JP4632580B2 - Method for forming conductive film on resin substrate - Google Patents
Method for forming conductive film on resin substrate Download PDFInfo
- Publication number
- JP4632580B2 JP4632580B2 JP2001192650A JP2001192650A JP4632580B2 JP 4632580 B2 JP4632580 B2 JP 4632580B2 JP 2001192650 A JP2001192650 A JP 2001192650A JP 2001192650 A JP2001192650 A JP 2001192650A JP 4632580 B2 JP4632580 B2 JP 4632580B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- conductive film
- resin substrate
- metal
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Chemically Coating (AREA)
- Manufacturing Of Printed Wiring (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、樹脂基材上への導電性皮膜の形成法に関する。
【0002】
【従来の技術】
プラスチック樹脂製品に対するめっき処理やプリント配線基板のスルーホールめっき法、セミアディティブ法等におけるめっき処理において、不導体樹脂上に導電性皮膜を形成する方法として、古くから、無電解銅めっきが行われている。しかしながら、無電解銅めっき液に配合されているホルマリンの発癌性の問題や、EDTAの規制、廃液の海洋投棄の制限等により、無電解銅めっき処理を取り巻く環境が年々厳しくなっている。
【0003】
また、一般に、無電解めっき処理は、多くの工程からなるため、長時間を要し、しかも、無電解めっき液の管理が煩雑である等の問題がある。このため、無電解めっき処理に代わり得る樹脂製品における新しい導電性皮膜形成方法が強く要望されている。
【0004】
ところで、近年、エレクトロニクス機器の小型化、薄型化、軽量化等の進展に伴い、プリント配線板に対する高密度化の要求が厳しくなりつつある。プリント配線板を高密度化する方法としては、ファインパターン化、ファインピッチ化、高積層化等の方法が考えられるが、近年、低コスト化の要求が強く、積層数を増加させることなく、導体回路の面密度を向上させることが望まれている。
【0005】
プリント配線板における導体回路の面密度を向上させるためには、回路幅と回路間隔をより狭くすること、即ち、回路のファインパターン化が必要となり、この様な回路のファインパターン化に対応するためには、絶縁層である樹脂基材表面の表面粗さを最小限に保つ必要がある。
【0006】
樹脂基材表面に対する導電性皮膜の密着性を向上させるためには、回路幅が広い場合には、樹脂層の表面に数μm程度の凹凸を形成していわゆるアンカー効果を利用する方法があるが、導体回路の面密度の高いプリント配線板では、樹脂表面を粗化することなく、密着性の高い導電性皮膜を形成する必要がある。
【0007】
特開平8−209354号公報には、樹脂製品に酸性基を導入した後、金属イオン含有液で処理し、その後、還元剤を含有する溶液中に浸漬して導電性皮膜を形成する方法が記載されている。
【0008】
しかしながら、この方法では、還元剤含有溶液を用いて金属イオンを還元する際に、樹脂の表面層中に吸着されて存在する金属イオンが樹脂表面に拡散し、樹脂表面において比較的大きな金属粒子が析出して、金属微粒子の核形成密度が低くなる傾向がある。その結果、樹脂基材表面の表面粗さが小さい場合には、形成される導電性皮膜は、十分な密着強度を得ることができない。
【0009】
このため、今後更に進展すると考えられるプリント配線板のファインパターン化に対応するために、平滑な樹脂表面上においても密着性の高い導電性皮膜を形成できる方法の開発が望まれている。
【0010】
【発明が解決しようとする課題】
本発明の主な目的は、無電解めっき法に代わり得る新規な導電性皮膜の形成方法であって、平滑な樹脂表面上においても密着性の高い導電性皮膜を形成できる方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者は、上記課題を達成するために鋭意研究した結果、樹脂基材に酸性基を導入した後、金属イオン含有液で処理し、その後、樹脂基材に吸着乃至結合した金属イオンを水酸化物、酸化物、炭酸塩、硫化物等の化合物に変換した後、還元処理を行って導電性皮膜を形成する方法によれば、形成される金属粒子の表面拡散、粗粒化等が抑制され、平滑性の高い樹脂基材表面にも密着性の良い導電性皮膜を形成することが可能となることを見出し、ここに本発明を完成するに至った。
【0012】
即ち、本発明は、下記の導電性皮膜の形成方法を提供するものである。
1. 下記の工程を含む方法によって樹脂基材を処理することを特徴とする樹脂基材上への導電性皮膜の形成方法:
(1)樹脂基材に酸性基を導入する工程、
(2)上記(1)工程で処理した樹脂基材を金属イオン含有液と接触させる工程、
(3)上記(2)工程において樹脂基材に吸着乃至結合した金属イオンを金属化合物に変換する工程、
(4)上記(3)工程で処理した樹脂基材を還元処理して、該樹脂基材上に導電性皮膜を形成する工程。
2. (1)工程で導入する酸性基が、スルホン酸基、カルボキシル基又はフェノール性水酸基である上記項1に記載の方法。
3. (3)工程において形成される金属化合物が、水酸化物、酸化物、炭酸塩又は硫化物である上記項1又は2に記載の方法。
【0013】
【発明の実施の形態】
以下、本発明の導電性皮膜の形成方法の各工程について詳細に説明する。
工程(1):
本発明方法では、まず、処理対象とする樹脂基材に酸性基を導入する。
【0014】
本発明で使用できる樹脂基材の種類についは特に限定はなく、使用目的に応じた適度な物性を有する樹脂からなるものであって、樹脂中に酸性基を導入することができるものであればよい。例えば、スルホン化によって、スルホン酸基を導入する場合には、ベンゼン環等の芳香族環や水酸基等のスルホン化が比較的容易な基を有する樹脂からなる樹脂材料を用いることが好ましく、特に、これらの基を有する樹脂のうちで、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ビニル樹脂、フェノール樹脂等が好適に用いられる。また、カルボキシル基を導入する場合には、例えば、ポリイミド樹脂等が好適に用いられる。
【0015】
樹脂基材は、単独の樹脂からなるものであってもよく、また複数の樹脂を混合して用いたものでもよい。例えば、エポキシ樹脂を、ポリイミド樹脂やポリアミド樹脂と混合して使用することもできる。
【0016】
また、本発明では、被処理物とする樹脂基材は、樹脂のみからなる成形品に限定されず、樹脂間にガラス繊維強化材等の補強材を介在させた複合物であってもよく、或いはセラミックス、ガラス、金属等の各種の素材からなる基材に樹脂による皮膜を形成したものであってもよい。
【0017】
樹脂基材の一例としては、プリント配線板を挙げることができる。
【0018】
樹脂基材に導入する酸性基としては、被処理物として用いる樹脂基材に導入可能であって、金属イオンを化学的に吸着乃至結合できるものであれば限定なく使用することができる。特に、本発明の方法で有効に使用し得る酸性基の例としては、スルホン酸基、カルボキシル基、フェノール性水酸基等を挙げることができ、好ましい酸性基としてはスルホン酸基、カルボキシル基等を例示でき、特に好ましい酸性基としてはスルホン酸基を例示できる。
【0019】
酸性基を導入する方法は、特に限定的ではなく、各種の方法が可能であり、使用する樹脂と酸性基の種類に応じて、適宜、公知の導入方法を採用すればよい。
【0020】
以下に、酸性基として、スルホン酸基を導入する方法の一例を示す。
【0021】
スルホン酸基は公知のスルホン化反応によって、樹脂基材に導入することができる。この際に用いるスルホン化剤としては、公知の各種スルホン化剤を用いることができ、例えば、硫酸、発煙硫酸、三酸化イオウ、クロロ硫酸、塩化スルフリル等を挙げることができる。
【0022】
これらのスルホン化剤のうちで、硫酸を用いる場合の製造方法について具体的に説明する。スルホン化反応は、通常、硫酸水溶液に樹脂基材を浸漬することによって行うことができる。スルホン化反応に用いる硫酸濃度は、一般に、70〜90重量%程度、好ましくは75〜85重量%程度とすればよい。硫酸濃度が70重量%未満では、スルホン化に時間がかかるので好ましくなく、一方、90重量%を上回ると、樹脂の溶解、劣化が生じ易いので好ましくない。スルホン化の処理温度は、スルホン化しようとする樹脂の種類にもよるが、一般に50〜100℃程度、好ましくは60〜80℃程度とすればよい。処理時間は、スルホン化の程度によって変わりうるが、一般に1〜60分間程度とすればよい。
【0023】
スルホン酸基の導入量については、スルホン化剤の濃度、処理温度、処理時間等を変えることによって調整することができ、スルホン酸基の導入量の増加とともに、後述する金属イオン含有溶液による処理工程において吸着乃至結合される金属量が増加する。よって、必要とする導電性皮膜の厚さなどに応じて、具体的なスルホン化の処理条件を決めれば良い。
【0024】
酸性基として、カルボキシル基、フェノール性水酸基等を導入する場合には、これらの基を導入するための公知の反応を利用して行うことができ、使用する樹脂の種類に応じて、適当な導入条件を決めればよい。例えば、カルボキシル基を導入する場合には、カルボキシル化剤として、70〜100重量%程度、好ましくは80〜90重量%程度の濃度の酢酸を使用してカルボキシ化反応を行えばよい。反応温度については、スルホン化の場合と同程度の温度とすればよい。
【0025】
尚、後の工程を効率よく行うために、上記処理の後に水洗処理を行うことが好ましい。
工程(2):
上記した工程(1)で樹脂基材に酸性基を導入した後、この樹脂基材を金属イオンを含有する溶液と接触させる。この処理によって、樹脂基材に導入された酸性基に金属イオンが吸着乃至結合する。
【0026】
金属イオン含有液としては、後工程における気相還元処理によって形成される金属層が導電性を示すものとなる金属イオンを含有する溶液であれば特に限定なく使用することができる。このような金属イオンのうち好ましいものとしては、銅、ニッケル、コバルト、鉄、パラジウム、金、銀等、これらの混合物等が挙げられる。
【0027】
金属イオンは、一般に金属塩として金属イオン含有液に配合される。使用する金属塩の種類については特に限定はなく、金属の種類に応じて、適当な可溶性の金属塩を用いればよい。例えば、銅イオンの場合には、硫酸銅、塩化銅、硝酸銅、酢酸銅、塩基性炭酸銅等の形で配合することができる。
【0028】
金属イオン含有液における金属イオンの濃度は、通常、0.01〜1モル/リットル程度が適当であり、0.03〜0.1モル/リットル程度が好ましい。
【0029】
金属イオン含有液は、一般的には水溶液として使用される。但し、使用する金属イオンによっては、メタノール等の有機媒体を用いても良い。
【0030】
また、必要に応じて、金属イオン含有液には、pHを維持するための緩衝剤や、金属イオンの沈殿防止のための錯化剤等を配合することができる。
【0031】
尚、酸性基と金属イオンとの反応により、金属イオン含有液のpHは徐々に低下するので、金属イオンを水酸化物の形態で補充する場合には、金属イオン含有液のpHは、弱酸性〜中性、具体的にはpH2〜6程度、好ましくは3〜4程度に調整することが適当である。
【0032】
金属イオンを含有する溶液を樹脂基材に接触させる方法は、特に限定的ではないが、通常は、工程(1)において酸性基を導入した樹脂基材を金属イオン含有液に浸漬すればよい。この処理によって樹脂基材に導入された酸性基に金属イオンが吸着乃至結合される。浸漬処理は、例えば、20〜80℃程度、好ましくは25〜80℃程度の温度において、例えば、1〜10分程度、好ましくは3〜5分程度行えばよい。
【0033】
尚、後の工程を効率よく行うために、上記処理の後に水洗処理を行うことが好ましい。
工程(3):
工程(2)で金属イオン含有液による処理を行った後、樹脂基材に吸着乃至結合した金属イオンを金属化合物に変換する。変換する金属化合物の種類については、特に限定的ではないが、例えば、水酸化物、酸化物、炭酸塩、硫化物等を例示できる。
【0034】
これらの化合物に変換する方法については特に限定的ではなく、金属イオンの種類に応じて、上記した各金属化合物を形成可能な公知の方法を適宜採用すれば良い。
【0035】
金属化合物を形成するための方法の一例としては、以下の方法を例示できる。
【0036】
例えば、水酸化物を形成する場合には、上記(2)工程において金属イオン含有液と接触させた樹脂基材を水酸化物を含有する水溶液に浸漬すればよい。水酸化物としては、水溶液中で水酸化物イオンを形成し得る化合物であれば特に限定なく用いることができる。この様な水酸化物としては、NaOH、KOH等のアルカリ金属水酸化物、NH4OH等を例示できる。具体的な処理条件は、金属イオンの種類、水酸化物の種類等に応じて適宜決めればよいが、通常、水酸化物の濃度が1〜500g/l程度、好ましくは1〜50g/l程度の水溶液中に10〜80℃程度、好ましくは20〜40℃程度の液温で1〜10分間程度、好ましくは3〜5分間程度浸漬すればよい。
【0037】
酸化物を形成する場合には、例えば、上記した方法で水酸化物を形成した後、加熱処理を行えばよい。酸化物形成に必要な加熱温度は、金属イオンの種類によって異なるが、通常、100〜200℃程度の加熱温度とすれば良い。
【0038】
硫化物を形成する場合には、上記(2)工程において金属イオン含有液と接触させた樹脂基材を硫化物を含有する水溶液に浸漬すればよい。硫化物としては、水溶液中で硫化物イオンを形成し得る化合物であれば特に限定なく用いることができる。この様な硫化物としては、硫化ナトリウム、硫化カリウム、硫化アンモニウム等を例示できる。具体的な処理条件は、金属イオンの種類、硫化物の種類等に応じて適宜決めればよいが、通常、硫化物の濃度が1〜100g/l程度、好ましくは1〜50g/l程度の水溶液中に10〜80℃程度、好ましくは20〜40℃程度の液温で1〜10分間程度、好ましくは3〜5分間程度浸漬すればよい。
【0039】
尚、後の工程を効率よく行うために、上記処理の後に水洗処理を行うことが好ましい。
【0040】
上記した各種方法で、金属化合物を形成した後、後述する工程(4)で還元処理を行うことによって、工程(2)の処理によって樹脂基材表面の厚さ数μm程度の範囲内に吸着乃至結合して存在する金属イオンが樹脂基材の表面に拡散することが抑制され、粒径が数nm程度の非常に微細な金属微粒子が樹脂基材内部において形成され、金属粒子の核密度が非常に高くなる。このため、形成される導電性皮膜は、良好な導電性を有すると共に、平滑な表面の樹脂基材に対しても高い密着性を示すものとなる。
工程(4):
上記した工程(3)において、金属イオンを金属化合物に変換した後、還元処理を行なうことによって、樹脂基材上に導電性皮膜を形成する。
【0041】
還元処理の方法は特に限定的ではなく、工程(3)における処理によって形成された金属化合物を還元して金属化できる方法であればどのような方法でもよい。例えば、工程(3)において処理した樹脂基材を還元剤を含有する溶液中に浸漬する方法、工程(3)において処理した樹脂基材を還元性ガスと接触させて気相還元する方法等を採用できる。
【0042】
還元剤を含有する溶液を用いて還元する場合には、還元剤としては金属化合物を還元して金属を析出させることができるものであれば、特に制限なく使用することができる。通常は、還元剤を含有する溶液は、水溶液として用いられる。この場合に用いる還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン(DMAB)、トリメチルアミンボラン(TMAB)、ヒドラジン、ホルムアルデヒド、これらの各化合物の誘導体、亜硫酸ナトリウム等の亜硫酸塩、次亜リン酸ナトリウム等の次亜リン酸塩等を挙げることができる。水溶液中の還元剤濃度は、通常、0.003〜0.02モル/リットル程度、好ましくは0.005〜0.009モル/リットル程度とすれば良い。還元剤濃度が低すぎる場合には、還元反応の速度が遅くなりすぎる傾向があり、一方、還元剤濃度が高すぎると析出した金属の脱落が生じる場合があるので好ましくない。還元温度は、通常、20〜90℃程度とすればよく、好ましくは25〜80℃程度とすれば良い。処理時間は、1〜10分程度、好ましくは3〜5分程度とすればよい。
【0043】
気相還元処理の具体的な方法については特に限定的ではなく、被処理物である樹脂基材を還元性ガスと接触させて、樹脂基材に結合乃至吸着している金属イオンを還元して金属化できる方法であれば良い。還元性ガスとしては、還元性を有する気体であれば良く、例えば、水素ガス、ジボランガス等を用いることができる。具体的な反応温度、反応時間などの処理条件は、使用する還元性ガスの種類、金属化合物の種類等に応じて適宜決定すればよい。
【0044】
例えば、還元性ガスとして水素ガスを用いる場合には、水素ガス気流中に処理対象の樹脂基材を置き、30〜300℃程度の温度で、5〜60分間程度水素ガスに接触させればよい。具体的な処理温度は、樹脂基材の耐熱性や金属化合物の還元され易さ等を考慮して適宜決めればよい。
【0045】
以上の方法で還元処理を行うことによって、密着性、導電性等に優れた導電性皮膜を形成できる。
【0046】
本発明方法によって導電性皮膜を形成した後、通常の方法に従って各種の処理を施すことができる。例えば、形成された導電性皮膜を各種のめっき処理の下地皮膜として用いることが可能である。本発明の導電性皮膜形成方法を利用してパネルめっき法により導体回路形成を行う場合には、例えば、本発明方法によって導電性皮膜を形成した後、硫酸銅めっき等の電気銅めっき処理を行えばよい。セミアディティブ法においては、導電性皮膜形成後、必要に応じて無電解銅めっき処理、レジストパターン形成処理、電気銅メッキ処理、はんだめっき処理、レジスト除去処理、はんだ剥離処理等の従来より公知の各処理を順次行えばよい。
【0047】
なお、必要に応じて、脱脂処理や、水洗処理、エッチング処理、防錆処理等の周知の処理を付加してもよい。
【0048】
【発明の効果】
本発明方法は、無電解めっき処理に代わり得る新規な導電性皮膜の形成方法であり、この方法によれば、平滑な樹脂表面にも密着性、導電性等に優れた導電性皮膜を形成できる。このため、本発明方法は、回路幅、回路間隔等の狭い高密度ファインパターン化に対応したプリント配線板における導電性皮膜の形成方法として有用性が高い方法である。
【0049】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0050】
実施例1
補強材としてガラスクロスを8層介在させ圧縮したエポキシ樹脂(FR-4型)からなる50×100×1.6mmの回路基板の回路面に、エポキシ樹脂(FR-4型)溶液を、完全硬化後の厚さが100μmとなるように塗布し、乾燥した後、150℃で完全硬化させて、試験用試料を作製した。試験用試料の樹脂表面は、平均面粗さ(Ra)が100nm以下という平滑性の高いものであった。
【0051】
この試験用試料を濃度85重量%の硫酸溶液に70℃で5分間浸漬して樹脂表面にスルホン酸基を導入した。
【0052】
次いで、室温で1分間水洗した後、濃度0.05モル/lの硫酸銅水溶液(pH4.0)中に試験用試料を50℃で3分間浸漬した。
【0053】
次に、室温で1分間水洗し、濃度5g/lの硫化ナトリウム水溶液に25℃で10分間浸漬することによって樹脂表面に吸着乃至結合している銅イオンを硫化銅に変換した。
【0054】
その後、濃度0.03モル/lのNaBH4水溶液に室温で1分間試験用試料を浸漬して還元処理を行って、導電性皮膜を形成した。
【0055】
上記した方法で導電性皮膜を形成した試料について、10%硫酸水溶液に室温で1分間浸漬して試料表面を活性化した後、酸性硫酸銅めっき浴を用いて、陰極電流密度2A/dm2の条件で厚さ30μmの電気銅めっき皮膜を形成した。
【0056】
得られた銅めっき皮膜に幅1cmの素地に達するスリットを入れ、90°剥離(ピール)強度を測定した。
【0057】
その結果、ピール強度は0.6kgf/cm以上であり実用上十分な値を示した。
【0058】
以上の結果から、本発明方法によれば、平均面粗さ(Ra)は100nm以下という平滑性の高い樹脂表面に対しても高い密着強度を有する導電性皮膜を形成できることが確認できた。
【0059】
比較例1
実施例1と同様の試験用試料を用い、硫化ナトリウム水溶液に浸漬する処理を行うことなく、その他は実施例1と同様の方法で導電性皮膜を形成した。
【0060】
その後、実施例1と同様にして10%硫酸水溶液を用いて導電性皮膜を活性化し、酸性硫酸銅めっき浴を用いて厚さ30μmの電気銅めっき皮膜を形成したが、樹脂基材と導電性皮膜間の密着力が不十分であるため、電気めっき皮膜形成時に導電性皮膜の剥離が発生し、ピール強度測定は不可能であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a conductive film on a resin substrate.
[0002]
[Prior art]
Electrolytic copper plating has long been used as a method for forming a conductive film on a non-conductive resin in plating treatments for plastic resin products and plating treatments for printed wiring boards, such as through-hole plating and semi-additive plating. Yes. However, the environment surrounding the electroless copper plating process is becoming more severe year by year due to the carcinogenic problem of formalin blended in the electroless copper plating solution, the regulation of EDTA, the restriction of discarding the waste liquid into the ocean and the like.
[0003]
In general, since the electroless plating process is composed of many steps, it takes a long time and there are problems such as complicated management of the electroless plating solution. For this reason, there is a strong demand for a new method for forming a conductive film in a resin product that can replace electroless plating.
[0004]
Incidentally, in recent years, with the progress of downsizing, thinning, and weight reduction of electronic devices, the demand for higher density of printed wiring boards is becoming stricter. As methods for increasing the density of printed wiring boards, methods such as fine patterning, fine pitch, and high lamination can be considered. However, in recent years, there has been a strong demand for cost reduction, and without increasing the number of laminations, the conductor It is desired to improve the surface density of the circuit.
[0005]
In order to improve the surface density of the conductor circuit on the printed wiring board, it is necessary to make the circuit width and the circuit interval narrower, that is, to make a fine pattern of the circuit, in order to cope with such a fine pattern of the circuit. Therefore, it is necessary to keep the surface roughness of the surface of the resin base material, which is an insulating layer, to a minimum.
[0006]
In order to improve the adhesion of the conductive film to the surface of the resin base material, there is a method of using a so-called anchor effect by forming irregularities of about several μm on the surface of the resin layer when the circuit width is wide. In a printed wiring board having a high surface density of a conductor circuit, it is necessary to form a conductive film having high adhesion without roughening the resin surface.
[0007]
JP-A-8-209354 discloses a method in which an acidic group is introduced into a resin product, then treated with a metal ion-containing liquid, and then immersed in a solution containing a reducing agent to form a conductive film. Has been.
[0008]
However, in this method, when metal ions are reduced using a reducing agent-containing solution, the metal ions adsorbed and present in the resin surface layer diffuse to the resin surface, and relatively large metal particles are formed on the resin surface. Precipitation tends to lower the nucleation density of the metal fine particles. As a result, when the surface roughness of the resin substrate surface is small, the formed conductive film cannot obtain sufficient adhesion strength.
[0009]
For this reason, in order to cope with the fine patterning of the printed wiring board which is considered to be further developed in the future, development of a method capable of forming a conductive film having high adhesion even on a smooth resin surface is desired.
[0010]
[Problems to be solved by the invention]
The main object of the present invention is to provide a method for forming a novel conductive film that can replace the electroless plating method, and can form a conductive film having high adhesion even on a smooth resin surface. is there.
[0011]
[Means for Solving the Problems]
As a result of intensive research to achieve the above-mentioned problems, the present inventor has introduced an acidic group into a resin base material, then treated with a metal ion-containing liquid, and then treated the metal ions adsorbed or bound to the resin base material with water. According to the method of forming a conductive film by converting to a compound such as oxide, oxide, carbonate, sulfide, etc., surface diffusion, coarsening, etc. of the formed metal particles are suppressed. As a result, it has been found that it is possible to form a conductive film with good adhesion on the surface of a resin substrate having high smoothness, and the present invention has been completed here.
[0012]
That is, the present invention provides the following method for forming a conductive film.
1. A method for forming a conductive film on a resin substrate, which comprises treating the resin substrate by a method comprising the following steps:
(1) a step of introducing an acidic group into the resin base material;
(2) A step of bringing the resin substrate treated in the step (1) into contact with a metal ion-containing liquid,
(3) A step of converting the metal ion adsorbed or bound to the resin base material into the metal compound in the step (2),
(4) A step of reducing the resin substrate treated in the step (3) to form a conductive film on the resin substrate.
2. (1) The method according to item 1, wherein the acidic group introduced in the step is a sulfonic acid group, a carboxyl group or a phenolic hydroxyl group.
3. (3) The method according to item 1 or 2, wherein the metal compound formed in the step is a hydroxide, oxide, carbonate or sulfide.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereafter, each process of the formation method of the electrically conductive film of this invention is demonstrated in detail.
Step (1):
In the method of the present invention, an acidic group is first introduced into a resin substrate to be treated.
[0014]
There are no particular limitations on the type of resin base material that can be used in the present invention, as long as it is made of a resin having appropriate physical properties according to the purpose of use and can introduce acidic groups into the resin. Good. For example, when a sulfonic acid group is introduced by sulfonation, it is preferable to use a resin material made of a resin having a group that is relatively easy to sulfonate, such as an aromatic ring such as a benzene ring or a hydroxyl group. Of the resins having these groups, epoxy resins, polyimide resins, polyphenylene ether resins, vinyl resins, phenol resins, and the like are preferably used. Moreover, when introduce | transducing a carboxyl group, a polyimide resin etc. are used suitably, for example.
[0015]
The resin substrate may be composed of a single resin, or may be a mixture of a plurality of resins. For example, an epoxy resin can be used by mixing with a polyimide resin or a polyamide resin.
[0016]
Further, in the present invention, the resin base material to be processed is not limited to a molded article made only of a resin, and may be a composite in which a reinforcing material such as a glass fiber reinforcing material is interposed between resins, Or what formed the film | membrane by resin on the base material which consists of various raw materials, such as ceramics, glass, and a metal, may be used.
[0017]
A printed wiring board can be mentioned as an example of the resin base material.
[0018]
The acidic group introduced into the resin base material can be used without limitation as long as it can be introduced into the resin base material used as the object to be treated and can chemically adsorb or bond metal ions. In particular, examples of acidic groups that can be effectively used in the method of the present invention include sulfonic acid groups, carboxyl groups, phenolic hydroxyl groups, and the like, and preferred acidic groups include sulfonic acid groups, carboxyl groups, and the like. A particularly preferred acidic group is a sulfonic acid group.
[0019]
The method for introducing an acidic group is not particularly limited, and various methods are possible, and a known introduction method may be adopted as appropriate according to the type of the resin to be used and the acidic group.
[0020]
Below, an example of the method of introduce | transducing a sulfonic acid group as an acidic group is shown.
[0021]
The sulfonic acid group can be introduced into the resin base material by a known sulfonation reaction. As the sulfonating agent used in this case, various known sulfonating agents can be used, and examples thereof include sulfuric acid, fuming sulfuric acid, sulfur trioxide, chlorosulfuric acid, and sulfuryl chloride.
[0022]
Among these sulfonating agents, a production method in the case of using sulfuric acid will be specifically described. The sulfonation reaction can be usually performed by immersing the resin base material in a sulfuric acid aqueous solution. The sulfuric acid concentration used in the sulfonation reaction is generally about 70 to 90% by weight, preferably about 75 to 85% by weight. When the sulfuric acid concentration is less than 70% by weight, sulfonation takes time, which is not preferable. On the other hand, when it exceeds 90% by weight, the resin is easily dissolved and deteriorated. The treatment temperature for sulfonation is generally about 50 to 100 ° C., preferably about 60 to 80 ° C., although it depends on the type of resin to be sulfonated. The treatment time may vary depending on the degree of sulfonation, but generally may be about 1 to 60 minutes.
[0023]
The introduction amount of the sulfonic acid group can be adjusted by changing the concentration of the sulfonating agent, the treatment temperature, the treatment time, etc., and the treatment step with the metal ion-containing solution described later as the introduction amount of the sulfonic acid group increases. In this case, the amount of the metal adsorbed or bonded increases. Therefore, specific treatment conditions for sulfonation may be determined according to the required thickness of the conductive film.
[0024]
In the case of introducing a carboxyl group, a phenolic hydroxyl group, etc. as an acidic group, it can be carried out using a known reaction for introducing these groups, and is introduced appropriately depending on the type of resin used. You just have to decide the conditions. For example, when a carboxyl group is introduced, the carboxylation reaction may be carried out using acetic acid at a concentration of about 70 to 100% by weight, preferably about 80 to 90% by weight as a carboxylating agent. About reaction temperature, what is necessary is just to make it a temperature comparable as the case of sulfonation.
[0025]
In addition, in order to perform a subsequent process efficiently, it is preferable to perform a water washing process after the said process.
Step (2):
After introducing an acidic group into the resin substrate in the step (1) described above, the resin substrate is brought into contact with a solution containing metal ions. By this treatment, metal ions are adsorbed or bonded to the acidic groups introduced into the resin base material.
[0026]
The metal ion-containing liquid can be used without particular limitation as long as it is a solution containing metal ions in which the metal layer formed by the vapor phase reduction process in the subsequent step exhibits conductivity. Preferred examples of such metal ions include copper, nickel, cobalt, iron, palladium, gold, silver, and mixtures thereof.
[0027]
Metal ions are generally blended in a metal ion-containing liquid as a metal salt. The type of metal salt to be used is not particularly limited, and an appropriate soluble metal salt may be used depending on the type of metal. For example, in the case of copper ions, it can be blended in the form of copper sulfate, copper chloride, copper nitrate, copper acetate, basic copper carbonate and the like.
[0028]
The concentration of metal ions in the metal ion-containing liquid is usually suitably about 0.01 to 1 mol / liter, and preferably about 0.03 to 0.1 mol / liter.
[0029]
The metal ion-containing liquid is generally used as an aqueous solution. However, an organic medium such as methanol may be used depending on the metal ion used.
[0030]
If necessary, the metal ion-containing liquid may contain a buffering agent for maintaining pH, a complexing agent for preventing precipitation of metal ions, and the like.
[0031]
Since the pH of the metal ion-containing liquid gradually decreases due to the reaction between acidic groups and metal ions, the pH of the metal ion-containing liquid is weakly acidic when the metal ions are replenished in the form of hydroxide. It is appropriate to adjust the pH to about neutral, specifically about pH 2-6, preferably about 3-4.
[0032]
The method of bringing the solution containing metal ions into contact with the resin substrate is not particularly limited, but usually, the resin substrate into which acidic groups have been introduced in step (1) may be immersed in the metal ion-containing liquid. By this treatment, metal ions are adsorbed or bonded to the acidic groups introduced into the resin base material. The immersion treatment may be performed, for example, at a temperature of about 20 to 80 ° C., preferably about 25 to 80 ° C., for example, for about 1 to 10 minutes, preferably about 3 to 5 minutes.
[0033]
In addition, in order to perform a subsequent process efficiently, it is preferable to perform a water washing process after the said process.
Step (3):
After the treatment with the metal ion-containing liquid in the step (2), the metal ions adsorbed or bonded to the resin base material are converted into a metal compound. Although it does not specifically limit about the kind of metal compound to convert, For example, a hydroxide, an oxide, carbonate, sulfide etc. can be illustrated.
[0034]
The method for converting into these compounds is not particularly limited, and a known method capable of forming each metal compound described above may be appropriately employed depending on the type of metal ion.
[0035]
The following method can be illustrated as an example of the method for forming a metal compound.
[0036]
For example, when forming a hydroxide, the resin base material brought into contact with the metal ion-containing liquid in the step (2) may be immersed in an aqueous solution containing a hydroxide. As the hydroxide, any compound that can form hydroxide ions in an aqueous solution can be used without particular limitation. Examples of such hydroxides include alkali metal hydroxides such as NaOH and KOH, NH 4 OH and the like. Specific treatment conditions may be appropriately determined according to the type of metal ion, the type of hydroxide, etc. Usually, the hydroxide concentration is about 1 to 500 g / l, preferably about 1 to 50 g / l. It is sufficient to immerse in the aqueous solution at about 10 to 80 ° C., preferably about 20 to 40 ° C. for about 1 to 10 minutes, preferably about 3 to 5 minutes.
[0037]
In the case of forming an oxide, for example, after the hydroxide is formed by the above-described method, heat treatment may be performed. Although the heating temperature required for oxide formation changes with kinds of metal ion, what is necessary is just to usually set it as the heating temperature of about 100-200 degreeC.
[0038]
In the case of forming a sulfide, the resin base material brought into contact with the metal ion-containing liquid in the step (2) may be immersed in an aqueous solution containing sulfide. Any sulfide that can form sulfide ions in an aqueous solution can be used without particular limitation. Examples of such sulfides include sodium sulfide, potassium sulfide, ammonium sulfide and the like. Specific treatment conditions may be appropriately determined according to the type of metal ion, the type of sulfide, and the like. Usually, an aqueous solution having a sulfide concentration of about 1 to 100 g / l, preferably about 1 to 50 g / l. What is necessary is just to immerse in about 10-80 degreeC in the inside at a liquid temperature of about 20-40 degreeC for about 1 to 10 minutes, Preferably about 3 to 5 minutes.
[0039]
In addition, in order to perform a subsequent process efficiently, it is preferable to perform a water washing process after the said process.
[0040]
After the metal compound is formed by the various methods described above, a reduction treatment is performed in step (4) to be described later, so that the resin substrate surface is adsorbed to a thickness of about several μm by the treatment in step (2). The diffusion of metal ions present in the bond to the surface of the resin substrate is suppressed, and very fine metal particles with a particle size of several nanometers are formed inside the resin substrate, resulting in a very high nuclear density of the metal particles. To be high. For this reason, the conductive film to be formed has good conductivity and also exhibits high adhesion to a resin substrate having a smooth surface.
Step (4):
In the above-described step (3), after converting metal ions to metal compounds, a reduction treatment is performed to form a conductive film on the resin substrate.
[0041]
The method of the reduction treatment is not particularly limited, and any method may be used as long as the metal compound formed by the treatment in the step (3) can be reduced and metallized. For example, a method in which the resin substrate treated in step (3) is immersed in a solution containing a reducing agent, a method in which the resin substrate treated in step (3) is contacted with a reducing gas, and gas phase reduction is performed. Can be adopted.
[0042]
When reducing using a solution containing a reducing agent, the reducing agent can be used without particular limitation as long as it can reduce the metal compound to precipitate the metal. Usually, the solution containing a reducing agent is used as an aqueous solution. Examples of the reducing agent used in this case include sodium borohydride, potassium borohydride, dimethylamine borane (DMAB), trimethylamine borane (TMAB), hydrazine, formaldehyde, derivatives of these compounds, and sulfurous acid such as sodium sulfite. Examples thereof include salts and hypophosphites such as sodium hypophosphite. The reducing agent concentration in the aqueous solution is usually about 0.003 to 0.02 mol / liter, preferably about 0.005 to 0.009 mol / liter. If the reducing agent concentration is too low, the rate of the reduction reaction tends to be too slow. On the other hand, if the reducing agent concentration is too high, the deposited metal may drop off, which is not preferable. The reduction temperature may normally be about 20 to 90 ° C, and preferably about 25 to 80 ° C. The treatment time may be about 1 to 10 minutes, preferably about 3 to 5 minutes.
[0043]
The specific method of the gas phase reduction treatment is not particularly limited, and the metal substrate bonded or adsorbed to the resin substrate is reduced by bringing the resin substrate to be treated into contact with the reducing gas. Any method that can be metallized is acceptable. As the reducing gas, any gas having a reducing property may be used. For example, hydrogen gas, diborane gas, or the like can be used. Specific treatment conditions such as reaction temperature and reaction time may be appropriately determined according to the type of reducing gas used, the type of metal compound, and the like.
[0044]
For example, when hydrogen gas is used as the reducing gas, the resin base material to be treated may be placed in a hydrogen gas stream and contacted with hydrogen gas at a temperature of about 30 to 300 ° C. for about 5 to 60 minutes. . A specific treatment temperature may be appropriately determined in consideration of the heat resistance of the resin base material, the ease of reduction of the metal compound, and the like.
[0045]
By performing the reduction treatment by the above method, a conductive film excellent in adhesion, conductivity and the like can be formed.
[0046]
After the conductive film is formed by the method of the present invention, various treatments can be performed according to ordinary methods. For example, the formed conductive film can be used as a base film for various plating treatments. When conducting circuit formation by panel plating using the conductive film forming method of the present invention, for example, after forming a conductive film by the method of the present invention, an electrolytic copper plating process such as copper sulfate plating is performed. Just do it. In the semi-additive method, after the formation of the conductive film, each of the conventionally known methods such as electroless copper plating, resist pattern formation, electrolytic copper plating, solder plating, resist removal, and solder stripping as necessary. Processing may be performed sequentially.
[0047]
In addition, you may add well-known processes, such as a degreasing process, a water washing process, an etching process, and a rust prevention process, as needed.
[0048]
【The invention's effect】
The method of the present invention is a novel method for forming a conductive film that can be used in place of electroless plating. According to this method, a conductive film having excellent adhesion and conductivity can be formed on a smooth resin surface. . For this reason, the method of the present invention is a highly useful method as a method for forming a conductive film on a printed wiring board that is compatible with high density fine patterning such as a narrow circuit width and circuit interval.
[0049]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0050]
Example 1
Epoxy resin (FR-4 type) solution is completely cured on the circuit surface of a 50 x 100 x 1.6 mm circuit board made of compressed epoxy resin (FR-4 type) with 8 layers of glass cloth as reinforcement. The coating was applied so that the subsequent thickness was 100 μm, dried, and then completely cured at 150 ° C. to prepare a test sample. The resin surface of the test sample was highly smooth with an average surface roughness (Ra) of 100 nm or less.
[0051]
This test sample was immersed in a sulfuric acid solution having a concentration of 85% by weight at 70 ° C. for 5 minutes to introduce sulfonic acid groups on the resin surface.
[0052]
Then, after washing with water at room temperature for 1 minute, the test sample was immersed in a copper sulfate aqueous solution (pH 4.0) having a concentration of 0.05 mol / l at 50 ° C. for 3 minutes.
[0053]
Next, it was washed with water at room temperature for 1 minute, and immersed in an aqueous sodium sulfide solution having a concentration of 5 g / l at 25 ° C. for 10 minutes to convert copper ions adsorbed or bonded to the resin surface into copper sulfide.
[0054]
Thereafter, the test sample was immersed in an aqueous solution of NaBH 4 having a concentration of 0.03 mol / l for 1 minute at room temperature to perform a reduction treatment to form a conductive film.
[0055]
The sample formed with the conductive film by the above-described method was immersed in a 10% sulfuric acid aqueous solution at room temperature for 1 minute to activate the sample surface, and then the cathode current density was 2 A / dm 2 using an acidic copper sulfate plating bath. An electrolytic copper plating film having a thickness of 30 μm was formed under the conditions.
[0056]
A slit reaching a substrate having a width of 1 cm was inserted into the obtained copper plating film, and the 90 ° peel (peel) strength was measured.
[0057]
As a result, the peel strength was 0.6 kgf / cm or more, which was a practically sufficient value.
[0058]
From the above results, it was confirmed that according to the method of the present invention, a conductive film having high adhesion strength can be formed even on a resin surface having a high smoothness with an average surface roughness (Ra) of 100 nm or less.
[0059]
Comparative Example 1
A test film similar to that in Example 1 was used, and a conductive film was formed in the same manner as in Example 1 without performing the treatment of immersing in an aqueous sodium sulfide solution.
[0060]
Thereafter, the conductive film was activated using a 10% sulfuric acid aqueous solution in the same manner as in Example 1, and an electrolytic copper plating film having a thickness of 30 μm was formed using an acidic copper sulfate plating bath. Since the adhesion between the films was insufficient, peeling of the conductive film occurred when the electroplated film was formed, and peel strength measurement was impossible.
Claims (2)
(1)樹脂基材に酸性基を導入する工程、
(2)上記(1)工程で処理した樹脂基材を金属イオン含有液と接触させる工程、
(3)上記(2)工程において樹脂基材に吸着乃至結合した金属イオンを金属硫化物に変換する工程、
(4)上記(3)工程で処理した樹脂基材を還元処理して、該樹脂基材上に導電性皮膜を形成する工程。A method for forming a conductive film on a resin substrate, which comprises treating the resin substrate by a method comprising the following steps:
(1) a step of introducing an acidic group into the resin base material;
(2) A step of bringing the resin substrate treated in the step (1) into contact with a metal ion-containing liquid,
(3) A step of converting metal ions adsorbed or bonded to the resin base material into a metal sulfide in the step (2).
(4) A step of reducing the resin substrate treated in the step (3) to form a conductive film on the resin substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001192650A JP4632580B2 (en) | 2001-06-26 | 2001-06-26 | Method for forming conductive film on resin substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001192650A JP4632580B2 (en) | 2001-06-26 | 2001-06-26 | Method for forming conductive film on resin substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003013245A JP2003013245A (en) | 2003-01-15 |
JP4632580B2 true JP4632580B2 (en) | 2011-02-16 |
Family
ID=19031077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001192650A Expired - Fee Related JP4632580B2 (en) | 2001-06-26 | 2001-06-26 | Method for forming conductive film on resin substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4632580B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004026489B3 (en) * | 2004-05-27 | 2005-09-29 | Enthone Inc., West Haven | Process for the metallization of plastic surfaces |
JP4155315B2 (en) * | 2006-06-28 | 2008-09-24 | オムロン株式会社 | Method for producing metal film, base composition, metal film and use thereof |
JP4321652B2 (en) * | 2007-12-27 | 2009-08-26 | オムロン株式会社 | Method for producing metal film |
JP4321653B2 (en) * | 2007-12-27 | 2009-08-26 | オムロン株式会社 | Method for producing metal film |
JP4458188B2 (en) | 2008-09-26 | 2010-04-28 | オムロン株式会社 | Half mirror and manufacturing method thereof |
JP4853596B1 (en) | 2011-03-15 | 2012-01-11 | オムロン株式会社 | Sensor with metal oxide film and use thereof |
JPWO2022153995A1 (en) * | 2021-01-14 | 2022-07-21 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6393872A (en) * | 1986-10-09 | 1988-04-25 | Mitsubishi Metal Corp | Method for plating powder |
JPH02254172A (en) * | 1989-03-28 | 1990-10-12 | Hitachi Ltd | Production of thin film of metal or metal oxide |
JPH08209354A (en) * | 1994-12-07 | 1996-08-13 | Nippon Riironaale Kk | Formation of functional film on resin product |
JPH10139573A (en) * | 1996-10-30 | 1998-05-26 | Matsushita Electric Works Ltd | Undercoat layer for copper metallization of ceramic substrate |
JP2001073159A (en) * | 1999-09-01 | 2001-03-21 | Nippon Riironaaru Kk | Formation of electric conductive film on surface of polyimide resin |
-
2001
- 2001-06-26 JP JP2001192650A patent/JP4632580B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6393872A (en) * | 1986-10-09 | 1988-04-25 | Mitsubishi Metal Corp | Method for plating powder |
JPH02254172A (en) * | 1989-03-28 | 1990-10-12 | Hitachi Ltd | Production of thin film of metal or metal oxide |
JPH08209354A (en) * | 1994-12-07 | 1996-08-13 | Nippon Riironaale Kk | Formation of functional film on resin product |
JPH10139573A (en) * | 1996-10-30 | 1998-05-26 | Matsushita Electric Works Ltd | Undercoat layer for copper metallization of ceramic substrate |
JP2001073159A (en) * | 1999-09-01 | 2001-03-21 | Nippon Riironaaru Kk | Formation of electric conductive film on surface of polyimide resin |
Also Published As
Publication number | Publication date |
---|---|
JP2003013245A (en) | 2003-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6146700A (en) | Pretreating solution for electroless plating, electroless plating bath and electroless plating process | |
JP5461988B2 (en) | Metal laminated polyimide substrate and manufacturing method thereof | |
US4868071A (en) | Thermally stable dual metal coated laminate products made from textured polyimide film | |
US4832799A (en) | Process for coating at least one surface of a polyimide sheet with copper | |
JP2005537387A (en) | Metallization of non-conductive surfaces using silver catalyst and electroless metal composition | |
KR101468074B1 (en) | Conductive thin film by direct plating and method for manufacturing the same | |
US4894124A (en) | Thermally stable dual metal coated laminate products made from textured polyimide film | |
TW511438B (en) | Process for producing a circuitry comprising conducting tracks, pads and microvias | |
JP3475260B2 (en) | Method of forming functional coating on resin products | |
JP4632580B2 (en) | Method for forming conductive film on resin substrate | |
CN100363175C (en) | Bonding layer forming solution, method of producing copper-to-resin bonding layer using the solution, and layered product obtained thereby | |
JPH10256700A (en) | Manufacture of 2-layer flexible substrate | |
US5358602A (en) | Method for manufacture of printed circuit boards | |
JP2008109111A (en) | To-resin adhesive layer and manufacturing method of laminate using it | |
JP3824342B2 (en) | Manufacturing method of surface printed wiring board (SLC) | |
JP3846331B2 (en) | Method for producing fine particle dispersion | |
JPH01225390A (en) | Manufacture of electrically conductive plate | |
JP3973060B2 (en) | Circuit formation method by electroless plating using patterned selective silver deposition | |
US4728560A (en) | Electrical printed circuit boards | |
JP2014031576A (en) | Method for producing printed circuit board | |
JP3675091B2 (en) | Method for forming conductive film on polyimide resin surface | |
KR100235930B1 (en) | Printed wiring board and method for preparing the same | |
Dietz | Review of" Direct Plate" Processes & Assessment of the Impact on Primary Imaging Of Printed Wiring Boards | |
JP4572363B2 (en) | Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid | |
JPH05259611A (en) | Production of printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101001 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101026 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4632580 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |