JP4631926B2 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP4631926B2
JP4631926B2 JP2008108344A JP2008108344A JP4631926B2 JP 4631926 B2 JP4631926 B2 JP 4631926B2 JP 2008108344 A JP2008108344 A JP 2008108344A JP 2008108344 A JP2008108344 A JP 2008108344A JP 4631926 B2 JP4631926 B2 JP 4631926B2
Authority
JP
Japan
Prior art keywords
filling
gas sensor
filling portion
particles
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008108344A
Other languages
Japanese (ja)
Other versions
JP2008180737A (en
Inventor
元昭 佐藤
清美 小林
政伸 山内
並次 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008108344A priority Critical patent/JP4631926B2/en
Publication of JP2008180737A publication Critical patent/JP2008180737A/en
Application granted granted Critical
Publication of JP4631926B2 publication Critical patent/JP4631926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は,内燃機関の排気系に設置され,燃焼制御等に利用されるガスセンサに関する。   The present invention relates to a gas sensor installed in an exhaust system of an internal combustion engine and used for combustion control and the like.

自動車エンジンの排気系に設置され,エンジンの燃焼制御に用いるガスセンサとして次の構成のものが知られている。このガスセンサは,筒状のハウジングと該ハウジングに挿通配置されるガスセンサ素子と,上記ハウジングの基端側を覆う大気側カバーと,上記ハウジングの先端側を覆う被測定ガス側カバーとよりなる。   A gas sensor having the following configuration is known as a gas sensor installed in an exhaust system of an automobile engine and used for engine combustion control. This gas sensor includes a cylindrical housing, a gas sensor element inserted through the housing, an atmosphere-side cover that covers the base end side of the housing, and a measured gas-side cover that covers the distal end side of the housing.

ガスセンサ素子の先端は被測定ガス側カバーの内部に収納され,ここにおいて被測定ガスにさらされる。大気側カバーはガスセンサ素子の基端側を覆い,ガスセンサ素子から引き出される出力端子等が内部に収納される。   The tip of the gas sensor element is housed in the measured gas side cover and is exposed to the measured gas here. The atmosphere side cover covers the base end side of the gas sensor element, and an output terminal and the like drawn out from the gas sensor element are housed inside.

ガスセンサ素子とハウジングとの間は各種シール材,絶縁材,パッキン等が配置され,両者間は気密封止される。この箇所にて上記被測定ガス側カバー内の被測定ガス側雰囲気と,大気側カバー内の大気側雰囲気とが分離され,大気側雰囲気への被測定ガスの侵入が防止される。大気側雰囲気に被測定ガスが入り込んだ場合,ガス濃度の測定精度が低下するため,ガスセンサ素子とハウジングとの間の気密性は高ければ高いほどよい。   Various sealing materials, insulating materials, packings, and the like are disposed between the gas sensor element and the housing, and the two are hermetically sealed. At this location, the measured gas side atmosphere in the measured gas side cover and the atmospheric side atmosphere in the atmospheric side cover are separated, and the measured gas is prevented from entering the atmospheric side atmosphere. When the gas to be measured enters the atmosphere on the atmosphere side, the measurement accuracy of the gas concentration is lowered. Therefore, the higher the airtightness between the gas sensor element and the housing, the better.

しかしながら,被測定ガス中に含まれるガソリン等の液体成分が,ガスセンサ素子とハウジングとの間に配置された各種シール材,絶縁材,パッキン等の,内部,境界等に存在する微細な隙間等を染み透って,液体,もしくは気体の状態で大気側に浸入することがある。このような液体成分の浸入もガスセンサ測定精度低下の原因となる。   However, liquid components, such as gasoline, contained in the gas to be measured may cause fine gaps, etc. existing in the interior and boundaries of various sealing materials, insulating materials, packings, etc. disposed between the gas sensor element and the housing. It may penetrate into the atmosphere in a liquid or gaseous state. Such intrusion of liquid components also causes a reduction in gas sensor measurement accuracy.

本発明は,かかる従来の問題点に鑑みてなされたもので,ハウジングとガスセンサ素子との間に排気ガス成分,特にガソリン等の液体成分が浸入しがたいガスセンサを提供しようとするものである。   The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a gas sensor in which an exhaust gas component, particularly a liquid component such as gasoline, is difficult to enter between a housing and a gas sensor element.

そこで我々は鋭意研究した結果,以下の課題を新たに見出し本発明を導き出した。すなわち,下記に記した特定範囲外の細かい粒子が多い場合には,粉末充填材を加圧して充填部を形成したときに,粒子間に多くの空気を巻き込んでしまうために,形成した充填部の比重を上げることができない。また,一方上記特定範囲外の粗い粒子が多い場合には,粗い粒子が充分に崩れ難いため,充填部を形成する粒子に全体に均一に荷重がかからないため,部分的に比重が上がらない。このため,充填部の形成により高い成形圧力が必要となり,ガスセンサ素子が割れるなどの不具合を生じるおそれがある。   Therefore, as a result of earnest research, we found the following problems and derived the present invention. That is, when there are many fine particles outside the specific range described below, when the filler is formed by pressurizing the powder filler, a large amount of air is caught between the particles. The specific gravity cannot be increased. On the other hand, when there are many coarse particles outside the above specific range, the coarse particles are not easily broken down, and the particles forming the filling portion are not uniformly loaded, so that the specific gravity does not partially increase. For this reason, the formation of the filling portion requires a high molding pressure, which may cause problems such as cracking of the gas sensor element.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止されていることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a portion between the housing and the gas sensor element is filled with a powder filler formed by adding a filling auxiliary material. The gas sensor is hermetically sealed by the filled portion.

本発明におけるガスセンサの充填部は,該充填部を構成する粉末充填材に対し充填補助材が添加されている。このため,充填部中の粉末充填材間の間隙や,粒子同士の接触面を充填補助材が埋めることができ,充填部の一層の高密度化,粒子同士の密着性が向上し,高いシール性を得ることができる。さらに,充填部中の粉末充填材間の間隙が充填補助材により埋められるため,毛管現象による液体成分の浸入を生じ難い。   In the filling part of the gas sensor in the present invention, a filling auxiliary material is added to the powder filling material constituting the filling part. For this reason, the filling auxiliary material can fill the gaps between the powder fillers in the filling part and the contact surface between the particles, further increasing the density of the filling part, improving the adhesion between the particles, and high sealing. Sex can be obtained. Furthermore, since the gap between the powder fillers in the filling portion is filled with the filling auxiliary material, it is difficult for liquid components to enter due to capillary action.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,第1リン酸アルミニウム水溶液よりなる充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止され,上記ガスセンサ素子の表面には,多孔質材料で形成された凹凸層,電極保護層のいずれか1種以上が形成されており,上記凹凸層及び上記電極保護層の基端側の端部が,上記充填部の基端側の端部と同じか,または上記充填部の基端側の端部より先端側にあることを特徴とするガスセンサである。 The present invention has a housing and a gas sensor element inserted and disposed in the housing, and at least a portion between the housing and the gas sensor element is added with a filling auxiliary material made of a first aluminum phosphate aqueous solution. comprising Te powder filler is hermetically sealed by the filling unit filled, above the surface of the gas sensing element, the porous material uneven layer formed of any one or more of the electrode protective layer is formed The proximal end of the concavo-convex layer and the electrode protection layer is the same as the proximal end of the filling portion, or is closer to the distal end than the proximal end of the filling portion. It is a gas sensor characterized by this.

本発明におけるガスセンサにおいて,ガスセンサ素子の表面に凹凸層や電極保護層が形成されている。上記凹凸層の表面は凹凸があり,充填部をガスセンサ素子とハウジングとの間に形成する際,上記粉末充填材が凹凸層の表面にある凹凸を完全に埋めることができず,充填部と凹凸層との間に隙間や迷路構造が形成されることがある。また,凹凸層そのものが隙間を有する場合があり,凹凸層に存在する隙間を経由する毛管現象によって,液体成分が侵入することがある。   In the gas sensor according to the present invention, an uneven layer and an electrode protective layer are formed on the surface of the gas sensor element. The surface of the concavo-convex layer is uneven, and when the filling portion is formed between the gas sensor element and the housing, the powder filler cannot completely fill the concavo-convex on the surface of the concavo-convex layer, and the filling portion A gap or a maze structure may be formed between the layers. In addition, the concavo-convex layer itself may have a gap, and the liquid component may enter due to a capillary phenomenon that passes through the gap existing in the concavo-convex layer.

上記電極保護層も上記凹凸層と同様に,表面は凹凸があり,充填部をガスセンサ素子とハウジングとの間に形成する際,上記粉末充填材が電極保護層の表面にある凹凸を完全に埋めることができず,充填部と電極保護層との間に隙間や迷路構造が形成されることがある。また,電極保護層は後述するごとく検出しようとする特定ガスや被測定ガスを電極まで充分に拡散させる性能が必要であるため,電極保護層は隙間や微孔を数多く有する多孔質で構成されることが多い。よって,電極保護層の隙間や微孔を経由する毛管現象によって,液体成分が侵入することがある。   The electrode protective layer also has an uneven surface similar to the uneven layer, and when the filling portion is formed between the gas sensor element and the housing, the powder filler completely fills the unevenness on the surface of the electrode protective layer. In some cases, a gap or a maze structure may be formed between the filling portion and the electrode protective layer. In addition, as described later, the electrode protective layer is required to be capable of sufficiently diffusing a specific gas to be detected or a gas to be measured to the electrode, so that the electrode protective layer is made of a porous material having many gaps and micropores. There are many cases. Therefore, the liquid component may invade due to the capillary phenomenon that passes through the gaps or micropores in the electrode protective layer.

本発明では,ガスセンサ素子と充填部との間に隙間を形成したり,隙間や微孔を有する凹凸層,電極保護層の基端側の端部が,充填部の基端側の端部よりも先端側にある。このため,ガスセンサ素子表面の凹凸層や電極保護層と充填部との間を経由して浸入した液体成分を,充填部と凹凸層,電極保護層とが接していない箇所で絶つことができる。よって,本発明にかかるガスセンサでは高いシール性を得ることができる。   In the present invention, a gap is formed between the gas sensor element and the filling portion, or the concavo-convex layer having gaps or micropores, and the end portion on the base end side of the electrode protective layer is more than the end portion on the base end side of the filling portion. Is also on the tip side. For this reason, the liquid component which infiltrated via the uneven | corrugated layer on the surface of a gas sensor element or between an electrode protective layer and a filling part can be cut off in the location where the filling part, an uneven | corrugated layer, and an electrode protective layer are not contacting. Therefore, high sealing performance can be obtained with the gas sensor according to the present invention.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,粉末充填材が充填された充填部により気密的に封止され,上記粉末充填材は,充填前に分級により,細かい粒子及び粗い粒子を取り除いたことを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a part between the housing and the gas sensor element is hermetically sealed by a filling portion filled with a powder filler. The powder filler is a gas sensor characterized in that fine particles and coarse particles are removed by classification before filling.

発明におけるガスセンサは,分級により極端に細かい粒子と極端に粗い粒子を取り除くことによって,充填部を形成するときにかける荷重を,粉末充填材粒子全体に均一にかけることができるため,粉末充填材粒子が均一に崩れて,その粒子間を埋めることができる。さらに,充填部全体を通じて隙間の殆どない迷路構造が均一に形成されるために,被測定ガス側から基端側に至る充填部の浸透経路が長くなるために,低い荷重で充分な迷路構造を得ることができる。また,低い荷重で充填部を形成できる故に,ガスセンサ素子に割れや欠け,クラックが生じたり他の部材の損傷を生じるおそれがない。よって,液体成分が浸透し難く,高いシール性を備えた充填部を有するガスセンサを得ることができる。 The gas sensor according to the present invention removes extremely fine particles and extremely coarse particles by classification, so that the load applied when forming the filling portion can be uniformly applied to the entire powder filler particles. Particles collapse uniformly and can be filled between the particles. Furthermore, since a labyrinth structure having almost no gap is formed uniformly throughout the entire filling portion, the permeation path of the filling portion from the measured gas side to the base end side becomes long, so that a sufficient labyrinth structure can be obtained with a low load. Obtainable. In addition, since the filling portion can be formed with a low load, there is no possibility that the gas sensor element will be cracked, chipped, cracked or otherwise damaged. Therefore, the liquid monomer component is difficult to penetrate, it is possible to obtain a gas sensor having a filling unit having a high sealing property.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止され,上記粉末充填材は,充填前は,粒径が80〜5000μmである粒子が粉末充填材全体重量の80重量%以上を占めている状態にあることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a portion between the housing and the gas sensor element is filled with a powder filler formed by adding a filling auxiliary material. The above powder filler is in a state in which particles having a particle size of 80 to 5000 μm occupy 80% by weight or more of the total weight of the powder filler before filling. This is a featured gas sensor.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,粉末充填材が充填された充填部により気密的に封止され,上記粉末充填材は,充填前は,粒径が80〜5000μmである粒子が粉末充填材全体重量の80重量%以上を占めている状態にあり,上記ガスセンサ素子の表面には,凹凸層,電極保護層のいずれか1種以上が形成されており,上記凹凸層及び上記電極保護層の基端側の端部が,上記充填部の基端側の端部と同じか,または上記充填部の基端側の端部より先端側にあることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a part between the housing and the gas sensor element is hermetically sealed by a filling portion filled with a powder filler. The powder filler is in a state in which particles having a particle size of 80 to 5000 μm account for 80% by weight or more of the total weight of the powder filler before filling, and the surface of the gas sensor element is uneven. One or more of a layer and an electrode protection layer are formed, and the end portion on the base end side of the uneven layer and the electrode protection layer is the same as the end portion on the base end side of the filling portion, or the above It is a gas sensor characterized in that it is on the distal end side with respect to the end portion on the proximal end side of the filling portion.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止され,上記ガスセンサ素子の表面には,凹凸層,電極保護層のいずれか1種以上が形成されており,上記凹凸層及び上記電極保護層の基端側の端部が,上記充填部の基端側の端部と同じか,または上記充填部の基端側の端部より先端側にあることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a portion between the housing and the gas sensor element is filled with a powder filler formed by adding a filling auxiliary material. The surface of the gas sensor element is formed with at least one of a concavo-convex layer and an electrode protective layer on the surface of the gas sensor element. The gas sensor is characterized in that the end portion is the same as the end portion on the proximal end side of the filling portion or on the distal end side with respect to the end portion on the proximal end side of the filling portion.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止され,上記粉末充填材は,充填前は,粒径が80〜5000μmである粒子が粉末充填材全体重量の80重量%以上を占めている状態にあり,上記ガスセンサ素子の表面には,凹凸層,電極保護層のいずれか1種以上が形成されており,上記凹凸層及び上記電極保護層の基端側の端部が,上記充填部の基端側の端部と同じか,または上記充填部の基端側の端部より先端側にあることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a portion between the housing and the gas sensor element is filled with a powder filler formed by adding a filling auxiliary material. The above-mentioned powder filler is in a state where particles having a particle size of 80 to 5000 μm occupy 80% by weight or more of the total weight of the powder filler before filling. One or more of a concavo-convex layer and an electrode protective layer is formed on the surface of the gas sensor element, and the base end side end of the concavo-convex layer and the electrode protective layer is located on the base end side of the filling portion. The gas sensor is characterized in that it is the same as the end portion or at the tip end side from the end portion on the base end side of the filling portion.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止され,上記粉末充填材は,充填前に分級により,細かい粒子及び粗い粒子を取り除いてあることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a portion between the housing and the gas sensor element is filled with a powder filler formed by adding a filling auxiliary material. The gas sensor is hermetically sealed by a filled portion, and the powder filler is characterized by removing fine particles and coarse particles by classification before filling.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,粉末充填材が充填された充填部により気密的に封止され,上記粉末充填材は,充填前に分級により,細かい粒子及び粗い粒子を取り除き,上記ガスセンサ素子の表面には,凹凸層,電極保護層のいずれか1種以上が形成されており,上記凹凸層及び上記電極保護層の基端側の端部が,上記充填部の基端側の端部と同じか,または上記充填部の基端側の端部より先端側にあることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a part between the housing and the gas sensor element is hermetically sealed by a filling portion filled with a powder filler. Before the filling, the powder filler removes fine particles and coarse particles by classification, and on the surface of the gas sensor element, one or more of an uneven layer and an electrode protective layer are formed. A base end side end portion of the uneven layer and the electrode protection layer is the same as a base end side end portion of the filling portion or a tip end side of the base end side end portion of the filling portion. It is a gas sensor.

本発明は,ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止され,上記粉末充填材は,充填前に分級により,細かい粒子及び粗い粒子を取り除き,上記ガスセンサ素子の表面には,凹凸層,電極保護層のいずれか1種以上が形成されており,上記凹凸層及び上記電極保護層の基端側の端部が,上記充填部の基端側の端部と同じか,または上記充填部の基端側の端部より先端側にあることを特徴とするガスセンサである。   The present invention includes a housing and a gas sensor element inserted and disposed in the housing, and at least a portion between the housing and the gas sensor element is filled with a powder filler formed by adding a filling auxiliary material. The powder filling material removes fine particles and coarse particles by classification before filling, and either one of an uneven layer and an electrode protective layer is formed on the surface of the gas sensor element. The above is formed, and the end portion on the base end side of the concavo-convex layer and the electrode protective layer is the same as the end portion on the base end side of the filling portion, or from the end portion on the base end side of the filling portion. It is a gas sensor characterized by being at the tip side.

本発明は,上述した範囲にかかる大径な粒子よりなる粉末充填材から充填部が構成され,粉末充填材に充填補助材が添加され,凹凸層,電極保護層の基端側の端部が,充填部の基端側の端部よりも先端側にある,極端に細かい粒子,粗い粒子を分級により取り除くといった特徴を持ち,上述の作用効果から,ハウジングとガスセンサ素子との間に排気ガス成分,特にガソリン等の液体成分が浸入しがたいガスセンサを提供することができる。   In the present invention, the filling portion is composed of a powder filler composed of large-diameter particles in the above-mentioned range, a filling auxiliary material is added to the powder filler, and the end portion on the base end side of the uneven layer and the electrode protective layer is The exhaust gas component between the housing and the gas sensor element is characterized by removing extremely fine particles and coarse particles on the tip side of the base end side of the filling portion by classification, and from the above-mentioned effects. In particular, it is possible to provide a gas sensor in which liquid components such as gasoline are difficult to enter.

本発明において,80〜5000μmの範囲内にある粒径の粒子が粉末充填材全体の80重量%未満である場合は,粉末充填材を構成する粒子の粒径が細かすぎて,粉末充填材に含まれる空気の量が多く,充填の際に密度を高くすることが難しく,高い気密性を持つ充填部が得がたくなるおそれがある。また,さらに好ましい粉末充填材は,より多くの粒子が80〜5000μmの範囲内に存在することで,もっとも好ましいのは全ての粒子が上記範囲内にある粉末充填材である。   In the present invention, when particles having a particle size in the range of 80 to 5000 μm are less than 80% by weight of the entire powder filler, the particle size of the particles constituting the powder filler is too fine, Since the amount of air contained is large, it is difficult to increase the density at the time of filling, and there is a possibility that it is difficult to obtain a filled portion having high airtightness. Further, a more preferable powder filler is a powder filler in which more particles are present in a range of 80 to 5000 μm, and most preferable is a powder filler in which all particles are within the above range.

また,上記粉末充填材において,粒径が80μm未満である粉末が多い場合には,粉末充填材を成形して充填部とする時に充填部の中に残留する空気の量が多くなり,充填部の比重が上がらないために充填部のシール性を確保できない,という問題が生じるおそれがある。   Further, in the above powder filler, when there are many powders having a particle size of less than 80 μm, the amount of air remaining in the filling portion increases when the powder filler is formed into a filling portion, and the filling portion There is a possibility that the problem that the sealability of the filling portion cannot be secured because the specific gravity of the filler does not increase.

また,上記粉末充填材において,加圧充填して充填部を形成するときに比較的粗い粒子の隙間を粉末充填材粒子の一部が崩れながら充填する。上記粉末充填材の粒径が5000μm越える粉末が多い場合は,充填部の形成により高い圧力が必要となり,ガスセンサ素子が割れたり,他の部材(例えば実施例1の形態のガスセンサでは絶縁碍子等が損傷する)の損傷や劣化等が発生するおそれがある。   Further, in the above powder filler, when forming a filling portion by pressurizing and filling, a gap between relatively coarse particles is filled while a part of the powder filler particles collapses. If the powder filler has a particle size exceeding 5000 μm, a high pressure is required due to the formation of the filling portion, the gas sensor element is cracked, and other members (for example, the insulator in the gas sensor of the first embodiment has an insulator or the like). Damage or deterioration) may occur.

また,ガスセンサにかかる分級方法としては,乾式篩分級,湿式篩分級,気流を用いた重力式乾式分級,遠心式乾式分級,回転式乾式分級,液体を用いた沈降式湿式分級,機械的湿式分級,遠心式湿式分級等を利用することができる。   Gas sensor classification methods include dry sieve classification, wet sieve classification, gravity dry classification using airflow, centrifugal dry classification, rotary dry classification, sedimentation wet classification using liquid, and mechanical wet classification. Centrifugal wet classification can be used.

また,本発明の各ガスセンサにおけるガスセンサ素子について説明する。ガスセンサ素子は固体電解質体とこれに設けた一対の電極よりなる。電極の一方が測定すべき特定ガスを含む被測定ガス側雰囲気に接し,他方が基準ガスとなる大気側雰囲気に接するよう上記ガスセンサ素子は構成されている。ガスセンサ内部には被測定ガス側雰囲気と大気側雰囲気とが存在し,上記充填部が大気側雰囲気と被測定ガス側雰囲気とを分離する。   Moreover, the gas sensor element in each gas sensor of this invention is demonstrated. The gas sensor element includes a solid electrolyte body and a pair of electrodes provided on the solid electrolyte body. The gas sensor element is configured such that one of the electrodes is in contact with the measured gas side atmosphere containing the specific gas to be measured, and the other is in contact with the atmosphere side atmosphere serving as the reference gas. A gas sensor atmosphere and an atmosphere atmosphere exist inside the gas sensor, and the filling portion separates the atmosphere atmosphere and the gas atmosphere to be measured.

本発明の各ガスセンサにおけるガスセンサ素子としては,コップ型の固体電解質体の外側面及び内側面に一対の電極を設けた構成の素子を用いることができる。また,板状の固体電解質体に電極を設け,該固体電解質板と絶縁板等とを適宜積層して構成した素子を用いることもできる。   As a gas sensor element in each gas sensor of the present invention, an element having a configuration in which a pair of electrodes are provided on the outer side surface and the inner side surface of a cup-type solid electrolyte body can be used. Alternatively, an element in which an electrode is provided on a plate-shaped solid electrolyte body and the solid electrolyte plate and an insulating plate are appropriately laminated can be used.

なお,上記充填部のみでハウジングとガスセンサ素子との間が気密的に封止される構成もあるが,ガラスシール材等,他のシール材と上記充填部とを併用して,ハウジングとガスセンサ素子との間のシール性をより高く確保する構造を採用することもある。また,言うまでもないが,他の形状のガスセンサ,例えば積層型のガスセンサ素子にも適用することができ,同様の効果を得ることができる。   In addition, there is a configuration in which the housing and the gas sensor element are hermetically sealed only by the filling portion. However, the housing and the gas sensor element are combined with another filling material such as a glass sealing material and the filling portion. In some cases, a structure that ensures higher sealing performance between the two is employed. Needless to say, the present invention can also be applied to gas sensors having other shapes, for example, stacked gas sensor elements, and the same effects can be obtained.

また,上記ガスセンサ素子としては,被測定ガス中の酸素濃度を測定する素子,またガスセンサを自動車エンジンの排気系に設置する際には,空燃比等を測定する素子,被測定ガス中のNOx,CO,HC等を測定する素子等を用いることができる。   The gas sensor element includes an element for measuring the oxygen concentration in the gas to be measured, an element for measuring the air-fuel ratio, etc. when the gas sensor is installed in the exhaust system of an automobile engine, NOx in the gas to be measured, An element for measuring CO, HC, or the like can be used.

また,上記粉末充填材は,充填前は,粒径が100〜1000μmである粒子が粉末充填材全体の80重量%以上を占めている状態にあることが好ましい。このような粉末充填材を用いることで,充填部の比重がより高くなり,高いシール性を持つ充填部を得ることができる。   Moreover, it is preferable that the said powder filler is in the state which the particle | grains whose particle size is 100-1000 micrometers occupies 80 weight% or more of the whole powder filler before filling. By using such a powder filler, the specific gravity of the filling portion becomes higher and a filling portion having high sealing properties can be obtained.

上記粉末充填材において,粒径が100μ未満である粒子が多い場合は,充填部の中に残留する空気の量が多くなり,充填部の比重が少し上がり難くなるために,充填部に高いシール性を十分に確保できないおそれがある。   In the above powder filler, when there are many particles having a particle size of less than 100 μm, the amount of air remaining in the filling portion increases, and the specific gravity of the filling portion is hardly increased. There is a risk that sufficient sex cannot be secured.

また,粒径が1000μmを越える粒子が多い場合,粒子が大きいために,充填部の充填状態にバラツキを生じやすく,粉末充填材に対する充填時の荷重の付与が充分に行うことが難しくなり,充填部のシール性が若干損なわれるおそれがある。   In addition, when there are many particles with a particle size exceeding 1000 μm, the particles are large, so the filling state of the filling part tends to vary, making it difficult to sufficiently apply the load when filling the powder filler. There is a possibility that the sealing performance of the part is slightly impaired.

また,上記粉末充填材は,充填前は,粒径が125〜710μmである粒子が粉末充填材全体の80重量%以上を占めている状態にあることが好ましい。これにより,比較的大径な粉末充填材を用いることで,粉末充填材粒子の中に残留する空気の量を殆どなくすことができ,また粉末充填材に荷重をかけて充填部を形成するときに充填部に巻き込まれる空気の量も殆どなくすことができる。   Moreover, it is preferable that the said powder filler is in the state which the particle | grains whose particle size is 125-710 micrometers occupies 80 weight% or more of the whole powder filler before filling. As a result, by using a relatively large diameter powder filler, the amount of air remaining in the powder filler particles can be almost eliminated, and when a filling portion is formed by applying a load to the powder filler. In addition, the amount of air caught in the filling portion can be almost eliminated.

さらに粒径710μmより大という極端に粗い粒子も少なくすることで,充填部を形成する時の荷重を,粉末充填粒子全体に均一にかけることができるため,充填部の成形比重を均一に高くすることができ,高いシール性を安定的に得ることができる。さらに,荷重が粉末充填材に均一にかかるが故に,比較的低い荷重で充填部の比重を高くすることができる。   Furthermore, by reducing the number of extremely coarse particles larger than the particle size of 710 μm, the load when forming the filling portion can be uniformly applied to the entire powder filling particles, so that the specific gravity of the filling portion is increased uniformly. And high sealing performance can be obtained stably. Furthermore, since the load is uniformly applied to the powder filler, the specific gravity of the filled portion can be increased with a relatively low load.

また,発明において,上記粉末充填材は,充填前に分級により,粒径が80μm未満である粒子が粉末充填材全体の10重量%以下を占めるまで細かい粒子を取り除いたことが好ましい。これにより,極端に細かい粒子が少なくなるために充填部を形成したときに,粒子間の隙間に存在する細かい粒子が少なくなり充填材の粒子同士の密着性が向上し,また粒子間に局部的に細かい粒子が充填した部分が少なくなるため,充填部全体にわたって隙間のほとんどない迷路構造が形成されるために,排気ガス成分やガソリン等の液体成分が侵入する浸透経路が長くなり,高いシール性を得ることができる。   In the invention, it is preferable that fine particles are removed from the powder filler by classification before filling until particles having a particle size of less than 80 μm occupy 10% by weight or less of the entire powder filler. As a result, the number of fine particles existing in the gaps between the particles is reduced when the filler is formed because extremely fine particles are reduced, and the adhesion between the particles of the filler is improved. Since there are fewer parts filled with fine particles, a labyrinth structure with almost no gaps is formed throughout the entire filling part, so that the permeation path through which liquid components such as exhaust gas components and gasoline enter penetrates and has high sealing performance. Can be obtained.

また,上記粉末充填材は,充填前に分級により,粒径が100μm未満である粒子が粉末充填材全体の10重量%以下を占めるまで細かい粒子を取り除いたことが好ましい。これにより極端に細かい粒子が極めて少なくなるために,充填部を形成したときに,粒子間の隙間に存在する細かい粒子もさらに少なくなり充填材の粒子同士の密着性が向上する。また,粒子間に局部的に細かい粒子が充填した部分が少なくなるため,隙間がさらにほとんどない迷路構造が形成されるために,排気ガス成分やガソリンなどの液体成分が浸入する浸透経路がさらに長く,かつ侵透し難くなり,充填部の高いシール性が確保できる。   Moreover, it is preferable that fine particles are removed from the powder filler by classification before filling until particles having a particle size of less than 100 μm occupy 10% by weight or less of the entire powder filler. As a result, the number of extremely fine particles is extremely reduced. Therefore, when the filling portion is formed, the fine particles present in the gaps between the particles are further reduced, and the adhesion between the particles of the filler is improved. In addition, since there are fewer portions where fine particles are locally filled between particles, a labyrinth structure with almost no gaps is formed, so that the permeation path through which liquid components such as exhaust gas components and gasoline enter can be further extended. In addition, it becomes difficult to penetrate and a high sealing performance of the filling portion can be secured.

また,上記粉末充填材は,充填前に分級により,粒径が125μm未満である粒子が粉末充填材全体の10重量%以下を占めるまで細かい粒子を取り除いたことが好ましい。これにより,極端に細かい粒子が殆どなくなるために,充填部を形成したときに,粒子間の隙間に存在する細かい粒子もほとんどなくなり,充填材粒子同士の密着性が向上する。   Moreover, it is preferable that fine particles are removed from the powder filler by classification before filling until particles having a particle size of less than 125 μm occupy 10% by weight or less of the entire powder filler. As a result, there are almost no extremely fine particles, and when the filling portion is formed, there are almost no fine particles present in the gaps between the particles, and the adhesion between the filler particles is improved.

また,粒子間に局部的に細かい粒子が充填した部分もほとんどなくなるため,充填部に形成される隙間のほとんどない迷路構造が充填部全体にわたって形成されるとともに,比較的粗い粒子が荷重により崩れて充填するために,粒子同士の接触面がより密に接触するために,隙間の量も小さくなる。よって,排気ガス成分やガソリン等の液体成分が浸入する隙間の,排気側から大気側に至る経路が長くなり,かつその隙間の量も小さくなるため,高いシール性を安定的に得ることができる。   In addition, since there are almost no portions where fine particles are locally filled between the particles, a labyrinth structure having almost no gap formed in the filling portion is formed over the entire filling portion, and relatively coarse particles are broken by the load. Since the contact surfaces of the particles are more closely contacted for filling, the amount of the gap is also reduced. Therefore, the gap from which the exhaust gas component and liquid components such as gasoline enter from the exhaust side to the atmosphere side becomes longer and the amount of the gap becomes smaller, so that high sealing performance can be stably obtained. .

また,上記粉末充填材は,充填前に分級により,粒径が5000μm以上である粒子が粉末充填材全体の10重量%以下を占めるまで粗い粒子を取り除いたことが好ましい。これにより,充填部を形成する際に粗い粒子を充分に荷重をかけて粒子間の隙間を埋めるのに高い成形圧力が必要になるけども,ガスセンサ素子に割れや欠け,クラックが生じたり,他の部材の損傷や劣化等を招くことなく,粗い粒子によって隙間の殆どない迷路構造が得られるために,高いシール性を得ることができる。よって,液体成分が侵透し難く,高いシール性を備えた充填部を有するガスセンサを得ることができる。   In addition, it is preferable that coarse particles are removed from the powder filler by classification before filling until particles having a particle size of 5000 μm or more occupy 10% by weight or less of the entire powder filler. As a result, a high molding pressure is required to fill the gaps between the particles by applying sufficient loads of coarse particles when forming the filling part, but the gas sensor element is cracked, chipped, cracked, or other Since a labyrinth structure having almost no gap is obtained by coarse particles without causing damage or deterioration of the member, high sealing performance can be obtained. Therefore, it is possible to obtain a gas sensor having a filling portion that is difficult for liquid components to permeate and has high sealing properties.

また,上記粉末充填材は,充填前に分級により,粒径が1000μm以上である粒子が粉末充填材全体の10重量%以下を占めるまで粗い粒子を取り除いたことが好ましい。これにより,充填部を形成する際に,部分的に極端に粗い粒子が集まった部分が殆ど無くなるため,高い成形圧力をかけることなく,粗い粒子を崩して,充填材の粒子間の隙間に充填することができる。故に,充填部全体にわたって隙間が殆ど無い迷路構造を形成することができるために,高いシール性を得ることができる。   In addition, the powder filler is preferably classified before classification until coarse particles having a particle diameter of 1000 μm or more account for 10% by weight or less of the entire powder filler. As a result, when forming the filling part, there is almost no part where extremely coarse particles are partially collected, so that the coarse particles are broken down and the gaps between the filler particles are filled without applying high molding pressure. can do. Therefore, since a maze structure with almost no gap can be formed over the entire filling portion, high sealing performance can be obtained.

また,上記粉末充填材は,充填前に分級により,粒径が710μm以上である粒子が粉末充填材全体の10重量%以下を占めるまで粗い粒子を取り除いたことが好ましい。これにより,充填部を形成する際に,粗い粒子が殆どないため,低い荷重で充填部を形成することができ,さらに充填部を形成したときの粗い粒子と細かい粒子の粒子径の差が小さくなり,比較的粗い粒子の隙間に入った比較的細かい粒子にも荷重がかかるため,隙間のほとんどない迷路構造を充填部全体にわたって形成することができるために,排気ガス成分やガソリン等の液体成分が浸入する浸透経路が長くなり,高いシール性を安定的に得ることができる。   In addition, it is preferable that coarse particles are removed from the powder filler by classification before filling until particles having a particle size of 710 μm or more occupy 10% by weight or less of the entire powder filler. As a result, when forming the filling portion, since there are almost no coarse particles, the filling portion can be formed with a low load, and the difference in particle size between the coarse particles and the fine particles when forming the filling portion is small. Since a load is applied to relatively fine particles that have entered relatively coarse particles, a labyrinth structure having almost no gap can be formed over the entire filling portion, so that liquid components such as exhaust gas components and gasoline can be formed. The permeation path through which the water penetrates becomes longer, and a high sealing performance can be obtained stably.

また,上記ハウジングと上記ガスセンサ素子との間に形成された充填部の軸方向長さは1.5〜15mmであることが好ましい。これにより,ハウジングとガスセンサ素子との間に充填性の高い充填部が得られ,充填部内,ガスセンサ素子と充填部との界面,ハウジングと充填部との界面から液体成分が侵入し難いガスセンサを得ることができる。   Moreover, it is preferable that the axial direction length of the filling part formed between the said housing and the said gas sensor element is 1.5-15 mm. As a result, a filling portion having a high filling property is obtained between the housing and the gas sensor element, and a gas sensor in which liquid components are difficult to enter from the filling portion, the interface between the gas sensor element and the filling portion, and the interface between the housing and the filling portion is obtained. be able to.

充填部の軸方向長さが1.5mm未満である場合には,充填部の強度が不足し,センサ実使用時の温度差から充填部に熱ストレスがかかった場合は充填部へクラック等が入り易くなるおそれがある。この場合,充填部に液体成分が侵入するおそれがある。   If the axial length of the filling portion is less than 1.5 mm, the strength of the filling portion will be insufficient, and if thermal stress is applied to the filling portion due to the temperature difference during actual use of the sensor, cracks will occur in the filling portion. There is a risk of entering easily. In this case, the liquid component may enter the filling portion.

充填部の軸方向長さが15mmより大きい場合は,充填部とガスセンサ素子との界面,充填部とハウジングとの界面において摩擦による抵抗が大きくなるおそれがある。よって,粉末充填材を加圧して充填部を形成する際に,充填部に均一な荷重をかけることが難しくなり,比重のバラツキが生じやすくなるおそれがある。この場合,充填部の比重が高くならなかった部分から液体成分の侵入が生じるおそれがある。   When the axial length of the filling portion is larger than 15 mm, there is a possibility that resistance due to friction may increase at the interface between the filling portion and the gas sensor element and at the interface between the filling portion and the housing. Therefore, when the powder filler is pressed to form the filling portion, it is difficult to apply a uniform load to the filling portion, and there is a possibility that variations in specific gravity are likely to occur. In this case, the liquid component may enter from the portion where the specific gravity of the filling portion has not increased.

ここに充填部の軸方向の長さとは,後述する図2に示すごとく,充填部の先端側の端部と充填部の基端側の端部との距離で,ガスセンサ素子の軸方向に平行に沿った長さをさしている。先端側の端部及び基端側の端部がそれぞれ径方向に不揃いである場合,充填部14と凹凸層203が接するガスセンサ素子2の外周部のうち充填部14の基端側の端部と凹凸層203の基端側の端部または電極保護層205の基端側の端部との軸方向の距離がもっとも短くなる外周部の位置における軸方向長さをそれぞれ採用する。   Here, the axial length of the filling portion is a distance between an end on the leading end side of the filling portion and an end on the proximal end side of the filling portion, as shown in FIG. 2 described later, and is parallel to the axial direction of the gas sensor element. The length along. When the end on the front end side and the end on the base end side are uneven in the radial direction, the end on the base end side of the filling portion 14 in the outer peripheral portion of the gas sensor element 2 where the filling portion 14 and the uneven layer 203 are in contact with each other The axial length at the position of the outer peripheral portion where the axial distance from the end on the base end side of the uneven layer 203 or the end on the base end side of the electrode protective layer 205 is the shortest is employed.

また,上記粉末充填材は,タルク,窒化ホウ素のいずれか1種以上を50重量%以上含有することが好ましい。上述した材料を用いることで,充填部の中に鱗片状の粒子が層状に充填した構造が形成されるために,球状の粒子を充填した場合よりも高い比重が得られ,排気ガス成分,特にガソリン等の液体成分が付着し,微細な隙間を染み透って基端側に至る透過経路が少なくなり,高いシール性を得ることができる。   The powder filler preferably contains 50% by weight or more of at least one of talc and boron nitride. By using the above-mentioned materials, a structure in which the scaly particles are packed in layers is formed in the packed part, so that a higher specific gravity is obtained than when spherical particles are packed, and exhaust gas components, particularly A liquid component such as gasoline adheres, and a permeation path that penetrates through a minute gap and reaches the base end side is reduced, and high sealing performance can be obtained.

また充填部−ガスセンサ素子の界面,充填部−ハウジングの界面においても,同様に上記粒子が層状に充填するために,充填部の内部と同様の効果が得られる。また,特に,タルク粉は鱗片状の粒子の層状化合物で,加圧すると層状方向にへき開し,タルクの鱗片状粒子の層状構造が壊されることなく,さらに粒子が軟らかいために,わずかに残る隙間を埋めるように鱗片粒子が崩れて充填部に充填するために,比重が高くなり,高いシール性の充填部を得ることができる。   In addition, since the particles are similarly filled in layers at the filling portion-gas sensor element interface and the filling portion-housing interface, the same effect as the inside of the filling portion can be obtained. In particular, talc powder is a lamellar compound of scaly particles that cleaves in the laminar direction when pressed, and does not destroy the lamellar structure of the talc scaly particles. Since the scale particles collapse and fill the filling portion so as to fill the surface, the specific gravity increases and a filling portion with high sealing properties can be obtained.

なお,タルク,窒化ホウ素のいずれか1種以上が50重量%未満である場合は,鱗片状の粒子が層状に充填した構造が充填部の中に形成されない部分が多く生じ,部分的にガソリン等の液体成分が染み透る微細な隙間が残り高いシール性が得られないおそれがある。   When one or more of talc and boron nitride is less than 50% by weight, a structure in which scale-like particles are packed in layers is not formed in the filled part, and gasoline or the like is partially formed. There is a possibility that a fine gap that allows the liquid component to permeate through remains and high sealing performance cannot be obtained.

本発明にかかるガスセンサにおいて,粉末充填材は充填補助材が添加されると共に他の材料を添加することもある。例えば少量のアルミナ粉末を添加して,粉末充填材の粒子同士が形成する隙間にアルミナ粉末等が入ることでガソリン等の液体成分が染み透る隙間を減らすことができる。その他,スピネル,ジルコニア,チタニア,シリカ等を添加することがある。   In the gas sensor according to the present invention, the powder filler may be added with other materials as well as the filling auxiliary material. For example, when a small amount of alumina powder is added and alumina powder or the like enters the gap formed by the particles of the powder filler, the gap through which liquid components such as gasoline penetrate can be reduced. In addition, spinel, zirconia, titania, silica, etc. may be added.

また,上記充填補助材は,室温(20℃)において液状である無機化合物水溶液からなることが好ましい。これにより,上記充填部を形成する際に,粉末充填材粉末同士が形成する隙間がわずかの隙間であっても,充填補助材は液状であるため効率的に充填され,充填部のより一層の高密度化を実現して,高いシール性を得ることができる。   Moreover, it is preferable that the said filling auxiliary material consists of inorganic compound aqueous solution which is liquid at room temperature (20 degreeC). As a result, when forming the filling portion, even if the gap formed between the powder filler powders is a slight gap, the filling auxiliary material is in a liquid state, so that it is efficiently filled. High density can be realized and high sealing performance can be obtained.

また,本発明において,上記無機化合物水溶液は,第1リン酸アルミニウム水溶液,ケイ酸ソーダ水溶液,ケイ酸カリウム水溶液のいずれか1種以上よりなることが好ましい。これにより,加圧時に粉末充填材の隙間に液状の化合物が入り込み,充填部の密度をさらに高めて,高密度な充填部を得ることができる。また,上記充填補助材は第1リン酸アルミニウム水溶液を少なくとも含むことがより好ましい。これにより,水分が粉末充填材に吸収されても,第一リン酸アルミニウム自体が液体であるために,液状の状態が維持され,粉末充填材の隙間に入り込むことができる。   In the present invention, the inorganic compound aqueous solution is preferably composed of at least one of a first aluminum phosphate aqueous solution, a sodium silicate aqueous solution, and a potassium silicate aqueous solution. Thereby, a liquid compound enters the gaps of the powder filler during pressurization, and the density of the filling portion is further increased to obtain a high-density filling portion. More preferably, the filling auxiliary material includes at least a first aluminum phosphate aqueous solution. As a result, even if moisture is absorbed by the powder filler, the liquid state is maintained because the first aluminum phosphate itself is a liquid, and the powder filler can enter the gap of the powder filler.

また,本発明において,上記充填補助材は,室温(20℃)において液状である無機化合物水溶液からなる場合,上記粉末充填材100重量部に対する上記充填補助材の添加量は0.1〜10重量部であることが好ましい。これにより,高密度の充填部を得ることができる。また,充填補助材が0.1重量部未満である場合は,粉末充填材の隙間を充分に埋めるだけの量に達しないため,高密度の充填部が得がたくなるおそれがある。一方,10重量部を越えると,充填補助材の量が過剰になるため,粉末充填材の充填性を阻害して充填部の比重が上がらなくなって,かえって充填部のシール性が低下するおそれがある。   Moreover, in this invention, when the said filling auxiliary material consists of inorganic compound aqueous solution which is liquid at room temperature (20 degreeC), the addition amount of the said filling auxiliary material with respect to 100 weight part of said powder fillers is 0.1-10 weight. Part. Thereby, a high-density filling part can be obtained. Moreover, when the filling auxiliary material is less than 0.1 part by weight, the amount does not reach an amount sufficient to fill the gap between the powder fillers, so that it is difficult to obtain a high-density filling part. On the other hand, if the amount exceeds 10 parts by weight, the amount of the filling auxiliary material becomes excessive, which impedes the filling property of the powder filling material and the specific gravity of the filling portion cannot be increased, and the sealing performance of the filling portion may be lowered. is there.

また,本発明において,上記充填補助材は,温度600℃以下の環境で液状の無機化合物からなることが好ましい。これにより,粉末充填材の粒子間の隙間に充填補助材が導入されて,ハウジングとガスセンサ素子との間に充填部を形成中,もしくは形成後に,充填補助材を液状化させることで,粉末充填材の粒子間の隙間を充填補助材によって埋めることができて,充填部の高いシール性を得ることができる。   In the present invention, the filling auxiliary material is preferably made of a liquid inorganic compound in an environment at a temperature of 600 ° C. or lower. As a result, the filling auxiliary material is introduced into the gap between the particles of the powder filling material, and the filling auxiliary material is liquefied during or after the filling portion is formed between the housing and the gas sensor element. The gap between the particles of the material can be filled with the filling auxiliary material, and a high sealing performance of the filling portion can be obtained.

また,本発明において,上記無機化合物は,水酸化バリウム,ホウケイ酸塩ガラス,アルミノケイ酸塩ガラス,ソーダ石灰ケイ酸塩ガラス,鉛ケイ酸塩ガラス,低融点ホウ酸塩ガラス,石灰アルミノ系ガラス,アルミン酸塩ガラスのいずれか1種以上よりなることが好ましい。これらの物質は比較的低温で液化させることが可能である。従って,充填部を加熱し,充填補助材を液化させて,粉末充填材の粒子間の隙間を埋める際の加熱が,ハウジング,ガスセンサ素子等のガスセンサを構成する部品の耐熱性を越えることがない。これにより,充填部中の排気ガス成分,特に排気ガス中に含まれるガソリン等の液体成分がしみ通る,透過経路を閉塞させることができ,充填部の高いシール性を得ることができる。   In the present invention, the inorganic compound includes barium hydroxide, borosilicate glass, aluminosilicate glass, soda lime silicate glass, lead silicate glass, low melting point borate glass, lime alumino glass, It is preferable to consist of any one or more of aluminate glass. These materials can be liquefied at a relatively low temperature. Therefore, heating when filling the filling portion, liquefying the filling auxiliary material, and filling the gaps between the particles of the powder filling material does not exceed the heat resistance of the parts constituting the gas sensor such as the housing and the gas sensor element. . As a result, the permeation path through which the exhaust gas components in the filling portion, particularly liquid components such as gasoline contained in the exhaust gas penetrate, can be closed, and high sealing performance of the filling portion can be obtained.

また,上記充填補助材が温度600℃以下の環境で液状の無機化合物からなる場合,上記粉末充填材100重量部に対する上記充填補助材の添加量は0.5〜30重量部であることが好ましい。これにより,高密度の充填部を得ることができる。充填補助材の量が0.5重量部未満である場合は,粉末充填材の隙間を閉塞するだけの量に達しないため,排気ガス成分,特に排気ガス中に含まれるガソリン等の液体成分がしみ通る透過経路を充分に閉塞させることができないおそれがある。充填補助材の量が30重量部より多い場合は,充填部を形成する際に,充填補助材が粉末充填材の隙間に過剰に入るために,粉末充填材の充填性を大幅に阻害し,隙間が多くなるおそれがある。そのため,充填補助材を液状化させても充填部を充分に閉塞させることができなくなり,優れたシール性を得ることができなくなるおそれがある。   Moreover, when the said filling auxiliary material consists of a liquid inorganic compound in the temperature of 600 degrees C or less, it is preferable that the addition amount of the said filling auxiliary material with respect to 100 weight part of said powder fillers is 0.5-30 weight part. . Thereby, a high-density filling part can be obtained. When the amount of the filling auxiliary material is less than 0.5 parts by weight, the amount does not reach an amount sufficient to close the gap between the powder fillers, so that the exhaust gas component, particularly the liquid component such as gasoline contained in the exhaust gas, There is a possibility that the permeation path that penetrates cannot be sufficiently blocked. When the amount of the filling auxiliary material is more than 30 parts by weight, the filling auxiliary material enters excessively into the gap of the powder filling material when forming the filling portion, which greatly impairs the filling property of the powder filling material, There may be more gaps. Therefore, even if the filling auxiliary material is liquefied, the filling portion cannot be sufficiently closed, and there is a possibility that an excellent sealing property cannot be obtained.

本発明にかかるガスセンサは,上記ガスセンサ素子の表面には,凹凸層,電極保護層のいずれか1種以上が形成されている。凹凸層はガスセンサ素子を構成する固体電解質体の表面に,電極保護層は固体電解質体表面に設けた電極を覆うように設ける。凹凸層は電極と電極保護層との密着性を高めるために設けてあり,電極保護層は被測定ガス中の被毒物質等から電極を保護するために設けてある。なお,電極保護層を通じて電極が被測定ガスと触れ合うために,電極保護層は多孔質材料で構成する必要がある。さらに,ガスセンサ素子に対し凹凸層のみ,電極保護層のみを設けることもできるし,両方を設けることもできる。   In the gas sensor according to the present invention, at least one of an uneven layer and an electrode protective layer is formed on the surface of the gas sensor element. The uneven layer is provided on the surface of the solid electrolyte body constituting the gas sensor element, and the electrode protective layer is provided so as to cover the electrode provided on the surface of the solid electrolyte body. The uneven layer is provided to improve the adhesion between the electrode and the electrode protective layer, and the electrode protective layer is provided to protect the electrode from poisonous substances in the measurement gas. Note that the electrode protective layer must be made of a porous material in order for the electrode to contact the gas to be measured through the electrode protective layer. Furthermore, only the concave / convex layer, only the electrode protective layer, or both can be provided for the gas sensor element.

また,本発明において,上記凹凸層の基端側の端部,上記電極保護層の基端側の端部いずれかが,上記充填部の基端側の端部より0.5mm以上先端側にあることが好ましい。凹凸層や電極保護層の端部が上記要件を満たすことで,排気ガス成分,特に排気ガス成分中に含まれるガソリン等の液体成分が短時間で浸透する透過経路が寸断されるために,充填部のシール性が向上する。仮に0.5mm未満である場合は,液体成分が透過するのに長時間かかる部分が短くなるために,充填部のシール性の余裕度が小さくなるおそれがある。   In the present invention, either the base end side end of the concavo-convex layer or the base end side end of the electrode protection layer is 0.5 mm or more from the base end side end of the filling portion to the front end side. Preferably there is. Filling because the edges of the uneven layer and the electrode protective layer meet the above requirements, the permeation path through which liquid components such as gasoline contained in the exhaust gas component, especially gasoline, penetrate in a short time is cut off. The sealability of the part is improved. If it is less than 0.5 mm, the portion that takes a long time for the liquid component to permeate is shortened, so that the margin of sealing performance of the filling portion may be reduced.

また,下限は0mmで,この下限より低い場合は,凹凸層または電極保護層と充填部との界面から液体成分が短時間で染み通り,充填部のシール性が確保できなくなるおそれがある。   Further, the lower limit is 0 mm, and if it is lower than this lower limit, the liquid component may permeate in a short time from the interface between the concavo-convex layer or the electrode protective layer and the filling portion, and the sealing property of the filling portion may not be ensured.

また,上記凹凸層,上記電極保護層のいずれかの基端側の端部が,上記充填部の先端側の端部と同じか,または上記充填部の先端側の端部より先端部側にあることが好ましい。これにより,排気ガス成分,特に排気ガス成分中に含まれるガソリン等の液体成分が短時間で浸透する透過経路が充填部とガスセンサ素子の界面から無くなるために,充填部のシール性が大幅に向上する。   In addition, the base end side of either the concavo-convex layer or the electrode protective layer is the same as the tip end side of the filling portion, or closer to the tip end side than the tip end side of the filling portion. Preferably there is. This eliminates the permeation path through which the exhaust gas components, especially liquid components such as gasoline contained in the exhaust gas components, permeate in a short time from the interface between the filling portion and the gas sensor element, thereby greatly improving the sealing performance of the filling portion. To do.

以下に,図面を用いて本発明の実施例について説明する。
(実施例1)本例のガスセンサ1は,図1,図2に示すごとく,ハウジング10と,該ハウジング10内に挿通配置されたガスセンサ素子2とを有し,上記ハウジング10と上記ガスセンサ素子2との間は粉末充填材が充填された充填部14により気密的に封止される。上記粉末充填材は,充填前は,粒径が80〜1000μmである粒子が全体重量の80重量%以上を占めている状態にある。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1) As shown in FIGS. 1 and 2, the gas sensor 1 of the present embodiment has a housing 10 and a gas sensor element 2 inserted and disposed in the housing 10, and the housing 10 and the gas sensor element 2 are arranged. Is hermetically sealed by a filling portion 14 filled with a powder filler. The powder filler is in a state in which particles having a particle size of 80 to 1000 μm account for 80% by weight or more of the total weight before filling.

以下,詳細に説明する。本例のガスセンサは,自動車エンジンの排気系に設置され,エンジンの燃焼制御に利用される空燃比センサである。図1に示すごとく,金属製,筒状のハウジング10に対しガスセンサ素子2が挿通配置され,上記ハウジング10の先端側は被測定ガス側カバー11が,基端側には大気側カバー12が設けてある。上記被測定ガス側カバー11は内側カバー111と外側カバー112よりなる二重構造で,双方に被測定ガス導入用の導入穴119が設けてある。この導入穴119を通じて外部から被測定ガスが被測定ガス側カバー11内に入り,カバー内に被測定ガス側雰囲気110を形成する。   This will be described in detail below. The gas sensor of this example is an air-fuel ratio sensor that is installed in the exhaust system of an automobile engine and is used for engine combustion control. As shown in FIG. 1, the gas sensor element 2 is inserted into a metallic, cylindrical housing 10, and a measured gas side cover 11 is provided at the distal end side of the housing 10 and an atmospheric side cover 12 is provided at the proximal end side. It is. The measured gas side cover 11 has a double structure consisting of an inner cover 111 and an outer cover 112, and both are provided with introduction holes 119 for introducing a measured gas. A measured gas enters the measured gas side cover 11 from the outside through the introduction hole 119, and the measured gas side atmosphere 110 is formed in the cover.

上記大気側カバー12の基端側には,撥水フィルタ122を介して外側カバー121を設け,大気側カバー12及び外側カバー121における撥水フィルタ122と対面する箇所に大気の導入穴129を設ける。この導入穴129を通じて外部から大気が大気側カバー12内に入り,大気側雰囲気120を形成する。   An outer cover 121 is provided on the base end side of the atmosphere-side cover 12 via a water-repellent filter 122, and an atmosphere introduction hole 129 is provided at a position facing the water-repellent filter 122 in the atmosphere-side cover 12 and the outer cover 121. . Air enters the atmosphere-side cover 12 from the outside through the introduction hole 129 and forms the atmosphere-side atmosphere 120.

上記ガスセンサ素子2は,コップ型の固体電解質体20と該固体電解質体20の外側面及び内側面に設けた一対の外側電極及び内側電極よりなる(図示略)。固体電解質体20の内部は大気室200が設けてあり,該大気室200は上記大気側雰囲気120と通じている。固体電解質体20の表面は凹凸層203(図2参照)である。また,固体電解質体20に設けた外側電極(図示略)を覆うように,拡散抵抗層,電極保護層205等が設けてある。   The gas sensor element 2 includes a cup-shaped solid electrolyte body 20 and a pair of outer electrodes and inner electrodes provided on the outer and inner surfaces of the solid electrolyte body 20 (not shown). An air chamber 200 is provided inside the solid electrolyte body 20, and the air chamber 200 communicates with the air atmosphere 120. The surface of the solid electrolyte body 20 is an uneven layer 203 (see FIG. 2). Further, a diffusion resistance layer, an electrode protection layer 205, and the like are provided so as to cover an outer electrode (not shown) provided on the solid electrolyte body 20.

ガスセンサ素子2の固体電解質体20の外側面には,径方向外方に突出した凸部201が設けてあり,ハウジング10の内側面から径方向内側に突出した受部101に対し,上記凸部201が支持される。上記凸部201の先端側と受部101との間は金属パッキン13が配置される。上記凸部201の基端側には充填補助材を含む粉末充填材からなる充填部14と絶縁碍子15とが配置され,絶縁碍子15の基端側の端面が,かしめ用の金属リング161を介して,ハウジング10の基端側の端部102によってかしめられる。   The outer surface of the solid electrolyte body 20 of the gas sensor element 2 is provided with a convex portion 201 projecting radially outward, and the convex portion is opposed to the receiving portion 101 projecting radially inward from the inner side surface of the housing 10. 201 is supported. A metal packing 13 is disposed between the leading end side of the convex portion 201 and the receiving portion 101. A filling portion 14 made of a powder filler containing a filling auxiliary material and an insulator 15 are arranged on the base end side of the convex portion 201, and the end face on the base end side of the insulator 15 has a metal ring 161 for caulking. And is caulked by the end portion 102 on the proximal end side of the housing 10.

また,上記大気側カバー12の内部にはガスセンサ素子2から引き出された端子211をガスセンサ外部に引き出されたリード線213に接続する接続金具212が配置される。また,符号221は大気側絶縁碍子,222は弾性絶縁部材,29はヒータである。   In addition, a connection fitting 212 for connecting the terminal 211 drawn from the gas sensor element 2 to the lead wire 213 drawn to the outside of the gas sensor is disposed inside the atmosphere side cover 12. Reference numeral 221 denotes an atmosphere side insulator, 222 denotes an elastic insulating member, and 29 denotes a heater.

上記粉末充填材はタルクよりなる。ここにタルクとは粘土鉱物の一種で,MgSi10(OH)を主成分とする天然材料で,粒径が80〜1000μmである粉末が全体重量の80重量%以上を占めている状態にある。 The powder filler is made of talc. Here, talc is a kind of clay mineral, which is a natural material mainly composed of Mg 3 Si 4 O 10 (OH) 2 , and powder having a particle size of 80 to 1000 μm accounts for 80% by weight or more of the total weight. Is in a state of being.

本例にかかる充填部14は次の要領で製造する。すなわち,充填部14は,ハウジング10に金属パッキン13,ガスセンサ素子2をいれて,タルクからなる粉末充填材を,事前にリング形状に予備成形した後に,ハウジング10内に供給し,荷重をかけて固定した後,絶縁碍子15,かしめ用金属リング161を入れて,ハウジング10の基端側の端部102によってかしめられる。   The filling portion 14 according to this example is manufactured in the following manner. That is, the filling unit 14 puts the metal packing 13 and the gas sensor element 2 in the housing 10 and preliminarily forms a powder filler made of talc into a ring shape, and then supplies the load into the housing 10 and applies a load. After fixing, the insulator 15 and the caulking metal ring 161 are inserted and caulked by the end portion 102 on the proximal end side of the housing 10.

なお,タルクの粉末については生産性を向上するため,事前にリング形状に成形した後ハウジングに導入することもできる。この場合のリング形状の予備成形については,タルクに保形性を持たせるために,必要に応じて適量の水を加えて加湿し,リング状の金型に上記タルク粉末を供給する。そして,プレス成形機等を用いてリング状に成形する。加湿した水分については,リング状に予備成形した後,もしくはハウジング10に組付けた後に必要に応じて乾燥させる。また,ハウジング10内へのタルクの供給は,タルクを粉末状のまま,直接ハウジング10内に供給することもできる。   In order to improve the productivity of talc powder, it can be formed into a ring shape in advance and then introduced into the housing. In this case, in order to give the talc a shape-retaining property, the talc powder is humidified by adding an appropriate amount of water as necessary, and the talc powder is supplied to the ring-shaped mold. And it shape | molds in a ring shape using a press molding machine. The humidified water is dried as necessary after being preformed in a ring shape or assembled to the housing 10. Further, talc can be supplied into the housing 10 directly in the housing 10 while the talc is in powder form.

また,上記粉末充填材であるタルクに対し充填補助材である第一リン酸アルミニウムとの混合は次のように行う。タルクを秤量し,転化する充填補助材を秤量し,タルクに対し充填補助材を転化する。ついで,回転式混合機などでタルク粒子を殆ど崩すことなく均一に混合した後,上記の要領で充填部14を製造する。   Further, the talc as the powder filler is mixed with the primary aluminum phosphate as the filling auxiliary material as follows. Weigh talc, weigh the filling aid to be converted, and convert the filling aid to talc. Next, after the talc particles are uniformly mixed with a rotary mixer or the like, the filling portion 14 is manufactured as described above.

図2に示すごとく,本例のガスセンサ素子2の固体電解質体20の表面は凹凸層203が,図示を略したガスセンサ素子2の先端側から基端側に向かう途中まで形成されている。また,上記凹凸層203を覆うように外側電極(図示略)が設けてある。   As shown in FIG. 2, an uneven layer 203 is formed on the surface of the solid electrolyte body 20 of the gas sensor element 2 of this example from the front end side to the base end side of the gas sensor element 2 (not shown). An outer electrode (not shown) is provided so as to cover the uneven layer 203.

また,充填部14の軸方向長さL,凹凸層203の軸方向長さMは次に示すように規定される。充填部14と凹凸層203が接するガスセンサ素子2の外周部のうち,充填部14の基端側の端部と凹凸層の基端側の端部の距離がもっとも短くなる部分における,充填部14の先端側の端部から凹凸層203の基端側の端部までの長さMとする。本例のガスセンサ1は,軸方向長さLが3.5ミリ,軸方向長さMが2.5ミリである。   Further, the axial length L of the filling portion 14 and the axial length M of the uneven layer 203 are defined as follows. Of the outer peripheral portion of the gas sensor element 2 where the filling portion 14 and the concavo-convex layer 203 are in contact, the filling portion 14 in a portion where the distance between the base end side end of the filling portion 14 and the base end side end portion of the concavo-convex layer is the shortest. The length M from the end portion on the distal end side to the end portion on the proximal end side of the concave-convex layer 203 is assumed to be a length M. The gas sensor 1 of this example has an axial length L of 3.5 mm and an axial length M of 2.5 mm.

次に,本例にかかるガスセンサの作用効果について説明する。本例のガスセンサ1は,上述した特定範囲内にある比較的大径な粒子からなる粉末充填材によってガスセンサ素子2とハウジング10との間に充填部14が形成される。大径な粒子よりなる粉末充填材は内部に空気があまり含まれていないため,単なる加圧のみの充填時で容易に比重を高めることができる。よって,緻密で高密度で比重の高い充填部14を容易に得ることができ,高いシール性を有する充填部14を得ることができる。さらに,充填部14が緻密化され,高密度となり,比重があがることで,充填部14中の粉末充填材間の間隙が減少する。よって,毛管現象による液体成分の浸入も生じ難い。よって,ハウジング10とガスセンサ素子2との間に液体成分が浸入し難い,気密性に優れたガスセンサ1を提供することができる。   Next, the function and effect of the gas sensor according to this example will be described. In the gas sensor 1 of the present example, a filling portion 14 is formed between the gas sensor element 2 and the housing 10 by a powder filler made of relatively large-diameter particles within the specific range described above. Since the powder filler consisting of large particles does not contain much air inside, the specific gravity can be easily increased at the time of filling only by pressurization. Therefore, it is possible to easily obtain a dense, high-density and high specific gravity filling portion 14 and to obtain a filling portion 14 having high sealing performance. Furthermore, the gap between the powder fillers in the filling portion 14 is reduced because the filling portion 14 is densified and has a high density and a specific gravity. Therefore, it is difficult for liquid components to enter due to capillary action. Therefore, it is possible to provide the gas sensor 1 which is difficult for liquid components to enter between the housing 10 and the gas sensor element 2 and has excellent airtightness.

また,本例のガスセンサ1は,自動車内燃機関の排気系に設置して,燃焼制御に使用する。この場合,被測定ガス中にはガソリンが含まれている。本例のガスセンサ1は緻密な充填部を持っているため,被測定ガス中のガソリンが充填部14を通じて大気側雰囲気120に漏れることが防止できる。   The gas sensor 1 of this example is installed in an exhaust system of an automobile internal combustion engine and used for combustion control. In this case, the gas to be measured contains gasoline. Since the gas sensor 1 of this example has a dense filling part, it is possible to prevent gasoline in the gas to be measured from leaking to the atmosphere 120 through the filling part 14.

また,粉末充填材はタルクよりなり,該タルクの粉末は鱗片状の粒子の層状化合物で,加圧すると層状方向にへき開し,概ねタルクの鱗片状粒子の層状構造が壊されることなく,さらに粒子が軟らかいためにわずかにそこに残る隙間を埋めるように,鱗片状粒子が崩れて充填部に充填されるために比重が高くなり,高いシール性を得ることができる。   The powder filler is made of talc, and the talc powder is a layered compound of scaly particles, which is cleaved in the laminar direction when pressed, and the layered structure of the talc scaly particles is not broken, and the particles are further broken. Since the flaky particles are soft, the scaly particles are collapsed and filled in the filling portion so as to fill the gaps remaining there slightly, so that the specific gravity increases and high sealing performance can be obtained.

さらに,充填部14には,充填補助材を添加することができる。充填補助材を添加することにより,粉末充填材における粒子間を充填補助材が埋めるため,充填部14の更なる高密度化が容易に実現できる。例えば,充填補助材は第一リン酸アルミニウムよりなり,結晶水を含んだ液状の化合物である。したがって,加圧の際に第一リン酸アルミニウムが粉末充填材の隙間に入り込んで,充填材粒子間の隙間や粒子同士の接触面を充填補助材が埋めることができる。従って,隙間が少なくなり,高密度の充填部14を得ることができる。   Furthermore, a filling auxiliary material can be added to the filling portion 14. By adding the filling auxiliary material, since the filling auxiliary material fills the space between the particles in the powder filling material, further increase in the density of the filling portion 14 can be easily realized. For example, the filling auxiliary material is made of monoaluminum phosphate and is a liquid compound containing crystal water. Therefore, during pressurization, the primary aluminum phosphate enters the gaps between the powder fillers, and the filling auxiliary material can fill the gaps between the filler particles and the contact surfaces between the particles. Accordingly, the gap is reduced, and a high-density filling portion 14 can be obtained.

なお,タルクと充填補助材との混合は次のように行う。タルク及び充填補助材を秤量し,タルクに対して充填補助材を添加する。ついで,均一に混合するために適量の水を添加し,回転式混合機等でタルク粒子をほとんど崩すことなく均一に混合した後,上記の要領でリング状に予備成形し,充填部14を製造する。または,均一に混合しやすくするため,充填補助材に水を添加して,タルク粉末に霧状に噴きつけながら,回転式混合機等で混合することもできる。このように混合すると,短時間でタルクと充填補助材を混合することができ,タルク粒子をほとんど崩すことなく,均一に混合することができる。   The mixing of talc and filling aids is performed as follows. Weigh talc and filling aid and add filling aid to talc. Next, an appropriate amount of water is added in order to mix uniformly, and the talc particles are uniformly mixed with a rotary mixer or the like, and then preliminarily formed into a ring shape in the manner described above to produce the filling portion 14. To do. Alternatively, in order to facilitate uniform mixing, water can be added to the filling aid and mixed with a rotary mixer or the like while sprayed onto the talc powder in the form of a mist. When mixed in this way, talc and the filling auxiliary material can be mixed in a short time, and the talc particles can be mixed uniformly with almost no collapse.

(実施例2)本例は,実施例1において示したガスセンサの充填部におけるシール性についての測定を説明する。まず,ガスセンサのシール性能の測定手順について,以下に説明する。図3(a)に示すごとく,ガスセンサ1を基端側を下に向けて,セットする。次いで,被測定ガス側カバーの外側面を被覆するようにシールテープ41を巻く。図3(b)に示すごとく,被測定ガス側カバーの内部に注入器42を用いて,ガソリンを0.5cc注入し,一定時間放置する。そしてシールテープ41をはずし,残っているガソリンを捨てる。   (Embodiment 2) This embodiment will explain the measurement of the sealing performance in the filling portion of the gas sensor shown in Embodiment 1. First, the procedure for measuring the sealing performance of the gas sensor will be described below. As shown in FIG. 3A, the gas sensor 1 is set with the base end facing downward. Next, the sealing tape 41 is wound so as to cover the outer surface of the gas side cover to be measured. As shown in FIG. 3B, 0.5 cc of gasoline is injected into the measured gas side cover using an injector 42 and left for a certain period of time. Then remove the sealing tape 41 and discard the remaining gasoline.

図3(c)に示すごとく,キャップをはずして,ガスセンサ1の先端側を下に向ける。そして,被測定ガス側カバー内に残留したガソリンを廃棄する。この状態でガスセンサ1内部のヒータに13.5Vで通電しつつ,ガスセンサ1の出力を2時間モニタした。モニタ結果を図4に示す。図4に示すごとく,センサ出力は当初はほぼ一定であるが,ある時から出力低下が発生し,しばらく出力の低い状態が継続した後,再びもとの出力に戻る。   As shown in FIG. 3C, the cap is removed and the front end side of the gas sensor 1 is turned downward. Then, the gasoline remaining in the measured gas side cover is discarded. In this state, the heater of the gas sensor 1 was energized at 13.5 V, and the output of the gas sensor 1 was monitored for 2 hours. The monitoring result is shown in FIG. As shown in FIG. 4, although the sensor output is substantially constant at the beginning, the output is reduced from a certain time, and after the state of low output continues for a while, it returns to the original output again.

センサ出力が同図に示すごとくzボルト低下した点を符号xとして,この状態に至った時刻をyとする。以降の各実施例にかかる試料の評価では,出力の低下が0.05Vのガスセンサは◎,0.05〜0.1Vは○,0.1V以上は×と評価する。ガスセンサ出力の低下が少ない程,充填部のガソリンシール性が高く,優れたガスセンサとなる。反対にガスセンサ出力の低下が大きいほど,充填部のガソリンシール性が低く,性能に劣っている。   The point at which the sensor output decreases by z volts as shown in FIG. In the evaluation of the samples according to the following examples, a gas sensor with a decrease in output of 0.05 V is evaluated as ◎, 0.05 to 0.1 V is evaluated as ◯, and 0.1 V or more is evaluated as ×. The smaller the gas sensor output decreases, the higher the gasoline sealability of the filling part, and the better the gas sensor. Conversely, the greater the decrease in gas sensor output, the lower the gasoline sealability of the filling section, and the poorer the performance.

本例の測定では試料1〜25として実施例1に記載した構造のガスセンサを準備する。試料となる各ガスセンサの充填部を構成するに用いた粉末充填材の粒径の分布を表1及び表2に示す。また,一部の粉末充填材については,P1〜P11の符号を付した(粒度分布種類の欄を参照,実施例3以降で使用する)。なお,粒度の測定は,篩粒度分布計で評価を実施した。なお,小数点以下についてはデータを四捨五入している。   In the measurement of this example, gas sensors having the structure described in Example 1 are prepared as Samples 1 to 25. Tables 1 and 2 show the particle size distribution of the powder filler used to constitute the filling portion of each gas sensor as a sample. Further, some of the powder fillers are denoted by symbols P1 to P11 (see the column of particle size distribution type, which will be used in Example 3 and later). The particle size was measured using a sieve particle size distribution meter. The data after the decimal point is rounded off.

P1とP2は粒径が細かすぎて,P10は粒径が大きすぎて,表1及び表2より明らかであるが,粒径が80〜5000μmである粒子が粉末充填材全体重量の80重量%以上を占めるという条件を満たしていない。   P1 and P2 are too small in particle size, P10 is too large in particle size, and it is clear from Tables 1 and 2, but particles having a particle size of 80 to 5000 μm are 80% by weight of the total weight of the powder filler. The condition of occupying the above is not satisfied.

P11は細かい粒子と大きい粒子が混ざった比較的粒度分布の範囲が広い粉末充填材で,粒径が80〜5000μmの粒子が全体の80%以上を占めている。試料18〜25はいずれもP6という粉末充填材を用いたガスセンサであり,試料1〜23はタルクよりなる粉末充填材,試料24,25はタルクにアルミナを添加した粉末充填材である。   P11 is a powder filler having a relatively wide range of particle size distribution in which fine particles and large particles are mixed, and particles having a particle size of 80 to 5000 μm account for 80% or more of the total. Samples 18 to 25 are gas sensors using a powder filler called P6, samples 1 to 23 are powder fillers made of talc, and samples 24 and 25 are powder fillers obtained by adding alumina to talc.

以上にかかる試料1〜25について,上述の要領の測定を行った結果を表2に記載する。表1,表2より,P1,P2にかかる試料1,試料2は粒径が細かすぎて,充填部のガソリンシール性が低く,ガスセンサの出力低下が生じたことがわかった。また,P10にかかる試料16は,粒径が大きすぎて,ガソリンシール性が低く,ガスセンサの出力低下が生じたことがわかった。   Table 2 shows the results of the above-described measurement for Samples 1 to 25 described above. From Tables 1 and 2, it was found that Samples 1 and 2 relating to P1 and P2 were too small in particle size, the gasoline sealability of the filling portion was low, and the output of the gas sensor was reduced. Moreover, it turned out that the sample 16 concerning P10 is too large in particle size, has a low gasoline sealability, and the output of the gas sensor is reduced.

以上より,粉末充填材は,充填前は,粒径が80〜5000μmである粒子が粉末充填材全体重量の80重量%以上を占めている状態にあることで,優れたガスセンサが得られることがわかった。さらに,P4〜P7(試料4〜試料13)にかかるガスセンサでは,粉末充填材が充填前は,粒径が100〜1000μmである粒子が粉末充填材全体の80重量%以上を占めている状態にあるため,いずれのガスセンサにおいても,評価は◎で,充填部が優れたガソリンシール性を発揮していることがわかる。   From the above, it is possible that an excellent gas sensor can be obtained when the powder filler is in a state in which particles having a particle size of 80 to 5000 μm account for 80% by weight or more of the total weight of the powder filler before filling. all right. Furthermore, in the gas sensors according to P4 to P7 (sample 4 to sample 13), before the powder filler is filled, particles having a particle size of 100 to 1000 μm occupy 80% by weight or more of the entire powder filler. Therefore, in any gas sensor, the evaluation is ◎, and it can be seen that the filling portion exhibits excellent gasoline sealing performance.

また,試料18〜試料25はすべて同じ粒径分布P6を有する粉末充填材からなる充填部を有する。試料18は充填部軸方向高さが1mmと短く,評価としては○であったが,出力の低下が著しかった。試料19〜22は充填部の軸方向高さを違えた試料である。いずれも◎という判定を得られた。   Samples 18 to 25 all have a filling portion made of a powder filler having the same particle size distribution P6. Sample 18 had a height in the axial direction of the filling portion as short as 1 mm and was evaluated as ◯, but the output was significantly reduced. Samples 19 to 22 are samples having different heights in the axial direction of the filling portion. In both cases, a determination of “◎” was obtained.

試料23は窒化ホウ素,試料24,25はタルクにアルミナを加えたものであるが,試料23は◎であったが,試料24,25はタルクとアルミナより構成した。試料25はの評価は○であるが,出力がかなり低下した。これらの点から,充填部の軸方向高さがある程度高いこと,粉末充填材の材料としての種類等も出力に影響することがわかった。そして特にタルクや窒化ホウ素を用いることでよりガソリンシール性に優れた充填部が得られることがわかった。   Sample 23 was boron nitride, and samples 24 and 25 were talc added with alumina. Sample 23 was ◎, but samples 24 and 25 were composed of talc and alumina. Although the evaluation of sample 25 was ◯, the output was considerably reduced. From these points, it was found that the axial height of the filling part was somewhat high and the type of powder filler material also affected the output. And it turned out that the filling part which was more excellent in gasoline-sealing property by using especially talc and boron nitride was obtained.

Figure 0004631926
Figure 0004631926

Figure 0004631926
(実施例3)本例は,分級により細かい粒子を取り除いた粉末充填材とガスセンサの性能との関係について評価を行った。また,性能評価などは実施例2に記載した方法で行った。試料99は,80μm以下の細かい粒子から5000μm以上の粗い粒子までを含んだ粉末充填材であり,特に分級を施していない材料である。試料100から103は,試料99にかかる粉末充填材にそれぞれ目開きの異なる篩で粒子を乾式篩分級して細かい粒子を取り除いた材料である。また,試料104は遠心式気流分級で80μm以下の細かい粒子を取り除き,試料105は遠心式湿式分級で80μm以下の粒子を取り除いた粉末充填材である。
Figure 0004631926
(Example 3) In this example, the relationship between the performance of the gas sensor and the powder filler from which fine particles were removed by classification was evaluated. Moreover, performance evaluation etc. were performed by the method described in Example 2. The sample 99 is a powder filler containing fine particles of 80 μm or less to coarse particles of 5000 μm or more, and is not particularly classified. Samples 100 to 103 are materials obtained by subjecting the powder filler according to sample 99 to dry sieving with particles having different openings to remove fine particles. Sample 104 is a powder filler from which fine particles of 80 μm or less are removed by centrifugal air classification, and sample 105 is a powder filler from which particles of 80 μm or less are removed by centrifugal wet classification.

これらの各試料の粒度分布や分級方法,評価,粒度分布種類について表3に記載した。試料99は極端に細かい粒子を多く含むために充填部のガソリンシール性が低く,結果としてガスセンサの出力低下が生じたことがわかった。他の試料の評価は○または◎で,これらの点から細かい粒子を取り除くことで,充填部が優れたガソリンシール性を発揮することがわかった。そして,試料100と他の試料との比較から,より細かい80μm以下の粒子が少ないほうが高いシール性を発揮することがわかった。   Table 3 shows the particle size distribution, classification method, evaluation, and particle size distribution type of each sample. It was found that sample 99 contained a lot of extremely fine particles, so the gasoline sealability of the filling portion was low, and as a result, the output of the gas sensor was reduced. The other samples were evaluated as ○ or ◎, and it was found that by removing fine particles from these points, the filling part exhibited excellent gasoline sealability. From comparison between the sample 100 and other samples, it was found that a smaller number of finer particles of 80 μm or less exhibited higher sealing performance.

Figure 0004631926
(実施例4)本例は,分級により粗い粒子を取り除いた粉末充填材とガスセンサの性能との関係について評価を行った。また,性能評価などは実施例2に記載した方法で行った。試料106は80μm以下の細かい粒子から5000μm以上の粗い粒子まで含んだ粉末充填材であり,特に分級を施していない材料である。試料107から109は,試料106にかかる粉末充填材をそれぞれ目開きの異なる篩で粒子を乾式篩分級して粗い粒子を取り除いた材料である。また,試料110は遠心式気流分級で1000μm以上の粗い粒子を取り除き,試料111は遠心式湿式分級で1000μm以上の粒子を取り除いた粉末充填材である。これらの各試料の粒度分布や分級方法,評価,粒度分布種類について表4に記載した。
Figure 0004631926
(Example 4) In this example, the relationship between the performance of the gas sensor and the powder filler from which coarse particles were removed by classification was evaluated. Moreover, performance evaluation etc. were performed by the method described in Example 2. The sample 106 is a powder filler containing fine particles of 80 μm or less to coarse particles of 5000 μm or more, and is not particularly classified. Samples 107 to 109 are materials obtained by classifying particles of the powder filler according to sample 106 with a sieve having different openings, and removing coarse particles. Sample 110 is a powder filler from which coarse particles of 1000 μm or more are removed by centrifugal air classification, and sample 111 is a powder filler from which particles of 1000 μm or more are removed by centrifugal wet classification. Table 4 shows the particle size distribution, classification method, evaluation, and particle size distribution type of each sample.

試料106は極端に径大で粗い粒子を多く含むために,充填部のガソリンシール性が低く,結果としてガスセンサの出力低下が生じたことがわかった。他の試料の評価は○または◎で,これらの点から粗い粒子を取り除くことで,充填部が優れたガソリンシール性を発揮することがわかった。そして,試料107と他の試料との比較より,粗い5000μm以上の粒子のないほうがより優れた性能を発揮することがわかった。   It was found that the sample 106 was extremely large in diameter and contained many coarse particles, so that the gasoline sealability of the filling portion was low, resulting in a decrease in the output of the gas sensor. The evaluation of other samples was ○ or ◎, and it was found that by removing coarse particles from these points, the filling part exhibited excellent gasoline sealability. Further, it was found from the comparison between the sample 107 and other samples that the performance without the coarse particles having a particle size of 5000 μm or more is more excellent.

Figure 0004631926
(実施例5)本例は,充填補助材を含む充填部を持ったガスセンサについて性能評価を行った。なお,性能評価は実施例2に記載した方法で行った。表5に示すごとく,用いた粉末充填材はいずれもタルクで,添加した充填補助材は,試料26〜32は第1リン酸アルミニウム水溶液,試料33〜37はケイ酸ソーダ水溶液である。試料38〜42はケイ酸カリウム水溶液である。試料43は第1リン酸アルミニウム水溶液とケイ酸ソーダ水溶液,試料44は第1リン酸アルミニウム水溶液とケイ酸カリウム水溶液である。これらはいずれも,室温(20℃)において液状である無機化合物水溶液である。また,充填補助材の添加量は粉末充填材100重量部に対する重量部で記載した。
Figure 0004631926
(Example 5) In this example, the performance of a gas sensor having a filling portion containing a filling auxiliary material was evaluated. The performance evaluation was performed by the method described in Example 2. As shown in Table 5, the powder filler used was talc, and the added fillers were the first aluminum phosphate aqueous solution for samples 26 to 32 and the sodium silicate aqueous solution for samples 33 to 37. Samples 38 to 42 are aqueous potassium silicate solutions. Sample 43 is a first aluminum phosphate aqueous solution and sodium silicate aqueous solution, and sample 44 is a first aluminum phosphate aqueous solution and a potassium silicate aqueous solution. These are all inorganic compound aqueous solutions that are liquid at room temperature (20 ° C.). Moreover, the addition amount of the filling auxiliary material was described in parts by weight with respect to 100 parts by weight of the powder filler.

試料の評価について説明する。表5に示すごとく,第1リン酸アルミニウム水溶液を用いた試料26〜試料32については,試料27〜試料31は◎で特に出力低下が小さく優れたガスセンサが得られたことがわかった。試料26,試料32の評価は○であるが,出力がかなり低下した。   The evaluation of the sample will be described. As shown in Table 5, it was found that for samples 26 to 32 using the first aluminum phosphate aqueous solution, samples 27 to 31 were ◎, and an excellent gas sensor with particularly small output reduction was obtained. Although the evaluation of the sample 26 and the sample 32 is (circle), the output fell considerably.

試料33〜試料37はケイ酸ソーダ水溶液を用いており,特に試料35,36は◎で出力低下が小さく,優れたガスセンサが得られ,試料34もこれらに準じた優れた性能を発揮した。試料33,37は評価としては○であるが,出力がかなり低下した。   Samples 33 to 37 use sodium silicate aqueous solution. Particularly, Samples 35 and 36 have excellent output due to ◎ and small output drop, and Sample 34 also exhibited excellent performance according to these. Samples 33 and 37 were evaluated as ◯, but the output was considerably reduced.

試料38〜試料42はケイ酸カリウム水溶液を用いており,特に試料40,41は◎で出力低下が小さく,優れたガスセンサが得られ,試料39もこれらに準じた優れた性能を発揮した。試料38,42は評価としては○であるが,出力がかなり低下した。   Samples 38 to 42 used an aqueous potassium silicate solution. Particularly, Samples 40 and 41 exhibited excellent gas sensors with excellent output in accordance with these, and Samples 39 and 41 exhibited excellent performance according to these. Although the samples 38 and 42 were evaluated as “good”, the output was considerably lowered.

このように,充填補助材として第1リン酸アルミニウム水溶液他,表5に記載した物質を用いることでガソリンシール性に優れた充填部が得られることがわかった。これは,加圧時に粉末充填材の隙間に水溶液よりなる充填補助材が入り込み,より高密度な充填部を得ることができるためである。さらに,充填補助材の添加量としては,特に0.1〜10重量部とすることが好ましいことが上記記載及び表5から明らかとなった。   As described above, it was found that a filling portion excellent in gasoline sealability can be obtained by using the first aluminum phosphate aqueous solution and other substances described in Table 5 as the filling auxiliary material. This is because a filling auxiliary material made of an aqueous solution enters the gap between the powder fillers during pressurization, and a denser filling portion can be obtained. Furthermore, it has become clear from the above description and Table 5 that the addition amount of the filling auxiliary material is particularly preferably 0.1 to 10 parts by weight.

試料43は第1リン酸アルミニウム水溶液とケイ酸ソーダ水溶液の両方を,試料44は第1リン酸アルミニウム水溶液とケイ酸カリウム水溶液の両方をそれぞれ1重量部づつ添加してある。両者共に優れたガスセンサが得られた。このように種類の異なる充填補助材を併用できることもわかった。   Sample 43 is added with both the first aluminum phosphate aqueous solution and sodium silicate aqueous solution, and sample 44 is added with 1 part by weight of both the first aluminum phosphate aqueous solution and the potassium silicate aqueous solution. Both obtained excellent gas sensors. It was also found that different types of filling aids can be used in combination.

Figure 0004631926
(実施例6)本例は,実施例5とは異なる充填補助材を含む充填部を持ったガスセンサについて性能評価を行った。性能評価は実施例2に記載した方法に準じて行う。表6に示すごとく,用いた粉末充填材はいずれもタルクで,添加した充填補助材の種類は表6に示すような物質である。これらは温度600℃以下の環境で液状となることが可能な無機化合物である。また,充填補助材の添加量は粉末充填材100重量部に対する重量部で記載した。
Figure 0004631926
(Example 6) In this example, the performance of a gas sensor having a filling portion containing a filling auxiliary material different from that in Example 5 was evaluated. The performance evaluation is performed according to the method described in Example 2. As shown in Table 6, the powder filler used is talc, and the type of the filler auxiliary material added is a substance as shown in Table 6. These are inorganic compounds that can be liquefied in an environment at a temperature of 600 ° C. or lower. Moreover, the addition amount of the filling auxiliary material was described in parts by weight with respect to 100 parts by weight of the powder filler.

試料の評価について説明する。表6に示すごとく,水酸化バリウムを用いた試料46〜試料48の評価は◎で特にガソリンシール性に優れた充填部が得られたことがわかった。試料45,試料49の評価は○であるが,出力がかなり低下した。このため,充填補助材の添加量が多すぎても少なすぎても優れた性能が得られなくなるおそれのあることがわかった。また,その他の材料からなる充填補助材を用いた試料50〜56の評価は◎で特に出力低下が小さく優れたガソリンシール性の充填部が得られたことがわかった。   The evaluation of the sample will be described. As shown in Table 6, the evaluation of Samples 46 to 48 using barium hydroxide was “◎”, and it was found that a filled portion having particularly excellent gasoline sealability was obtained. Although the evaluation of the sample 45 and the sample 49 is (circle), the output fell considerably. For this reason, it has been found that an excellent performance may not be obtained if the addition amount of the filling auxiliary material is too large or too small. In addition, the evaluations of the samples 50 to 56 using the filling auxiliary material made of other materials were ◎, and it was found that a particularly excellent gasoline-sealed filling portion with a small output decrease was obtained.

Figure 0004631926
(実施例7)表1に記載したいくつかの粉末充填材を加圧し,成形体となし,この成形体の比重について測定した。この結果を図5に示す。P1は前述した表1より明らかであるが,非常に細かい粒径の粒子より構成されており,成形比重が他のものと比較して低いことが分かる。このようにP1の成形比重は低いため,P1を粉末充填材として使用し,充填部を構成した際に,ガソリンシール性能に劣る充填部しか得られないのである。(表1,表2参照)他のP3,P6,P7は高い成形比重を有しており,ガソリンシール性に優れた充填部が得られるのである(表1,表2参照)
(実施例8)本例は,図6〜図11に示すごとく,ガスセンサにおける充填部の軸方向高さ,ガスセンサ素子における凹凸層や電極保護層の基端側の端部等の位置関係について説明する。図6〜図10に示すごとく,ガスセンサ素子を構成する固体電解質体20の表面に凹凸層203が設けてあり,図示はされていないが,上記凹凸層203を覆うように外側電極が設けてあり,該外側電極を覆うように電極保護層205が設けてある。なお,図11にかかるガスセンサは凹凸層を持っていない。
Figure 0004631926
(Example 7) Several powder fillers described in Table 1 were pressurized to form a compact, and the specific gravity of the compact was measured. The result is shown in FIG. P1 is clear from the above-mentioned Table 1, but is composed of particles having a very fine particle size, and it can be seen that the molding specific gravity is lower than that of the others. Thus, since the molding specific gravity of P1 is low, when P1 is used as a powder filler and the filling portion is configured, only a filling portion inferior in gasoline seal performance can be obtained. (See Tables 1 and 2) The other P3, P6 and P7 have a high molding specific gravity, and a filling part excellent in gasoline sealability can be obtained (see Tables 1 and 2).
(Embodiment 8) In this example, as shown in FIG. 6 to FIG. 11, the positional relationship between the axial height of the filling portion in the gas sensor, the concavo-convex layer in the gas sensor element, the end portion on the base end side of the electrode protective layer, etc. To do. As shown in FIGS. 6 to 10, an uneven layer 203 is provided on the surface of the solid electrolyte body 20 constituting the gas sensor element, and although not shown, an outer electrode is provided so as to cover the uneven layer 203. , An electrode protective layer 205 is provided so as to cover the outer electrode. Note that the gas sensor according to FIG. 11 does not have an uneven layer.

そして,図6〜図11において,固体電解質体20とハウジング10との間に充填部14が形成されているが,該充填部14の軸方向の長さLについては,実施例1と同様に,充填部14の先端側の端部141と基端側142の端部との距離で,軸方向に平行に沿った長さである。また,凹凸層203の基端側の端部の取り方及び軸方向長さMも実施例1に記載されている。また,電極保護層205の基端側の端部も凹凸層203と同様の定義で定め,軸方向長さNも凹凸層203と同様の定義で定める。よって,凹凸層203の軸方向長さは凹凸層203の基端側の端部と充填層14の先端側の端部との距離M,電極保護層205の軸方向長さは電極保護層205の基端側の端部と充填層14の先端側の端部との距離Nである。   6 to 11, a filling portion 14 is formed between the solid electrolyte body 20 and the housing 10. The axial length L of the filling portion 14 is the same as in the first embodiment. The distance between the end portion 141 on the distal end side of the filling portion 14 and the end portion on the proximal end side 142 is a length parallel to the axial direction. Further, the method for removing the base end side of the uneven layer 203 and the axial length M are also described in the first embodiment. Further, the base end side of the electrode protective layer 205 is also defined with the same definition as the concave / convex layer 203, and the axial length N is also defined with the same definition as the concave / convex layer 203. Therefore, the axial length of the concavo-convex layer 203 is the distance M between the proximal end of the concavo-convex layer 203 and the end of the filling layer 14, and the axial length of the electrode protective layer 205 is the electrode protective layer 205. This is a distance N between the base end side end and the end of the filling layer 14 on the front end side.

図6に示すガスセンサは,L>M>Nとなる形状である。図7に示すガスセンサはM=N=0でL=4mmである。つまり,充填部14の端部141において,凹凸層203も電極保護層205が基端側の端部を有するのである。図8にかかるガスセンサはLは4mmだが,MもNも共に−1mmである。これは充填部14の先端側の端部にまで凹凸層203も電極保護層205も届かないことを意味している。なお,軸方向長さにおいて−がつくのは,図8に示すごとく,充填部14の先端側の端部を原点の軸0として基端側を+,先端側を−と定義しているからである。   The gas sensor shown in FIG. 6 has a shape that satisfies L> M> N. In the gas sensor shown in FIG. 7, M = N = 0 and L = 4 mm. In other words, at the end portion 141 of the filling portion 14, the concavo-convex layer 203 also has the end portion on the base end side of the electrode protective layer 205. In the gas sensor according to FIG. 8, L is 4 mm, but both M and N are −1 mm. This means that neither the concavo-convex layer 203 nor the electrode protective layer 205 reaches the end of the filling portion 14 on the front end side. In addition, as shown in FIG. 8, the reason why-is added in the axial length is that the end on the front end side of the filling portion 14 is defined as the origin axis 0, the base end side is defined as +, and the front end side is defined as-. It is.

図9にかかるガスセンサはN=0mmであるが,L=4mm,M=3.5mmである。そして,充填部14の基端側の端部142より0.5mm先端側に降りた位置に凹凸層203の基端側の端部を有する。つまり充填部14の基端側の端部142と凹凸層203の基端側の端部との距離Pは0.5mmである。   The gas sensor according to FIG. 9 has N = 0 mm, but L = 4 mm and M = 3.5 mm. And it has the edge part of the base end side of the uneven | corrugated layer 203 in the position which descended 0.5 mm to the front end side from the edge part 142 of the base end side of the filling part 14. That is, the distance P between the proximal end 142 of the filling portion 14 and the proximal end of the uneven layer 203 is 0.5 mm.

図10にかかるガスセンサはN=0mmで,LとMが共に4mm,つまり充填部14の基端側の端部まで凹凸層203が形成されている。さらに,図11は,凹凸層を設けていないガスセンサで,Lは4mmで,Nは0,つまり充填部14の先端側の端部141の位置までしか電極保護層205を設けていない。その他詳細は実施例1と同様で,詳細な作用効果も実施例1と同様である。   The gas sensor according to FIG. 10 has N = 0 mm, L and M are both 4 mm, that is, the uneven layer 203 is formed up to the end of the filling portion 14 on the proximal end side. Further, FIG. 11 shows a gas sensor without an uneven layer, in which L is 4 mm, N is 0, that is, the electrode protective layer 205 is provided only up to the position of the end portion 141 on the front end side of the filling portion 14. Other details are the same as in the first embodiment, and the detailed operational effects are also the same as in the first embodiment.

(実施例9)本例は,凹凸層の軸方向長さや電極保護層の軸方向長さとガスセンサの性能との関係について評価を行った。表7に示すごとく,充填部の軸方向長さはいずれも4mmであるが,凹凸層,電極保護層の軸方向の長さがそれぞれ異なる試料57〜70を準備する。これらの試料についての性能評価を実施例2に記載した方法で行った結果,試料60,試料64,試料67は×であった。   (Example 9) In this example, the relationship between the axial length of the uneven layer and the axial length of the electrode protective layer and the performance of the gas sensor was evaluated. As shown in Table 7, the axial lengths of the filling portions are all 4 mm, but samples 57 to 70 having different lengths in the axial direction of the uneven layer and the electrode protective layer are prepared. As a result of performing the performance evaluation of these samples by the method described in Example 2, Sample 60, Sample 64, and Sample 67 were x.

試料60は凹凸層の長さが5mm,つまり充填部よりも基端側に凹凸層がはみ出して形成されているため,液体成分が侵入しやすい隙間や微孔が形成されてしまうためである。試料64は電極保護層が充填部よりもはみ出しており,電極保護層の表面は凹凸が形成されているため,上記と同様に液体成分が侵入しやすい隙間や微孔が形成されてしまう。試料67は凹凸層も電極保護層も充填部よりはみ出しているため,液体成分が非常に侵入しやすい。   This is because the sample 60 has a length of the concavo-convex layer of 5 mm, that is, the concavo-convex layer is formed so as to protrude from the base end side of the filling portion, so that gaps and micropores into which liquid components easily enter are formed. In the sample 64, the electrode protective layer protrudes beyond the filling portion, and the surface of the electrode protective layer has irregularities, so that gaps and micropores into which liquid components easily enter are formed as described above. In the sample 67, both the uneven layer and the electrode protective layer protrude from the filling portion, so that the liquid component is very likely to enter.

Figure 0004631926
(実施例10)本例は,分級により細かい粒子と粗い粒子とを取り除いた粉末充填材とガスセンサの性能との関係について評価を行った。また,性能評価などは実施例2に記載した方法で行った。試料113,121,125は,80μm以下の細かい粒子から5000μm以上の粗い粒子まで含んだ粉末充填材である。
Figure 0004631926
(Example 10) In this example, the relationship between the performance of the gas sensor and the powder filler from which fine particles and coarse particles were removed by classification was evaluated. Moreover, performance evaluation etc. were performed by the method described in Example 2. Samples 113, 121, and 125 are powder fillers containing fine particles of 80 μm or less to coarse particles of 5000 μm or more.

試料114〜120は,試料113から目開き40,80,100,125μmの篩で細かい粒子を,目開き710,1000,5000μmの篩で粗い粒子を取り除いた粉末充填材である。また,試料122〜124は試料121から,試料126〜128は試料125から篩で粗い粒子や細かい粒子を取り除いた粉末充填材である。   Samples 114 to 120 are powder fillers obtained by removing fine particles from the sample 113 with a sieve having an aperture of 40, 80, 100, and 125 μm and removing coarse particles with a sieve having an aperture of 710, 1000, and 5000 μm. Samples 122 to 124 are powder fillers obtained by removing coarse particles and fine particles from the sample 121 and samples 126 to 128 using a sieve.

また,試料129は遠心式気流分級で80μm以下,5000以上の粒子を取り除いた粉末充填材であり,試料130は遠心式湿式分級で80μm以下,5000以上の粒子を取り除いた粉末充填材である。詳細は表8,表9に記載した。   Sample 129 is a powder filler from which particles of 80 μm or less and 5000 or more are removed by centrifugal air classification, and sample 130 is a powder filler from which particles of 80 μm or less and 5000 or more are removed by centrifugal wet classification. Details are shown in Tables 8 and 9.

試料113,121,125は,極端に細かい粒子と粗い粒子を多く含むために充填部のガソリンシール性が低く,ガスセンサの出力低下が生じたことがわかった。一方粗い粒子,細かい粒子を取り除いた試料114〜120,122〜124,126〜128はよい結果(◎や○)を得たことがわかった。ただし,細かい粒子や粗い粒子の量が少し多めである試料114,122,126は性能が若干劣ることがわかった。   It was found that Samples 113, 121, and 125 contained a lot of extremely fine particles and coarse particles, so that the gasoline sealability of the filling portion was low and the output of the gas sensor was lowered. On the other hand, it was found that Samples 114 to 120, 122 to 124, and 126 to 128 from which coarse particles and fine particles were removed obtained good results (◎ and ○). However, it was found that the performance of the samples 114, 122, and 126, in which the amount of fine particles and coarse particles is slightly larger, is slightly inferior.

Figure 0004631926
Figure 0004631926

Figure 0004631926
(実施例11)本例は,充填部に充填補助材が含まれており,粉末充填材として実施例1の表1,2,実施例10の表8,9に記載したP1,P3,P6,P8,P10,P16〜21を用い,また充填補助材の添加量も適当に変更した試料の性能について評価した。また,性能評価などは実施例2に記載した方法で行った。各試料71〜77,131〜136において使用する粉末充填材は表10に示すとおりいずれもタルク,充填補助材は第一リン酸アルミニウム水溶液,そして添加量は同表に示すごとく変化させる。
Figure 0004631926
(Embodiment 11) In this embodiment, a filling auxiliary material is included in the filling portion, and P1, P3, and P6 described in Tables 1 and 2 of Example 1 and Tables 8 and 9 of Example 10 are used as powder fillers. , P8, P10, P16-21, and the performance of the sample was evaluated with the addition amount of the filling aid appropriately changed. Moreover, performance evaluation etc. were performed by the method described in Example 2. As shown in Table 10, the powder filler used in each of the samples 71 to 77 and 131 to 136 is talc, the filling auxiliary material is a first aluminum phosphate aqueous solution, and the addition amount is changed as shown in the table.

各試料の性能を評価すると,試料72〜76,132,134,136は◎と優れたガソリンシール性能を得ることができた。また,試料71の評価は○であるが,用いた粉末充填材の粒度分布がP1であり粒径が細かすぎ,試料77の評価は○であるが,用いた粉末充填材の粒度分布がP10であり粒径が粗すぎる。   When the performance of each sample was evaluated, the samples 72 to 76, 132, 134, and 136 were able to obtain excellent gasoline seal performance as ◎. The evaluation of the sample 71 is ◯, but the particle size distribution of the used powder filler is P1 and the particle size is too fine. The evaluation of the sample 77 is ◯, but the particle size distribution of the used powder filler is P10. The particle size is too coarse.

また,試料131の評価は○であるが,用いた粉末充填材の粒度分布がP16で細かい粒子と粗い粒子を多く含み,試料133の評価は○であるが,用いた粉末充填材の粒度分布がP18で細かい粒子を多く含む。また,試料135の評価は○であるが,用いた粉末充填材の粒度分布がP20で粗い粒子を多く含む。このように,細かい粒子や粗い粒子を含むこれらの試料はガソリンシール性能が若干劣っていた。   The evaluation of the sample 131 is ◯, but the particle size distribution of the used powder filler is P16 and contains many fine and coarse particles. The evaluation of the sample 133 is ◯, but the particle size distribution of the used powder filler is Contains many fine particles at P18. Moreover, although evaluation of the sample 135 is (circle), the particle size distribution of the used powder filler is P20, and many coarse particles are included. Thus, these samples containing fine and coarse particles had a slightly poor gasoline seal performance.

Figure 0004631926
(実施例12)本例は,粉末充填材として実施例1の表1,表2,実施例10の表8,9に記載した,P1,P3,P6,P8,P10,P16〜P21を用い,また凹凸層や電極保護層の長さも適当に変更した試料の性能について評価した。また,性能評価などは実施例2に記載した方法で行った。各試料78〜84,137〜142において使用する粉末充填材は表11に示すとおり,また,凹凸層や電極保護層の長さも表11に記載した。
Figure 0004631926
(Example 12) This example uses P1, P3, P6, P8, P10, P16 to P21 described in Tables 1 and 2 of Example 1 and Tables 8 and 9 of Example 10 as powder fillers. In addition, the performance of the samples in which the lengths of the concave and convex layers and the electrode protective layer were appropriately changed were evaluated. Moreover, performance evaluation etc. were performed by the method described in Example 2. The powder filler used in each of the samples 78 to 84 and 137 to 142 is shown in Table 11, and the lengths of the uneven layer and the electrode protective layer are also shown in Table 11.

各試料の性能を評価すると,試料79〜83,138,140,142は◎と優れたガスセンサを得ることができた。また,試料78は用いた粉末充填材の粒度分布がP1で粒径が細かすぎ,試料84は用いた粉末充填材の粒度分布がP10で粒径が粗すぎ,試料137は用いた粉末充填材の粒度分布がP16で細かい粒子と粗い粒子が共に多く,試料139は用いた粉末充填材の粒度分布がP18で粒径が細かすぎ,試料141は用いた粉末充填材の粒度分布がP20で粒径が粗すぎる。そして,これらの試料にかかる充填部は軸方向長さと凹凸層や電極保護層の長さが同じであり,ガソリンシール性能が若干劣っていた。   When the performance of each sample was evaluated, samples 79 to 83, 138, 140, and 142 were excellent and excellent gas sensors could be obtained. In addition, sample 78 has a particle size distribution of the used powder filler P1 and the particle size is too fine, sample 84 has a particle size distribution of the used powder filler P10 and is too coarse, and sample 137 has the powder filler used. The particle size distribution of P16 is large in both fine and coarse particles. Sample 139 has a particle size distribution of the powder filler used in P18 and is too fine, and sample 141 has a particle size distribution of P20 in the particle size distribution of P20. The diameter is too coarse. And the filling part concerning these samples had the length of an axial direction and the length of an uneven | corrugated layer or an electrode protective layer, and the gasoline seal performance was a little inferior.

Figure 0004631926
(実施例13)本例は,充填部に充填補助材を添加し,また凹凸層や電極保護層の長さも適当に変更した試料の性能について評価した。また,性能評価などは実施例2に記載した方法で行った。各試料85〜91において使用する粉末充填材,充填補助材,添加量は表12に示すとおり,また,凹凸層や電極保護層の長さも表12に記載した。各試料の性能を評価すると,試料86〜90は◎と優れたガスセンサを得ることができたが,試料85は○で,充填部の軸方向長さと凹凸層や電極保護層が同じであるため,若干劣るガソリンシール性能しか得られなかった。
Figure 0004631926
(Example 13) In this example, the performance of a sample in which a filling auxiliary material was added to the filling portion and the lengths of the uneven layer and the electrode protective layer were appropriately changed was evaluated. Moreover, performance evaluation etc. were performed by the method described in Example 2. As shown in Table 12, the powder filler, filling auxiliary, and addition amount used in each sample 85 to 91 are shown in Table 12, and the lengths of the uneven layer and the electrode protective layer are also shown in Table 12. When evaluating the performance of each sample, samples 86 to 90 were able to obtain excellent gas sensors as ◎, but sample 85 was ○, and the axial length of the filling portion was the same as the concave and convex layer and the electrode protective layer. Only a slightly poor gasoline seal performance was obtained.

また,試料91は○で,充填部の軸方向長さと凹凸層や電極保護層が同じため,若干劣るガソリンシール性能しか得られなかった。また,試料85は充填補助材の添加量も少なく,充分な効果が得られたとはいい難い面もあり,試料91はかえって充填補助材の添加量が多く,かえって充填部のシール性が損なわれてしまう。   Sample 91 was ◯, and since the axial length of the filling portion was the same as the concave and convex layer and the electrode protective layer, only slightly poor gasoline sealing performance was obtained. In addition, the sample 85 has a small amount of addition of the filling auxiliary material, and it is difficult to say that a sufficient effect has been obtained, and the sample 91 on the contrary has a large addition amount of the filling auxiliary material, which rather deteriorates the sealing performance of the filling portion. End up.

Figure 0004631926
(実施例14)本例は,粉末充填材として実施例1の表1,表2に記載した,P1,P3,P6,P8,P10を用い,充填補助材を添加し,また凹凸層や電極保護層の長さも適当に変更した試料の性能について評価した。また,性能評価などは実施例2に記載した方法で行った。各試料92〜98において使用する粉末充填材,充填補助材,添加量は表13に示すとおり,また,凹凸層や電極保護層の長さも表13に記載した。
Figure 0004631926
(Example 14) In this example, P1, P3, P6, P8, and P10 described in Tables 1 and 2 of Example 1 were used as powder fillers, filling auxiliary materials were added, and uneven layers and electrodes were used. The performance of the sample in which the length of the protective layer was also appropriately changed was evaluated. Moreover, performance evaluation etc. were performed by the method described in Example 2. As shown in Table 13, the powder fillers, filling auxiliary materials, and addition amounts used in the samples 92 to 98 are shown in Table 13, and the lengths of the uneven layer and the electrode protective layer are also shown in Table 13.

各試料の性能を評価すると,試料93〜97は◎と優れたガスセンサを得ることができたが,試料92は○で,用いた粉末充填材の粒度分布がP1であり粒径が細かすぎるため,また,充填部の軸方向長さが凹凸層や電極保護層の長さと同じであるため,優れたガソリンシール性能を得られなかった。   When evaluating the performance of each sample, samples 93 to 97 were able to obtain excellent gas sensors as ◎, but sample 92 was ○, and the particle size distribution of the powder filler used was P1, and the particle size was too fine. Moreover, because the axial length of the filling portion is the same as the length of the uneven layer and the electrode protective layer, an excellent gasoline seal performance could not be obtained.

また,試料98は○で,用いた粉末充填材の粒度分布がP10であり粒径が大きすぎるため,また,充填部の軸方向長さが凹凸層や電極保護層の長さと,同じであるため,優れたガソリンシール性能を得られなかった。また,試料92も98も充填補助材の添加量も少なく充分な効果が得られたとはいい難い面もある。   Sample 98 is ◯, the particle size distribution of the powder filler used is P10, and the particle size is too large, and the axial length of the filling portion is the same as the length of the uneven layer or electrode protective layer. Therefore, excellent gasoline seal performance could not be obtained. In addition, both Samples 92 and 98 have a small amount of filling auxiliary material, and it is difficult to say that a sufficient effect is obtained.

Figure 0004631926
Figure 0004631926

実施例1における,ガスセンサの断面説明図。Sectional explanatory drawing of the gas sensor in Example 1. FIG. 実施例1における,充填部の要部説明図。The principal part explanatory drawing of the filling part in Example 1. FIG. 実施例2における,ガソリンのシール性に対する試験方法を示す説明図。Explanatory drawing which shows the test method with respect to the sealing performance of gasoline in Example 2. FIG. 実施例2における,試験におけるセンサの出力とモニタ時間との関係を示す線図。FIG. 6 is a diagram showing the relationship between the sensor output and the monitoring time in the test in Example 2. 実施例7における,表1におけるP1,P3,P6,P7における成形比重を示す線図。The diagram which shows the shaping | molding specific gravity in P1, P3, P6, and P7 in Table 1 in Example 7. FIG. 実施例8における,充填部,凹凸層,電極保護層の軸方向長さL,M,Nを示す説明図。Explanatory drawing which shows the axial direction length L, M, and N of a filling part, an uneven | corrugated layer, and an electrode protective layer in Example 8. FIG. 実施例8における,凹凸層と電極保護層の軸方向長さがともに0である充填部の説明図。Explanatory drawing of the filling part in which the axial direction length of an uneven | corrugated layer and an electrode protective layer is 0 in Example 8. FIG. 実施例8における,凹凸層と電極保護層の軸方向長さがともに−1mmである充填部を示す説明図。Explanatory drawing which shows the filling part in which the axial direction length of an uneven | corrugated layer and an electrode protective layer is -1 mm in Example 8. FIG. 実施例8における,電極保護層の軸方向長さが0である充填部を示す説明図。Explanatory drawing which shows the filling part whose axial direction length of the electrode protective layer is 0 in Example 8. FIG. 実施例8における,充填部の基端側の端部と凹凸層の基端側の端部とが一致する充填部を示す説明図。Explanatory drawing which shows the filling part in which the edge part of the base end side of a filling part and the edge part of the base end side of an uneven | corrugated layer correspond in Example 8. FIG. 実施例8における,電極保護層だけが設けてあるガスセンサ素子と充填部との説明図。Explanatory drawing of the gas sensor element in which only the electrode protective layer is provided in Example 8, and a filling part.

符号の説明Explanation of symbols

1...ガスセンサ,
10...ハウジング
14...充填部,
2...ガスセンサ素子,
203...凹凸層,
205...電極保護層,
1. . . Gas sensor,
10. . . Housing 14. . . Filling section,
2. . . Gas sensor element,
203. . . Uneven layer,
205. . . Electrode protective layer,

Claims (4)

ハウジングと,該ハウジング内に挿通配置されたガスセンサ素子とを有し,上記ハウジングと上記ガスセンサ素子との間の少なくとも一部分は,第1リン酸アルミニウム水溶液よりなる充填補助材を添加してなる粉末充填材が充填された充填部により気密的に封止され,上記ガスセンサ素子の表面には,多孔質材料で形成された凹凸層,電極保護層のいずれか1種以上が形成されており,上記凹凸層及び上記電極保護層の基端側の端部が,上記充填部の基端側の端部と同じか,または上記充填部の基端側の端部より先端側にあることを特徴とするガスセンサ。 A powder filling comprising a housing and a gas sensor element inserted through the housing, wherein at least a part between the housing and the gas sensor element is added with a filling auxiliary material made of a first aluminum phosphate aqueous solution. The gas sensor element is hermetically sealed by a filling portion filled with a material, and the surface of the gas sensor element is formed with at least one of a concavo-convex layer made of a porous material and an electrode protective layer. The proximal end of the layer and the electrode protective layer is the same as the proximal end of the filling portion, or is more distal than the proximal end of the filling portion Gas sensor. 請求項1において,上記凹凸層の基端側の端部,上記電極保護層の基端側の端部いずれかが,上記充填部の基端側の端部より0.5mm以上先端側にあることを特徴とするガスセンサ。   2. The base end side end portion of the concavo-convex layer or the base end side end portion of the electrode protection layer is at least 0.5 mm or more from the base end side end portion of the filling portion. A gas sensor characterized by that. 請求項1または2において,上記電極保護層の基端側の端部が,上記充填部の先端側の端部と同じか,または上記充填部の先端側の端部より先端部側にあることを特徴とするガスセンサ。   3. The base end side end portion of the electrode protection layer according to claim 1 or 2 is the same as the end portion on the tip end side of the filling portion or on the tip end side from the end portion on the tip end side of the filling portion. A gas sensor. 請求項において,上記粉末充填材100重量部に対する上記充填補助材の添加量は0.1〜10重量部であることを特徴とするガスセンサ。 2. The gas sensor according to claim 1, wherein the addition amount of the filling auxiliary material is 0.1 to 10 parts by weight with respect to 100 parts by weight of the powder filler.
JP2008108344A 2001-07-31 2008-04-17 Gas sensor Expired - Fee Related JP4631926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108344A JP4631926B2 (en) 2001-07-31 2008-04-17 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001232570 2001-07-31
JP2008108344A JP4631926B2 (en) 2001-07-31 2008-04-17 Gas sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002164782A Division JP2003114210A (en) 2001-07-31 2002-06-05 Gas sensor

Publications (2)

Publication Number Publication Date
JP2008180737A JP2008180737A (en) 2008-08-07
JP4631926B2 true JP4631926B2 (en) 2011-02-16

Family

ID=39724711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108344A Expired - Fee Related JP4631926B2 (en) 2001-07-31 2008-04-17 Gas sensor

Country Status (1)

Country Link
JP (1) JP4631926B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146901A (en) * 1998-11-05 2000-05-26 Robert Bosch Gmbh Measuring sensor and its manufacture
JP2000314715A (en) * 1999-04-28 2000-11-14 Ngk Spark Plug Co Ltd Gas sensor and manufacture thereof
JP2001124724A (en) * 1999-10-26 2001-05-11 Ngk Spark Plug Co Ltd Oxygen sensor element and method for manufacturing the same
JP2001281209A (en) * 2000-01-27 2001-10-10 Ngk Spark Plug Co Ltd Gas sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674649A (en) * 1979-11-24 1981-06-20 Ngk Spark Plug Co Ltd Oxygen detecting element
JP2514701B2 (en) * 1988-12-02 1996-07-10 日本特殊陶業株式会社 Oxygen sensor
JP2868272B2 (en) * 1990-02-26 1999-03-10 日本特殊陶業株式会社 Sensor assembly structure
JP3873398B2 (en) * 1997-09-09 2007-01-24 株式会社デンソー Oxygen sensor element and manufacturing method thereof
JP3691242B2 (en) * 1998-02-26 2005-09-07 日本特殊陶業株式会社 Gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146901A (en) * 1998-11-05 2000-05-26 Robert Bosch Gmbh Measuring sensor and its manufacture
JP2000314715A (en) * 1999-04-28 2000-11-14 Ngk Spark Plug Co Ltd Gas sensor and manufacture thereof
JP2001124724A (en) * 1999-10-26 2001-05-11 Ngk Spark Plug Co Ltd Oxygen sensor element and method for manufacturing the same
JP2001281209A (en) * 2000-01-27 2001-10-10 Ngk Spark Plug Co Ltd Gas sensor

Also Published As

Publication number Publication date
JP2008180737A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP2003114210A (en) Gas sensor
US7168295B2 (en) Gas sensor
US5334350A (en) Resistance probe for determining gas compositions and method of producing it
EP1167961B9 (en) Gas sensor and manufacturing method for the same
US4121989A (en) Method of making oxygen sensor
US4121988A (en) Oxygen sensor
JP4471016B2 (en) Gas sensor and manufacturing method thereof
JP2659791B2 (en) Waterproof oxygen sensor
US4172247A (en) Gas concentration sensing device
US8097137B2 (en) Gas sensor element and gas sensor
KR102489689B1 (en) Method for producing a seal for a sensor element of a sensor for detecting at least one property of a measuring gas in a measuring gas chamber
EP1167959A1 (en) Sealing structure of gas sensor
US7704358B2 (en) Oxygen sensor
JP2005326395A (en) Gas sensor
JP4631926B2 (en) Gas sensor
US20070246361A1 (en) Gas sensor with increased sealing performance
KR102363997B1 (en) Method for producing a seal for a sensor element of a sensor for detecting at least one property of a measuring gas in a measuring gas chamber
US20090312938A1 (en) Gas sensor, oxygen sensor and air-fuel ratio control system
JP2002082088A (en) Gas sensor
JP2610679B2 (en) Waterproof oxygen sensor
US20040040846A1 (en) Sensor element
JP3873398B2 (en) Oxygen sensor element and manufacturing method thereof
JPS62179653A (en) Threshold current type oxygen sensor
JPH0650297B2 (en) Method of manufacturing oxygen sensor element
EP1269176A2 (en) High temperature poison resistant sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R151 Written notification of patent or utility model registration

Ref document number: 4631926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees