JP4632184B2 - Magnetite particles and method for producing the same - Google Patents
Magnetite particles and method for producing the same Download PDFInfo
- Publication number
- JP4632184B2 JP4632184B2 JP2005005680A JP2005005680A JP4632184B2 JP 4632184 B2 JP4632184 B2 JP 4632184B2 JP 2005005680 A JP2005005680 A JP 2005005680A JP 2005005680 A JP2005005680 A JP 2005005680A JP 4632184 B2 JP4632184 B2 JP 4632184B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetite particles
- particles
- magnetite
- aqueous solution
- particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compounds Of Iron (AREA)
Description
本発明は、マグネタイト粒子及びその製造方法に関し、更に詳しくは、粒子表面に窪み部を有する、基本形状が10〜18面体でありケイ素化合物を含有することを特徴とする、特に静電複写磁性トナー用材料粉、静電潜像現像用キャリア用材料粉、塗料用黒色顔料粉等の用途に用いられるマグネタイト粒子及びその製造方法に関する。 The present invention relates to magnetite particles and a method for producing the same. More specifically, the present invention relates to a magnetite particle, in particular, an electrostatic copying magnetic toner having a depression on the particle surface, a basic shape of 10 to 18-hedron and containing a silicon compound. The present invention relates to magnetite particles used for applications such as material powders, electrostatic latent image developing carrier material powders, and black pigment powders for paints, and a method for producing the same.
最近、電子複写機、プリンター等の磁性トナー用材料として、水溶液反応によるマグネタイト粒子が広く利用されている。磁性トナーとしては各種の一般的現像特性が要求されるが、近年、電子写真技術の発達により、特にデジタル技術を用いた複写機、プリンターが急速に発達し、要求特性がより高度なものになってきた。 Recently, magnetite particles produced by an aqueous solution reaction have been widely used as materials for magnetic toners such as electronic copying machines and printers. Various general development characteristics are required for magnetic toners, but in recent years, due to the development of electrophotographic technology, especially copiers and printers using digital technology have rapidly developed, and the required characteristics have become more advanced. I came.
すなわち、従来の文字以外にもグラフィックや写真等の出力も要求されており、複写機、プリンターの中には1インチ当たり1200ドット以上の能力のものも現れ、感光体上の潜像はより緻密になってきている。そのため、現像での細線再現性の高さ、各環境下でも問題なく使用できること等が強く要求されている。 That is, in addition to conventional characters, output of graphics and photographs is also required, and some copiers and printers have a capacity of 1200 dots or more per inch, and the latent image on the photoconductor is more precise. It is becoming. For this reason, there are strong demands for high reproducibility of fine lines in development, and that they can be used without problems even in various environments.
また、最近の複写機、プリンターは高速化されてきており、機械本体の中で充填されているトナー粒子には機械的、電気的に相当なストレスがかかり、トナー粒子の破壊や、トナー表面からマグネタイト粒子が脱落するなどの問題が発生するため、マグネタイト粒子の脱離防止効果として樹脂との結着性の向上が強く求められてきた。 In addition, recent copying machines and printers have been increased in speed, and the toner particles filled in the machine body are subjected to considerable mechanical and electrical stress. Since problems such as magnetite particles falling off have occurred, an improvement in binding properties with resin has been strongly demanded as an effect of preventing magnetite particles from being detached.
このような目的に対して、酸化鉄に様々な機能を付与していくことがなされてきた。例えば、各種目的に応じた形状のマグネタイト粒子を得るための手段として、八面体を呈したマグネタイト粒子(特許文献1)、球状を呈したマグネタイト粒子(特許文献2)、六面体を呈したマグネタイト粒子(特許文献3)がそれぞれ開示されている。 For such purposes, various functions have been imparted to iron oxide. For example, as means for obtaining magnetite particles having various shapes, magnetite particles having octahedron (Patent Document 1), magnetite particles having spherical shape (Patent Document 2), magnetite particles having hexahedron ( Patent documents 3) are each disclosed.
これら各種形状のマグネタイト粒子において、樹脂との結着性向上のためには八面体粒子が最も好ましく、次いで六面体、最も結着性が悪いのは球状粒子であった。これは形状に起因して、球状粒子は樹脂から脱落しやすいのみならず、樹脂と接触する表面積は球状が最も小さくなることによるものであった。
しかし、球状粒子は、八面体粒子や六面体粒子に比べ、分散性や流動性に優れる等、静電複写磁性トナー用材料粉、静電潜像現像用キャリア用材料粉、塗料用黒色顔料粉等の用途に求められる好適な特徴を有している。
Of these various shapes of magnetite particles, octahedral particles are most preferred for improving the binding properties with the resin, followed by hexahedral particles, and spherical particles having the worst binding properties. This is because the spherical particles are not only easily removed from the resin due to the shape but also the surface area in contact with the resin is the smallest in the spherical shape.
However, spherical particles are superior in dispersibility and fluidity compared to octahedral particles and hexahedral particles, such as electrostatic powder magnetic toner material powder, electrostatic latent image developing carrier material powder, paint black pigment powder, etc. It has suitable characteristics required for the application.
そこで、近年、このような基本粒子形状に対して様々な改良がなされてきた。例えば、多面体を有するマグネタイト粒子(特許文献4)、粒子表面に窪みを有するマグネタイト粒子(特許文献5)がそれぞれ開示されている。 In recent years, various improvements have been made to such basic particle shapes. For example, magnetite particles having a polyhedron (Patent Document 4) and magnetite particles having a depression on the particle surface (Patent Document 5) are disclosed.
しかし、特許文献4に開示されているマグネタイト粒子は分散性改良を目的としており、樹脂との結着性を求めたものではない。また、特許文献5は樹脂との結着性を改善しているが、シリカを含有していないため、分散性において不十分である。
従って本発明は、前述した従来技術が有する種々の欠点を解消しうるマグネタイト粒子を提供することを目的とする。 Accordingly, an object of the present invention is to provide magnetite particles that can eliminate the various drawbacks of the above-described prior art.
すなわち、静電複写磁性トナー用材料粉、静電潜像現像用キャリア用材料粉、塗料用黒色顔料粉等の用途に要求される種々の特性を損なうことなく、かつ樹脂との結着性に優れたマグネタイト粒子を提供することを目的とする。 In other words, it does not impair various properties required for applications such as electrostatic copying magnetic toner material powder, electrostatic latent image developing carrier material powder, and black pigment powder for paints, and it can bind to resin. An object is to provide excellent magnetite particles.
本発明は、粒子表面に窪み部を有し、基本形状が10〜18面体であり、かつケイ素化合物を含有しており、
上記粒子表面にある窪み部の数が1つの粒子あたり2個以上8個未満であるマグネタイト粒子を提供することにより前記目的を達成したものである。
The present invention has a depression on the particle surface, the basic shape is a 10-18 plane, and contains a silicon compound ,
The object is achieved by providing magnetite particles having 2 or more and less than 8 indentations on the particle surface .
また、本発明は、主成分が第一鉄塩である水溶液と、水可溶性ケイ素塩、及び水酸化アルカリ水溶液と炭酸アルカリ水溶液の混合水溶液とを中和混合して得られる水可溶性ケイ素成分含有水酸化第一鉄スラリーを、pH8〜11を維持しながら酸化反応を行い、酸化反応が50%ないし95%進行した時点で更に水可溶性ケイ素塩を、生成するマグネタイト粒子に対し、ケイ素に換算して0.05〜1重量%添加し、引き続き酸化反応を継続することを特徴とするマグネタイト粒子の製造方法を提供するものである。
The present invention also provides water-soluble silicon component-containing water obtained by neutralizing and mixing an aqueous solution whose main component is a ferrous salt, a water-soluble silicon salt, and a mixed aqueous solution of an alkali hydroxide aqueous solution and an alkali carbonate aqueous solution. An oxidation reaction is performed on the ferrous oxide slurry while maintaining the pH of 8 to 11, and when the oxidation reaction proceeds 50% to 95%, a water-soluble silicon salt is converted into silicon with respect to the magnetite particles to be generated. The present invention provides a method for producing magnetite particles characterized by adding 0.05 to 1% by weight and continuing the oxidation reaction.
本発明のマグネタイト粒子は、粒子表面に窪み部を有し、基本形状が10〜18面体であり、かつケイ素化合物を含有しており、このようなマグネタイト粒子は、樹脂との結着力が格段に向上しており、静電複写磁性トナー用材料粉、静電潜像現像用キャリア用材料粉、塗料用黒色顔料粉等の用途に好適である。 The magnetite particle of the present invention has a depression on the particle surface, the basic shape is a 10-18 plane, and contains a silicon compound. Such a magnetite particle has a remarkable binding force with a resin. It is suitable for applications such as electrostatic copying magnetic toner material powder, electrostatic latent image developing carrier material powder, and black pigment powder for paint.
以下、本発明を、その好ましい形態に基づき説明する。 Hereinafter, the present invention will be described based on preferred forms thereof.
本発明でいうマグネタイト粒子とは、好ましくはマグネタイト(Fe3 O4 )を主成分とするものであって、中間組成のベルトライド化合物(FeOx・Fe2
O3 、0<X<1)、及びこれらの単独又は複合化合物にFe以外のSi、Al、Mn、Ni、Zn、Cu、Mg、Ti、Co、Zr、W、Mo、P等を少なくとも1種以上含むスピネルフェライト粒子等を必要な特性に応じて選択したものを含んでいても良い。
The magnetite particles referred to in the present invention are preferably composed mainly of magnetite (Fe 3 O 4 ), and an intermediate composition beltride compound (FeOx · Fe 2).
O 3 , 0 <X <1), and a single or composite compound of these other than Fe, Si, Al, Mn, Ni, Zn, Cu, Mg, Ti, Co, Zr, W, Mo, P, etc. A spinel ferrite particle containing at least seeds may be included depending on the required characteristics.
本発明のマグネタイト粒子の形状は、10〜18面体形状であることが重要であり、好ましくは12〜16面体形状である。その理由は、高速タイプの複写機、プリンターのトナー用に用いられる際、マグネタイト粒子の樹脂からの脱離を低減するためである。ここでいう10〜18面体形状とは6面体の8ヶ所の角が取れた14面体形状を中心とした角欠け多面体形状を指す。 It is important that the shape of the magnetite particles of the present invention is a 10-18 plane shape, preferably a 12-16 plane shape. The reason is to reduce detachment of magnetite particles from the resin when used for toner of a high-speed type copying machine or printer. The 10- to 18-hedron shape referred to here refers to a polygonal shape with missing corners centering on a 14-hedron shape having eight corners of a hexahedron.
具体的には、対象粒子を6面体(立方体)粒子と見立てた場合、6面体粒子の一辺の長さに対し、角欠け部の長さの比が0.1〜0.4である粒子を10〜18面体粒子と定義づける(14面体粒子に比べ、角欠けに過不足ある粒子についても、上記と同様に取扱うものとする)。 Specifically, when the target particles are assumed to be hexahedral (cubic) particles, particles having a ratio of the length of the corner missing portion to the length of one side of the hexahedral particles of 0.1 to 0.4. It is defined as 10 to 18-hedron particles (particles with excessive and insufficient corner defects compared to 14-hedron particles shall be handled in the same manner as described above).
この値が0.1未満の場合、当該粒子はほとんど6面体粒子と変わらず、このような粒子が粒子粉末中に多く存在すると、所期の目的である諸特性のバランス化を達成することが困難である。また、0.4を超える場合、当該粒子は限りなく8面体粒子に近づき、このような粒子が粒子粉末中に多く存在すると、上記不足の場合同様、所期の目的を達成することが困難である。 When this value is less than 0.1, the particles are almost the same as hexahedral particles, and when a large number of such particles are present in the particle powder, it is possible to achieve the balance of various properties, which is the intended purpose. Have difficulty. In addition, when it exceeds 0.4, the particles are infinitely close to octahedral particles, and when many such particles are present in the particle powder, it is difficult to achieve the intended purpose as in the case of the above shortage. is there.
また、面数が10未満のマグネタイト粒子の場合、樹脂中での分散性が劣り、逆に面数が18を超えるマグネタイト粒子の場合、その形状は極めて球形に似通ってくるため、分散性は良好なものの、樹脂から脱離しやすくなる。
なお、個々の粒子の面数は、SEM写真にて粒子表面の面数をカウントし、2倍換算値を用いるものとする。
Further, in the case of magnetite particles having a surface number of less than 10, the dispersibility in the resin is inferior, and conversely, in the case of magnetite particles having a surface number of more than 18, the shape is very similar to a spherical shape, so the dispersibility is good. However, it tends to be detached from the resin.
In addition, the number of faces of each particle is counted by counting the number of faces of the particle surface in the SEM photograph and using a double conversion value.
また、本発明のマグネタイト粒子は、粒子表面に窪み部を有するものである。この窪み部は、具体的には、粒子単面や面境界部に、粒子稜線に対し規則性を持たずに存在するものを指し、窪み部の形状としてはV字型に切れこんだ線状、半円形のようなディンプル状、直方体をくりぬいたような窪み、およびこれらを組み合わせたような形状等がある。この窪み部がない粒子が粒子粉末中に多く存在する場合、樹脂との結着性が十分ではない。 Moreover, the magnetite particle | grains of this invention have a hollow part in the particle | grain surface. Specifically, this dent refers to what exists on the single particle surface or the boundary between the particles without regularity with respect to the particle ridgeline, and the shape of the dent is a linear shape cut into a V shape. There are a dimple shape such as a semicircular shape, a depression obtained by hollowing out a rectangular parallelepiped, and a shape such as a combination thereof. When many particles having no dent are present in the particle powder, the binding property with the resin is not sufficient.
また、本発明のマグネタイト粒子はケイ素化合物を含有している。ケイ素化合物を含有しない場合、粒子表面に窪み部を有し、基本形状が10〜18面体であるマグネタイト粒子として存在しがたい。 The magnetite particles of the present invention contain a silicon compound. When the silicon compound is not contained, it is difficult to exist as magnetite particles having a depression on the particle surface and a basic shape of 10 to 18 planes.
また、本発明での1粒子あたりの窪み部の数としては、2箇所/粒子以上、8箇所/粒子未満であることが好ましい。窪み部の数が少ない場合、樹脂との結着性が十分ではなく、逆に窪み部の数が8箇所/粒子以上の場合、粒子表面に突起状の異形物を有す粒子が混在することとなり、マグネタイト粒子が破壊されやすくなり好ましくない。
In the present invention, the number of depressions per particle is preferably 2 locations / particle or more and less than 8 locations / particle. When the number of dents is small, the binding property with the resin is not sufficient, and conversely, when the number of dents is 8 places / particles or more , particles having protrusion-shaped irregularities are mixed on the particle surface. This is not preferable because the magnetite particles are easily broken.
また、窪み部の大きさはマグネタイト粒子の大きさに対して投影面積で20分の1以上の大きさであることが好ましい。この大きさが小さい場合、樹脂との混練時に樹脂が十分に入り込んでマグネタイト粒子の界面と結着することができずに本発明の効果が十分に得られない。逆に、窪み部の大きさの上限はマグネタイト粒子の大きさに対して投影面積で5分の1以下であることが好ましい。この大きさがこれよりも大きい場合、マグネタイト粒子の形状が破壊されやすい形状となってしまい、樹脂との混練時に破壊が進行し、好ましくない。樹脂との結着性向上の効果が十分に認められ、かつ、樹脂との混練時にマグネタイト粒子が破壊されない観点から、窪み部の大きさはマグネタイト粒子の大きさに対して投影面積で20分の1以上、5分の1以下が好ましい。 Moreover, it is preferable that the magnitude | size of a hollow part is a magnitude | size of 1/20 or more with a projection area with respect to the magnitude | size of a magnetite particle. When this size is small, the resin can sufficiently enter during kneading with the resin and cannot be bonded to the interface of the magnetite particles, so that the effect of the present invention cannot be sufficiently obtained. On the contrary, it is preferable that the upper limit of the size of the hollow portion is 1/5 or less in terms of the projected area with respect to the size of the magnetite particles. When this size is larger than this, the shape of the magnetite particles is easily broken, and the breakage progresses when kneaded with the resin, which is not preferable. From the viewpoint that the effect of improving the binding property with the resin is sufficiently recognized and the magnetite particles are not destroyed during the kneading with the resin, the size of the recess is 20 minutes in terms of the projected area relative to the size of the magnetite particles. 1 or more and 1/5 or less are preferable.
また、本発明のマグネタイト粒子に含有される前記ケイ素化合物の含有量は0.1〜2重量%であることが好ましい。含有されるケイ素化合物の量が、0.1重量%未満の場合、ケイ素化合物添加の効果が得られず、窪み部のある10〜18面体のマグネタイト粒子が得られないため、樹脂との結着性が不十分である。逆に、ケイ素化合物の含有量が2重量%を超える場合、磁気特性が低下したり、吸湿性が高くなり好ましくない。 Moreover, it is preferable that content of the said silicon compound contained in the magnetite particle | grains of this invention is 0.1 to 2 weight%. When the amount of the silicon compound contained is less than 0.1% by weight, the effect of adding the silicon compound cannot be obtained, and magnetite particles having 10-sided hexahedrons having depressions cannot be obtained. Insufficient sex. On the other hand, when the content of the silicon compound exceeds 2% by weight, the magnetic properties are deteriorated and the hygroscopicity is increased, which is not preferable.
また、本発明のマグネタイト粒子はチタン化合物を含有する方が好ましい。チタン化合物を含有することにより、特に飽和磁化が高くなる。含有されるチタン化合物の量としては0.1〜1重量%である。含有されるチタン化合物の量がチタンに換算して0.1重量%未満の場合、飽和磁化の効果が十分でなく、また、逆にチタン化合物の含有量が1重量%を超える場合、飽和磁化の更なる向上が期待できないため不経済である。 The magnetite particles of the present invention preferably contain a titanium compound. By containing the titanium compound, the saturation magnetization is particularly increased. The amount of the titanium compound contained is 0.1 to 1% by weight. When the amount of titanium compound contained is less than 0.1% by weight in terms of titanium, the effect of saturation magnetization is not sufficient, and conversely, when the content of titanium compound exceeds 1% by weight, saturation magnetization This is uneconomical because it cannot be expected to improve further.
さらに、本発明では、上記のような窪み部を有するマグネタイト粒子を含有するマグネタイト粒子粉末であり、好ましくは、上記窪み部を有する粒子が全粒子数に対して5個数%以上含有するものである。この含有比率が5個数%未満の場合、後述する樹脂との結着性が不十分であるなど、当該粒子の有する特徴を十分発揮できず、所期の効果を達成することが困難である。樹脂との結着性を十分に高めるためには上記窪み部を有する粒子が全粒子数に対して15個数%以上含有することが更に好ましい。 Furthermore, in the present invention, it is a magnetite particle powder containing magnetite particles having dents as described above, and preferably the particles having dents contain 5% by number or more based on the total number of particles. . When the content ratio is less than 5% by number, the characteristics of the particles cannot be sufficiently exhibited, such as insufficient binding property with a resin described later, and it is difficult to achieve the desired effect. In order to sufficiently enhance the binding property with the resin, it is more preferable that the particles having the dents contain 15% by number or more based on the total number of particles.
また、本発明のマグネタイト粒子の平均粒径としては、通常の湿式酸化法にて製造されるマグネタイト粒子のレベル相当で良く、その粒子サイズとしてはフェレ径にて0.05〜1μmである。さらに好ましくは0.1〜0.5μm、更に好ましくは0.1〜0.3μmである。 The average particle size of the magnetite particles of the present invention may correspond to the level of magnetite particles produced by a normal wet oxidation method, and the particle size is 0.05 to 1 μm in ferret diameter. More preferably, it is 0.1-0.5 micrometer, More preferably, it is 0.1-0.3 micrometer.
また、本発明のマグネタイト粒子は、好ましくはFeOを粒子全体に対して18質量%以上含有することが好ましい。更に好ましくは22%以上である。FeOが18質量%未満の場合、黒色度が低下し、赤みを呈するのみならず、飽和磁化も比較的低いものとなる。 The magnetite particles of the present invention preferably contain 18% by mass or more of FeO with respect to the entire particles. More preferably, it is 22% or more. When FeO is less than 18% by mass, the blackness is lowered and redness is exhibited, and the saturation magnetization is relatively low.
また、本発明のマグネタイト粒子に含有されるケイ素化合物は、一部粒子表面に露出している方が好ましい。その理由は、ケイ素が露出している方が流動性や分散性が良好になるためである。 Moreover, it is preferable that the silicon compound contained in the magnetite particles of the present invention is partially exposed on the particle surface. The reason is that fluidity and dispersibility are better when silicon is exposed.
上記粒子表面に露出したケイ素化合物量は、得られたマグネタイト粒子を1規定水酸化ナトリウムに一定時間懸濁させ、溶出したケイ素成分量をICPにて測定することにより求めることができる。この露出量は、マグネタイト粒子全体に対して、0.05〜1重量%であることが好ましい。露出しているケイ素化合物が0.05重量%未満の場合、窪み部が存在しないマグネタイトとなりやすい。また、露出しているケイ素化合物が1重量%を超える場合、比表面積が増大し、吸湿性が増すため好ましくない。 The amount of the silicon compound exposed on the particle surface can be determined by suspending the obtained magnetite particles in 1 N sodium hydroxide for a certain time and measuring the eluted silicon component amount by ICP. The exposure amount is preferably 0.05 to 1% by weight with respect to the whole magnetite particles. When the exposed silicon compound is less than 0.05% by weight, it tends to be magnetite having no depression. On the other hand, if the exposed silicon compound exceeds 1% by weight, the specific surface area increases and the hygroscopicity increases, such being undesirable.
次に、本発明のマグネタイト粒子の好ましい製造方法を説明する。
本発明のマグネタイト粒子の製造方法は、主成分が第一鉄塩である水溶液と、水可溶性ケイ素塩、及び水酸化アルカリ水溶液と炭酸アルカリ水溶液の混合溶液とを中和混合して得られる水可溶性ケイ素成分含有水酸化第一鉄スラリーをpH8から11に維持しながら酸化反応を行い、酸化反応が50%ないし95%進行した時点で更に水可溶性ケイ素塩を添加し、引き続き酸化反応を継続することを特徴とする。
Next, the preferable manufacturing method of the magnetite particle | grains of this invention is demonstrated.
The method for producing magnetite particles of the present invention comprises a water-soluble substance obtained by neutralizing and mixing an aqueous solution whose main component is a ferrous salt, a water-soluble silicon salt, and a mixed solution of an alkali hydroxide aqueous solution and an alkali carbonate aqueous solution. An oxidation reaction is performed while maintaining the silicon component-containing ferrous hydroxide slurry at a pH of 8 to 11, and when the oxidation reaction proceeds 50% to 95%, a water-soluble silicon salt is further added and the oxidation reaction is continued. It is characterized by.
上記第一鉄塩としては硫酸第一鉄、塩化第一鉄、硝酸第一鉄など、水可溶性の塩を用いることができる。水酸化アルカリとしては水酸化ナトリウム、水酸化カリウムなど、炭酸アルカリとしては炭酸ナトリウムなどを用いることができる。また、添加する水可溶性ケイ素塩としては、ケイ酸ナトリウムなどのケイ酸塩などを用いることができる。 As the ferrous salt, water-soluble salts such as ferrous sulfate, ferrous chloride, and ferrous nitrate can be used. Examples of the alkali hydroxide include sodium hydroxide and potassium hydroxide, and examples of the alkali carbonate include sodium carbonate. Moreover, as water-soluble silicon salt to add, silicates, such as sodium silicate, etc. can be used.
酸化反応開始当初の水酸化第一鉄スラリーに水可溶性ケイ素成分が含有されていない場合、10〜18面体形状を呈したマグネタイト粒子が生成しにくい。従って、酸化反応に用いる水酸化第一鉄スラリーには水可溶性ケイ素成分を含有させる必要があり、好ましくは水酸化第一鉄スラリー中の鉄イオンのモル数に対して、含有させる水可溶性ケイ素塩中のケイ素のモル数が0.1〜5モル%であると良く、形状と諸特性のバランスを考慮すると、更に好ましくは0.2〜3モル%とすると良い。この量が0.1モル%未満の場合、酸化反応を行う際のpHを8から11を維持しても、10〜18面体形状を呈したマグネタイト粒子を均一に得ることが難しい。逆に、5モル%を超える場合、10〜18面体形状を呈したマグネタイト粒子は得られるが、磁気特性の低下を招くため好ましくない。 When the ferrous hydroxide slurry at the beginning of the oxidation reaction does not contain a water-soluble silicon component, magnetite particles having a 10-to-18-hedron shape are hardly generated. Therefore, the ferrous hydroxide slurry used for the oxidation reaction needs to contain a water-soluble silicon component, and preferably contains the water-soluble silicon salt with respect to the number of moles of iron ions in the ferrous hydroxide slurry. The number of moles of silicon in the film is preferably 0.1 to 5% by mole, and more preferably 0.2 to 3% by mole in consideration of the balance between the shape and various properties. When this amount is less than 0.1 mol%, it is difficult to uniformly obtain magnetite particles having a 10-18 plane shape even if the pH during the oxidation reaction is maintained from 8 to 11. On the other hand, if it exceeds 5 mol%, magnetite particles having a 10- to 18-hedron shape can be obtained, but this is not preferable because the magnetic properties are deteriorated.
また、酸化反応をpH8から11に維持しないでマグネタイトの製造を行った場合、10〜18面体形状を呈したマグネタイト粒子を得るのが困難である。これは、前述した酸化反応開始当初の水酸化第一鉄スラリー中の水可溶性ケイ素成分含有の如何に関わらず、pHが8未満の場合、球状粒子が生成しやすく、また、pHが11を超える場合、八面体粒子が生成しやすくなるからである。 In addition, when magnetite is produced without maintaining the oxidation reaction at pH 8 to 11, it is difficult to obtain magnetite particles having a 10- to 18-hedron shape. This is because, when the pH is less than 8, spherical particles are likely to be formed, and the pH is more than 11 regardless of the water-soluble silicon component contained in the ferrous hydroxide slurry at the beginning of the oxidation reaction described above. In this case, octahedral particles are easily generated.
このpHを8から11に維持するためには、水酸化アルカリと炭酸アルカリを併用する。炭酸アルカリを併用するのは、弱アルカリ領域のpHである8から11の状態を、より安定的に維持させるためである。 In order to maintain this pH from 8 to 11, alkali hydroxide and alkali carbonate are used in combination. The reason why the alkali carbonate is used in combination is to maintain the state of 8 to 11 which is the pH of the weak alkali region more stably.
具体的には、第一鉄塩水溶液に含まれるFe2+イオン量に対する、水酸化アルカリ及び炭酸アルカリの総量の酸塩基等量を、1〜1.5とすることが好ましく、更に好ましくは1〜1.2とする。ここでいう酸塩基等量とは、Fe2+が1モルに対して水酸化物イオンの場合、2モルが1等量、Fe2+が1モルに対して炭酸アルカリの場合は1モルが1等量となることを意味する。すなわち、酸塩基反応で丁度中和することが1等量であり、1等量よりも大きい場合はアルカリ過多、1等量よりも小さい場合はFe2+過多であることを意味する。この等量が1未満の場合、あるいは1.5を超える場合、反応スラリーのpHを8から11に制御しにくい。また、水酸化アルカリの水酸化物イオンと炭酸アルカリの炭酸イオンのモル比は前者/後者が2〜40であることが10〜18面体粒子を容易に生成させることができるため好ましい。更に好ましくは5〜30である。 Specifically, the acid-base equivalent of the total amount of alkali hydroxide and alkali carbonate with respect to the amount of Fe 2+ ions contained in the ferrous salt aqueous solution is preferably 1 to 1.5, more preferably 1 to 1.5. Let 1.2. The acid-base equivalent herein means 1 equivalent of 2 moles when Fe 2+ is hydroxide ion with respect to 1 mole, and 1 mole is 1 equivalent when Fe 2+ is alkali carbonate with respect to 1 mole. It means to be a quantity. That is, it is 1 equivalent to just neutralize by acid-base reaction, and when it is larger than 1 equivalent, it means that the alkali is excessive, and when it is smaller than 1 equivalent, it is Fe 2+ excessive. When this equivalent amount is less than 1 or exceeds 1.5, it is difficult to control the pH of the reaction slurry from 8 to 11. The molar ratio of the hydroxide ion of alkali hydroxide to the carbonate ion of alkali carbonate is preferably 2 to 40 for the former / the latter because 10-18 plane particles can be easily formed. More preferably, it is 5-30.
また、反応の際のスラリー温度は70℃以上が好ましく、70〜100℃が更に好ましい。この温度が70℃未満の場合は、マグネタイト以外の酸化鉄も生成するため好ましくない。また、100℃を超える場合、本発明のマグネタイト粒子は得られるが、コストがかかり、工業的には好ましくない。 Moreover, the slurry temperature in the case of reaction has preferable 70 degreeC or more, and 70-100 degreeC is still more preferable. When this temperature is less than 70 ° C., iron oxide other than magnetite is also generated, which is not preferable. Moreover, when it exceeds 100 degreeC, although the magnetite particle | grains of this invention are obtained, cost starts and it is not industrially preferable.
また、本発明のマグネタイト粒子の製造方法においては、酸化反応を開始した後、水酸化第一鉄の消費量を観察し、反応が50%ないし95%進行した時点で更に水可溶性ケイ素塩を添加し、引き続き酸化反応を継続することも重要である。 Further, in the method for producing magnetite particles of the present invention, after the oxidation reaction is started, the consumption of ferrous hydroxide is observed, and when the reaction proceeds 50% to 95%, a water-soluble silicon salt is further added. It is also important to continue the oxidation reaction.
本発明のマグネタイト粒子に、意図的に窪み部を形成するには、ある程度マグネタイト粒子が生成した段階で、反応スラリーに水可溶性ケイ素塩を添加する必要がある。なぜ、反応過程で水可溶性ケイ素塩を添加すると、窪み部を有するマグネタイト粒子が生成するのかははっきりとは解明されていない。発明者らは、反応途中で添加された水可溶性ケイ素塩は、生成しつつあるマグネタイト粒子の特異な部分に吸着し、その部分はマグネタイト粒子の成長がストップし、ケイ素化合物が吸着した部分以外は成長が進行するため窪み部が発生すると推察している。 In order to intentionally form a depression in the magnetite particles of the present invention, it is necessary to add a water-soluble silicon salt to the reaction slurry when the magnetite particles are produced to some extent. It has not been clearly clarified why the addition of a water-soluble silicon salt in the reaction process produces magnetite particles having depressions. The inventors adsorbed the water-soluble silicon salt added in the middle of the reaction to a specific part of the magnetite particles that are being produced, and that part stopped the growth of the magnetite particles, except for the part where the silicon compound was adsorbed. It is presumed that a depression is generated due to the progress of growth.
ちなみに、前述の特許文献5にも窪みを有するマグネタイト粒子が開示されているものの、その製造方法においては、ケイ素成分の添加については言及されていない。後述の比較例でも示すとおり、特許文献5の製造方法において、ケイ素成分を反応開始当初のみ含有させた場合、マグネタイト粒子形状は多面体となるものの窪みは生じない。また、当該方法において、ケイ素成分を反応が50から95%進行した時点でのみ添加した場合は、マグネタイト粒子形状は六面体で、かつ窪みを生じない。このことからわかるように、本発明のマグネタイト粒子が、10〜18面体を呈し、かつ窪みが生じるメカニズムは、特許文献5に関するそれとは相違する特異なものである。 Incidentally, although the above-mentioned Patent Document 5 discloses magnetite particles having depressions, the manufacturing method does not mention addition of a silicon component. As shown in a comparative example described later, in the production method of Patent Document 5, when the silicon component is contained only at the beginning of the reaction, the magnetite particle shape becomes a polyhedron, but no depression is generated. Further, in this method, when the silicon component is added only when the reaction proceeds from 50 to 95%, the magnetite particle shape is a hexahedron and no dent is generated. As can be seen from the above, the mechanism in which the magnetite particles of the present invention exhibit a 10- to 18-hedron shape and a dent is generated is a peculiar one that is different from that of Patent Document 5.
本発明において、反応が50%ないし95%進行した時点で更に水可溶性ケイ素塩を添加する上で、反応進行が50%よりも早い段階で水可溶性ケイ素塩を添加した場合、ケイ素化合物の吸着により成長がストップした特異なサイトに再びマグネタイトの成長が始まり、窪み部が鮮明とならない。反応進行率が95%よりも遅い段階で水可溶性ケイ素塩を添加した場合、ケイ素化合物が吸着し、成長がストップする特異なサイトは確保されるものの、その後に成長するに十分な水酸化第一鉄が十分量残存せず、できあがった粒子に窪み部は存在し難い。上記添加時期については、好ましくは70〜95%、更に好ましくは80〜95%の間に水可溶性ケイ素塩を添加すれば良い。 In the present invention, when the water-soluble silicon salt is further added when the reaction proceeds from 50% to 95%, and the water-soluble silicon salt is added at a stage where the reaction proceeds at an earlier stage than 50%, the silicon compound is adsorbed. Magnetite begins to grow again at a unique site where growth has stopped, and the indentation does not become clear. When a water-soluble silicon salt is added at a stage where the reaction progress rate is slower than 95%, a unique site where the silicon compound is adsorbed and the growth stops is secured, but sufficient hydroxylation is sufficient for subsequent growth. A sufficient amount of iron does not remain, and the dents are unlikely to exist in the finished particles. About the said addition time, Preferably a water-soluble silicon salt should just be added between 70 to 95%, More preferably, it is 80 to 95%.
また、反応途中に添加する水可溶性ケイ素塩は、生成するマグネタイト粒子に対し、ケイ素に換算して0.05〜1重量%であることが好ましい。0.05重量%未満の場合、窪み部をもたせるのに十分でなく、また、1重量%以上の場合、ケイ素化合物がマグネタイト全体に吸着し、その結果成長するサイトが無くなり、新しく核が発生し、粒度分布に劣るものとなるおそれがある。
以上のことから、水可溶性ケイ素塩を添加するタイミングにより、窪みの発生が左右され、添加する量により窪み部の発生率がコントロールされるものと考えられる。窪み部を多くしたい場合、前述した好ましい範囲内で、できるだけ多くの水可溶性ケイ素塩を、早い段階で添加するのが好ましい。
Moreover, it is preferable that the water-soluble silicon salt added in the middle of the reaction is 0.05 to 1% by weight in terms of silicon with respect to the generated magnetite particles. If it is less than 0.05% by weight, it is not sufficient to give a dent, and if it is 1% by weight or more, the silicon compound is adsorbed to the entire magnetite, resulting in the absence of growing sites and new nuclei. The particle size distribution may be inferior.
From the above, it is considered that the generation of dents depends on the timing of adding the water-soluble silicon salt, and the generation rate of the dents is controlled by the amount added. When it is desired to increase the number of depressions, it is preferable to add as much water-soluble silicon salt as possible within the above-mentioned preferred range at an early stage.
また、本発明のマグネタイト粒子の製造方法においては、水可溶性ケイ素塩、及び水酸化アルカリ水溶液と炭酸アルカリ水溶液の混合水溶液との中和混合時に、水可溶性チタン塩を含有させることもできる。この操作により、前述したとおり、得られるマグネタイト粒子の飽和磁化を高めることができる。 Moreover, in the manufacturing method of the magnetite particle | grains of this invention, a water-soluble titanium salt can also be contained at the time of neutralization mixing with the water-soluble silicon salt and the mixed aqueous solution of alkali hydroxide aqueous solution and alkali carbonate aqueous solution. By this operation, as described above, the saturation magnetization of the obtained magnetite particles can be increased.
また、本発明のマグネタイト粒子は、更に粒子表面にアルミニウム化合物を被覆させても良い。これにより、分散性、流動性、電気抵抗などが向上するため好ましい。 Further, the magnetite particles of the present invention may be further coated with an aluminum compound on the particle surface. This is preferable because dispersibility, fluidity, electrical resistance and the like are improved.
また、本発明のマグネタイト粒子は、粒子表面にシリコーンオイル、シラン系、チタネート系などのカップリング剤をはじめとした有機処理剤を塗布しても良い。これにより、樹脂との更なる結着性向上が得られるため好ましい。 In addition, the magnetite particles of the present invention may be coated with an organic treating agent such as a silicone oil, silane-based or titanate-based coupling agent on the particle surface. Thereby, since the further improvement of binding property with resin is obtained, it is preferable.
また、本発明のマグネタイト粒子からなる粒子粉末は、圧縮、剪断、ヘラなで作用のある乾式の解砕機にて処理すると、分散性が向上するため好ましい。 In addition, it is preferable that the particle powder composed of the magnetite particles of the present invention is processed by a dry type crusher that works by compression, shearing, or spatula, because dispersibility is improved.
以下、実施例等により本発明を具体的に説明する。しかしながら、本発明の範囲はかかる実施例に制限されない。 Hereinafter, the present invention will be specifically described with reference to examples and the like. However, the scope of the present invention is not limited to such examples.
〔実施例1〕
硫酸第一鉄、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ソーダを表1に示す比率で混合し、ケイ素成分を含有した水酸化第一鉄を生成させた。このときのpHは10.3、液温は80℃であった。
[Example 1]
Ferrous sulfate, sodium hydroxide, sodium carbonate, and sodium silicate were mixed at a ratio shown in Table 1 to produce ferrous hydroxide containing a silicon component. At this time, the pH was 10.3 and the liquid temperature was 80 ° C.
このスラリーに空気を吹き込み酸化反応を開始させた。空気の吹き込み開始と同時に、未反応のFe2+濃度を測定し、反応進行率70%まで酸化を継続した。 Air was blown into the slurry to initiate the oxidation reaction. Simultaneously with the start of air blowing, the unreacted Fe 2+ concentration was measured, and oxidation was continued to a reaction progress rate of 70%.
反応進行率が70%に達した時点で、酸化反応を停止し、表1に示す量のケイ酸ソーダ水溶液を添加した。添加後、スラリーのpHは10.1であった。 When the reaction progress rate reached 70%, the oxidation reaction was stopped, and the amount of sodium silicate aqueous solution shown in Table 1 was added. After the addition, the pH of the slurry was 10.1.
更に引き続き、空気を吹き込み酸化反応を未反応のFe2+が消費されるまで継続させた。得られたマグネタイト粒子は通常の方法で洗浄、乾燥、解砕を行い、マグネタイト粒子を得た。得られたマグネタイト粒子は以下に示す方法で評価した。 Further, air was blown in and the oxidation reaction was continued until unreacted Fe 2+ was consumed. The obtained magnetite particles were washed, dried and crushed by ordinary methods to obtain magnetite particles. The obtained magnetite particles were evaluated by the following method.
<評価方法>
(a)粒子形状、粒子径、窪み部の観察
走査型顕微鏡(倍率5万倍)により、粒子形状、粒子径、及び100個の粒子のうち、窪み部を有する粒子の個数を求め、窪み部を有する粒子の割合を求めた。倍率5万倍の写真では粒子100個を同一視野に捕捉することはできないので、計測できる粒子が100個になるに十分な写真を撮影した。なお、窪み部の数は、窪み部を有する粒子全てについて、写っている窪み部の数を計測し、その数を2倍した値を粒子に存在する窪み部の数とした。2倍するのは、SEM写真に写っているのは粒子の表側のみであり、粒子の裏側にも同程度の窪み部が存在するものとみなし、換算するためである。
(b)粒子全体に対するSi及びTiの含有量
マグネタイト粒子を酸に完全に溶解し、ICPにてSi及びTiの含有量を求めた。
(c)粒子全体に対する粒子表面に露出しているSi量
マグネタイト粒子を1N−水酸化ナトリウム水溶液に10g/lの濃度で分散させ、50℃で4時間撹拌し、マグネタイト粒子を濾別した。ケイ素成分の溶出した水酸化ナトリウム水溶液をICPにて成分濃度を測定し、計算により粒子表面より溶解したケイ素量を求めた。
(d)FeO
マグネタイト粒子を硫酸にて溶解し、過マンガン酸カリウム標準液を用いた酸化還元滴定により分析した。
(e)飽和磁化
東英工業社製振動型磁力計VSM−P7型を使用し、外部磁場796kA/m下で測定した。
(f)樹脂との結着性評価
マグネタイト粒子、スチレン−アクリル系熱可塑性樹脂(三洋化成(株)製、TB−1000F)、帯電制御剤(オリエント化学社製、ボントロン S−34)及びワックス(三洋化成(株)製、ビスコール 550P)をそれぞれ重量比で100:100:1:2の割合で計量し、これらをヘンシェルミキサーにて混合後、2軸のニーダーを用いて180℃にて溶融混練を行った。得られた混練物を粗粉砕及び微粉砕した後、風力分級を行って、平均粒子径が7μmの粉末を得た。
得られた粉末20gをガラス製の容器に入れ、ペイントシェーカーにて1時間、および10時間振盪した後、脱落粒子の有無を走査型電子顕微鏡にて調べた。全く脱離が確認されなかったものをレベル1、粉体1粒子あたり3個程度のマグネタイト粒子脱落が認められたものをレベル1、それ以上の脱落が確認されたものをレベル2とした。
<Evaluation method>
(A) Observation of particle shape, particle diameter, and dent part Using a scanning microscope (magnification of 50,000 times), the particle shape, particle diameter, and the number of particles having a dent part among 100 particles are obtained, and the dent part is obtained. The proportion of particles having Since a photograph with a magnification of 50,000 cannot capture 100 particles in the same field of view, a sufficient photograph was taken to obtain 100 particles that can be measured. In addition, the number of hollow parts measured the number of reflected hollow parts about all the particles which have a hollow part, and made the value which doubled the number the number of hollow parts which exist in a particle | grain. The reason why the magnification is doubled is that the SEM photograph shows only the front side of the particle, and it is assumed that the same degree of depression is present on the back side of the particle, so that the conversion is performed.
(B) Content of Si and Ti with respect to the whole particle Magnetite particle | grains were melt | dissolved completely in the acid, and content of Si and Ti was calculated | required by ICP.
(C) The amount of Si exposed on the particle surface with respect to the whole particle Magnetite particles were dispersed in a 1N-sodium hydroxide aqueous solution at a concentration of 10 g / l, stirred at 50 ° C. for 4 hours, and the magnetite particles were separated by filtration. The component concentration of the aqueous sodium hydroxide solution from which the silicon component was eluted was measured by ICP, and the amount of silicon dissolved from the particle surface was determined by calculation.
(D) FeO
Magnetite particles were dissolved in sulfuric acid and analyzed by redox titration using a potassium permanganate standard solution.
(E) Saturation magnetization A vibration type magnetometer VSM-P7 manufactured by Toei Industry Co., Ltd. was used, and measurement was performed under an external magnetic field of 796 kA / m.
(F) Evaluation of binding property with resin Magnetite particles, styrene-acrylic thermoplastic resin (manufactured by Sanyo Chemical Co., Ltd., TB-1000F), charge control agent (manufactured by Orient Chemical Co., Ltd., Bontron S-34) and wax ( Sanyo Chemical Co., Ltd., Viscol 550P) was weighed at a ratio of 100: 100: 1: 2 by weight ratio, mixed with a Henschel mixer, and melt kneaded at 180 ° C. using a biaxial kneader. Went. The obtained kneaded material was coarsely pulverized and finely pulverized, followed by air classification to obtain a powder having an average particle size of 7 μm.
20 g of the obtained powder was put into a glass container and shaken with a paint shaker for 1 hour and 10 hours, and then the presence or absence of dropped particles was examined with a scanning electron microscope. The level at which no desorption was confirmed was Level 1, the level at which about 3 magnetite particles were dropped per powder particle was Level 1, and the level at which more than 3 was confirmed was Level 2.
〔実施例2〜6〕
表1に示す条件にて、実施例1に準じてマグネタイト粒子を製造し、実施例1と同様に評価した。なお、実施例2、4、及び6は硫酸チタニルを表1に示す比率にて反応開始時の水酸化鉄スラリーに含有させた。
[Examples 2 to 6]
Under the conditions shown in Table 1, magnetite particles were produced according to Example 1 and evaluated in the same manner as in Example 1. In Examples 2, 4, and 6, titanyl sulfate was contained in the iron hydroxide slurry at the start of the reaction at the ratio shown in Table 1.
〔比較例1〕
表1に示すとおり、反応開始時の水酸化鉄スラリーや反応途中のスラリーに、ケイ酸ソーダ添加を一切行わない以外は、実施例1に準じてマグネタイト粒子を製造した。得られたマグネタイト粒子は実施例1と同様に評価した。
[Comparative Example 1]
As shown in Table 1, magnetite particles were produced according to Example 1 except that no sodium silicate was added to the iron hydroxide slurry at the start of the reaction or the slurry in the middle of the reaction. The obtained magnetite particles were evaluated in the same manner as in Example 1.
〔比較例2〕
表1に示すとおり、反応途中のケイ酸ソーダ添加を行わないこと以外は、実施例1に準じてマグネタイト粒子を製造した。得られたマグネタイト粒子は実施例1と同様に評価した。
[Comparative Example 2]
As shown in Table 1, magnetite particles were produced according to Example 1 except that sodium silicate addition during the reaction was not performed. The obtained magnetite particles were evaluated in the same manner as in Example 1.
〔比較例3〕
表1に示すとおり、反応開始時の水酸化鉄スラリーにケイ酸ソーダを含有させないこと以外は、実施例1に準じてマグネタイト粒子を製造した。得られたマグネタイト粒子は実施例1と同様に評価した。
[Comparative Example 3]
As shown in Table 1, magnetite particles were produced according to Example 1 except that sodium silicate was not contained in the iron hydroxide slurry at the start of the reaction. The obtained magnetite particles were evaluated in the same manner as in Example 1.
〔比較例4及び5〕
表1に示すとおり、水酸化ナトリウム量や炭酸ナトリウム量を調整し、反応pHを変更した以外は、実施例1に準じてマグネタイト粒子を製造した。得られたマグネタイト粒子は実施例1と同様に評価した。
[Comparative Examples 4 and 5]
As shown in Table 1, magnetite particles were produced according to Example 1 except that the amount of sodium hydroxide and sodium carbonate were adjusted and the reaction pH was changed. The obtained magnetite particles were evaluated in the same manner as in Example 1.
〔比較例6〕
表1に示すとおり、酸塩基当量は実施例1と同様に調整するものの、水酸化ナトリウム及び炭酸ナトリウムの混合量を変更し、かつ反応開始時の水酸化鉄スラリーに添加するケイ酸ソーダの濃度を変更した以外は実施例1に準じてマグネタイト粒子を製造した。得られたマグネタイト粒子は実施例1と同様に評価した。
[Comparative Example 6]
As shown in Table 1, although the acid-base equivalent is adjusted in the same manner as in Example 1, the concentration of sodium silicate added to the iron hydroxide slurry at the start of the reaction is changed while changing the mixing amount of sodium hydroxide and sodium carbonate Magnetite particles were produced in the same manner as in Example 1 except that the above was changed. The obtained magnetite particles were evaluated in the same manner as in Example 1.
〔比較例7〕
表1に示すとおり、反応途中に添加するケイ酸ソーダの濃度を変更した以外は実施例1に準じてマグネタイト粒子を製造した。得られたマグネタイト粒子は実施例1と同様に評価した。
[Comparative Example 7]
As shown in Table 1, magnetite particles were produced according to Example 1 except that the concentration of sodium silicate added during the reaction was changed. The obtained magnetite particles were evaluated in the same manner as in Example 1.
表2に示す結果から明らかなように、各実施例で得られたマグネタイト粒子は、基本形状が10〜18面体であり、窪み部を有するマグネタイト粒子であり、樹脂との結着性評価結果が良好であった。 As is apparent from the results shown in Table 2, the magnetite particles obtained in each example are magnetite particles having a basic shape of 10 to 18 planes and having depressions, and the binding evaluation results with the resin are as follows. It was good.
これに対し、比較例1のマグネタイト粒子は、反応開始当初ケイ素成分が含有されていないため、生成した粒子は10〜18面体ではなく、6面体粒子であった。また、比較例1のマグネタイト粒子は粒子表面に本発明の窪み部が存在するものの、その窪み部の数が少なく、かつその形状が10〜18面体ではないため、ストレスを多く与えた際の樹脂との結着性に劣るものであった。
なお、比較例1は特許文献5記載の製造方法に基づいて製造されたマグネタイト粒子である。
On the other hand, since the magnetite particles of Comparative Example 1 did not contain a silicon component at the beginning of the reaction, the generated particles were hexahedral particles, not 10-18. In addition, although the magnetite particles of Comparative Example 1 have the dents of the present invention on the particle surface, the number of the dents is small and the shape is not a 10 to 18-hedron. It was inferior to the binding property.
In addition, the comparative example 1 is a magnetite particle manufactured based on the manufacturing method of patent document 5. FIG.
また、比較例2および3のマグネタイト粒子は、窪み部の存在しないマグネタイト粒子が生成し、その結果、樹脂との結着性が劣るものであった。 Moreover, the magnetite particles of Comparative Examples 2 and 3 produced magnetite particles having no dents, and as a result, the binding properties with the resin were inferior.
また、比較例4及び5のマグネタイト粒子は反応時のpHが8未満、あるいは11超であるため、生成した粒子がそれぞれ球状、八面体状であり、窪み部も存在しなかった。その結果、樹脂との結着性が劣るものであった。 In addition, since the magnetite particles of Comparative Examples 4 and 5 had a pH of less than 8 or more than 11 at the time of reaction, the generated particles were spherical and octahedral, respectively, and there were no depressions. As a result, the binding property with the resin was poor.
また、比較例6は酸塩基当量が比較例1とほぼ同じ値に調整されているものの、炭酸ナトリウムの比率が高いことと、更に、反応開始当初に添加されたケイ酸ソーダの量が多いことにより、生成した粒子の面数は20面体であった。また、反応途中には比較例1と同様にケイ酸ソーダが添加されているため、窪み部は比較例1とほぼ同じ割合で存在した。しかしながら、面数が20面体であるため、樹脂との結着性においては劣るものであった。 In Comparative Example 6, although the acid-base equivalent is adjusted to substantially the same value as Comparative Example 1, the ratio of sodium carbonate is high, and the amount of sodium silicate added at the beginning of the reaction is large. Thus, the number of faces of the generated particles was icosahedron. In addition, since sodium silicate was added in the middle of the reaction as in Comparative Example 1, the dents were present at almost the same ratio as in Comparative Example 1. However, since the number of faces is icosahedron, the binding property with the resin is inferior.
また、比較例7は反応途中に添加したケイ酸ソーダの量が多いため、窪み部の数が実施例1に対して多い粒子であり、樹脂との結着性が劣るものであった。この理由は、窪み部が多すぎて、粒子表面に突起状の異形物を有す粒子が増え、混練時のストレスにより粒子が破壊され、その結果マグネタイト粒子が樹脂から脱落したものと推察された。 Further, in Comparative Example 7, the amount of sodium silicate added during the reaction was large, so the number of depressions was larger than that in Example 1, and the binding property with the resin was poor. The reason for this was presumed that there were too many indentations, the number of particles having protrusion-shaped irregularities increased on the particle surface, the particles were destroyed by the stress during kneading, and as a result, the magnetite particles were dropped from the resin. .
Claims (7)
上記粒子表面にある窪み部の数が1つの粒子あたり2個以上8個未満であることを特徴とするマグネタイト粒子。 It has a depression on the particle surface, the basic shape is a 10-18 plane, and contains a silicon compound ,
Magnetite particles characterized in that the number of depressions on the particle surface is 2 or more and less than 8 per particle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005680A JP4632184B2 (en) | 2005-01-12 | 2005-01-12 | Magnetite particles and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005005680A JP4632184B2 (en) | 2005-01-12 | 2005-01-12 | Magnetite particles and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006193364A JP2006193364A (en) | 2006-07-27 |
JP4632184B2 true JP4632184B2 (en) | 2011-02-16 |
Family
ID=36799735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005005680A Expired - Fee Related JP4632184B2 (en) | 2005-01-12 | 2005-01-12 | Magnetite particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4632184B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5352067B2 (en) * | 2007-06-29 | 2013-11-27 | 三井金属鉱業株式会社 | Iron oxide particles powder |
JP5491708B2 (en) * | 2008-07-25 | 2014-05-14 | 三井金属鉱業株式会社 | Magnetite particles and method for producing the same |
US8545713B2 (en) | 2009-03-31 | 2013-10-01 | Toda Kogyo Corporation | Black magnetic iron oxide particles |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05286723A (en) * | 1992-04-09 | 1993-11-02 | Kanto Denka Kogyo Co Ltd | Fine glanular magnetite and its production |
JPH09241025A (en) * | 1996-03-07 | 1997-09-16 | Toda Kogyo Corp | Magnetic iron oxide particles, magnetic iron oxide powder for magnetic toner based on same, its production and magnetic toner using same |
JP2001089155A (en) * | 1999-09-20 | 2001-04-03 | Mitsui Mining & Smelting Co Ltd | Iron oxide particle and its production |
JP2001335325A (en) * | 2000-05-24 | 2001-12-04 | Mitsui Mining & Smelting Co Ltd | Iron oxide particles |
-
2005
- 2005-01-12 JP JP2005005680A patent/JP4632184B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05286723A (en) * | 1992-04-09 | 1993-11-02 | Kanto Denka Kogyo Co Ltd | Fine glanular magnetite and its production |
JPH09241025A (en) * | 1996-03-07 | 1997-09-16 | Toda Kogyo Corp | Magnetic iron oxide particles, magnetic iron oxide powder for magnetic toner based on same, its production and magnetic toner using same |
JP2001089155A (en) * | 1999-09-20 | 2001-04-03 | Mitsui Mining & Smelting Co Ltd | Iron oxide particle and its production |
JP2001335325A (en) * | 2000-05-24 | 2001-12-04 | Mitsui Mining & Smelting Co Ltd | Iron oxide particles |
Also Published As
Publication number | Publication date |
---|---|
JP2006193364A (en) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100407243B1 (en) | Magnetic Toner for Magnetic Toner and Manufacturing Method Thereof | |
JP4749733B2 (en) | Hydrophobic magnetic iron oxide particles | |
JP2013156614A (en) | Magnetic toner | |
EP3932869A1 (en) | Ferrite particles, electrophotographic developer carrier core material, electrophotographic developer carrier, and electrophotographic developer | |
JP4026982B2 (en) | Magnetite particles and method for producing the same | |
JP4632184B2 (en) | Magnetite particles and method for producing the same | |
JP4150881B2 (en) | Black magnetic iron oxide particle powder | |
JP5352067B2 (en) | Iron oxide particles powder | |
JPH05213620A (en) | Magnetite particles and its production | |
JP3510154B2 (en) | Iron oxide particles and method for producing the same | |
JP4735810B2 (en) | Magnetic iron oxide particle powder for magnetic toner and magnetic toner using the magnetic iron oxide particle powder | |
JP4259830B2 (en) | Magnetite particles | |
JP3958901B2 (en) | Method for producing iron oxide particles | |
JP3544317B2 (en) | Magnetite particles and method for producing the same | |
JP2001312095A (en) | Magnetic particle powder for magnetic toner | |
EP2891925B1 (en) | Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer | |
JP3578191B2 (en) | Magnetic iron oxide particles, magnetic iron oxide particle powder for magnetic toner mainly comprising the particles, and magnetic toner using the magnetic iron oxide particle powder | |
JP5180455B2 (en) | Magnetite particle powder | |
JP5310994B2 (en) | Magnetic iron oxide particle powder for magnetic toner and method for producing the same | |
JP5348368B2 (en) | Magnetic iron oxide particle powder and method for producing the same | |
JP3600754B2 (en) | Iron oxide particle powder | |
JP2003192351A (en) | Iron oxide particles | |
JP4454565B2 (en) | Magnetite particles | |
JP2004161551A (en) | Iron oxide particle and its production method | |
JPH10279313A (en) | Magnetite particle and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100810 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100818 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101108 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4632184 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |