JP4631239B2 - Solar water heater - Google Patents

Solar water heater Download PDF

Info

Publication number
JP4631239B2
JP4631239B2 JP2001273119A JP2001273119A JP4631239B2 JP 4631239 B2 JP4631239 B2 JP 4631239B2 JP 2001273119 A JP2001273119 A JP 2001273119A JP 2001273119 A JP2001273119 A JP 2001273119A JP 4631239 B2 JP4631239 B2 JP 4631239B2
Authority
JP
Japan
Prior art keywords
heat
solar
heat storage
water
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001273119A
Other languages
Japanese (ja)
Other versions
JP2003083608A (en
Inventor
龍太 近藤
敏 今林
吉継 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001273119A priority Critical patent/JP4631239B2/en
Publication of JP2003083608A publication Critical patent/JP2003083608A/en
Application granted granted Critical
Publication of JP4631239B2 publication Critical patent/JP4631239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

【0001】
【発明の属する技術分野】
本発明は、太陽熱を受熱してその熱量を給湯に利用する太陽熱利用給湯装置に関するものである。
【0002】
【従来の技術】
従来、この種の太陽熱利用装置としては、例えば、特開平7−98457号公報に記載されているような太陽熱温水器があった。図7は、前記公報に記載された従来の太陽熱利用した太陽熱温水器を示すものである。
【0003】
図7において、1は太陽熱温水器、2は貯水タンク、3ガラス板、4は太陽熱集熱器、5は太陽熱温水器1へ水を給水する給水配管、6は貯水タンクの温水を出水する出湯配管である。この構成において、貯水タンク2から太陽熱集熱器4へ送り込まれた水は、ガラス板3を通過する太陽光によって温めることができ、温水として貯水タンク2に蓄えられる。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の太陽熱温水器は、水道直圧式にする場合貯水タンクの容量が大きいため減圧弁や圧力逃がし弁(図示せず)などを設けて上限圧力を設定し、この上限圧力に合わせて耐圧形状でタンク板厚も大きくした耐圧設計をする必要があり、太陽熱温水器1が高価になり重量も大きくなるので、一般的にはボールタップ(図示せず)などを設けて貯水量を調節する圧力解放式にしていた。このため、出湯配管6を市水の水道配管に直接接続することができず使用方法が限定されるため、主に浴槽の湯張りのために屋根上の貯水タンク2から温水を落とし込むための給湯装置として用いられ、利用範囲の狭いものとなり、光熱費の節約も風呂利用分に限られるという課題を有していた。
【0005】
一方、水道配管に直接接続し、キッチン蛇口や風呂シャワーなど各所の端末に給湯接続できるようにした従来の太陽熱利用給湯装置として、図8に示すようなものがあった。
【0006】
図8において、7は給水源であり、8は減圧弁、9は減圧弁8を介して給水源7に接続された貯湯タンク、10は貯湯タンク9に設けた圧力逃がし弁、11は貯湯タンク9内に設けた熱交換器、12は熱交換器11と太陽熱集熱器4とをつなぐ循環回路、13は循環回路12に設けた循環ポンプである。この構成において、循環回路12内を流れる水またはブラインなどの熱媒体は、太陽熱集熱器4でガラス板3を通過する太陽光によって加熱されて温水となり、循環ポンプ13により熱交換器11に送り込まれて、給水源7に接続された貯湯タンク9内の水を加熱することで給湯用の湯を作ることができる。こうして蓄えられた温水は出湯配管6を介してキッチン蛇口14や風呂シャワー15などの各所の端末に接続され、給湯利用される。しかしながら、前記従来の太陽熱利用給湯装置では、その給湯利用量に応じて例えば300L以上の大容量耐圧タンクが必要となり、貯湯タンク9のコストが高くなる。また、減圧弁8や圧力逃がし弁10などを設けて複雑な構成となるため、給湯装置全体の価格も高くなり、高価な機器価格に対して光熱費節約効果が小さくなってしまうという課題を有していた。
【0007】
本発明は、前記従来の課題を解決するもので、太陽の日射を有効に利用して光熱費を節約するとともに、耐圧タンクを必要とせずに水道配管に直接接続し、キッチン蛇口や風呂シャワーなど各所の端末への給湯接続を簡単構成で実現し、機器価格が安く光熱費の節約効果が大きい太陽熱利用給湯装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の太陽熱利用給湯装置は、給湯器と、太陽熱集熱器と、前記給湯器と前記太陽熱集熱器に接続され両者の混合流量比を調節して適温の出湯を行う混合手段とを備え、前記太陽熱集熱器は水道直結され太陽熱集熱器の略全面に配設された通水配管と蓄熱体とで構成され、前記通水配管の上部に位置する蓄熱体の蓄熱温度を下部に位置する蓄熱体の蓄熱温度よりも低く設定したものである。
【0009】
これによって、簡単構成で太陽熱集熱器からの出湯を水道直圧式にできるので、安価に製作することが可能となる。また、水道直圧式となることによりキッチン蛇口や風呂シャワーなど各所の端末に給湯接続できるので、利用範囲が広がり、太陽熱利用による給湯用燃料とその費用の節約が大きくなる。
【0010】
特に、日射が当たり易く構成されている蓄熱体上面は断熱構成された蓄熱体下面よりも外気へ放熱しやすくなっているが、日射量が小さくなった放熱損失発生時は上部蓄熱材の蓄熱温度が低温であり、外気温との温度差が小さくなるので蓄熱した太陽熱の放熱損失を抑制することができる。したがって、集熱効率のより高い太陽熱集熱器とすることができ、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0011】
また、本発明の太陽熱利用給湯装置は、給湯器と、太陽熱集熱器と、前記給湯器と前記太陽熱集熱器に接続され両者の混合流量比を調節して適温の出湯を行う混合手段とを備え、前記太陽熱集熱器は水道直結され太陽熱集熱器の略全面に配設された通水配管と蓄熱体とで構成され、前記蓄熱体の上面を形成する上部外装の熱伝導率を、下面を形成する下部外装の熱伝導率よりも小さく設定したものである。
【0012】
これによって、特に、日射が当たり易く構成されている蓄熱体上面は断熱構成された蓄熱体下面よりも外気へ放熱しやすくなっているが、蓄熱体の上部外装の熱伝導率が下部外装の熱伝導率よりも小さいので、蓄熱した太陽熱の放熱損失を抑制することができる。したがって、集熱効率の高い太陽熱集熱器とすることができ、効率良く集熱した太陽熱が低温であっても混合手段により給湯利用可能となり、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0013】
【発明の実施の形態】
請求項1に記載の発明は、給湯器と、太陽熱集熱器と、給湯器と太陽熱集熱器に接続され両者の混合流量比を調節して適温の出湯を行う混合手段とを備え、太陽熱集熱器は水道直結され太陽熱集熱器の略全面に配設された通水配管と蓄熱体とで構成し、前記通水配管の上部に位置する蓄熱体の蓄熱温度を下部に位置する蓄熱体の蓄熱温度よりも低く設定したことにより、太陽熱集熱器が太陽の日射を受けているとき、太陽熱集熱器に設けた蓄熱体に太陽熱を蓄熱させ、給湯使用時に通水配管に水道水を流通させ蓄熱体の熱で水道水を加熱するので、簡単構成で太陽熱集熱器からの出湯を水道直圧式にでき、安価に製作することが可能となる。また、水道直圧式となることによりキッチン蛇口や風呂シャワーなど各所の端末に給湯接続できるので、利用範囲が広がり、太陽熱利用による給湯用燃料とその費用の節約が大きくなる。したがって、機器価格が安く光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0014】
そして、通水配管の上部に位置する蓄熱体の蓄熱温度を下部に位置する蓄熱体の蓄熱温度よりも低く設定したしたことにより、日射が当たり易く構成されている蓄熱体上面は断熱構成された蓄熱体下面よりも外気へ放熱しやすくなっているが、日射量が小さくなった放熱損失発生時は上部蓄熱材の蓄熱温度が低温であり、外気温との温度差が小さくなるので蓄熱した太陽熱の放熱損失を抑制することができる。したがって、集熱効率のより高い太陽熱集熱器とすることができ、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0015】
請求項2に記載の発明は、給湯器と、太陽熱集熱器と、給湯器と太陽熱集熱器に接続され両者の混合流量比を調節して適温の出湯を行う混合手段とを備え、太陽熱集熱器は水道直結され太陽熱集熱器の略全面に配設された通水配管と蓄熱体とで構成し、前記蓄熱体の上面を形成する上部外装の熱伝導率を、下面を形成する下部外装の熱伝導率よりも小さく設定したことにより、太陽熱集熱器が太陽の日射を受けているとき、太陽熱集熱器に設けた蓄熱体に太陽熱を蓄熱させ、給湯使用時に通水配管に水道水を流通させ蓄熱体の熱で水道水を加熱するので、簡単構成で太陽熱集熱器からの出湯を水道直圧式にでき、安価に製作することが可能となる。また、水道直圧式となることによりキッチン蛇口や風呂シャワーなど各所の端末に給湯接続できるので、利用範囲が広がり、太陽熱利用による給湯用燃料とその費用の節約が大きくなる。したがって、機器価格が安く光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0016】
そして、蓄熱体の上面を形成する上部外装の熱伝導率を、下面を形成する下部外装の熱伝導率よりも小さく設定したことにより、日射が当たり易く構成されている蓄熱体上面は断熱構成された蓄熱体下面よりも外気へ放熱しやすくなっているが、蓄熱体の上部外装の熱伝導率が下部外装の熱伝導率よりも小さいので、蓄熱した太陽熱の放熱損失を抑制することができる。したがって、集熱効率の高い太陽熱集熱器とすることができ、効率良く集熱した太陽熱が低温であっても混合手段により給湯利用可能となり、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0017】
請求項に記載の発明は、特に、請求項1に記載の蓄熱体を潜熱蓄熱材を用いたものにしたことにより、受熱した太陽熱を蓄熱体に用いた物質の相変化によって蓄熱し、蓄熱体の温度上昇を伴うことなく比較的低温のまま蓄熱することができるので、蓄熱した太陽熱の放熱を抑制することができる。したがって、集熱効率の高い太陽熱集熱器とすることができ、効率良く集熱した太陽熱が低温であっても混合手段により給湯利用可能となり、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0018】
請求項に記載の発明は、特に請求項1または2記載の発明において、蓄熱体は、偏平な箱状容器に蓄熱材を充填して構成し、通水配管は蓄熱体の上面または下面に設けた溝に密着収納して上下を蓄熱体で挟んで配設したことにより、配管収納用の溝を設けた箱状容器を樹脂成形などで形成し、蓄熱材を充填して蓄熱体を構成すればよいので、集熱に必要な大面積の太陽熱集熱器であっても、この蓄熱体を複数個配設すれば容易かつ低コストで製造できる。また、溝に通水配管を密着収納できるので、受熱した太陽熱の放出時に熱抵抗が小さくなり、応答性と伝熱効率が向上し、光熱費の節約効果が大きくなる。
【0019】
請求項に記載の発明は、特に請求項1または2に記載の発明において、蓄熱体は、周囲をシールした金属ラミネートフィルムの袋状容器に潜熱蓄熱材を封入して構成し、通水配管の上下を前記蓄熱体で挟んで配設したことにより、金属ラミネートフィルムの袋状容器に潜熱蓄熱材を封入し蓄熱体を構成すればよいので、集熱に必要な大面積の太陽熱集熱器であっても、この蓄熱体を複数個配設すれば容易かつ低コストで製造できる。また、放熱時に凝固するタイプの潜熱蓄熱材であっても受熱融解時に通水配管に密着する形状に形成できるので、受熱した太陽熱の放出時に熱抵抗が小さくなり、応答性と伝熱効率が向上し、光熱費の節約効果が大きくなる。
【0020】
請求項6に記載の発明は、特に請求項1または2記載の発明において、蓄熱体は、蓄熱材が充填された筒体と前記筒体の両端を貫通する通水配管とで構成された蓄熱パイプであることにより、蓄熱体と通水配管を蓄熱パイプとして一体化、ユニット化して製造できるので、集熱に必要な大面積の太陽熱集熱器であっても、この蓄熱パイプを複数個配設すれば容易かつ低コストで製造できる。また、蓄熱体と通水配管が一体化して密着しているので、受熱した太陽熱の放出時に熱抵抗が小さくなり、応答性と伝熱効率が向上し、光熱費の節約効果が大きくなる。
【0021】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0022】
(実施例1)
図1は本発明の実施例1における太陽熱利用給湯装置の構成図を示すものであり、図2は同太陽熱利用給湯装置の太陽熱集熱器の断面図である。図1、図2において、21は太陽の日射を受光する太陽熱集熱器で、断熱構成された底板22と側板23、および透光板24とで箱状に形成されており、その内部には太陽熱集熱器21の略全面にわたり面状に蛇行配列された通水配管25と、通水配管25を挟んで上下に配設した蓄熱体26が設けてある。蓄熱体26は、配管収納用の複数条の溝27を上面あるいは下面に設けた偏平な箱状容器28を樹脂成形で形成し、通水配管25上部の蓄熱体26には塩化カルシウム水和塩を用いた上部蓄熱材29を充填し、通水配管25下部の蓄熱体26には硫酸ナトリウム水和塩を用いた下部蓄熱材30を充填して構成されている。31は給湯器である瞬間形ガス湯沸器であり、給水源32から導入された水道水を加熱して出湯する。33は瞬間形ガス湯沸器31から出湯される水と太陽熱集熱器21から流入する水を適温に混合するための混合手段である電動混合弁であり、電動混合弁33の一方は瞬間形ガス湯沸器31に接続され、他方は給水源32に水道直結された太陽熱集熱器21の通水配管25の出口と接続されて、両者の混合流量比率を調節するようになっている。34は電動混合弁33の混合比率を調節するために給湯湯温を検出する給湯湯温センサ、35は予め設定されている適温(例えば60℃)に給湯湯温を調節するために給湯湯温センサ34と電動混合弁33とに電気的に接続されている制御部、36は給水源32から太陽熱集熱器21を経て電動混合弁33に至る太陽熱管路、37は太陽熱管路36の太陽熱集熱器21上流から分岐し給水源32から電動混合弁33に直接接続されるバイパス管路、38はバイパス管路の途中に設けて流通を開閉する電磁開閉弁、39は給水源からの水道水温を検出する入水温度センサ、40は太陽熱集熱器21近傍の外気温度を検出する外気温度センサであり、電磁開閉弁38、入水温度センサ39、外気温度センサ40も制御部35に電気的に接続されている。41は電動混合弁33の給湯口につながるキッチン蛇口、42は風呂シャワーである。
【0023】
次に、この実施例1の太陽熱利用給湯装置の動作について説明する。日射がある日中に、太陽熱集熱器21の透光板24を通過した日射により蓄熱体26は受熱し、温度が上昇しながら太陽熱を蓄熱していく。そして、使用者がキッチン蛇口41や風呂シャワー42を開栓して給湯を始めようとすると、給水源32である水道に直接接続された太陽熱集熱器21内を水道圧により水道水が流通する。このとき通水配管25を流れる水道水は上下から挟まれている温度上昇した蓄熱体26と熱交換し、加温されたのち電動混合弁33に到達する。一方、ガス瞬間湯沸器31では開栓とともに燃焼運転が開始され、給水源32から流入した水道水が加熱されて電動混合弁33に到達する。電動混合弁33では、制御部35が給湯湯温センサ34の検出値が所定の温度(例えば60℃)になるように即座に両流路からの混合比率を調節する。例えば、太陽熱集熱器21からの温度が40℃、ガス瞬間湯沸器31からの温度が80℃であれば、1:1の流量比率になるように調節する。そして所定の温度になった湯は使用者が開栓したキッチン蛇口41や風呂シャワー42に到達し、そのままの温度で給湯されたり、説明した給湯経路にも水道圧が加わっているのでツーバルブ式などの混合栓で更に好みの温度に調節されて給湯される。給湯の使用が日没後の夜間であっても、太陽熱集熱器21に蓄熱体26を備えているので、太陽熱を給湯に有効利用できる。このように、簡単構成で太陽熱集熱器からの出湯を水道直圧式にできるので、キッチン蛇口41や風呂シャワー42に接続できる太陽熱利用給湯装置を安価に製作することが可能となる。また、水道直圧式となることによりキッチン蛇口や風呂シャワーなど各所の端末に給湯接続できるので、利用範囲が広がり、太陽熱利用による給湯用燃料とその費用の節約が大きくなる。したがって、機器価格が安く光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0024】
そして、蓄熱体26が蓄熱した太陽熱を通水配管25を通して放出し水道水と熱交換する際に、箱状容器28に配管収納用の複数条の溝27を設けて通水配管25と蓄熱体26は密着しているので、受熱した太陽熱の放出熱抵抗が小さくなり、応答性と伝熱効率が向上し、光熱費の節約効果が更に大きくなる。また、通水配管の上下を蓄熱体で挟むことにより、通水配管を略中心にして蓄熱体で覆う構成となるので、蓄熱体の蓄熱部分と熱を放出する通水配管との距離がほぼ一様で部分的に遠い箇所が少なくなり、蓄熱体からの放熱時の伝熱効率がより向上するとともに、配管収納用の溝27を設けた箱状容器28を樹脂成形などで形成して蓄熱体26を構成すればよいので、集熱に必要な大面積の太陽熱集熱器であっても、この蓄熱体26を複数個配設すれば容易かつ低コストで製造できる。
【0025】
蓄熱体26には塩化カルシウム水和塩や硫酸ナトリウム水和塩といった潜熱蓄熱材を用いているので、太陽熱を受熱中に蓄熱体26がその上部蓄熱材29の融解温度(塩化カルシウム水和塩は29℃あたり)まで温度上昇すると、その後に受熱する太陽熱は上部蓄熱材29の相変化によって蓄熱し、蓄熱体26が上部蓄熱材29の蓄熱温度のまま温度上昇を伴わず蓄熱する。相変化終了後も受熱があると蓄熱体26全体が徐々に温度上昇しながら下部蓄熱材30に伝熱し、下部蓄熱材30の融解温度(硫酸ナトリウム水和塩は32℃あたり)まで温度上昇すると下部蓄熱材30も相変化による蓄熱が生じる。下部蓄熱材30の相変化が終了した後でも受熱があれば温度上昇が再開するが、このように比較的低温のまま潜熱として大きな熱量を蓄熱することができるので、蓄熱した太陽熱の外気への放熱損失を抑制することができる。したがって、集熱効率の高い太陽熱集熱器とすることができ、効率良く集熱した太陽熱が低温であっても電動混合弁33を用いることで給湯利用可能となり、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0026】
一方、日射が当たり易く構成されている蓄熱体上面は断熱構成された蓄熱体下面よりも外気へ放熱しやすくなっているが、上部蓄熱材29の蓄熱温度が下部蓄熱材30の蓄熱温度よりも低温であるので、日射量が小さくなった放熱損失発生時は上部蓄熱材29側が低温である蓄熱温度(例えば29℃)で推移し、外気温との温度差が小さくなるので蓄熱した太陽熱の放熱損失を抑制することができる。したがって、集熱効率のより高い太陽熱集熱器とすることができ、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0027】
冬季の天候の悪い日などに、入水温度センサ39が検出した入水温度と外気温度センサ40が検出した外気温度を制御部35が比較して入水温度の方が高いと判定すると、制御部35は通常閉成されている電磁開閉弁38を開成する。すると、一般的に太陽熱集熱器21は屋根上に設置され管路も長いために太陽熱管路36の流通抵抗が大きいので、給水源32からの水道水は電磁開閉弁38を通るバイパス管路37の方に流れるようになっており、日射がなく外気温より水温の高い場合などでも、給水源からの水道水を太陽熱集熱器21の通水配管25に流通させて、水道水が冷却されることで給湯熱量が余分に必要となる損失を防ぐようにもなっている。
【0028】
なお、本実施例では蓄熱体26として潜熱蓄熱材の一例である塩化カルシウム水和塩と硫酸ナトリウム水和塩を例に挙げて説明したが、前記水和塩の一方を主要な成分として添加剤を加え融解温度を調節したものでも、その他の無機水和塩を用いたものでも、パラフィンなどの有機系潜熱蓄熱材を用いたものでも同様の作用、効果が得られ、相変化する温度は給湯の利用目的など条件に応じて決定すればよい。
【0029】
また、給湯器として瞬間形ガス湯沸器を例に挙げて説明したが、石油を使用するものや電気を使用するもの、電気式ヒートポンプを使用するものなどでもよい。さらに、給湯温度として予め設定された温度(例えば60℃)を例に挙げて説明したが、これは太陽熱利用給湯装置に設定されたものでも使用者が何か設定手段を用いて設定した温度でも同様の作用、効果が得られることは明らかである。
【0030】
(実施例2)
図3は本発明の実施例2における太陽熱利用給湯装置の太陽熱集熱器の断面図を示すものであり、図4は同太陽熱利用給湯装置の太陽熱集熱器の要部拡大断面図である。図3において、蓄熱体26は、外装である周囲をシールした金属ラミネートフィルム43の袋状容器44に硫酸ナトリウム水和塩などの潜熱蓄熱材45を封入して構成され、通水配管25を挟んで上下に蓄熱体26を配設している。図4の要部拡大断面図に示すように、袋状容器44を形成する金属ラミネートフィルム43は、上面と下面で異なるものを使用しており、上面は上から低熱伝導率樹脂46製フィルム(例えばポリエステルフィルム)、太陽熱を吸収しやすくするための黒色塗膜47、アルミニウム箔48、低熱伝導率樹脂46製フィルムからなる上部外装49で形成され、下面は同じく上から高熱伝導率樹脂50製フィルム(例えばポリエチレンフィルムの高熱伝導率品)、アルミニウム箔48、高熱伝導率樹脂50製フィルムからなる下部外装51で形成されている。そして、この上面と下面が異なる袋状容器44からなる蓄熱体26を、通水配管25を挟んで上部は低熱伝導率樹脂46側が日射の当たる上面になるように配設し、通水配管25を挟んで下部は低熱伝導率樹脂46側が底板22に接する下面になるように配設している。
【0031】
次に、この実施例2の太陽熱利用給湯装置の動作について説明する。日射がある日中に、太陽熱集熱器21の透光板24を通過した日射により蓄熱体26は受熱し、温度が上昇しながら太陽熱を蓄熱していく。一般の家庭では日没後の夜間に入浴などで給湯利用し給湯熱量の大半を消費しているが、太陽熱集熱器21に蓄熱体26を備えているので、電動混合弁33の駆動に要する僅かな電力と水道圧で給湯でき、太陽熱利用が日中に限られることなく、夜間に太陽熱を有効に利用できる。この蓄熱体26は金属ラミネートフィルムの袋状容器43に潜熱蓄熱材45を封入して構成すればよいので、集熱に必要な大面積の太陽熱集熱器であっても、この蓄熱体26を複数個配設すれば容易かつ低コストで製造できる。また、放熱時に凝固するタイプの潜熱蓄熱材45であっても受熱融解時に通水配管25に密着する形状に形成できるので、受熱した太陽熱の放出時に熱抵抗が小さくなり、応答性と伝熱効率が向上し、光熱費の節約効果が大きくなる。そして、通水配管25の上下を蓄熱体26で挟むことにより、通水配管25を略中心にして蓄熱体26で覆う構成となるので、蓄熱体26の蓄熱部分と熱を放出する通水配管25との距離がほぼ一様で部分的に遠い箇所が少なくなり、蓄熱体26からの放熱時の伝熱効率がより向上する。
【0032】
日射が当たり易く構成されている蓄熱体26上面は断熱構成された蓄熱体26下面よりも外気へ放熱しやすくなっているが、蓄熱体26の上部外装49の熱伝導率が下部外装51の熱伝導率よりも小さいので、蓄熱した太陽熱の放熱損失を抑制することができる。したがって、集熱効率の高い太陽熱集熱器とすることができ、効率良く集熱した太陽熱が低温であっても電動混合弁33により給湯利用可能となり、光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【0033】
(実施例3)
図5は本発明の実施例3における太陽熱利用給湯装置の太陽熱集熱器の断面図であり、図6は同太陽熱利用給湯装置の太陽熱集熱器の要部斜視図である。図5、図6において、52は蓄熱体である蓄熱パイプであり、潜熱蓄熱材45が充填された筒体である角パイプ53とその両端を貫通する通水配管25とで構成され、角パイプ53の両端と通水配管25との間はシールされて潜熱蓄熱材45が漏れないようになっている。
【0034】
次に、この実施例3の太陽熱利用給湯装置の動作について説明する。日射がある日中に、太陽熱集熱器21の透光板24を通過した日射により蓄熱パイプ52は受熱し、温度が上昇しながら太陽熱を蓄熱していく。使用者がキッチン蛇口41や風呂シャワー42を開栓して給湯使用すると、通水配管25に水道水が流通し、蓄熱パイプ52の熱で水道水が加熱されるので、簡単構成で太陽熱集熱器21からの出湯を水道直圧式にでき、各所の端末に給湯接続できるので利用範囲が広がり、太陽熱利用による給湯用燃料とその費用の節約が大きくなる。この蓄熱パイプ52は簡単構成であり、蓄熱体と通水配管を蓄熱パイプとして一体化、ユニット化して製造できるので、集熱に必要な大面積の太陽熱集熱器であっても、この蓄熱パイプ52を複数個配設すれば容易かつ低コストで製造できる。また、蓄熱体と通水配管が一体化して密着しているので、受熱した太陽熱の放出時に熱抵抗が小さくなり、応答性と伝熱効率が向上し、光熱費の節約効果が大きくなる。そして、通水配管を略中心にして蓄熱体で覆う構成となるので、蓄熱体の蓄熱部分と熱を放出する通水配管との距離がほぼ一様で部分的に遠い箇所が少なくなり、蓄熱体からの放熱時の伝熱効率がより向上する。
【0035】
【発明の効果】
以上のように、上記発明によれば、簡単な構成で太陽熱集熱器からの出湯を水道直圧式にできるので、安価に製作することが可能となる。また、水道直圧式となることにより利用範囲が広がり、太陽熱利用による給湯用燃料とその費用の節約が大きくなる。したがって、機器価格が安く光熱費の節約効果が大きい太陽熱利用給湯装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の実施例1の太陽熱利用給湯装置の構成図
【図2】 同太陽熱利用給湯装置の太陽熱集熱器の断面図
【図3】 本発明の実施例2の太陽熱利用給湯装置の太陽熱集熱器の断面図
【図4】 同太陽熱利用給湯装置の太陽熱集熱器の要部拡大断面図
【図5】 本発明の実施例3の太陽熱利用給湯装置の太陽熱集熱器の断面図
【図6】 同太陽熱利用給湯装置の太陽熱集熱器の要部斜視図
【図7】 従来の太陽熱利用給湯装置の構成図
【図8】 他の従来の太陽熱利用給湯装置の構成図
【符号の説明】
21 太陽熱集熱器
25 通水配管
26 蓄熱体
27 溝
28 箱状容器
29 上部蓄熱材
30 下部蓄熱材
31 瞬間形ガス湯沸器(給湯器)
32 給水源
33 電動混合弁(混合手段)
43 金属ラミネートフィルム(外装)
44 袋状容器
45 潜熱蓄熱材
49 上部外装
51 下部外装
52 蓄熱パイプ
53 角パイプ(筒体)
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a solar-heat-use hot water supply apparatus that receives solar heat and uses the amount of heat for hot-water supply.
[0002]
[Prior art]
  Conventionally, as this type of solar heat utilization device, for example, there has been a solar water heater as described in JP-A-7-98457. FIG. 7 shows a conventional solar water heater using solar heat described in the publication.
[0003]
  In FIG. 7, 1 is a solar water heater, 2 is a water storage tank, 3 glass plates, 4 is a solar heat collector, 5 is a water supply pipe for supplying water to the solar water heater 1, and 6 is a hot water outlet for discharging hot water from the water storage tank. It is piping. In this configuration, the water sent from the water storage tank 2 to the solar heat collector 4 can be warmed by sunlight passing through the glass plate 3 and is stored in the water storage tank 2 as hot water.
[0004]
[Problems to be solved by the invention]
  However, when the conventional solar water heater is of a direct water pressure type, the capacity of the water storage tank is large, so a pressure reducing valve, a pressure relief valve (not shown), etc. are provided to set an upper limit pressure. It is necessary to design a pressure-resistant design with a pressure-resistant shape and a large tank plate thickness, and the solar water heater 1 is expensive and heavy, so generally a ball tap (not shown) is provided to adjust the amount of stored water. It was a pressure release type. For this reason, the hot water supply pipe 6 cannot be directly connected to the city water supply pipe, and the method of use is limited. Therefore, the hot water supply for dropping hot water from the water storage tank 2 on the roof mainly for bathing in the bathtub. It has been used as a device, has a narrow usage range, and has the problem of saving on utility costs only for bath use.
[0005]
  On the other hand, as a conventional solar water heating apparatus that is directly connected to a water pipe and can be connected to a hot water supply terminal at various places such as a kitchen faucet and a bath shower, there has been one as shown in FIG.
[0006]
  In FIG. 8, 7 is a water supply source, 8 is a pressure reducing valve, 9 is a hot water storage tank connected to the water supply source 7 through the pressure reducing valve 8, 10 is a pressure relief valve provided in the hot water storage tank 9, and 11 is a hot water storage tank. A heat exchanger provided in 9, 12 is a circulation circuit that connects the heat exchanger 11 and the solar heat collector 4, and 13 is a circulation pump provided in the circulation circuit 12. In this configuration, a heat medium such as water or brine flowing in the circulation circuit 12 is heated by sunlight passing through the glass plate 3 by the solar heat collector 4 to become hot water, and is sent to the heat exchanger 11 by the circulation pump 13. Thus, hot water for hot water supply can be made by heating the water in the hot water storage tank 9 connected to the water supply source 7. The hot water stored in this way is connected to terminals at various locations such as the kitchen faucet 14 and the bath shower 15 via the hot water supply pipe 6 and used for hot water supply. However, in the conventional solar hot water supply apparatus, a large capacity pressure tank of, for example, 300 L or more is required according to the amount of hot water used, and the cost of the hot water storage tank 9 is increased. In addition, since the pressure reducing valve 8 and the pressure relief valve 10 are provided to form a complicated configuration, the price of the entire hot water supply device is increased, and the utility cost saving effect is reduced with respect to expensive equipment prices. Was.
[0007]
  The present invention solves the above-mentioned conventional problems, saves utility costs by effectively using solar solar radiation, and directly connects to the water pipe without the need for a pressure tank, such as a kitchen faucet or bath shower An object of the present invention is to provide a hot water supply apparatus using solar heat that realizes a hot water supply connection to terminals in various places with a simple configuration, has a low equipment cost, and has a large effect of saving utility costs.
[0008]
[Means for Solving the Problems]
  In order to solve the above-described conventional problems, a solar water heater of the present invention is connected to a water heater, a solar heat collector, the water heater and the solar heat collector, and adjusts the mixing flow ratio between them. Mixing means for performing an appropriate temperature hot water, and the solar heat collector is composed of a water pipe and a heat accumulator that are directly connected to a water supply and disposed on substantially the entire surface of the solar heat collector.The heat storage temperature of the heat storage body located in the upper part of the water flow pipe is set lower than the heat storage temperature of the heat storage body located in the lower part.Is.
[0009]
  As a result, since the hot water from the solar heat collector can be made into a direct water pressure type with a simple configuration, it can be manufactured at low cost. In addition, since it becomes a direct water supply type, hot water can be connected to terminals in various places such as kitchen faucets and bath showers, so the range of use is widened and fuel for hot water supply by solar heat and the cost savings are increased.
[0010]
  In particular, the upper surface of the heat storage body configured to be easily exposed to solar radiation is easier to radiate to the outside air than the lower surface of the heat storage body configured to be insulated, but the heat storage temperature of the upper heat storage material when heat loss occurs when the amount of solar radiation decreases. Is a low temperature and the temperature difference with the outside air temperature is small, so that it is possible to suppress the heat dissipation loss of the stored solar heat. Therefore, it can be set as a solar heat collector with higher heat collection efficiency, and the solar-heat-use hot water supply apparatus with a large saving effect of a utility bill can be provided.
[0011]
  Also, the solar water heater of the present invention comprises a hot water heater, a solar heat collector, and a mixing means connected to the hot water heater and the solar heat collector to adjust the mixing flow rate ratio between them to perform hot water discharge at an appropriate temperature. The solar heat collector is directly connected to the water supply, and is composed of a water flow pipe and a heat storage body disposed on substantially the entire surface of the solar heat collector, and has a heat conductivity of the upper exterior forming the upper surface of the heat storage body. The heat conductivity of the lower exterior forming the lower surface is set smaller than that.
[0012]
  In particular, the upper surface of the heat storage body that is configured to be easily exposed to sunlight is more easily radiated to the outside air than the lower surface of the heat storage body that is configured to be insulated, but the thermal conductivity of the upper exterior of the heat storage body is less than the heat of the lower exterior. Since it is smaller than the conductivity, the heat dissipation loss of the stored solar heat can be suppressed. Therefore, a solar heat collector with high heat collection efficiency can be obtained, and even when the solar heat collected efficiently is low in temperature, hot water can be used by the mixing means, and a solar heat water heater with a large saving effect on utility costs can be provided. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
  The invention according to claim 1 includes a hot water heater, a solar heat collector, and a mixing means connected to the water heater and the solar heat collector to adjust the mixing flow rate ratio between them to perform hot water discharge at an appropriate temperature. The collector is composed of a water pipe and a heat accumulator that are directly connected to the water supply and installed on almost the entire surface of the solar collector.The heat storage temperature of the heat storage body located in the upper part of the water flow pipe is set lower than the heat storage temperature of the heat storage body located in the lower part.Therefore, when the solar heat collector is receiving solar sunshine, the solar energy is stored in the heat accumulator provided in the solar heat collector, and tap water is circulated through the water pipes when hot water is used. Since water is heated, the hot water discharged from the solar heat collector can be made into a direct water pressure type with a simple configuration, and can be manufactured at low cost. In addition, since it becomes a direct water supply type, hot water can be connected to terminals in various places such as kitchen faucets and bath showers, so the range of use is widened and fuel for hot water supply by solar heat and the cost savings are increased. Therefore, it is possible to provide a solar-powered hot-water supply device that is inexpensive in equipment and has a large effect of saving on utility costs.
[0014]
  And by setting the heat storage temperature of the heat storage body located in the upper part of the water flow pipe lower than the heat storage temperature of the heat storage body located in the lower part, the upper surface of the heat storage body configured to be easily struck by solar radiation is thermally insulated. Although it is easier to radiate heat to the outside than the bottom surface of the heat storage body, the heat storage temperature of the upper heat storage material is low at the time of heat dissipation loss when the amount of solar radiation is small, and the temperature difference from the outside temperature is small, so the stored solar heat Heat dissipation loss can be suppressed. Therefore, it can be set as a solar heat collector with higher heat collection efficiency, and the solar-heat-use hot water supply apparatus with a large saving effect of a utility bill can be provided.
[0015]
  Invention of Claim 2 is equipped with a hot water heater, a solar heat collector, and a mixing means connected to the hot water heater and the solar heat collector to adjust the mixing flow rate ratio between them and to produce hot water at an appropriate temperature. The heat collector is composed of a water pipe and a heat accumulator that are directly connected to the water supply and disposed on substantially the entire surface of the solar heat collector, and the heat conductivity of the upper exterior that forms the upper surface of the heat accumulator forms the lower surface. By setting it lower than the thermal conductivity of the lower exterior, when the solar heat collector is receiving solar radiation, the heat storage body provided in the solar heat collector is used to store solar heat, and when using hot water, Since the tap water is circulated and the tap water is heated by the heat of the heat storage body, the hot water from the solar heat collector can be made into a direct water pressure type with a simple configuration, and can be manufactured at low cost. In addition, since it becomes a direct water supply type, hot water can be connected to terminals in various places such as kitchen faucets and bath showers, so the range of use is widened and fuel for hot water supply by solar heat and the cost savings are increased. Therefore, it is possible to provide a solar-powered hot-water supply device that is inexpensive in equipment and has a large effect of saving on utility costs.
[0016]
  And by setting the thermal conductivity of the upper exterior that forms the upper surface of the heat storage body to be smaller than the thermal conductivity of the lower exterior that forms the lower surface, the upper surface of the heat storage body that is configured to be easily exposed to solar radiation is thermally insulated. However, since the thermal conductivity of the upper exterior of the thermal storage is smaller than the thermal conductivity of the lower exterior, it is possible to suppress the heat dissipation loss of the stored solar heat. Therefore, a solar heat collector with high heat collection efficiency can be obtained, and even when the solar heat collected efficiently is low in temperature, hot water can be used by the mixing means, and a solar heat water heater with a large saving effect on utility costs can be provided. .
[0017]
  Claim3In particular, the invention according to claim 1 uses the latent heat storage material as the heat storage body according to claim 1 to store the received solar heat by the phase change of the substance using the heat storage body, and the temperature of the heat storage body Since heat can be stored at a relatively low temperature without increasing, it is possible to suppress heat radiation of the stored solar heat. Therefore, a solar heat collector with high heat collection efficiency can be obtained, and even when the solar heat collected efficiently is low in temperature, hot water can be used by the mixing means, and a solar heat water heater with a large saving effect on utility costs can be provided. .
[0018]
  Claim4In the invention described in claim 1, in particular, in the invention described in claim 1 or 2, the heat storage body is configured by filling a flat box-shaped container with a heat storage material, and the water flow pipe is a groove provided on the upper surface or the lower surface of the heat storage body. It is only necessary to form a box-shaped container provided with a groove for storing pipes by resin molding or the like, and to fill the heat storage material to form the heat storage body. Therefore, even a solar heat collector having a large area necessary for collecting heat can be easily and inexpensively manufactured by arranging a plurality of the heat accumulators. Further, since the water flow pipe can be closely accommodated in the groove, the thermal resistance is reduced when the received solar heat is released, the responsiveness and the heat transfer efficiency are improved, and the effect of saving the utility cost is increased.
[0019]
  Claim5In the invention described in 1 above, in particular, in the invention described in claim 1 or 2, the heat storage body is configured by enclosing a latent heat storage material in a bag-shaped container of a metal laminate film sealed around the upper and lower sides of the water flow pipe. The solar heat collector having a large area necessary for heat collection can be configured by enclosing the latent heat storage material in a bag-like container of a metal laminate film so as to constitute the heat storage body by being disposed between the heat storage bodies. However, if a plurality of the heat accumulators are arranged, the heat storage can be manufactured easily and at low cost. In addition, even a latent heat storage material that solidifies when radiating heat can be formed into a shape that closely adheres to the water flow pipe when receiving heat and melting, reducing thermal resistance when receiving received solar heat, improving responsiveness and heat transfer efficiency. , The energy saving effect is largeThe
[0020]
  Claim 6The invention according to claim 1 is the heat storage pipe constituted by a cylinder filled with a heat storage material and a water passage pipe penetrating both ends of the cylinder, particularly in the invention according to claim 1 or 2. Therefore, the heat storage body and the water flow pipe can be integrated as a heat storage pipe and manufactured as a unit, so even if it is a solar heat collector with a large area necessary for heat collection, if a plurality of heat storage pipes are arranged Easy to manufacture at low cost. Moreover, since the heat storage body and the water flow pipe are integrated and in close contact with each other, the thermal resistance is reduced when the received solar heat is released, the responsiveness and the heat transfer efficiency are improved, and the utility cost saving effect is increased.
[0021]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0022]
  Example 1
  FIG. 1: shows the block diagram of the solar thermal water heater in Example 1 of this invention, and FIG. 2 is sectional drawing of the solar heat collector of the solar thermal water heater. 1 and 2, reference numeral 21 denotes a solar heat collector that receives solar solar radiation, and is formed in a box shape with a bottom plate 22, a side plate 23, and a translucent plate 24 that are heat-insulated. A water passage pipe 25 meanderingly arranged in a plane over substantially the entire surface of the solar heat collector 21 and a heat storage body 26 disposed above and below the water passage pipe 25 are provided. The heat storage body 26 is formed by forming a flat box-shaped container 28 having a plurality of grooves 27 for accommodating pipes on the upper surface or the lower surface by resin molding, and the heat storage body 26 above the water passage pipe 25 has a calcium chloride hydrate salt. The upper heat storage material 29 is filled, and the heat storage body 26 at the lower part of the water flow pipe 25 is filled with the lower heat storage material 30 using sodium sulfate hydrate. Reference numeral 31 denotes an instantaneous gas water heater that is a hot water heater, which heats tap water introduced from a water supply source 32 and discharges the hot water. 33 is an electric mixing valve which is a mixing means for mixing water discharged from the instantaneous gas water heater 31 and water flowing in from the solar heat collector 21 at an appropriate temperature, and one of the electric mixing valves 33 is an instantaneous type. The other is connected to the gas water heater 31 and the other is connected to the outlet of the water flow pipe 25 of the solar heat collector 21 directly connected to the water supply source 32 so as to adjust the mixing flow rate ratio between them. 34 is a hot water temperature sensor for detecting the hot water temperature in order to adjust the mixing ratio of the electric mixing valve 33, and 35 is a hot water temperature in order to adjust the hot water temperature to an appropriate preset temperature (eg 60 ° C.). A control unit 36 that is electrically connected to the sensor 34 and the electric mixing valve 33, 36 is a solar heat line from the water supply source 32 through the solar heat collector 21 to the electric mixing valve 33, and 37 is solar heat of the solar heat line 36. A bypass pipe branched from the upstream side of the heat collector 21 and directly connected to the electric mixing valve 33 from the water supply source 32, 38 is an electromagnetic on-off valve provided in the middle of the bypass pipe to open and close the circulation, and 39 is a water supply from the water supply source An incoming water temperature sensor 40 for detecting the water temperature is an outside air temperature sensor for detecting the outside air temperature in the vicinity of the solar heat collector 21. The electromagnetic on-off valve 38, the incoming water temperature sensor 39, and the outside air temperature sensor 40 are also electrically connected to the controller 35. Connected That. 41 is a kitchen faucet connected to the hot water outlet of the electric mixing valve 33, and 42 is a bath shower.
[0023]
  Next, operation | movement of the solar-heating hot water supply apparatus of this Example 1 is demonstrated. During the day when there is solar radiation, the heat accumulator 26 receives heat by solar radiation that has passed through the light-transmitting plate 24 of the solar heat collector 21, and the solar heat is stored while the temperature rises. When the user opens the kitchen faucet 41 and the bath shower 42 to start hot water supply, the tap water is circulated by the water pressure in the solar heat collector 21 directly connected to the water supply as the water supply source 32. . At this time, the tap water flowing through the water flow pipe 25 exchanges heat with the heat storage body 26 whose temperature has risen sandwiched from above and below, reaches the electric mixing valve 33 after being heated. On the other hand, in the gas instantaneous water heater 31, the combustion operation is started together with the opening of the tap, and the tap water flowing from the water supply source 32 is heated and reaches the electric mixing valve 33. In the electric mixing valve 33, the control unit 35 immediately adjusts the mixing ratio from both flow paths so that the detected value of the hot water temperature sensor 34 becomes a predetermined temperature (for example, 60 ° C.). For example, if the temperature from the solar heat collector 21 is 40 ° C. and the temperature from the gas instantaneous water heater 31 is 80 ° C., the flow rate ratio is adjusted to 1: 1. The hot water that has reached a predetermined temperature reaches the kitchen faucet 41 and the bath shower 42 that the user has opened, and hot water is supplied at the same temperature, or because the water pressure is also applied to the hot water supply path described, a two-valve type, etc. The hot water is further adjusted to the desired temperature with the mixer tap. Even when the hot water supply is used at night after sunset, the solar heat collector 21 includes the heat storage body 26, so that solar heat can be effectively used for hot water supply. As described above, since the hot water discharged from the solar heat collector can be of a direct water pressure type with a simple configuration, it is possible to manufacture a solar hot water supply apparatus that can be connected to the kitchen faucet 41 or the bath shower 42 at a low cost. In addition, since it becomes a direct water supply type, hot water can be connected to terminals in various places such as kitchen faucets and bath showers, so the range of use is widened and fuel for hot water supply by solar heat and the cost savings are increased. Therefore, it is possible to provide a solar-powered hot-water supply device that is inexpensive in equipment and has a large effect of saving on utility costs.
[0024]
  And when the solar heat which the heat storage body 26 stored is discharged | emitted through the water piping 25 and heat-exchanged with a tap water, the groove 27 for piping accommodation is provided in the box-shaped container 28, and the water flow piping 25 and the heat storage body are provided. Since 26 is in close contact with each other, the received heat resistance of the received solar heat is reduced, the responsiveness and the heat transfer efficiency are improved, and the effect of saving the utility cost is further increased. In addition, by sandwiching the upper and lower sides of the water flow pipe with the heat storage body, the water storage pipe is covered with the heat storage body about the center, so the distance between the heat storage portion of the heat storage body and the water flow pipe that releases heat is almost the same. Uniform and partially distant locations are reduced, heat transfer efficiency at the time of heat radiation from the heat storage body is further improved, and a box-like container 28 provided with a groove 27 for pipe storage is formed by resin molding or the like to form a heat storage body. Therefore, even if it is a solar collector with a large area required for heat collection, it can be manufactured easily and at low cost even if a plurality of the heat accumulators 26 are provided.
[0025]
  Since the latent heat storage material such as calcium chloride hydrate or sodium sulfate hydrate is used for the heat storage body 26, the heat storage body 26 receives the melting temperature of the upper heat storage material 29 while receiving solar heat (calcium chloride hydrate is When the temperature rises to about 29 ° C., the solar heat received thereafter is stored by the phase change of the upper heat storage material 29, and the heat storage body 26 stores heat without increasing the temperature at the heat storage temperature of the upper heat storage material 29. When heat is received even after the phase change is completed, the entire heat storage body 26 gradually heats up and is transferred to the lower heat storage material 30, and the temperature rises to the melting temperature of the lower heat storage material 30 (sodium sulfate hydrate is about 32 ° C.). The lower heat storage material 30 also stores heat due to phase change. Even after the phase change of the lower heat storage material 30 is finished, if there is heat reception, the temperature rise is resumed. In this way, a large amount of heat can be stored as latent heat at a relatively low temperature, so the stored solar heat to the outside air can be stored. Heat dissipation loss can be suppressed. Accordingly, a solar heat collector with high heat collection efficiency can be obtained, and even when the solar heat collected efficiently is low temperature, hot water supply can be used by using the electric mixing valve 33, and solar heat use has a large saving effect on utility costs. A water heater can be provided.
[0026]
  On the other hand, although the upper surface of the heat storage body configured to be easily exposed to sunlight is more easily radiated to the outside air than the lower surface of the heat storage body configured to be insulated, the heat storage temperature of the upper heat storage material 29 is higher than the heat storage temperature of the lower heat storage material 30. When the heat loss occurs when the amount of solar radiation is small due to the low temperature, the upper heat storage material 29 side changes at a low heat storage temperature (for example, 29 ° C.), and the temperature difference from the outside air temperature is small, so the stored heat is released. Loss can be suppressed. Therefore, it can be set as a solar heat collector with higher heat collection efficiency, and the solar-heat-use hot water supply apparatus with a large saving effect of a utility bill can be provided.
[0027]
  When the control unit 35 compares the incoming water temperature detected by the incoming water temperature sensor 39 with the outdoor air temperature detected by the outdoor air temperature sensor 40 on a bad day in winter, etc., the control unit 35 determines that the incoming water temperature is higher. The normally open electromagnetic on-off valve 38 is opened. Then, since the solar heat collector 21 is generally installed on the roof and the pipe line is long, the distribution resistance of the solar heat pipe 36 is large, so that the tap water from the water supply source 32 passes through the electromagnetic on-off valve 38. Even when there is no solar radiation and the water temperature is higher than the outside air temperature, the tap water from the water supply source is circulated through the water pipe 25 of the solar heat collector 21 to cool the tap water. By doing so, it is possible to prevent a loss that requires an extra amount of hot water supply.
[0028]
  In this embodiment, the calcium chloride hydrate and sodium sulfate hydrate, which are examples of the latent heat storage material, are described as examples of the heat storage body 26. However, an additive containing one of the hydrate salts as a main component. Regardless of whether the melting temperature is adjusted by adding water, other inorganic hydrate salts, or those using organic latent heat storage materials such as paraffin, the same action and effect can be obtained. It may be determined according to conditions such as the purpose of use.
[0029]
  In addition, although an instant gas water heater has been described as an example of a water heater, one using oil, one using electricity, or one using an electric heat pump may be used. Furthermore, although the temperature (for example, 60 degreeC) preset as hot water supply temperature was mentioned and demonstrated as an example, even if this is what was set to the solar-powered hot-water supply apparatus, and the temperature which the user set using some setting means It is clear that similar actions and effects can be obtained.
[0030]
  (Example 2)
  FIG. 3: shows sectional drawing of the solar-heat collector of the solar-powered hot-water supply apparatus in Example 2 of this invention, FIG. 4 is a principal part expanded sectional view of the solar-heat collector of the solar-heat-use hot water supply apparatus. In FIG. 3, the heat storage body 26 is configured by enclosing a latent heat storage material 45 such as sodium sulfate hydrate in a bag-like container 44 of a metal laminate film 43 whose outer periphery is sealed, and sandwiches the water flow pipe 25. The heat accumulators 26 are arranged above and below. As shown in the enlarged cross-sectional view of the main part of FIG. 4, the metal laminate film 43 forming the bag-like container 44 uses different ones on the upper surface and the lower surface, and the upper surface is a film made of low thermal conductivity resin 46 (from the top ( For example, a polyester film), a black coating film 47 for facilitating absorption of solar heat, an aluminum foil 48, and an upper exterior 49 made of a film made of low thermal conductivity resin 46, and the lower surface is also made of a film made of high thermal conductivity resin 50 from above. (For example, a high thermal conductivity product of polyethylene film), an aluminum foil 48, and a lower exterior 51 made of a film made of high thermal conductivity resin 50. Then, the heat storage body 26 composed of the bag-like container 44 having a different upper surface and lower surface is disposed such that the low heat conductivity resin 46 side is the upper surface on which the low heat conductivity resin 46 is exposed, with the water passage pipe 25 interposed therebetween. The lower part is arranged so that the low thermal conductivity resin 46 side is the lower surface in contact with the bottom plate 22.
[0031]
  Next, operation | movement of the solar-heating hot water supply apparatus of this Example 2 is demonstrated. During the day when there is solar radiation, the heat accumulator 26 receives heat by solar radiation that has passed through the light-transmitting plate 24 of the solar heat collector 21, and the solar heat is stored while the temperature rises. In general homes, hot water is used for bathing at night after sunset and most of the hot water is consumed. However, since the solar heat collector 21 is provided with the heat storage body 26, the electric mixing valve 33 is slightly required for driving. Hot water can be supplied with sufficient electric power and water pressure, and solar heat can be used effectively at night without being limited to daytime use. Since this heat storage body 26 may be configured by enclosing the latent heat storage material 45 in a bag-like container 43 made of a metal laminate film, the heat storage body 26 can be used even in a large-area solar heat collector required for heat collection. If a plurality are provided, they can be manufactured easily and at low cost. In addition, even the latent heat storage material 45 that solidifies when radiating heat can be formed into a shape that is in close contact with the water flow pipe 25 when receiving and melting, so that the thermal resistance is reduced when the received solar heat is released, and responsiveness and heat transfer efficiency are improved. This will improve the savings in utility costs. And since it becomes the structure covered with the heat storage body 26 centering on the water flow piping 25 by pinching the upper and lower sides of the water flow piping 25 with the heat storage body 26, the water storage piping which discharge | releases a heat storage part of the heat storage body 26 and heat | fever. The number of locations that are substantially uniform and partly far from the distance 25 is reduced, and the heat transfer efficiency during heat radiation from the heat storage body 26 is further improved.
[0032]
  The upper surface of the heat storage body 26 that is configured to be easily exposed to sunlight is more easily radiated to the outside air than the lower surface of the heat storage body 26 that is configured to be insulated, but the thermal conductivity of the upper exterior 49 of the heat storage body 26 is the heat of the lower exterior 51. Since it is smaller than the conductivity, the heat dissipation loss of the stored solar heat can be suppressed. Therefore, a solar heat collector with high heat collection efficiency can be obtained, and even if the solar heat collected efficiently is low temperature, hot water supply can be used by the electric mixing valve 33, and a solar water use hot water supply device that has a large saving effect on utility costs can be obtained. Can be provided.
[0033]
  Example 3
  FIG. 5 is a cross-sectional view of a solar heat collector of a solar water heater in Example 3 of the present invention, and FIG. 6 is a perspective view of a main part of the solar heat collector of the solar water heater. 5 and 6, 52 is a heat storage pipe that is a heat storage body, and includes a square pipe 53 that is a cylindrical body filled with the latent heat storage material 45 and a water flow pipe 25 that penetrates both ends of the pipe. The gap between both ends of 53 and the water flow pipe 25 is sealed so that the latent heat storage material 45 does not leak.
[0034]
  Next, operation | movement of the solar-heat-use hot water supply apparatus of this Example 3 is demonstrated. During the day when there is solar radiation, the heat storage pipe 52 receives heat by the solar radiation that has passed through the light-transmitting plate 24 of the solar heat collector 21, and the solar heat is stored while the temperature rises. When the user opens the kitchen faucet 41 or the bath shower 42 and uses hot water, the tap water circulates through the water passage pipe 25, and the tap water is heated by the heat of the heat storage pipe 52. Since the hot water discharged from the vessel 21 can be of a direct water pressure type and can be connected to a hot water supply at various terminals, the range of use is widened, and the fuel for hot water supply using solar heat and the cost savings increase. The heat storage pipe 52 has a simple configuration, and the heat storage body and the water flow pipe are integrated as a heat storage pipe and can be manufactured as a unit. Therefore, even if the solar heat collector has a large area necessary for heat collection, the heat storage pipe If a plurality of 52 are provided, they can be manufactured easily and at low cost. Moreover, since the heat storage body and the water flow pipe are integrated and in close contact with each other, the thermal resistance is reduced when the received solar heat is released, the responsiveness and the heat transfer efficiency are improved, and the utility cost saving effect is increased. And since it becomes the structure covered with a heat storage body centering on a water flow piping, the distance of the heat storage part of a heat storage body and the water flow piping which discharge | releases heat is substantially uniform, and there are few places far away, and heat storage Heat transfer efficiency during heat dissipation from the body is further improved.
[0035]
【The invention's effect】
  As described above, according to the above-described invention, since the hot water from the solar heat collector can be a direct water pressure type with a simple configuration, it can be manufactured at low cost. In addition, the direct use of water supply expands the range of use, and the savings in fuel for hot water supply and its cost due to the use of solar heat increase. Therefore, it is possible to provide a solar-powered hot-water supply device that is inexpensive in equipment and has a large effect of saving on utility costs.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a solar water heating apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view of a solar heat collector of the solar water heater
FIG. 3 is a cross-sectional view of a solar heat collector of a solar water heating apparatus according to a second embodiment of the present invention.
FIG. 4 is an enlarged cross-sectional view of the main part of the solar heat collector of the solar water heater.
FIG. 5 is a cross-sectional view of a solar heat collector of a solar water heater in Example 3 of the present invention.
FIG. 6 is a perspective view of the main part of a solar heat collector of the solar water heater.
FIG. 7 is a block diagram of a conventional solar water heater
FIG. 8 is a block diagram of another conventional solar water heater
[Explanation of symbols]
  21 Solar collector
  25 Water piping
  26 heat storage
  27 groove
  28 Box-shaped container
  29 Upper heat storage material
  30 Lower heat storage material
  31 Instantaneous gas water heater (water heater)
  32 Water supply source
  33 Electric mixing valve (mixing means)
  43 Metal laminate film (exterior)
  44 bag-like container
  45 Latent heat storage material
  49 Upper exterior
  51 Lower exterior
  52 Heat storage pipe
  53 Square pipe (cylinder)

Claims (6)

給湯器と、太陽熱集熱器と、前記給湯器と前記太陽熱集熱器に接続され両者の混合流量比を調節して適温の出湯を行う混合手段とを備え、前記太陽熱集熱器は水道直結され太陽熱集熱器の略全面に配設された通水配管と蓄熱体とで構成され、前記通水配管の上部に位置する蓄熱体の蓄熱温度を下部に位置する蓄熱体の蓄熱温度よりも低く設定した太陽熱利用給湯装置。A water heater, a solar heat collector, and a mixing means connected to the water heater and the solar heat collector to adjust the mixing flow rate ratio of the two to perform hot water discharge, the solar heat collector being directly connected to a water supply The heat storage temperature of the heat storage body located in the upper part of the water flow pipe is lower than the heat storage temperature of the heat storage body located in the lower part. Low temperature solar water heater. 給湯器と、太陽熱集熱器と、前記給湯器と前記太陽熱集熱器に接続され両者の混合流量比を調節して適温の出湯を行う混合手段とを備え、前記太陽熱集熱器は水道直結され太陽熱集熱器の略全面に配設された通水配管と蓄熱体とで構成され、前記蓄熱体の上面を形成する上部外装の熱伝導率を、下面を形成する下部外装の熱伝導率よりも小さく設定した太陽熱利用給湯装置。A water heater, a solar heat collector, and a mixing means connected to the water heater and the solar heat collector to adjust the mixing flow rate ratio of the two to perform hot water discharge, the solar heat collector being directly connected to a water supply The thermal conductivity of the upper exterior that forms the upper surface of the heat storage body, the thermal conductivity of the lower exterior that forms the lower surface A solar water heater that is set smaller than 蓄熱体は、相変化を伴う物質である潜熱蓄熱材を用いた請求項1に記載の太陽熱利用給湯装置。  The solar energy hot water supply apparatus according to claim 1, wherein the heat storage body uses a latent heat storage material that is a substance accompanied by a phase change. 蓄熱体は、偏平な箱状容器に蓄熱材を充填して構成し、通水配管の上下を前記蓄熱体で挟んで配設するとともに、前記蓄熱体の上面または下面には前記通水配管を密着収納する複数条の溝を設けた請求項1または2記載の太陽熱利用給湯装置。  The heat storage body is configured by filling a heat storage material in a flat box-like container, and is arranged by sandwiching the upper and lower sides of the water passage pipe between the heat storage bodies, and the water passage pipe is provided on the upper surface or the lower surface of the heat storage body. The solar-heat-use hot water supply apparatus of Claim 1 or 2 which provided the groove | channel of the multiple item | strip | rows closely_contact | adheringly accommodated. 蓄熱体は、周囲をシールした金属ラミネートフィルムの袋状容器に潜熱蓄熱材を封入して構成し、通水配管の上下を前記蓄熱体で挟んで配設した請求項1または2記載の太陽熱利用給湯装置。  3. The solar heat utilization according to claim 1 or 2, wherein the heat storage body is configured by enclosing a latent heat storage material in a bag-shaped container of a metal laminate film whose periphery is sealed, and the water storage pipe is sandwiched between the heat storage bodies. Hot water supply device. 蓄熱体は、蓄熱材が充填された筒体と前記筒体の両端を貫通する通水配管とで構成された蓄熱パイプである請求項1または2記載の太陽熱利用給湯装置。  3. The solar-powered hot water supply apparatus according to claim 1, wherein the heat storage body is a heat storage pipe configured by a cylinder body filled with a heat storage material and a water flow pipe penetrating both ends of the cylinder body.
JP2001273119A 2001-09-10 2001-09-10 Solar water heater Expired - Fee Related JP4631239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273119A JP4631239B2 (en) 2001-09-10 2001-09-10 Solar water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273119A JP4631239B2 (en) 2001-09-10 2001-09-10 Solar water heater

Publications (2)

Publication Number Publication Date
JP2003083608A JP2003083608A (en) 2003-03-19
JP4631239B2 true JP4631239B2 (en) 2011-02-16

Family

ID=19098379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273119A Expired - Fee Related JP4631239B2 (en) 2001-09-10 2001-09-10 Solar water heater

Country Status (1)

Country Link
JP (1) JP4631239B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097746A (en) * 2007-10-15 2009-05-07 Panasonic Corp Heat storage device
JP2011117633A (en) * 2009-12-01 2011-06-16 Kokusai Gijutsu Kaihatsu Co Ltd Solar system
JP5268110B2 (en) * 2009-12-11 2013-08-21 東京瓦斯株式会社 Solar heat utilization system
JP6579050B2 (en) * 2016-07-08 2019-09-25 株式会社デンソー Cold storage heat exchanger, air conditioning unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172650U (en) * 1980-05-22 1981-12-19
JPS6282953A (en) * 1985-10-04 1987-04-16 松下電器産業株式会社 Heat accumulator
JPH07293908A (en) * 1994-04-22 1995-11-10 Daikin Ind Ltd Latent heat accumulation panel
JPH08136048A (en) * 1994-11-08 1996-05-31 Osaka Gas Co Ltd Gas heated bath equipment utilizing solar heat
JPH10253169A (en) * 1997-03-14 1998-09-25 Tokyo Gas Co Ltd Tap water direct coupled solar system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56172650U (en) * 1980-05-22 1981-12-19
JPS6282953A (en) * 1985-10-04 1987-04-16 松下電器産業株式会社 Heat accumulator
JPH07293908A (en) * 1994-04-22 1995-11-10 Daikin Ind Ltd Latent heat accumulation panel
JPH08136048A (en) * 1994-11-08 1996-05-31 Osaka Gas Co Ltd Gas heated bath equipment utilizing solar heat
JPH10253169A (en) * 1997-03-14 1998-09-25 Tokyo Gas Co Ltd Tap water direct coupled solar system

Also Published As

Publication number Publication date
JP2003083608A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
US6119682A (en) Water heater and storage tank
RU2009112291A (en) ACTIVE HEAT ENERGY ACCUMULATION SYSTEM
CN201944920U (en) Superconducting solar energy heat-pump hot-water bathing heating system
CN106816670A (en) Heat-transfer device and supply unit
CN109378551A (en) A kind of power battery New-type phase change is cooling and heating integral structure
JP4631239B2 (en) Solar water heater
CN110006090A (en) A kind of phase-transition heat-storage heating installation
CN110657697B (en) Valley electricity energy storage device and using method thereof
JP4631238B2 (en) Solar water heater
JP5435457B2 (en) Thermal storage structure
CN214949876U (en) Constant temperature control device of solar water heating system
WO2009013578A2 (en) Solar panel for fluid heating
CN204438524U (en) Bearing type water tank and displacement type water heater
CN205174553U (en) Secondary heat transfer heating system with low ebb electrical heating energy storage
CN208952441U (en) Normal pressure flat solar water heater
CN110173749B (en) Off-peak electricity heat storage house type heating system
CN206281223U (en) A kind of insulation temperature regulating device of flat plate solar water heater
CN109974286A (en) A kind of high-efficiency electric-heating water installations of immediate heating type graphene film heating and phase-change accumulation energy
CN209282352U (en) A kind of power battery New-type phase change is cooling and heating integral structure
JP3908609B2 (en) Hot water storage hot water heater
CN2672555Y (en) High density energy storage type electric heating life water device without inner bladder
CN210035663U (en) Heat balance type heat storage system
CN211011612U (en) Commercial hot water heat-storage energy-saving environment-friendly system
CN203518237U (en) No-inner container high-density energy storage type electrothermal living water device
CN210141606U (en) Novel floor heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees