JP4631759B2 - Failure diagnosis device for exhaust gas purification device of internal combustion engine - Google Patents

Failure diagnosis device for exhaust gas purification device of internal combustion engine Download PDF

Info

Publication number
JP4631759B2
JP4631759B2 JP2006072001A JP2006072001A JP4631759B2 JP 4631759 B2 JP4631759 B2 JP 4631759B2 JP 2006072001 A JP2006072001 A JP 2006072001A JP 2006072001 A JP2006072001 A JP 2006072001A JP 4631759 B2 JP4631759 B2 JP 4631759B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
bypass
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006072001A
Other languages
Japanese (ja)
Other versions
JP2007247530A (en
Inventor
先基 李
健一 佐藤
基治 赤羽
公良 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006072001A priority Critical patent/JP4631759B2/en
Priority to KR1020070024741A priority patent/KR100905811B1/en
Priority to US11/717,784 priority patent/US8341937B2/en
Priority to EP07104230.3A priority patent/EP1835140B1/en
Publication of JP2007247530A publication Critical patent/JP2007247530A/en
Application granted granted Critical
Publication of JP4631759B2 publication Critical patent/JP4631759B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/47

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

この発明は、冷間始動直後に、排気系の比較的上流に触媒コンバータを備えたバイパス通路側に流路切換弁により排気を案内するようにした排気浄化装置に関し、特に、その流路切換弁の漏洩を診断する故障診断装置に関する。   The present invention relates to an exhaust gas purification device in which exhaust gas is guided by a flow path switching valve to a bypass passage side provided with a catalytic converter relatively upstream of an exhaust system immediately after a cold start, and in particular, the flow path switching valve. The present invention relates to a failure diagnosis device for diagnosing leakage of a liquid.

従来から知られているように、車両の床下などの排気系の比較的下流側にメイン触媒コンバータを配置した構成では、内燃機関の冷間始動後、触媒コンバータの温度が上昇して活性化するまでの間、十分な排気浄化作用を期待することができない。また一方、触媒コンバータを排気系の上流側つまり内燃機関側に近付けるほど、触媒の熱劣化による耐久性低下が問題となる。   As conventionally known, in a configuration in which the main catalytic converter is disposed relatively downstream of the exhaust system such as under the floor of a vehicle, the temperature of the catalytic converter rises and is activated after a cold start of the internal combustion engine. In the meantime, a sufficient exhaust purification action cannot be expected. On the other hand, the closer the catalytic converter is to the upstream side of the exhaust system, that is, the internal combustion engine side, the lower the durability due to thermal degradation of the catalyst.

そのため、特許文献1や特許文献2に開示されているように、メイン触媒コンバータを備えたメイン流路の上流側部分と並列にバイパス流路を設けるとともに、このバイパス流路に、別のバイパス触媒コンバータを介装し、両者を切り換える切換弁によって、冷間始動直後は、バイパス流路側に排気を案内するようにした排気装置が、従来から提案されている。この構成では、バイパス触媒コンバータは排気系の中でメイン触媒コンバータよりも相対的に上流側に位置しており、相対的に早期に活性化するので、より早い段階から排気浄化を開始することができる。
特開平5−321644号公報 特開2005−188374号公報
Therefore, as disclosed in Patent Document 1 and Patent Document 2, a bypass channel is provided in parallel with the upstream portion of the main channel including the main catalytic converter, and another bypass catalyst is provided in the bypass channel. 2. Description of the Related Art Conventionally, there has been proposed an exhaust device that guides exhaust gas to the bypass flow path side immediately after a cold start by a switching valve that interposes a converter and switches both of them. In this configuration, the bypass catalytic converter is positioned relatively upstream of the main catalytic converter in the exhaust system and is activated relatively early, so that exhaust purification can be started from an earlier stage. it can.
JP-A-5-321644 JP 2005-188374 A

上記のような構成において、流路切換弁による流路切換が不十分な場合、例えば、メイン通路を開閉する流路切換弁が閉位置にあるにも拘わらず排気が漏洩するような場合には、メイン触媒コンバータが未活性の段階で未浄化の排気がそのまま外部へ流出することになり、好ましくない。従って、流路切換弁の漏洩を診断する診断装置が求められている。   In the above configuration, when the flow path switching by the flow path switching valve is insufficient, for example, when the exhaust gas leaks even though the flow path switching valve that opens and closes the main passage is in the closed position. When the main catalytic converter is inactive, unpurified exhaust gas flows out to the outside as it is, which is not preferable. Accordingly, there is a need for a diagnostic device that diagnoses leakage of the flow path switching valve.

なお、上記特許文献2は、流路切換弁のデポジットの付着による流量低下などを検出する方法を提案しているが、未浄化の排気の漏洩を診断することはできない。   In addition, although the said patent document 2 has proposed the method of detecting the flow volume fall by the adhesion of the deposit of a flow-path switching valve, etc., the leakage of unpurified exhaust gas cannot be diagnosed.

この発明は、メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列にバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路の上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気浄化装置において、上記バイパス通路のバイパス触媒コンバータ上流側の排気空燃比を検出する第1空燃比検出手段と、上記メイン通路のメイン触媒コンバータ上流側の排気空燃比を検出する第2空燃比検出手段と、上記流路切換弁が閉位置に制御されている状態において内燃機関の空燃比をリーンまたはリッチから理論空燃比を挟んで反対側のリッチまたはリーンへとステップ的に変化させる空燃比制御手段と、機関空燃比がステップ的に変化した後の各空燃比検出手段の検出空燃比に基づき、上記流路切換弁の漏洩を診断する診断手段と、を備えていることを特徴とする。   According to the present invention, a bypass passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side, the bypass passage is provided with the bypass catalytic converter, and the upstream portion of the main passage is provided with the bypass passage. In an exhaust gas purification apparatus for an internal combustion engine comprising a flow path switching valve for closing a main passage, first air-fuel ratio detection means for detecting an exhaust air-fuel ratio upstream of the bypass catalytic converter in the bypass passage, and a main passage in the main passage A second air-fuel ratio detecting means for detecting the exhaust air-fuel ratio upstream of the catalytic converter, and the air-fuel ratio of the internal combustion engine from lean or rich to the stoichiometric air-fuel ratio in a state where the flow path switching valve is controlled to the closed position; Air-fuel ratio control means that changes stepwise to rich or lean on the opposite side, and each air-fuel ratio after the engine air-fuel ratio changes stepwise Based on the detected air-fuel ratio of the ratio detecting means, characterized in that it and a diagnostic means for diagnosing leakage of the flow path switching valve.

望ましくは、上記バイパス触媒コンバータの酸素ストレージ能力が飽和するに十分な期間、機関空燃比をリーンに保持した後、リッチにステップ的に変化させる。   Desirably, the engine air-fuel ratio is kept lean for a period sufficient to saturate the oxygen storage capacity of the bypass catalytic converter, and then the step-by-step change is made rich.

すなわち、上記構成の排気浄化装置においては、メイン通路を開閉する流路切換弁が閉位置にあると、内燃機関から排出された排気の全量がバイパス通路側へ流れ、バイパス触媒コンバータを通過する。これに対し流路切換弁が開位置にあると、内燃機関から排出された排気の大部分は、通気抵抗の差により、メイン通路側を流れる。   That is, in the exhaust emission control device having the above configuration, when the flow path switching valve that opens and closes the main passage is in the closed position, the entire amount of exhaust discharged from the internal combustion engine flows to the bypass passage side and passes through the bypass catalytic converter. On the other hand, when the flow path switching valve is in the open position, most of the exhaust discharged from the internal combustion engine flows through the main passage due to the difference in ventilation resistance.

流路切換弁の漏洩の診断は、流路切換弁を閉位置に制御した状態で、機関空燃比を例えばリーンからリッチに変化させることにより行われる。この場合、機関空燃比がリーンである間、過剰な酸素が、バイパス触媒コンバータの触媒が有する酸素ストレージ能力により蓄えられ、かつこの酸素が、機関空燃比がリッチとなると放出される。従って、機関空燃比がリッチに変化しても、流路切換弁を通した排気の漏洩がなければ、放出された酸素の影響により、第2空燃比検出手段の検出空燃比は、すぐにはリッチとならない。つまり機関空燃比の変化の直後は、第2空燃比検出手段により検出される排気空燃比は、機関空燃比よりも比較的リーンなものとなる。これに対し、流路切換弁を通した排気の漏洩があると、この漏洩した排気はリッチな成分であるので、第2空燃比検出手段により検出される排気空燃比は、よりリッチなものとなる。従って、これにより、流路切換弁の漏洩の有無あるいはその漏洩の程度などを診断することができる。機関空燃比をリッチからリーンへ変化させた場合も、酸素ストレージ能力により同様に漏洩の影響が生じる。   Diagnosis of leakage of the flow path switching valve is performed by changing the engine air-fuel ratio, for example, from lean to rich with the flow path switching valve controlled to the closed position. In this case, while the engine air-fuel ratio is lean, excess oxygen is stored by the oxygen storage capability of the catalyst of the bypass catalytic converter, and this oxygen is released when the engine air-fuel ratio becomes rich. Therefore, even if the engine air-fuel ratio changes richly, if there is no leakage of exhaust gas through the flow path switching valve, the detected air-fuel ratio of the second air-fuel ratio detecting means is immediately affected by the released oxygen. Not rich. That is, immediately after the change of the engine air-fuel ratio, the exhaust air-fuel ratio detected by the second air-fuel ratio detection means becomes relatively leaner than the engine air-fuel ratio. On the other hand, if there is a leak of exhaust gas through the flow path switching valve, the leaked exhaust gas is a rich component, so that the exhaust air-fuel ratio detected by the second air-fuel ratio detection means is richer. Become. Accordingly, it is possible to diagnose whether or not the flow path switching valve is leaking or the degree of the leak. Even when the engine air-fuel ratio is changed from rich to lean, the influence of leakage similarly occurs due to the oxygen storage capacity.

本発明の一つの態様では、機関空燃比がステップ的に変化した後の所定期間における第1空燃比検出手段の平均空燃比と第2空燃比検出手段の平均空燃比との差を求め、この差に基づき、漏洩の有無を判別する。   In one aspect of the present invention, a difference between the average air-fuel ratio of the first air-fuel ratio detection means and the average air-fuel ratio of the second air-fuel ratio detection means in a predetermined period after the engine air-fuel ratio changes stepwise is obtained, Based on the difference, the presence or absence of leakage is determined.

上述した酸素ストレージ能力は、触媒劣化によって影響されるので、上記バイパス触媒コンバータの触媒劣化度合を診断する手段を有し、この触媒劣化度合に応じて、漏洩の診断を修正することが望ましい。   Since the above-described oxygen storage capacity is affected by catalyst deterioration, it is desirable to have means for diagnosing the degree of catalyst deterioration of the bypass catalytic converter, and to correct the leakage diagnosis according to the degree of catalyst deterioration.

例えば、上述した各々の平均空燃比の差を判定基準値と比較して漏洩の有無を判別する場合に、上記触媒劣化度合に応じて上記判定基準値を補正すれば、その診断精度がより向上する。   For example, when the above-described difference in average air-fuel ratio is compared with a determination reference value to determine the presence or absence of leakage, if the determination reference value is corrected in accordance with the degree of catalyst deterioration, the diagnostic accuracy is further improved. To do.

この発明に係る内燃機関の排気浄化装置の故障診断装置によれば、流路切換弁を通した排気の漏洩を確実に診断することができ、未浄化の排気の外部への流出を未然に防止することができる。   According to the failure diagnosis apparatus for an exhaust gas purification apparatus for an internal combustion engine according to the present invention, it is possible to reliably diagnose the leakage of exhaust gas through the flow path switching valve, and to prevent outflow of unpurified exhaust gas to the outside. can do.

また、触媒劣化度合を考慮した診断を容易に実現でき、その診断精度を高めることが可能である。   In addition, diagnosis considering the degree of catalyst deterioration can be easily realized, and the diagnosis accuracy can be increased.

以下、この発明を直列4気筒内燃機関の排気浄化装置に適用した一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment in which the present invention is applied to an exhaust purification apparatus for an in-line four-cylinder internal combustion engine will be described in detail with reference to the drawings.

図1は、この内燃機関の排気装置の配管レイアウトならびに制御システムを模式的に示した説明図であり、始めに、この図1に基づいて、排気装置の構成を説明する。   FIG. 1 is an explanatory view schematically showing the piping layout and control system of the exhaust device of the internal combustion engine. First, the configuration of the exhaust device will be described based on FIG.

内燃機関1のシリンダヘッド1aには、直列に配置された♯1気筒〜♯4気筒の各気筒の排気ポート2がそれぞれ側面に向かって開口するように形成されており、この排気ポート2のそれぞれに、メイン通路3が接続されている。♯1気筒〜♯4気筒の4本のメイン通路3は、1本の流路に合流しており、その下流側に、メイン触媒コンバータ4が配置されている。このメイン触媒コンバータ4は、車両の床下に配置される容量の大きなものであって、触媒としては、例えば、三元触媒とHCトラップ触媒とを含んでいる。上記のメイン通路3およびメイン触媒コンバータ4によって、通常の運転時に排気が通流するメイン流路が構成される。また、各気筒からの4本のメイン通路3の合流点には、流路切換手段として各メイン通路3を一斉に開閉する流路切換弁5が設けられている。この流路切換弁5は、適宜なアクチュエータ5aによって開閉駆動される。   In the cylinder head 1a of the internal combustion engine 1, exhaust ports 2 of cylinders # 1 to # 4 arranged in series are formed so as to open toward the side surfaces, respectively. In addition, the main passage 3 is connected. The four main passages 3 of the # 1 cylinder to the # 4 cylinder merge into one flow path, and the main catalytic converter 4 is disposed on the downstream side thereof. The main catalytic converter 4 has a large capacity arranged under the floor of the vehicle, and includes, for example, a three-way catalyst and an HC trap catalyst as the catalyst. The main passage 3 and the main catalytic converter 4 constitute a main passage through which exhaust flows during normal operation. In addition, a flow path switching valve 5 that opens and closes the main passages 3 at the same time is provided as a flow path switching means at the junction of the four main paths 3 from each cylinder. The flow path switching valve 5 is driven to open and close by an appropriate actuator 5a.

一方、バイパス流路として、各気筒のメイン通路3の各々から、該メイン通路3よりも通路断面積の小さなバイパス通路7がそれぞれ分岐している。各バイパス通路7の上流端となる分岐点6は、メイン通路3のできるだけ上流側の位置に設定されている。4本のバイパス通路7は、下流側で1本の流路に合流しており、その合流点の直後に、三元触媒を用いたバイパス触媒コンバータ8が介装されている。このバイパス触媒コンバータ8は、メイン触媒コンバータ4に比べて容量が小さな小型のものであり、望ましくは、低温活性に優れた触媒が用いられる。バイパス触媒コンバータ8の出口側から延びるバイパス通路7の下流端は、メイン通路3におけるメイン触媒コンバータ4上流側でかつ流路切換弁5よりも下流側の合流点9において該メイン通路3に接続されている。   On the other hand, bypass passages 7 each having a smaller passage sectional area than the main passage 3 are branched from the main passages 3 of the respective cylinders as bypass passages. The branch point 6 that is the upstream end of each bypass passage 7 is set to a position on the upstream side of the main passage 3 as much as possible. The four bypass passages 7 merge into one flow path on the downstream side, and a bypass catalytic converter 8 using a three-way catalyst is interposed immediately after the junction. The bypass catalytic converter 8 has a small capacity as compared with the main catalytic converter 4 and desirably uses a catalyst excellent in low temperature activity. The downstream end of the bypass passage 7 extending from the outlet side of the bypass catalytic converter 8 is connected to the main passage 3 at a junction 9 upstream of the main catalytic converter 4 in the main passage 3 and downstream of the flow path switching valve 5. ing.

ここで、メイン触媒コンバータ4の入口部ならびに出口部には、それぞれメイン上流側空燃比センサ10およびメイン下流側空燃比センサ11が配置されており、バイパス触媒コンバータ8の入口部ならびに出口部には、それぞれバイパス上流側空燃比センサ12およびバイパス下流側空燃比センサ13が配置されている。メイン上流側空燃比センサ10およびメイン下流側空燃比センサ11は、メイン触媒コンバータ4の活性後に公知の空燃比フィードバック制御を行うためのものであり、基本的に上流側空燃比センサ10によって機関空燃比(燃料噴射量)が制御され、その制御特性のばらつきの補正などのために下流側空燃比センサ11の出力信号が利用される。同様に、バイパス上流側空燃比センサ12およびバイパス下流側空燃比センサ13は、バイパス触媒コンバータ8を用いる際に公知の空燃比フィードバック制御を行うためのものであり、基本的に上流側空燃比センサ12によって機関空燃比(燃料噴射量)が制御され、その制御特性のばらつきの補正などのために下流側空燃比センサ13の出力信号が利用される。これらの空燃比センサ10〜13としては、排気空燃比に応じたほぼリニアな出力特性を有するいわゆる広域型空燃比センサ、あるいはリッチ,リーンの2値的な出力特性を有する酸素センサ、のいずれであってもよいが、上述した空燃比制御の際の制御性の上から、上流側空燃比センサ10,12は広域型空燃比センサであることが望ましく、また、下流側空燃比センサ11,13は、部品コストなどの点から酸素センサを用いることが可能である。なお、上記バイパス上流側空燃比センサ12は「第1空燃比検出手段」に相当し、上記メイン上流側空燃比センサ10は「第2空燃比検出手段」に相当する。   Here, a main upstream air-fuel ratio sensor 10 and a main downstream air-fuel ratio sensor 11 are arranged at the inlet and outlet of the main catalytic converter 4, respectively, and at the inlet and outlet of the bypass catalytic converter 8. A bypass upstream air-fuel ratio sensor 12 and a bypass downstream air-fuel ratio sensor 13 are disposed, respectively. The main upstream air-fuel ratio sensor 10 and the main downstream air-fuel ratio sensor 11 are for performing known air-fuel ratio feedback control after the activation of the main catalytic converter 4. The fuel ratio (fuel injection amount) is controlled, and the output signal of the downstream air-fuel ratio sensor 11 is used for correcting variations in the control characteristics. Similarly, the bypass upstream air-fuel ratio sensor 12 and the bypass downstream air-fuel ratio sensor 13 are for performing known air-fuel ratio feedback control when the bypass catalytic converter 8 is used. 12, the engine air-fuel ratio (fuel injection amount) is controlled, and the output signal of the downstream-side air-fuel ratio sensor 13 is used for correcting variations in the control characteristics. As these air-fuel ratio sensors 10 to 13, either a so-called wide-area type air-fuel ratio sensor having a substantially linear output characteristic corresponding to the exhaust air-fuel ratio or an oxygen sensor having a binary output characteristic of rich or lean is used. However, the upstream air-fuel ratio sensors 10 and 12 are desirably wide-area air-fuel ratio sensors, and the downstream air-fuel ratio sensors 11 and 13 are preferable in terms of controllability in the air-fuel ratio control described above. It is possible to use an oxygen sensor in terms of component costs. The bypass upstream air-fuel ratio sensor 12 corresponds to “first air-fuel ratio detection means”, and the main upstream air-fuel ratio sensor 10 corresponds to “second air-fuel ratio detection means”.

また内燃機関1は、点火プラグ21を備え、その吸気通路22には、燃料噴射弁23が配置されている。さらに、吸気通路22の上流側に、モータ等のアクチュエータによって開閉駆動される所謂電子制御型スロットル弁24が配置されているとともに、吸入空気量を検出するエアフロメータ25がエアクリーナ26下流に設けられている。   The internal combustion engine 1 includes a spark plug 21, and a fuel injection valve 23 is disposed in the intake passage 22. Furthermore, a so-called electronically controlled throttle valve 24 that is opened and closed by an actuator such as a motor is disposed upstream of the intake passage 22, and an air flow meter 25 that detects the amount of intake air is provided downstream of the air cleaner 26. Yes.

内燃機関1の種々の制御パラメータ、例えば、上記燃料噴射弁23による燃料噴射量、点火プラグ21による点火時期、スロットル弁24の開度、流路切換弁5の開閉状態、などは、エンジンコントロールユニット27によって制御される。このエンジンコントロールユニット27には、上述したセンサ類のほか、冷却水温センサ28、運転者により操作されるアクセルペダルの開度(踏込量)を検出するアクセル開度センサ29、などの種々のセンサ類の検出信号が入力されている。そして、上記流路切換弁5の漏洩の診断が上記エンジンコントロールユニット27によって適宜に実行される。   Various control parameters of the internal combustion engine 1, for example, the fuel injection amount by the fuel injection valve 23, the ignition timing by the spark plug 21, the opening degree of the throttle valve 24, the open / close state of the flow path switching valve 5, etc. 27. In addition to the sensors described above, the engine control unit 27 includes various sensors such as a coolant temperature sensor 28 and an accelerator opening sensor 29 that detects the opening (depression amount) of an accelerator pedal operated by a driver. Detection signal is input. Then, the engine control unit 27 appropriately executes a diagnosis of leakage of the flow path switching valve 5.

このような構成においては、冷間始動後の機関温度ないしは排気温度が低い段階では、アクチュエータ5aを介して流路切換弁5が閉じられ、メイン通路3が遮断される。そのため、各気筒から吐出された排気は、その全量が分岐点6からバイパス通路7を通してバイパス触媒コンバータ8へと流れる。バイパス触媒コンバータ8は、排気系の上流側つまり排気ポート2に近い位置にあり、かつ小型のものであるので、速やかに活性化し、早期に排気浄化が開始される。   In such a configuration, when the engine temperature or the exhaust temperature after the cold start is low, the flow path switching valve 5 is closed via the actuator 5a, and the main passage 3 is blocked. Therefore, the entire amount of exhaust discharged from each cylinder flows from the branch point 6 to the bypass catalytic converter 8 through the bypass passage 7. The bypass catalytic converter 8 is located upstream of the exhaust system, that is, at a position close to the exhaust port 2 and is small in size, so that it is activated quickly and exhaust purification is started at an early stage.

一方、機関の暖機が進行して、機関温度ないしは排気温度が十分に高くなったら、メイン触媒コンバータ4の触媒が活性したとみなし、流路切換弁5が開放される。これにより、各気筒から吐出された排気は、主に、メイン通路3からメイン触媒コンバータ4を通過する。このときバイパス通路7側は特に遮断されていないが、バイパス通路7側の方がメイン通路3側よりも通路断面積が小さく、かつバイパス触媒コンバータ8が介在しているので、両者の通路抵抗の差により、排気流の大部分はメイン通路3側を通り、バイパス通路7側には殆ど流れない。従って、バイパス触媒コンバータ8の熱劣化は十分に抑制される。   On the other hand, when the engine warm-up proceeds and the engine temperature or the exhaust temperature becomes sufficiently high, it is considered that the catalyst of the main catalytic converter 4 has been activated, and the flow path switching valve 5 is opened. Thus, the exhaust discharged from each cylinder mainly passes through the main catalytic converter 4 from the main passage 3. At this time, the bypass passage 7 side is not particularly cut off, but the bypass passage 7 side has a smaller passage cross-sectional area than the main passage 3 side and the bypass catalytic converter 8 is interposed. Due to the difference, most of the exhaust flow passes through the main passage 3 side and hardly flows into the bypass passage 7 side. Therefore, the thermal deterioration of the bypass catalytic converter 8 is sufficiently suppressed.

次に、上記流路切換弁5の漏洩の診断について説明する。なお、以下の例では、2つの上流側空燃比センサ10,12が広域型空燃比センサであり、2つの下流側空燃比センサ11,13が酸素センサである。また本発明では、診断の際に、機関空燃比をリーンからリッチへ、あるいは、リッチからリーンへ、とステップ的に変化させるのであるが、以下では、リーンからリッチへと変化させる場合を例に説明する。   Next, the diagnosis of leakage of the flow path switching valve 5 will be described. In the following example, the two upstream air-fuel ratio sensors 10 and 12 are wide-area air-fuel ratio sensors, and the two downstream air-fuel ratio sensors 11 and 13 are oxygen sensors. In the present invention, at the time of diagnosis, the engine air-fuel ratio is changed stepwise from lean to rich, or from rich to lean.In the following, the case of changing from lean to rich is taken as an example. explain.

図2は、診断処理の流れを示すフローチャートであり、まずステップ1で、そのときの機関回転数NEと負荷(燃料噴射量TP)とスロットル弁開度TVOとを読み込み、ステップ2で、これらの運転条件から漏洩の診断が可能であるか否かを判断する。この診断は、基本的には、バイパス触媒コンバータ8が活性しており、かつメイン触媒コンバータ4が未暖機であって流路切換弁5が閉位置にある定常運転の下で実行される。診断可能な条件であれば、ステップ3で内燃機関の目標空燃比をリーンとし、かつバイパス下流側空燃比センサ13の出力電圧がリーン側となるまで待つ(ステップ4)。つまり、バイパス触媒コンバータ8の酸素ストレージ能力が飽和するまで機関空燃比をリーンとし、その後、目標空燃比をリッチにステップ的に変化させる(ステップ5)。そして、この状態で、バイパス上流側空燃比センサ12およびメイン上流側空燃比センサ10の出力信号の変化をモニタし、かつ後述する診断パラメータを算出する(ステップ6)。目標空燃比をリッチとしてから所定期間の漏洩診断が終了(ステップ7)したら、目標空燃比を理論空燃比に戻し(ステップ8)、診断パラメータを判定基準値Lと比較する(ステップ9)。なお、診断の終了は、例えば、リッチとしてからの経過時間に基づいて判断してもよく、あるいは、バイパス下流側空燃比センサ13の出力電圧がリッチ側に反転した時点で診断終了としてもよい。ステップ9で診断パラメータが判定基準値Lよりも大であれば、漏洩があると判定し、例えば図示せぬ警告灯を点灯する(ステップ10)。   FIG. 2 is a flowchart showing the flow of diagnostic processing. First, in step 1, the engine speed NE, load (fuel injection amount TP) and throttle valve opening TVO at that time are read. In step 2, these values are read. It is determined whether or not a leakage diagnosis is possible from the operating conditions. This diagnosis is basically executed under steady operation where the bypass catalytic converter 8 is active, the main catalytic converter 4 is not warmed up, and the flow path switching valve 5 is in the closed position. If the conditions are diagnosable, in step 3, the target air-fuel ratio of the internal combustion engine is made lean, and the process waits until the output voltage of the bypass downstream air-fuel ratio sensor 13 becomes lean (step 4). That is, the engine air-fuel ratio is made lean until the oxygen storage capacity of the bypass catalytic converter 8 is saturated, and then the target air-fuel ratio is changed stepwise to a rich (step 5). In this state, changes in the output signals of the bypass upstream air-fuel ratio sensor 12 and the main upstream air-fuel ratio sensor 10 are monitored, and diagnostic parameters described later are calculated (step 6). After the target air-fuel ratio is made rich, leakage diagnosis for a predetermined period ends (step 7), the target air-fuel ratio is returned to the theoretical air-fuel ratio (step 8), and the diagnosis parameter is compared with the determination reference value L (step 9). Note that the end of the diagnosis may be determined based on, for example, the elapsed time since the rich, or the diagnosis may be ended when the output voltage of the bypass downstream air-fuel ratio sensor 13 is reversed to the rich side. If the diagnosis parameter is larger than the determination reference value L in step 9, it is determined that there is a leak, and for example, a warning light (not shown) is turned on (step 10).

図3は、上記の漏洩診断の際のタイムチャートであり、内燃機関の目標空燃比、バイパス下流側空燃比センサ13の出力電圧、メイン上流側空燃比センサ10の検出空燃比AFMおよびバイパス上流側空燃比センサ12の検出空燃比AFB、のそれぞれの変化を示している。目標空燃比は、前述したように、理論空燃比の状態から診断のために強制的にリーンとなり、その後、リッチにステップ的に変化する。流路切換弁5が閉位置にあることから内燃機関の排気は基本的にバイパス通路7側を流れることになり、機関空燃比がリーンである間、バイパス触媒コンバータ8の触媒に酸素が蓄えられる。そのため、バイパス触媒コンバータ8下流にあるバイパス下流側空燃比センサ13の出力信号は、多少遅れてリーン側となる。また、バイパス上流側空燃比センサ12およびメイン上流側空燃比センサ10のいずれも、リーン側の排気空燃比を示すようになる。なお、この実施例では、バイパス下流側空燃比センサ13の信号がリーンとなってから適宜な遅れ期間を与えて、目標空燃比をリッチに変化させるようにしている。   FIG. 3 is a time chart for the above leakage diagnosis. The target air-fuel ratio of the internal combustion engine, the output voltage of the bypass downstream air-fuel ratio sensor 13, the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 and the bypass upstream side. Each change of the air-fuel ratio AFB detected by the air-fuel ratio sensor 12 is shown. As described above, the target air-fuel ratio is forcibly lean for diagnosis from the state of the stoichiometric air-fuel ratio, and thereafter changes to a rich stepwise manner. Since the flow path switching valve 5 is in the closed position, the exhaust gas of the internal combustion engine basically flows on the bypass passage 7 side, and oxygen is stored in the catalyst of the bypass catalytic converter 8 while the engine air-fuel ratio is lean. . Therefore, the output signal of the bypass downstream air-fuel ratio sensor 13 downstream of the bypass catalytic converter 8 is on the lean side with some delay. Further, both the bypass upstream air-fuel ratio sensor 12 and the main upstream air-fuel ratio sensor 10 show the lean exhaust air-fuel ratio. In this embodiment, the target air-fuel ratio is changed richly by giving an appropriate delay period after the signal of the bypass downstream air-fuel ratio sensor 13 becomes lean.

機関空燃比がリーンからリッチへ変化すると、バイパス触媒コンバータ8上流に位置するバイパス上流側空燃比センサ12の検出空燃比AFBは、直ちにリッチとなる。これに対し、バイパス触媒コンバータ8の下流においては、該バイパス触媒コンバータ8の触媒に蓄えられていた酸素が放出されるため、メイン上流側空燃比センサ10の検出空燃比AFMは、すぐにはリッチとならず、実線で示すように若干遅れてリッチに変化する。なお、この実線は、漏洩がない場合の特性である。つまり、漏洩がなければ、バイパス上流側空燃比センサ12の検出空燃比AFBとメイン上流側空燃比センサ10の検出空燃比AFMとが大きく乖離する。   When the engine air-fuel ratio changes from lean to rich, the detected air-fuel ratio AFB of the bypass upstream air-fuel ratio sensor 12 located upstream of the bypass catalytic converter 8 immediately becomes rich. On the other hand, since the oxygen stored in the catalyst of the bypass catalytic converter 8 is released downstream of the bypass catalytic converter 8, the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 is immediately rich. However, it changes to rich with a slight delay as shown by the solid line. This solid line is a characteristic when there is no leakage. That is, if there is no leakage, the detected air-fuel ratio AFB of the bypass upstream air-fuel ratio sensor 12 and the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 are greatly different.

一方、流路切換弁5の弁体のシール不良等により該流路切換弁5を通した排気の漏洩がある場合には、バイパス触媒コンバータ8を通らずに一部の排気がメイン上流側空燃比センサ10に達するので、仮想線で示すように、メイン上流側空燃比センサ10の検出空燃比AFMがよりリッチな値を示す。つまり、漏洩がある場合には、その程度に応じて、メイン上流側空燃比センサ10の検出空燃比AFMがバイパス上流側空燃比センサ12の検出空燃比AFBに近付き、両者の乖離が小さくなる。なお、触媒に蓄えられていた酸素が全て放出された段階でバイパス下流側空燃比センサ13の出力電圧が所定のリーン相当のレベルに達するので、本実施例では、この時点で目標空燃比が理論空燃比に復帰する。   On the other hand, when there is an exhaust leakage through the flow path switching valve 5 due to a sealing failure of the valve body of the flow path switching valve 5 or the like, a part of the exhaust gas is not emptied through the main upstream side without passing through the bypass catalytic converter 8. Since the air-fuel ratio sensor 10 is reached, the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 shows a richer value, as indicated by a virtual line. In other words, if there is a leak, the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 approaches the detected air-fuel ratio AFB of the bypass upstream air-fuel ratio sensor 12 according to the degree, and the difference between the two becomes small. Since the output voltage of the bypass downstream air-fuel ratio sensor 13 reaches a level corresponding to a predetermined lean at the stage where all the oxygen stored in the catalyst is released, the target air-fuel ratio is theoretically determined at this point in this embodiment. Return to air-fuel ratio.

以上のように、漏洩の有無は、メイン上流側空燃比センサ10ならびにバイパス上流側空燃比センサ12の出力信号に基づき診断が可能であり、具体的には、検出空燃比の変化のタイミングまたは以下詳述するように検出空燃比の差を利用して診断することができる。   As described above, the presence / absence of leakage can be diagnosed based on the output signals of the main upstream air-fuel ratio sensor 10 and the bypass upstream air-fuel ratio sensor 12, and more specifically, the timing of the change of the detected air-fuel ratio or the following As will be described in detail, a diagnosis can be made using the difference in the detected air-fuel ratio.

すなわち、漏洩の程度を数値化するために、本実施例では、目標空燃比の切換後の所定期間Tについて、メイン上流側空燃比センサ10の検出空燃比AFMの平均値AVAFMとバイパス上流側空燃比センサ12の検出空燃比AFBの平均値AVAFBとを求め、かつ両者の差(AVAFM−AVAFB)を前述の診断パラメータとする。この診断パラメータは、前述のように、所定の判定基準値Lと比較される。なお、上記の期間Tは、例えば目標空燃比をリッチとしている期間全体を含むように設定されるが、その一部であってもよい。   That is, in order to quantify the degree of leakage, in the present embodiment, the average value AVAFM of the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 and the bypass upstream air-space for a predetermined period T after switching of the target air-fuel ratio. The average value AFAFB of the detected air-fuel ratio AFB of the fuel ratio sensor 12 is obtained, and the difference (AVAFM−AVAFB) is used as the above-described diagnostic parameter. This diagnostic parameter is compared with a predetermined determination reference value L as described above. The period T is set so as to include the entire period in which the target air-fuel ratio is rich, for example, but may be a part thereof.

このような検出空燃比に基づく診断パラメータを用いた診断には、次のような効果もある。すなわち、広域型空燃比センサは、僅かな空燃比変化にも敏感に反応するので、漏洩がなくても、排気空燃比が変化すると(触媒下流であっても)出力値は僅かながらもすぐ変化し(例えば図3の「(2)AFM漏れなし」を参照)、従って、出力値の変化タイミング(時間差)で診断するのは難しい。これに対し、上記のように、漏洩の有無でより明らかな差となって表れる検出空燃比の差、特にその所定時間内の平均値を診断パラメータとすることで、変化タイミング(時間差)を用いる場合に比べて診断精度がさらに向上する。   Diagnosis using such a diagnosis parameter based on the detected air-fuel ratio also has the following effects. In other words, the wide-range air-fuel ratio sensor responds sensitively to slight changes in the air-fuel ratio, so even if there is no leakage, the output value changes slightly but immediately if the exhaust air-fuel ratio changes (even downstream of the catalyst). (See, for example, “(2) No AFM leakage” in FIG. 3). Therefore, it is difficult to make a diagnosis at the change timing (time difference) of the output value. On the other hand, as described above, the change timing (time difference) is used by using, as a diagnostic parameter, the difference in detected air-fuel ratio that appears as a more obvious difference depending on the presence or absence of leakage, particularly the average value within a predetermined time. Compared with the case, the diagnostic accuracy is further improved.

このように上記実施例では、空燃比フィードバック制御のために用いられる既存の空燃比センサ10〜13を利用して、流路切換弁5の漏洩の有無を容易に診断することができる。これにより、流路切換弁5のシール不良等による排気エミッションの悪化を未然に回避することができる。   As described above, in the above embodiment, it is possible to easily diagnose whether or not the flow path switching valve 5 has leaked by using the existing air-fuel ratio sensors 10 to 13 used for air-fuel ratio feedback control. As a result, it is possible to avoid deterioration of exhaust emission due to poor sealing of the flow path switching valve 5 or the like.

さらに、理論空燃比を挟んで反対側の空燃比に変化させるまでに、触媒に蓄えられた酸素量をできるだけ飽和もしくは空の状態に近づけた方が、漏洩の有無による検出空燃比の相違を大きくできるため、診断精度が向上する。上記実施例では、始めにバイパス触媒コンバータ8の触媒に蓄えられた酸素量を増やすように機関空燃比をリーンにしているので、十分に飽和した状態となり、また、このように酸素量が飽和するまでの間に、未浄化のHCが排出されることがない。   Furthermore, when the stoichiometric air-fuel ratio is changed to the opposite air-fuel ratio across the theoretical air-fuel ratio, the difference in the detected air-fuel ratio due to the presence or absence of leakage is greater when the amount of oxygen stored in the catalyst is made as saturated or empty as possible. This improves the diagnostic accuracy. In the above embodiment, the engine air-fuel ratio is made lean so as to increase the amount of oxygen stored in the catalyst of the bypass catalytic converter 8 at first, so that it becomes sufficiently saturated, and the oxygen amount is saturated in this way. In the meantime, unpurified HC is not discharged.

なお、上記実施例と逆に、始めに機関空燃比をリッチにする場合においては、触媒に蓄えられた酸素量を減らすことになり、機関空燃比がリーンに変化した後しばらくは、触媒に流入する酸素が触媒に蓄えられる。従って、漏洩がなければ、メイン上流側空燃比センサ10は遅れてリーンに変化することとなり、仮に速やかにリーンに変化する場合には、漏洩していることが判る。   Contrary to the above embodiment, when the engine air-fuel ratio is first made rich, the amount of oxygen stored in the catalyst is reduced, and for a while after the engine air-fuel ratio changes to lean, it flows into the catalyst. Oxygen is stored in the catalyst. Therefore, if there is no leakage, the main upstream air-fuel ratio sensor 10 changes to lean with a delay, and if it changes quickly to lean, it is known that the leakage is occurring.

ところで上記の漏洩の診断は、バイパス触媒コンバータ8の触媒の酸素ストレージ能力に依存しているので、触媒が劣化して酸素ストレージ能力が低下すると、影響を受ける。従って、上記判定基準値Lとしては、固定値であってもよいが、触媒劣化度合に応じて、その値を修正すれば、漏洩の診断がより高精度となる。   By the way, since the diagnosis of the leakage depends on the oxygen storage capacity of the catalyst of the bypass catalytic converter 8, it is affected when the catalyst deteriorates and the oxygen storage capacity decreases. Therefore, the determination reference value L may be a fixed value, but if the value is corrected according to the degree of catalyst deterioration, the leakage diagnosis becomes more accurate.

図4は、バイパス触媒コンバータ8の触媒劣化度合の診断方法の一例を説明するタイムチャートであって、これは、流路切換弁5が開位置にあるときに実行される。なお、触媒劣化診断のための強制的に開くようにしてもよい。そして、流路切換弁5が開いている状態で、内燃機関の目標空燃比をリーンからリッチへとステップ的に変化させ、メイン上流側空燃比センサ10の検出空燃比AFMの変化時期とバイパス下流側空燃比センサ13の出力信号AFBの変化時期との時間差ΔTを測定する。すなわち、流路切換弁5が開いている状態であるので、機関空燃比がリッチとなると、メイン上流側空燃比センサ10の検出空燃比AFMは直ちにリッチとなるのに対し、バイパス下流側空燃比センサ13で検出される排気空燃比AFBは、触媒の酸素ストレージ能力により遅れてリッチに変化する。従って、劣化のない新品のバイパス触媒コンバータ8であれば、時間差ΔTが大となり、劣化度合に応じて時間差ΔTが小さくなる。そのため、この時間差ΔTから、図5に示すように、触媒の劣化度合を求めることができる。なお、この触媒劣化度合の測定は、例えば、減速時の燃料カットの後、燃料供給を再開する、いわゆる燃料カットリカバーの際に、その空燃比変化を利用して行うこともできる。   FIG. 4 is a time chart for explaining an example of a method for diagnosing the degree of catalyst deterioration of the bypass catalytic converter 8, which is executed when the flow path switching valve 5 is in the open position. In addition, you may make it open compulsorily for a catalyst deterioration diagnosis. Then, with the flow path switching valve 5 open, the target air-fuel ratio of the internal combustion engine is changed stepwise from lean to rich, and the change timing of the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 and the downstream of the bypass A time difference ΔT with respect to the change timing of the output signal AFB of the side air-fuel ratio sensor 13 is measured. That is, since the flow path switching valve 5 is open, when the engine air-fuel ratio becomes rich, the detected air-fuel ratio AFM of the main upstream air-fuel ratio sensor 10 immediately becomes rich, whereas the bypass downstream air-fuel ratio The exhaust air-fuel ratio AFB detected by the sensor 13 changes richly with a delay due to the oxygen storage capacity of the catalyst. Therefore, in the case of a new bypass catalytic converter 8 with no deterioration, the time difference ΔT is large, and the time difference ΔT is small according to the degree of deterioration. Therefore, from this time difference ΔT, the degree of deterioration of the catalyst can be obtained as shown in FIG. The measurement of the degree of catalyst deterioration can be performed by utilizing the change in the air-fuel ratio at the time of so-called fuel cut recovery in which the fuel supply is resumed after the fuel cut at the time of deceleration, for example.

上記のように求めた触媒劣化度合に対し、例えば図6に示すような関係から、判定基準値Lを求める。これにより、判定基準値Lが触媒劣化度合を考慮した値となり、前述した漏洩の有無の診断がより高精度となる。特に、流路切換弁5を開いた状態で触媒劣化度合の診断を行うので、仮に流路切換弁5の閉位置での漏洩がある場合に、触媒劣化度合の測定がその漏洩に影響されずに行われ、この触媒劣化度合を前提として漏洩の診断がなされるので、漏洩の有無を精度よく判別することが可能となる。なお、図5および図6では、模式的に線形の特性を例示したが、これに限られないことは言うまでもない。また、触媒劣化度合の診断としては、上記の方法に限られず、種々の公知の方法を適用することができる。   A determination reference value L is obtained from the relationship shown in FIG. 6, for example, with respect to the degree of catalyst deterioration obtained as described above. As a result, the determination reference value L becomes a value considering the degree of catalyst deterioration, and the above-described diagnosis of the presence or absence of leakage becomes more accurate. In particular, since the degree of catalyst deterioration is diagnosed with the flow path switching valve 5 open, if there is a leakage at the closed position of the flow path switching valve 5, the measurement of the catalyst deterioration level is not affected by the leakage. Since the diagnosis of leakage is performed on the premise of the degree of catalyst deterioration, it is possible to accurately determine the presence or absence of leakage. 5 and 6 schematically illustrate linear characteristics, but it goes without saying that the present invention is not limited to this. The diagnosis of the degree of catalyst deterioration is not limited to the above method, and various known methods can be applied.

この発明に係る内燃機関の構成を示す構成説明図。BRIEF DESCRIPTION OF THE DRAWINGS The structure explanatory drawing which shows the structure of the internal combustion engine which concerns on this invention. 漏洩診断の処理の流れを示すフローチャート。The flowchart which shows the flow of a process of a leakage diagnosis. 漏洩診断の一例を示すタイムチャート。The time chart which shows an example of a leakage diagnosis. 触媒劣化度合の診断方法の一例を示すタイムチャート。The time chart which shows an example of the diagnostic method of a catalyst deterioration degree. 時間差ΔTと触媒劣化度合との関係を示す特性図。The characteristic view which shows the relationship between time difference (DELTA) T and catalyst degradation degree. 触媒劣化度合と判定基準値Lとの関係を示す特性図。The characteristic view which shows the relationship between a catalyst deterioration degree and the criterion value L.

符号の説明Explanation of symbols

3…メイン通路
4…メイン触媒コンバータ
5…流路切換弁
6…分岐点
7…バイパス通路
8…バイパス触媒コンバータ
9…合流点
10…メイン上流側空燃比センサ
11…メイン下流側空燃比センサ
12…バイパス上流側空燃比センサ
13…バイパス下流側空燃比センサ
27…エンジンコントロールユニット
DESCRIPTION OF SYMBOLS 3 ... Main passage 4 ... Main catalytic converter 5 ... Flow path switching valve 6 ... Branch point 7 ... Bypass passage 8 ... Bypass catalytic converter 9 ... Junction point 10 ... Main upstream air-fuel ratio sensor 11 ... Main downstream air-fuel ratio sensor 12 ... Bypass upstream air-fuel ratio sensor 13 ... Bypass downstream air-fuel ratio sensor 27 ... Engine control unit

Claims (8)

メイン触媒コンバータを下流側に備えたメイン通路の上流側部分と並列にバイパス通路が設けられるとともに、このバイパス通路にバイパス触媒コンバータを備え、かつ上記メイン通路の上記上流側部分に該メイン通路を閉塞する流路切換弁を備えてなる内燃機関の排気浄化装置において、上記バイパス通路のバイパス触媒コンバータ上流側の排気空燃比を検出する第1空燃比検出手段と、上記メイン通路のメイン触媒コンバータ上流側の排気空燃比を検出する第2空燃比検出手段と、上記流路切換弁が閉位置に制御されている状態において内燃機関の空燃比をリーンまたはリッチから理論空燃比を挟んで反対側のリッチまたはリーンへとステップ的に変化させる空燃比制御手段と、機関空燃比がステップ的に変化した後の各空燃比検出手段の検出空燃比に基づき、上記流路切換弁の漏洩を診断する診断手段と、を備えていることを特徴とする内燃機関の排気浄化装置の故障診断装置。   A bypass passage is provided in parallel with the upstream portion of the main passage provided with the main catalytic converter on the downstream side, the bypass passage is provided with the bypass passage, and the main passage is blocked at the upstream portion of the main passage. In the exhaust gas purification apparatus for an internal combustion engine, the first air-fuel ratio detecting means for detecting the exhaust air-fuel ratio upstream of the bypass catalytic converter in the bypass passage, and the main catalytic converter upstream of the main passage The second air-fuel ratio detecting means for detecting the exhaust air-fuel ratio of the engine and the air-fuel ratio of the internal combustion engine from lean or rich to the rich on the opposite side of the stoichiometric air-fuel ratio while the flow path switching valve is controlled to the closed position Alternatively, the air-fuel ratio control means that changes stepwise to lean, and each air-fuel ratio detection means after the engine air-fuel ratio changes stepwise Based on the detected air-fuel ratio, the trouble diagnosis device for the exhaust gas purification system of an internal combustion engine, characterized in that it comprises a diagnostic means for diagnosing leakage of the flow path switching valve. 機関空燃比がステップ的に変化した後の所定期間における第1空燃比検出手段の平均空燃比と第2空燃比検出手段の平均空燃比との差に基づき、漏洩の有無を判別することを特徴とする請求項1に記載の内燃機関の排気浄化装置の故障診断装置。   The presence or absence of leakage is determined based on the difference between the average air-fuel ratio of the first air-fuel ratio detection means and the average air-fuel ratio of the second air-fuel ratio detection means in a predetermined period after the engine air-fuel ratio changes stepwise. The failure diagnosis device for an exhaust gas purification device for an internal combustion engine according to claim 1. 上記第2空燃比検出手段は、上記バイパス通路の下流端が上記メイン通路に合流する合流点よりも下流側の空燃比を検出することを特徴とする請求項1または2に記載の内燃機関の排気浄化装置の故障診断装置。   3. The internal combustion engine according to claim 1, wherein the second air-fuel ratio detecting unit detects an air-fuel ratio downstream of a joining point where a downstream end of the bypass passage joins the main passage. Failure diagnosis device for exhaust purification system. 上記空燃比制御手段は、空燃比をリーンからリッチへとステップ的に変化させることを特徴とする請求項1〜3のいずれかに記載の内燃機関の排気浄化装置の故障診断装置。   The failure diagnosis apparatus for an exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the air-fuel ratio control means changes the air-fuel ratio stepwise from lean to rich. 上記バイパス触媒コンバータの酸素ストレージ能力が飽和するに十分な期間、機関空燃比をリーンに保持した後、リッチにステップ的に変化させることを特徴とする請求項4に記載の内燃機関の排気浄化装置の故障診断装置。   5. The exhaust gas purification apparatus for an internal combustion engine according to claim 4, wherein the engine air-fuel ratio is kept lean for a period sufficient to saturate the oxygen storage capacity of the bypass catalytic converter and then is changed in a rich stepwise manner. Fault diagnosis device. 上記バイパス触媒コンバータの触媒劣化度合を診断する手段を有し、この触媒劣化度合に応じて、漏洩の診断を修正することを特徴とする請求項1〜5のいずれかに記載の内燃機関の排気浄化装置の故障診断装置。   The exhaust of the internal combustion engine according to any one of claims 1 to 5, further comprising means for diagnosing the degree of catalyst deterioration of the bypass catalytic converter, and correcting the diagnosis of leakage according to the degree of catalyst deterioration. Failure diagnosis device for purification device. 上記バイパス触媒コンバータの下流側の排気空燃比を検出する空燃比検出手段をさらに備え、上記流路切換弁が開位置に制御されている状態において、機関空燃比が変化したときのバイパス触媒コンバータ上流側と下流側の排気空燃比の変化に基づき触媒劣化度合を求めることを特徴とする請求項6に記載の内燃機関の排気浄化装置の故障診断装置。   An air-fuel ratio detecting means for detecting an exhaust air-fuel ratio downstream of the bypass catalytic converter is further provided, and the bypass catalytic converter upstream when the engine air-fuel ratio changes in a state where the flow path switching valve is controlled to the open position. 7. The failure diagnosis device for an exhaust gas purification apparatus for an internal combustion engine according to claim 6, wherein the degree of catalyst deterioration is obtained based on changes in the exhaust air-fuel ratio on the side and downstream side. 機関空燃比がステップ的に変化した後の所定期間における第1空燃比検出手段の平均空燃比と第2空燃比検出手段の平均空燃比との差を判定基準値と比較して漏洩の有無を判別するとともに、上記触媒劣化度合に応じて上記判定基準値を補正することを特徴とする請求項6または7に記載の内燃機関の排気浄化装置の故障診断装置。   The difference between the average air-fuel ratio of the first air-fuel ratio detection means and the average air-fuel ratio of the second air-fuel ratio detection means in a predetermined period after the engine air-fuel ratio changes stepwise is compared with a determination reference value to determine whether there is leakage. 8. The failure diagnosis device for an exhaust gas purification apparatus for an internal combustion engine according to claim 6, wherein the determination reference value is corrected in accordance with the degree of catalyst deterioration.
JP2006072001A 2006-03-15 2006-03-16 Failure diagnosis device for exhaust gas purification device of internal combustion engine Expired - Fee Related JP4631759B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006072001A JP4631759B2 (en) 2006-03-16 2006-03-16 Failure diagnosis device for exhaust gas purification device of internal combustion engine
KR1020070024741A KR100905811B1 (en) 2006-03-15 2007-03-14 A diagnosis apparatus for an exhaust gas purifier of an internal combustion engine
US11/717,784 US8341937B2 (en) 2006-03-15 2007-03-14 Diagnostic apparatus for an exhaust gas purification system of an internal combustion engine, an exhaust gas purification system and a diagnostic method thereof
EP07104230.3A EP1835140B1 (en) 2006-03-15 2007-03-15 Exhaust gas purification system and corresponding method of diagnosing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072001A JP4631759B2 (en) 2006-03-16 2006-03-16 Failure diagnosis device for exhaust gas purification device of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007247530A JP2007247530A (en) 2007-09-27
JP4631759B2 true JP4631759B2 (en) 2011-02-16

Family

ID=38592087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072001A Expired - Fee Related JP4631759B2 (en) 2006-03-15 2006-03-16 Failure diagnosis device for exhaust gas purification device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4631759B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272512B2 (en) * 2008-05-21 2013-08-28 日産自動車株式会社 Exhaust bypass valve failure diagnosis device and failure diagnosis method
DE102011003108B4 (en) * 2011-01-25 2015-06-11 Continental Automotive Gmbh Checking an exhaust flap

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941948A (en) * 1995-07-26 1997-02-10 Toyota Motor Corp Catalyst deterioration discriminating device of internal combustion engine
JPH09209744A (en) * 1996-01-29 1997-08-12 Nissan Motor Co Ltd Trouble diagnosing device for emission control device of internal combustion engine
JP2000008838A (en) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd Device and method for diagnosing degradation of hc adsorbent in internal combustion engine
JP2000328930A (en) * 1999-05-20 2000-11-28 Fuji Heavy Ind Ltd Catalyst deterioration diagnostic system for engine
JP2004092432A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Emission control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941948A (en) * 1995-07-26 1997-02-10 Toyota Motor Corp Catalyst deterioration discriminating device of internal combustion engine
JPH09209744A (en) * 1996-01-29 1997-08-12 Nissan Motor Co Ltd Trouble diagnosing device for emission control device of internal combustion engine
JP2000008838A (en) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd Device and method for diagnosing degradation of hc adsorbent in internal combustion engine
JP2000328930A (en) * 1999-05-20 2000-11-28 Fuji Heavy Ind Ltd Catalyst deterioration diagnostic system for engine
JP2004092432A (en) * 2002-08-29 2004-03-25 Toyota Motor Corp Emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP2007247530A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
KR100905811B1 (en) A diagnosis apparatus for an exhaust gas purifier of an internal combustion engine
JP4779730B2 (en) Failure diagnosis device for exhaust gas purification device of internal combustion engine
WO2007145141A1 (en) Catalyst deterioration detector
JP3267188B2 (en) Catalyst deterioration determination device for internal combustion engine
JP4816341B2 (en) Internal combustion engine
JP4631790B2 (en) Failure diagnosis device for exhaust gas purification device of internal combustion engine
JP4631759B2 (en) Failure diagnosis device for exhaust gas purification device of internal combustion engine
JP2009024531A (en) Abnormality diagnosis device of cylinder-by-cylinder air-fuel ratio control system for internal combustion engine
JP4716189B2 (en) Exhaust gas switching valve failure diagnosis device
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP4702124B2 (en) Failure diagnosis device for exhaust gas purification device of internal combustion engine
JP5169547B2 (en) Exhaust control device for internal combustion engine
JP4687602B2 (en) Internal combustion engine failure diagnosis method and internal combustion engine failure diagnosis device
JP4737012B2 (en) Failure diagnosis method and failure diagnosis device for exhaust gas purification device of internal combustion engine
JPH1047130A (en) Abnormal condition detecting device of internal combustion engine
JP5024215B2 (en) Failure diagnosis device for exhaust gas purification device of internal combustion engine
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP3633007B2 (en) Exhaust gas purification device for internal combustion engine
JP5315824B2 (en) Failure diagnosis device for exhaust gas purification device of internal combustion engine
JP4719129B2 (en) Failure diagnosis device for exhaust gas purification system
JP3139328B2 (en) Catalyst deterioration determination device for internal combustion engine
JP4716191B2 (en) Failure diagnosis device for exhaust gas purification system
JP5012710B2 (en) Exhaust gas purification device for internal combustion engine
JP3149732B2 (en) Catalyst deterioration determination device for internal combustion engine
JP5040838B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090128

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees