2の分岐供給管部2Cに供給したが、この実施の形態10の汚泥脱水システムでは、実施の形態4の場合と同様に、第2の凝集剤溶液供給管9を、第1の凝集剤溶液供給管5の分岐供給管部5Eが汚泥供給管2の分岐供給管部2Cに接続している位置よりも下流側で接続した構成としている点が前記実施の形態9と大きく異なる。その他の汚泥脱水システムの構成や動作等に関しては、実施の形態4と概ね同様である。
Embodiment 10 FIG.
FIG. 13 is a flowchart showing the sludge dewatering system in the tenth embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. In the sludge dewatering system of the ninth embodiment, the second flocculant solution supply pipe 9 is connected to the branch supply pipe section 5E of the first flocculant solution supply pipe 5, and the first branch supply pipe section 5E is used for the first. The flocculant solution and the second flocculant solution are merged and supplied to the branch supply pipe portion 2C of the sludge supply pipe 2. In the sludge dewatering system of the tenth embodiment, as in the case of the fourth embodiment, the first The second flocculant solution supply pipe 9 is connected downstream of the position where the branch supply pipe portion 5E of the first flocculant solution supply pipe 5 is connected to the branch supply pipe portion 2C of the sludge supply pipe 2. This is greatly different from the ninth embodiment. Other configurations and operations of the sludge dewatering system are substantially the same as those in the fourth embodiment.

以上のように、実施の形態10における汚泥脱水システムによれば、これにより、実施の形態4で示した効果に加えて、前記実施の形態9の構成特有の効果も得られる。なお、実施の形態5の場合と同様、第2の凝集剤溶液供給管9を、第1の凝集剤溶液供給管5の分岐供給管部5Eが汚泥供給管2の分岐供給管部2Cに接続している位置よりも上流側で接続した構成とすることも可能であり、この場合は、実施の形態5で示された効果に加えて、この実施の形態9での構成特有の効果も得られる。また、実施の形態6で示した第1凝集剤供給工程に凝集剤溶液タンク6B、凝集剤溶解機8B、圧送ポンプ22B、制御器23B等を適用した場合、実施の形態6特有の効果も同時に得られる。   As described above, according to the sludge dewatering system in the tenth embodiment, in addition to the effects shown in the fourth embodiment, effects unique to the configuration of the ninth embodiment can also be obtained. As in the case of the fifth embodiment, the second flocculant solution supply pipe 9 is connected to the branch supply pipe portion 5C of the sludge supply pipe 2 through the branch supply pipe portion 5E of the first flocculant solution supply pipe 5. In this case, in addition to the effect shown in the fifth embodiment, an effect peculiar to the configuration in the ninth embodiment can be obtained. It is done. Further, when the flocculant solution tank 6B, the flocculant dissolving machine 8B, the pumping pump 22B, the controller 23B, and the like are applied to the first flocculant supply step shown in the sixth embodiment, the effects unique to the sixth embodiment are simultaneously obtained. can get.

実施の形態11.
図14は、実施の形態11における汚泥脱水システムを示すフロー図であり、図1と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態9の汚泥脱水システムは、前記実施の形態1における汚泥脱水システムの第2凝集剤供給工程において、凝集剤溶解機8から流出する第2の凝集剤溶液の粘度を測定し、その粘度測定値に応じて凝集剤溶解機8の運転を制御するようにした点が、前記実施の形態1と大きく異なる。
Embodiment 11 FIG.
FIG. 14 is a flowchart showing the sludge dewatering system according to the eleventh embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. The sludge dewatering system according to the ninth embodiment measures the viscosity of the second flocculant solution flowing out from the flocculant dissolver 8 in the second flocculant supply step of the sludge dewatering system according to the first embodiment, and The point that the operation of the flocculant dissolver 8 is controlled in accordance with the measured viscosity value is greatly different from that of the first embodiment.

この実施の形態11における汚泥脱水システムにおいて、凝集剤溶解機8の凝集剤溶液流出口80Cと第1の凝集剤溶液供給管5とを接続する第2の凝集剤溶液供給管9には、凝集剤溶解機8から流出する第2凝集剤溶液の濃度を測定し、その測定値信号を制御器23に送信する粘度計30が設けられている。この粘度計30には、回転式、振動式、細管式、落体式があり、その何れをも適用可能であり、それぞれの概要構造を以下に説明する。
(1)回転式の粘度計30は、測定対象の凝集剤溶液中に駆動機の動力によって回転する回転円筒管を挿入して回転トルクを測定し、回転トルクとの相関関係から粘度を算出する構造となっている。
(2)振動式の粘度計30は、測定対象の凝集剤溶液中に振動子を挿入し、その振幅や振動維持に要する電流量との相関関係から粘度を算出する構造となっている。
(3)細管式の粘度計30は、細管に測定対象の凝集剤溶液を流し、その前後の差圧を測定し、その差圧との相関関係から粘度を算出する構造となっている。
(4)落体式の粘度計30は、垂直に置かれた円管中に測定対象の凝集剤溶液中で円柱を落下させて落下時間を測定し、その落下時間との相関関係から粘度を算出する構造となっている。
In the sludge dewatering system according to the eleventh embodiment, the second coagulant solution supply pipe 9 connecting the coagulant solution outlet 80C of the coagulant dissolver 8 and the first coagulant solution supply pipe 5 has an agglomeration. A viscometer 30 is provided for measuring the concentration of the second flocculant solution flowing out from the agent dissolver 8 and transmitting the measured value signal to the controller 23. The viscometer 30 includes a rotary type, a vibration type, a thin tube type, and a falling body type, any of which can be applied, and the general structure of each type will be described below.
(1) The rotary viscometer 30 measures the rotational torque by inserting a rotating cylindrical tube that is rotated by the power of the driving machine into the coagulant solution to be measured, and calculates the viscosity from the correlation with the rotational torque. It has a structure.
(2) The vibration type viscometer 30 has a structure in which a vibrator is inserted into a coagulant solution to be measured, and the viscosity is calculated from the correlation with the amplitude and the amount of current required to maintain vibration.
(3) The thin-tube viscometer 30 has a structure in which a flocculant solution to be measured is passed through a thin tube, the differential pressure before and after that is measured, and the viscosity is calculated from the correlation with the differential pressure.
(4) The falling-body viscometer 30 drops a cylinder in a coagulant solution to be measured in a vertically placed circular tube, measures the drop time, and calculates the viscosity from the correlation with the drop time. It has a structure to do.

制御器23は、前記粘度計30による凝集剤溶液の粘度測定値に応じて凝集剤溶解機8の運転、すなわち前記駆動機88の回転数を制御するようになっている。第2凝集剤供給工程の凝集剤供給機18から凝集剤溶液タンク6に供給する第2凝集剤の種類毎に第2の凝集剤溶液の粘度と凝集性能(凝集性能は、例えば、実際に被処理汚泥に供給し、その被処理汚泥を汚泥脱水機1で脱水処理したときの脱水汚泥の含水率や、分離液の性状を指標にする。)との相関関係を予め調べておき、最適な溶解具合のときの粘度を最適値として定め、その最適値の粘度(以下、粘度最適値という)を制御器23に記憶させておく。このように粘度最適値を記憶した制御器23には、粘度計30から測定値信号が常時あるいは所定時間毎に送信されるようになっている。   The controller 23 controls the operation of the flocculant dissolver 8, that is, the rotational speed of the driving device 88 in accordance with the viscosity measurement value of the flocculant solution by the viscometer 30. For each type of the second coagulant supplied from the coagulant supply machine 18 in the second coagulant supply process to the coagulant solution tank 6, the viscosity and coagulation performance of the second coagulant solution (the coagulation performance is actually The amount of water content of the dewatered sludge and the properties of the separated liquid when the sludge is supplied to the treated sludge and dehydrated with the sludge dehydrator 1 are examined in advance, and the optimum The viscosity at the time of dissolution is determined as an optimum value, and the viscosity of the optimum value (hereinafter referred to as the optimum viscosity value) is stored in the controller 23. Thus, the measurement value signal is transmitted from the viscometer 30 constantly or every predetermined time to the controller 23 storing the viscosity optimum value.

凝集剤溶解機8で溶解処理する際の運転制御は、例えば、単純な方法としては、以下のような制御が適用可能である。まず、駆動機88を低速で起動して押圧部材86を低速で円筒スクリーン85内面を移動させて未溶解粒の溶解処理を開始する。粘度計30で測定され、制御器23に測定値信号で取り込まれた溶解処理された第2凝集剤溶液の粘度測定値が粘度最適値になるまで、徐々に駆動機88の回転数を上昇させていく。そして、粘度測定値が粘度最適値に達したときに駆動機88の回転数を維持する。通常は、被処理汚泥の性状が大幅に変わらないと、第2凝集剤溶液の供給量を変えることはあまりないので、この単純な制御のみでも十分に対応可能である。また、被処理汚泥の性状が急激に変化し、第2凝集剤溶液の被処理汚泥への供給量を増やす必要が生じた場合には、凝集剤溶解機8で溶解処理される凝集剤溶液の流量が増加し、円筒スクリーン85内面に付着する未溶解粒の量も増加するので、当然最適な駆動機88の回転数が変わる。この場合は、再度、同様の制御を行わせて駆動機88の最適な回転数になるように、汚泥脱水システムの運転管理者が制御器23をリスタートする等し、再調整するとよい。   For example, the following control can be applied to the operation control when the coagulant dissolving machine 8 performs the dissolution treatment as a simple method. First, the driving device 88 is started at a low speed, the pressing member 86 is moved on the inner surface of the cylindrical screen 85 at a low speed, and the dissolution process of undissolved particles is started. The rotational speed of the driving device 88 is gradually increased until the viscosity measurement value of the second flocculant solution that has been measured by the viscometer 30 and taken into the controller 23 by the measurement value signal becomes the optimum viscosity value. To go. When the measured viscosity value reaches the optimum viscosity value, the rotational speed of the driving device 88 is maintained. Usually, if the property of the sludge to be treated does not change significantly, the supply amount of the second flocculant solution is not changed so much, and this simple control alone can sufficiently cope with it. Moreover, when the property of the to-be-treated sludge changes abruptly and it becomes necessary to increase the supply amount of the second flocculant solution to the to-be-treated sludge, the flocculant solution dissolved by the flocculant dissolver 8 Since the flow rate increases and the amount of undissolved particles adhering to the inner surface of the cylindrical screen 85 also increases, naturally the optimum rotational speed of the driving device 88 changes. In this case, the operation manager of the sludge dewatering system may restart the controller 23 and readjust so that the same control is performed again to achieve the optimum rotation speed of the drive unit 88.

なお、通常の場合、第2凝集剤溶液の被処理汚泥への供給量は、その汚水脱水システムの運転管理者が汚泥脱水機1から排出される脱水汚泥の状況や分離液の状況を見て、増減を判断するので、制御器23に第2凝集剤溶液の供給量の増減に応じて、駆動機88の回転数を再調整する制御を自動で行わせる必要性は低い。しかし、被処理汚泥の性状に応じて第2凝集剤溶液の供給量を自動制御することを制御器23で行う場合には、供給量の変化を制御器23が認識できるようにするために第2の凝集剤溶液供給管9等に流量計を設置する、圧送ポンプ22の回転数を認識する回路を制御器23内に組み込む等して、駆動機88の回転数制御を行うとよい。特に、第2凝集剤溶液の供給量が自動的に変動する場合には、現在の粘度測定値の実測データのみでは駆動機88の制御が難しい。前回あるいは数回前までの粘度測定値も制御器23内に記憶できるようにしておき、第2凝集剤溶液の粘度の変化を見て駆動機88の回転数制御を行うような制御を組み込むことや、適応制御、ファジー制御、ニューラルネットワークによる制御等の高度な制御を組み込むことが望ましい。   In the normal case, the supply amount of the second flocculant solution to the treated sludge is determined by checking the state of dewatered sludge discharged from the sludge dehydrator 1 and the state of the separated liquid by the operation manager of the sewage dewatering system. Since the increase / decrease is determined, it is less necessary for the controller 23 to automatically perform control for readjusting the rotational speed of the driving device 88 in accordance with the increase / decrease in the supply amount of the second flocculant solution. However, when the controller 23 automatically controls the supply amount of the second flocculant solution according to the properties of the sludge to be treated, the second change is made so that the controller 23 can recognize the change in the supply amount. It is preferable to control the rotational speed of the driving device 88 by installing a flow meter in the second coagulant solution supply pipe 9 or the like, or incorporating a circuit for recognizing the rotational speed of the pressure pump 22 into the controller 23. In particular, when the supply amount of the second flocculant solution automatically varies, it is difficult to control the driving device 88 only with the actual measurement data of the current viscosity measurement value. Viscosity measurement values from the previous time or several times before can be stored in the controller 23, and a control for controlling the rotational speed of the driving device 88 by incorporating a change in the viscosity of the second flocculant solution is incorporated. It is also desirable to incorporate advanced controls such as adaptive control, fuzzy control, and neural network control.

次に、実施の形態11における汚泥脱水システムの作用を説明する。前記実施の形態1と同様に、第1凝集剤工程が実行され、被処理汚泥の性状の急激な変化時等の非常時には、第1凝集剤供給工程と第2凝集剤供給工程の両方が実行される。第2凝集剤供給工程では、凝集剤溶解機8から流出した第2凝集剤溶液が凝集剤溶液供給管9を通って第1の凝集剤溶液供給管5に供給されるが、このとき、第2凝集剤溶液の粘度が粘度計30によって測定され、その測定値信号が制御器23に送信される。制御器23は、上述したように、第2凝集剤溶液の粘度測定値に応じて駆動機88の回転数を制御する。その回転数制御によって、第1凝集剤溶液供給管5を流れる第1凝集剤溶液に最適粘度の第2凝集剤溶液が供給される。これにより、第1の凝集剤溶液供給管5では、これを流れる第1凝集剤溶液と凝集剤溶液供給管9から供給された最適粘度の第2凝集剤溶液とが混合し、その混合凝集剤溶液が第1の凝集剤溶液供給管5から汚泥供給管2の被処理汚泥に供給される。   Next, the operation of the sludge dewatering system in the eleventh embodiment will be described. As in the first embodiment, the first flocculant step is executed, and both the first flocculant supply step and the second flocculant supply step are executed in an emergency such as a sudden change in the properties of the sludge to be treated. Is done. In the second flocculant supply step, the second flocculant solution flowing out from the flocculant dissolver 8 is supplied to the first flocculant solution supply pipe 5 through the flocculant solution supply pipe 9. the viscosity of 2 flocculant solution is measured by the viscosity meter 30, the measured value signal is transmitted to the controller 23. As described above, the controller 23 controls the rotational speed of the driving device 88 in accordance with the measured viscosity value of the second flocculant solution. By the rotation speed control, the second flocculant solution having the optimum viscosity is supplied to the first flocculant solution flowing through the first flocculant solution supply pipe 5. Thus, in the first flocculant solution supply pipe 5, the first flocculant solution flowing through the first flocculant solution and the second flocculant solution having the optimum viscosity supplied from the flocculant solution supply pipe 9 are mixed, and the mixed flocculant. The solution is supplied from the first flocculant solution supply pipe 5 to the sludge to be treated in the sludge supply pipe 2.

そして、前記混合凝集剤溶液が供給された被処理汚泥が汚泥供給管2で汚泥脱水機1に送られることにより、該汚泥脱水機1では、混合凝集剤溶液の強力な凝集作用によって汚泥フロックの形成が促進された被処理汚泥が脱水汚泥と分離液とに効率よく分離され、脱水後の脱水汚泥の脱水率および分離液の性状が所定範囲で維持される。その他の汚泥脱水システムの構成や動作等に関しては、実施の形態1と概ね同様である。   And the to-be-processed sludge supplied with the said mixed flocculant solution is sent to the sludge dehydrator 1 by the sludge supply pipe 2, and in this sludge dehydrator 1, sludge flocs of the sludge flocs are produced by the strong coagulation action of the mixed flocculant solution. The treated sludge whose formation has been promoted is efficiently separated into the dewatered sludge and the separation liquid, and the dewatering rate of the dewatered sludge after dewatering and the properties of the separation liquid are maintained within a predetermined range. Other configurations and operations of the sludge dewatering system are substantially the same as those in the first embodiment.

以上のように、実施の形態11の汚泥脱水システムによれば、粒状等の第2凝集剤を溶解水に溶解させて第2凝集剤溶液を生成するに当たり、凝集剤溶液タンク6内で第2凝集剤と溶解水とを撹拌機21により撹拌混合して第2凝集剤溶液を生成し、さらに、凝集剤溶解機8で円筒スクリーン85に第2凝集剤溶液を取り入れてスクリーンろ過し、さらに未溶解粒の溶解処理を行い、その凝集剤溶解機8から流出した第2凝集剤溶液の粘度を粘度計30で測定した結果を基に制御器23で凝集剤溶解機8の運転を制御する構成としたことにより、実施の形態1で示した効果に加えて以下に示す効果がある。
(1)凝集剤溶液は、溶解水中での溶解具合によって凝集性能が変化する性状を有しており、この溶解具合と凝集性能との相関関係は、使用する凝集剤の種類によって異なる。また、凝集剤溶液の溶解具合は、粘度と相関関係がある。すなわち、凝集剤溶液の粘度と凝集性能には相関関係がある。予め、この相関関係から第2凝集剤溶液が最適な凝集性能を発揮するときの粘度を最適値として特定して制御器23に記憶させ、粘度計30の測定値に応じて凝集剤溶解機8の運転を制御することにより、常時、最適な凝集性能の第2凝集剤溶液を第1凝集剤溶液に供給して、その混合凝集剤溶液を汚泥供給管2内の被処理汚泥に供給することが可能となり、脱水性能が大幅に向上する効果がある。
(2)第2凝集剤溶液の溶解具合の指標として粘度を測定してその測定値に応じて制御器23で凝集剤溶解機8の運転を調整しており、常時、最適な凝集性能の第2凝集剤溶液を第1凝集剤溶液に供給し、その混合凝集剤溶液を被処理汚泥に供給できることから、被処理汚泥の性状が変化した場合においても、高い脱水性能を維持できる効果がある。
(3)第2凝集剤溶液の供給量を増減させた場合においても、第2凝集剤溶液の粘度計30の測定値に応じて制御器23が凝集剤溶解機8の運転を調整するので、凝集剤溶解機8への第2凝集剤溶液の流入量が変化しても、最適な凝集性能の第2凝集剤溶液を供給することができる効果がある。
(4)従来の凝集剤溶解機を手動で調整する場合においては、熟練の作業員であっても最適な溶解具合になるよう調整することは困難であり、最適値よりも回転数が若干低く調整すると第2凝集剤の溶解不足が懸念されるので、通常、最適値よりも回転数を若干高めに調整することが多く、過撹拌状態気味である。また、過撹拌状態気味で生成されて凝集性能が若干低下した第2凝集剤溶液であっても高い凝集性能を発揮させるために、第2凝集剤溶液を所定量よりも多く供給している。この実施の形態11の汚泥脱水システムでは、凝集剤溶解機8が過撹拌状態となることを防止できるので、凝集剤溶液を所定量よりも多く供給する必要がなく、ランニングコストの低減を図ることができる効果がある。
(5)粘度計30と制御器23で凝集剤溶解機8の運転を最適な状態で維持することができることから、従来、手動で凝集剤溶解機8の運転を調整していた場合で、安全を見て最適状態よりも過剰気味に調整してしまっていたときに比べて、消費電力を低減することができ、部品の磨耗も低減させることができる効果がある。
(6)凝集剤溶液タンク6で第2凝集剤と溶解水を撹拌混合させて生成された第2凝集剤溶液を、凝集剤溶解機8の筒状容器80内に導入して円筒スクリーン85でろ過処理し、円筒スクリーン85内面に付着した第2凝集剤の未溶解粒を押圧部材86で押圧して溶解処理する構成としたことにより、未溶解粒が残存したままの第2凝集剤溶液が第1凝集剤溶液に供給されてしまうことを防止でき、かつ未溶解粒を確実に溶解させることができる効果がある。
(7)制御器23は、粘度計30が測定する凝第2集剤溶液の粘度測定値に応じて、凝集剤溶解機8の駆動機88の回転を制御する構成としたことにより、駆動機88が保持部材87A,87Bを介して移動力を付与している押圧部材86の円筒スクリーン85内面に沿って移動する速度を調整することができ、即応性に優れた溶解処理を行うことができる効果がある。
As described above, according to the sludge dewatering system of the eleventh embodiment, the second flocculant such as particles is dissolved in the dissolved water to generate the second flocculant solution. The flocculant and dissolved water are stirred and mixed by the stirrer 21 to produce a second flocculant solution. Further, the flocculant dissolver 8 introduces the second flocculant solution into the cylindrical screen 85 and screen-filters it. A configuration in which the operation of the flocculant dissolver 8 is controlled by the controller 23 based on the result of measuring the viscosity of the second flocculant solution flowing out of the flocculant dissolver 8 with the viscometer 30 after performing the dissolution treatment of the dissolved particles. Therefore, in addition to the effects shown in the first embodiment, the following effects can be obtained.
(1) The flocculant solution has a property that the agglomeration performance changes depending on the dissolution condition in the dissolved water, and the correlation between the dissolution condition and the aggregation performance varies depending on the type of the aggregating agent to be used. Further, the degree of dissolution of the flocculant solution has a correlation with the viscosity. That is, there is a correlation between the viscosity of the flocculant solution and the aggregation performance. From this correlation, the viscosity at which the second flocculant solution exhibits the optimum flocculating performance is specified as an optimum value and stored in the controller 23 in advance, and the flocculant dissolver 8 is determined according to the measured value of the viscometer 30. By always controlling the operation of the second flocculant, the second flocculant solution having the optimum flocculant performance is supplied to the first flocculant solution, and the mixed flocculant solution is supplied to the treated sludge in the sludge supply pipe 2. This makes it possible to significantly improve the dewatering performance.
(2) The viscosity is measured as an indicator of the dissolution condition of the second flocculant solution, and the operation of the flocculant dissolver 8 is adjusted by the controller 23 according to the measured value. Since the two coagulant solutions can be supplied to the first coagulant solution and the mixed coagulant solution can be supplied to the treated sludge, there is an effect that high dewatering performance can be maintained even when the properties of the treated sludge change.
(3) Even when the supply amount of the second flocculant solution is increased or decreased, the controller 23 adjusts the operation of the flocculant dissolver 8 according to the measured value of the viscometer 30 of the second flocculant solution. Even if the amount of the second flocculant solution flowing into the flocculant dissolver 8 changes, there is an effect that the second flocculant solution having the optimum flocculant performance can be supplied.
(4) In the case of manually adjusting a conventional flocculant dissolver, it is difficult for even a skilled worker to adjust so as to obtain an optimal dissolution condition, and the rotational speed is slightly lower than the optimal value. When adjusted, there is a concern about insufficient dissolution of the second flocculant, and therefore, the number of rotations is usually adjusted to be slightly higher than the optimum value, and it seems to be over-stirred. Moreover, even if it is the 2nd flocculant solution produced | generated by the state of an overstirring state and the aggregation performance slightly fell, in order to exhibit high aggregation performance, more 2nd flocculant solutions are supplied. In the sludge dewatering system according to the eleventh embodiment, it is possible to prevent the flocculant dissolver 8 from being over-stirred, so that it is not necessary to supply more than a predetermined amount of the flocculant solution, and the running cost is reduced. There is an effect that can.
(5) Since the operation of the flocculant dissolver 8 can be maintained in an optimum state by the viscometer 30 and the controller 23, it is safe to adjust the operation of the flocculant dissolver 8 manually. As compared with the case where the adjustment has been made to be more excessive than the optimum state, the power consumption can be reduced and the wear of the parts can also be reduced.
(6) The second flocculant solution produced by stirring and mixing the second flocculant and the dissolved water in the flocculant solution tank 6 is introduced into the cylindrical container 80 of the flocculant dissolver 8 and is introduced into the cylindrical screen 85. The second flocculant solution in which the undissolved particles remain is obtained by filtering the undissolved particles of the second flocculant adhering to the inner surface of the cylindrical screen 85 by pressing the pressing member 86. There is an effect that it can be prevented from being supplied to the first flocculant solution, and undissolved particles can be reliably dissolved.
(7) The controller 23 is configured to control the rotation of the drive unit 88 of the flocculant dissolver 8 according to the viscosity measurement value of the second coagulant solution measured by the viscometer 30. The speed at which 88 moves along the inner surface of the cylindrical screen 85 of the pressing member 86 to which the moving force is applied via the holding members 87A and 87B can be adjusted, and a melting process with excellent responsiveness can be performed. effective.

なお、実施の形態3に示したような第1凝集剤供給工程に凝集剤溶解機8Bを適用した場合においても、粘度計30と制御器23による構成で凝集剤溶解機8Bの駆動機88の回転を制御することで、この実施の形態11と同様の効果を得られる。   Even in the case where the flocculant dissolver 8B is applied to the first flocculant supply process as shown in the third embodiment, the configuration of the viscometer 30 and the controller 23 is used to drive the flocculant dissolver 8B. By controlling the rotation, the same effect as in the eleventh embodiment can be obtained.

実施の形態12.
図15は、実施の形態12における汚泥脱水システムを示すフロー図であり、図14と同一部分には同一符号を付して重複説明を省略する。また、凝集剤溶解機8に関しては、実施の形態1のものと同様の構造であるので、図2のA−A線方向断面図と、図3のB−B線方向断面図を援用する。この実施の形態12の汚泥脱水システムは、実施の形態4と同様、第1の凝集剤溶液供給管5と第2の凝集剤溶液供給管9を汚泥供給管2に対して個々に接続した点、そして汚泥供給管2の第1の凝集剤溶液供給管5の接続箇所よりも下流側に第2の凝集剤溶液供給管9を接続した点が前記実施の形態11と大きく異なる。その他の構造は前記実施の形態11と同一構造である。
Embodiment 12 FIG.
FIG. 15 is a flowchart showing the sludge dewatering system in the twelfth embodiment. The same parts as those in FIG. Further, since the flocculant dissolving machine 8 has the same structure as that of the first embodiment, the sectional view taken along the line AA in FIG. 2 and the sectional view taken along the line BB in FIG. In the sludge dewatering system according to the twelfth embodiment, the first flocculant solution supply pipe 5 and the second flocculant solution supply pipe 9 are individually connected to the sludge supply pipe 2 as in the fourth embodiment. And the point which connected the 2nd flocculant solution supply pipe | tube 9 to the downstream rather than the connection location of the 1st flocculant solution supply pipe | tube 5 of the sludge supply pipe | tube 2 differs greatly from the said Embodiment 11. FIG. Other structures are the same as those of the eleventh embodiment.

以上のように、この実施の形態12の汚泥脱水システムによれば、実施の形態3で示した効果に加えて、前記実施の形態11の構成特有の効果も得られる。なお、実施の形態5の場合と同様、第2の凝集剤溶液供給管9を、第1の凝集剤溶液供給管5が汚泥供給管2に接続している位置よりも上流側で接続した構成とすることも可能であり、この場合は、実施の形態5で示された効果に加えて、この実施の形態11での構成特有の効果も得られる。また、実施の形態6に示したような第1凝集剤供給工程に凝集剤溶解機8Bを適用した場合においても、粘度計30と制御器23による構成で凝集剤溶解機8Bの駆動機88の回転を制御することで、この実施の形態12と同様の効果を得られる。   As described above, according to the sludge dewatering system of the twelfth embodiment, in addition to the effects shown in the third embodiment, effects unique to the configuration of the eleventh embodiment can be obtained. As in the case of the fifth embodiment, the second flocculant solution supply pipe 9 is connected upstream of the position where the first flocculant solution supply pipe 5 is connected to the sludge supply pipe 2. In this case, in addition to the effects shown in the fifth embodiment, effects unique to the configuration of the eleventh embodiment can be obtained. Further, even when the flocculant dissolver 8B is applied to the first flocculant supply step as shown in the sixth embodiment, the configuration of the viscometer 30 and the controller 23 is used to drive the flocculant dissolver 8B. By controlling the rotation, the same effect as in the twelfth embodiment can be obtained.

実施の形態1に示した汚泥脱水システムの構成を用いて、実際に汚泥を脱水処理したときの結果について、以下に示す。この実施例1は、以下の実施条件で行われた。
〔実施条件〕
○第1凝集剤供給工程
・凝集剤溶液槽4A,4B 容量:各60m3
・攪拌機14A,14B:15.0kW
・溶解水:汚水処理施設での処理水
・第1凝集剤:カチオン系高分子凝集剤 主成分:アクリル酸ジメチルアミノエチル
・第1凝集剤溶液:溶液濃度 0.3%
・溶液圧送ポンプ17:一軸ねじポンプ 吐出流量 最大330L/min,
動力 7.5kW
○第2凝集剤供給工程
・凝集剤溶液タンク6 容量:1.4m3
・攪拌機21:2.2kW
・溶解水:汚水処理施設での処理水,供給量 183L/min
・第2凝集剤:カチオン系高分子凝集剤(主成分:アミジン) ,供給量 最大360g/min
・第2凝集剤溶液:溶液濃度 0.2%
・圧送ポンプ22:一軸ねじポンプ 吐出流量 最大180L/min,
動力 3.7kW
・凝集剤溶解機8:駆動機88 電動機を使用、インバータで回転数制御
(制御周波数範囲 17〜42Hz)
○汚泥脱水工程
・汚泥脱水機1:遠心型脱水機 設定差速 5min-1
・汚泥脱水機1への汚泥供給量:80m3/h
・汚泥脱水機1への汚泥の総供給量:2000m3
・混合凝集剤溶液の薬注量:180L/min
・混合凝集剤溶液の薬注率:1.0%/TS
The results when the sludge is actually dehydrated using the configuration of the sludge dewatering system shown in the first embodiment will be described below. This Example 1 was performed on the following implementation conditions.
[Conditions for implementation]
○ 1st flocculant supply process ・ Flocculant solution tank 4A, 4B Capacity: 60m 3 each
Agitator 14A, 14B: 15.0kW
・ Dissolved water: treated water in sewage treatment facilities ・ First flocculant: cationic polymer flocculant Main ingredient: Dimethylaminoethyl acrylate
First flocculant solution: 0.3% solution concentration
-Solution pump 17: Single screw pump Discharge flow rate up to 330L / min,
Power 7.5kW
○ Second flocculant supply process ・ Flocculant solution tank 6 Capacity: 1.4 m 3
・ Agitator 21: 2.2 kW
・ Dissolved water: treated water at sewage treatment facility, supply amount 183L / min
・ Second flocculant: Cationic polymer flocculant (main component: amidine), maximum supply amount 360 g / min
Second flocculant solution: solution concentration 0.2%
・ Pressure pump 22: Single screw pump Discharge flow rate up to 180L / min,
Power 3.7kW
・ Flocculant dissolver 8: Driver 88 Uses an electric motor and controls the number of revolutions with an inverter
(Control frequency range 17-42Hz)
○ Sludge dewatering process ・ Sludge dewatering machine 1: Centrifugal dewatering machine Setting differential speed 5min -1
・ Supply of sludge to sludge dewatering machine 1: 80m 3 / h
・ Total amount of sludge supplied to sludge dewatering machine 1: 2000m 3
・ Powder amount of mixed flocculant solution: 180 L / min
・ Pouring rate of mixed flocculant solution: 1.0% / TS

この実施例1では、第1凝集剤に適用範囲が広い比較的安価な粒状カチオン系高分子凝集剤を使用し、第2凝集剤に凝集効果は高いが高価なカチオン系高分子凝集剤(主成分:アミジン)を使用した。また、第1凝集剤溶液と第2凝集剤溶液を混合した混合凝集剤溶液の被処理汚泥への供給量(薬注量)を180L/minとした。そして、第2凝集剤溶液の比率が0%,30%,50%,70%,100%の5種類の混合凝集剤溶液を生成して、それぞれ被処理汚泥に供給し、汚泥脱水機1で脱水処理を行った。これらの結果を図16に示す。   In Example 1, a relatively inexpensive granular cationic polymer flocculant having a wide application range is used as the first flocculant, and an expensive cationic polymer flocculant having a high aggregation effect but being expensive as the second flocculant (mainly Ingredient: Amidine) was used. Moreover, the supply amount (chemical injection amount) of the mixed flocculant solution obtained by mixing the first flocculant solution and the second flocculant solution to the treated sludge was 180 L / min. Then, five types of mixed flocculant solutions having a ratio of the second flocculant solution of 0%, 30%, 50%, 70%, and 100% are generated and supplied to the treated sludge, respectively. Dehydration treatment was performed. These results are shown in FIG.

これによると、汚泥脱水機1で脱水処理された脱水汚泥の含水率は、第2凝集剤溶液の混合比率が0%のとき77.5%であるのに対し、混合比率が100%のとき76.1%であり、第2凝集剤溶液の混合比率を増やしていくに従い、脱水汚泥の含水率は低下していく傾向にある。また、汚泥処分費に関しても、混合比率0%のとき2,667千円であるのに対し、混合比率100%のとき2,515千円にまで低減される。しかし、高価なPVAの混合比率を増やしていくため、薬剤費の合計額は、混合比率0%のとき180千円であるのに対し、混合比率100%のとき300千円まで増加してしまう。よって、脱水汚泥の汚泥処分費と薬剤費のトータルコストで、最適な混合比率を見つける必要がある。そうすると、この実施例1の場合では、第2凝集剤溶液の混合比率を50%としたとき、トータルコストが2,799千円と最も低く、第1凝集剤溶液のみを被処理汚泥に供給(すなわち、第2凝集剤溶液の混合比率0%)して脱水処理した場合に比べ、848千円もの大幅なコストダウンを図ることができることが判明した。以上の結果から、本発明の汚泥脱水システムを適用し、第2凝集剤溶液の最適な混合比率を見つけることにより、ランニングコストの大幅な低減を図ることができることが証明されたといえる。   According to this, the water content of the dewatered sludge dehydrated by the sludge dewatering machine 1 is 77.5% when the mixing ratio of the second flocculant solution is 0%, whereas when the mixing ratio is 100%. It is 76.1%, and the water content of the dewatered sludge tends to decrease as the mixing ratio of the second flocculant solution is increased. Also, the sludge disposal cost is reduced to 2,515,000 yen when the mixing ratio is 100%, while it is 2,667 thousand yen when the mixing ratio is 0%. However, in order to increase the mixing ratio of expensive PVA, the total amount of drug costs is 180 thousand yen when the mixing ratio is 0%, but increases to 300 thousand yen when the mixing ratio is 100%. . Therefore, it is necessary to find an optimum mixing ratio with the total cost of the sludge disposal cost and the chemical cost of the dewatered sludge. Then, in the case of Example 1, when the mixing ratio of the second flocculant solution is 50%, the total cost is the lowest at 2,799 thousand yen, and only the first flocculant solution is supplied to the treated sludge ( That is, it has been found that a significant cost reduction of 848 thousand yen can be achieved compared to the case where the dehydration treatment is performed with the second flocculant solution mixing ratio of 0%. From the above results, it can be said that the running cost can be greatly reduced by applying the sludge dewatering system of the present invention and finding the optimum mixing ratio of the second flocculant solution.

本発明の実施の形態1における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 1 of this invention. 本発明の実施の形態1における凝集剤溶解機のA−A線断面図である。It is an AA line sectional view of the flocculant dissolver in Embodiment 1 of the present invention. 本発明の実施の形態1における凝集剤溶解機のB−B線断面図である。It is a BB sectional view of the flocculent dissolver in Embodiment 1 of the present invention. 本発明の実施の形態1における汚泥脱水システムの被処理汚泥のタイムチャート図である。It is a time chart figure of the to-be-processed sludge of the sludge dehydration system in Embodiment 1 of this invention. 本発明の実施の形態2における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 2 of this invention. 本発明の実施の形態3における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 3 of this invention. 本発明の実施の形態4における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 4 of this invention. 本発明の実施の形態5における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 5 of this invention. 本発明の実施の形態6における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 6 of this invention. 本発明の実施の形態7における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 7 of this invention. 本発明の実施の形態8における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 8 of this invention. 本発明の実施の形態9における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 9 of this invention. 本発明の実施の形態10における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 10 of this invention. 本発明の実施の形態11における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 11 of this invention. 本発明の実施の形態12における汚泥脱水システムを示すフロー図である。It is a flowchart which shows the sludge dehydration system in Embodiment 12 of this invention. 実施例1における第2凝集剤溶液の混合比率を変化させたときの脱水汚泥の含水率、脱水汚泥処分費および薬剤費の変化を示す相関図である。It is a correlation diagram which shows the change of the moisture content of a dewatering sludge, a dewatering sludge disposal cost, and a chemical | medical agent expense when the mixing ratio of the 2nd flocculant solution in Example 1 is changed.

符号の説明Explanation of symbols

1,1A,1B,1C,1D 汚泥脱水機
2 汚泥供給管
2A,2B,2C 分岐供給管部
3,3A,3B,3C 汚泥供給ポンプ
4A,4B 凝集剤溶液槽
5 凝集剤溶液供給管
5A,5B 分岐管部
5C,5D,5E 分岐供給管部
6,6B 凝集剤溶液タンク
7 凝集剤溶液移送管
8,8B 凝集剤溶解機
9 凝集剤溶液供給管
10A,10B 凝集剤供給機
12A,12B 溶解水供給管
13A,13B 制御弁
14A,14B 撹拌機
15,16 開閉制御弁
17,17A,17B,17C 溶液圧送ポンプ
18,18B 凝集剤供給機
19,19B 溶解水供給管
20,20B 制御弁
21,21B 撹拌機
22,22B 圧送ポンプ
23,23B 制御器
24 凝集剤溶液供給管
25 凝集剤溶液供給タンク
26 凝集剤溶液供給管
26A,26B,26C 分岐供給管部
27A,27B,27C 溶液圧送ポンプ
30 粘度計
80 筒状容器
80A,80B フランジ部
80C 凝集剤溶液流出口
81A,81B フランジ蓋
81C 凝集剤溶液流入口
82A,82B ボルト・ナット
83A,83B 仕切部材
84A 一次室
84B 二次室
85 円筒スクリーン
86 押圧部材
87A,87B 保持部材
88 駆動機
88A 駆動軸
88B 減速機
89 ベアリング
101A,101B ホッパー状容器
102A,102B 凝集剤供給口
103A,103B 供給口開閉器
180 ホッパー状容器
181 凝集剤投入口
182 供給口開閉器
1, 1A, 1B, 1C, 1D Sludge dewatering machine 2 Sludge supply pipe 2A, 2B, 2C Branch supply pipe section 3, 3A, 3B, 3C Sludge supply pump 4A, 4B Coagulant solution tank 5 Coagulant solution supply pipe 5A, 5B Branch pipe part 5C, 5D, 5E Branch supply pipe part 6, 6B Coagulant solution tank 7 Coagulant solution transfer pipe 8, 8B Coagulant dissolver 9 Coagulant solution supply pipe 10A, 10B Coagulant supplier 12A, 12B Dissolve Water supply pipes 13A, 13B Control valves 14A, 14B Agitators 15, 16 Open / close control valves 17, 17A, 17B, 17C Solution pumps 18, 18B Coagulant supply machines 19, 19B Dissolved water supply pipes 20, 20B Control valves 21, 21B Stirrer 22, 22B Pressure pump 23, 23B Controller 24 Coagulant solution supply pipe 25 Coagulant solution supply tank 26 Coagulant solution supply pipe 26A, 26B, 26C Branch supply Pipe parts 27A, 27B, 27C Solution pump 30 Viscometer 80 Cylindrical container 80A, 80B Flange part 80C Coagulant solution outlet 81A, 81B Flange lid 81C Coagulant solution inlet 82A, 82B Bolt / nut 83A, 83B Partition member 84A Primary chamber 84B Secondary chamber 85 Cylindrical screen 86 Press member 87A, 87B Holding member 88 Drive device 88A Drive shaft 88B Reducer 89 Bearing 101A, 101B Hopper-like container 102A, 102B Coagulant supply port 103A, 103B Supply port switch 180 Hopper-shaped container 181 Coagulant inlet 182 Supply port switch

Claims (3)

被処理汚泥を分離液と脱水汚泥に分離する汚泥脱水機
および
該汚泥脱水機へ被処理汚泥を供給する汚泥供給管
を備えた汚泥脱水工程と、
凝集剤および溶解水から生成した凝集剤溶液を
凝集剤溶液供給管で前記被処理汚泥に供給する
第1凝集剤供給工程と、
第1凝集剤供給工程の凝集剤とは異なる凝集剤と溶解水を撹拌混合して
凝集剤溶液を生成する凝集剤溶液タンク、
筒状容器と、該筒状容器内に配設された円筒スクリーンと、該円筒スクリーン内に配設された一つまたは二つ以上の押圧部材と、該押圧部材を保持する保持部材と、該保持部材を介して前記押圧部材を前記円筒スクリーンの内面に沿って移動させる駆動機とを備え、前記凝集剤溶液タンクから導入した凝集剤溶液をスクリーンろ過すると共に、凝集剤溶液中の凝集剤を溶解する凝集剤溶解機
および
該凝集剤溶解機から流出する凝集剤溶液を前記被処理汚泥に供給する凝集剤溶液供給管
を備えた第2凝集剤供給工程と
からなり、
被処理汚泥に第1凝集剤供給工程または第1凝集剤供給工程と第2凝集剤供給工程の両方で凝集剤溶液を供給することを特徴とする汚泥脱水システム。
A sludge dewatering step including a sludge dewatering machine that separates the treated sludge into a separated liquid and a dewatered sludge, and a sludge supply pipe that supplies the treated sludge to the sludge dewatering machine;
A first flocculant supply step of supplying a flocculant solution generated from the flocculant and dissolved water to the treated sludge through a flocculant solution supply pipe;
A flocculant solution tank that generates a flocculant solution by stirring and mixing a flocculant different from the flocculant in the first flocculant supply step ;
A cylindrical container, a cylindrical screen disposed in the cylindrical container, one or more pressing members disposed in the cylindrical screen, a holding member for holding the pressing member, A drive unit that moves the pressing member along the inner surface of the cylindrical screen via a holding member, screens the flocculant solution introduced from the flocculant solution tank, and removes the flocculant in the flocculant solution. said flocculant solution discharged from the dissolving flocculant dissolver and coagulant dissolver Ri Do and a second coagulant supply process with the coagulant solution supply pipe for supplying the treated sludge,
Sludge dewatering system characterized that you supply a flocculant solution in both the first coagulant supply step or first coagulant supply step and the second coagulant supply process to be treated sludge.
第1凝集剤供給工程の凝集剤溶液供給管と第2凝集剤供給工程の凝集剤溶液供給管とは、
合流接続している
ことを特徴とする請求項1記載の汚泥脱水システム。
The flocculant solution supply pipe in the first flocculant supply step and the flocculant solution supply pipe in the second flocculant supply step are:
The sludge dewatering system according to claim 1, wherein the sludge dewatering system is joined and connected.
凝集剤溶解機から流出した凝集剤溶液の粘度を測定する粘度計と、
該粘度計の測定値に応じて、低速で起動して上昇させる前記駆動機回転
制御する制御器と
を備えた
ことを特徴とする請求項1または2に記載の汚泥脱水システム。
A viscometer that measures the viscosity of the flocculant solution that has flowed out of the flocculant dissolver;
3. The sludge dewatering system according to claim 1, further comprising a controller that controls rotation of the driving device that is started and raised at a low speed in accordance with a measured value of the viscometer.
JP2007217433A 2007-08-23 2007-08-23 Sludge dewatering system Active JP4633770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217433A JP4633770B2 (en) 2007-08-23 2007-08-23 Sludge dewatering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007217433A JP4633770B2 (en) 2007-08-23 2007-08-23 Sludge dewatering system

Publications (2)

Publication Number Publication Date
JP2009050756A JP2009050756A (en) 2009-03-12
JP4633770B2 true JP4633770B2 (en) 2011-02-16

Family

ID=40502331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217433A Active JP4633770B2 (en) 2007-08-23 2007-08-23 Sludge dewatering system

Country Status (1)

Country Link
JP (1) JP4633770B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258639B2 (en) * 2008-12-11 2013-08-07 ハイモ株式会社 Sludge dewatering method
JP5826545B2 (en) * 2011-07-20 2015-12-02 株式会社西原環境 Polluted water treatment system and polluted water treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219028A (en) * 2004-02-09 2005-08-18 Matsushita Environment Airconditioning Eng Co Ltd Organic sludge treatment device and sludge treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2960309B2 (en) * 1994-09-08 1999-10-06 株式会社西原環境衛生研究所 Sludge treatment equipment
JP3184797B2 (en) * 1998-03-19 2001-07-09 ミヤマ株式会社 Mixing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005219028A (en) * 2004-02-09 2005-08-18 Matsushita Environment Airconditioning Eng Co Ltd Organic sludge treatment device and sludge treatment method

Also Published As

Publication number Publication date
JP2009050756A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4633769B2 (en) Sludge dewatering equipment
JP5037002B2 (en) Coagulation dewatering treatment method of sludge using polymer coagulant and coagulation sedimentation treatment method of waste water
JP3691768B2 (en) Sludge treatment method
WO2006057285A1 (en) Method for coagulating and dewatering sludge with use of polymer coagulant and method for coagulating and precipitating waste water with use of polymer coagulant
WO2006112041A1 (en) Sludge concentration device and sludge concentration method
JP6378865B2 (en) Sludge treatment method and apparatus
WO2010134309A1 (en) Centrifugal separation device
RU2387679C2 (en) Method and device for preparing concentrated polymer solutions
JP5826545B2 (en) Polluted water treatment system and polluted water treatment method
JP5900576B1 (en) Water treatment method and water treatment apparatus
WO2007119720A1 (en) Method for treatment of sludge or wastewater
CN104507879A (en) Sludge treatment method and treatment device
JP4633770B2 (en) Sludge dewatering system
JP2006192403A (en) Method for reducing water content in dewatered sludge
JP2010057997A (en) Sludge dewatering apparatus and method
JP2003175400A (en) Method for treatment of sewage sludge
JP3862888B2 (en) Continuous sludge aggregation method
JP4079807B2 (en) Coagulation sedimentation equipment
JP6664251B2 (en) Sludge dewatering method and sludge dewatering device
KR100791939B1 (en) Flocculation apparatus comprisimg horizontal agitating inverter pelletizing flocculation reactor
JP2001347103A (en) Apparatus for treating filthy water
JP2001239272A (en) Method and device for treating waste water containing silver
US11407668B1 (en) Method for processing sludge
JP6454621B2 (en) Sludge aggregation method and apparatus
JP7518721B2 (en) Wastewater treatment method and wastewater treatment device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101008

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4633770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250