JP4631043B2 - Methane generation method and two-phase methane generator used therefor - Google Patents
Methane generation method and two-phase methane generator used therefor Download PDFInfo
- Publication number
- JP4631043B2 JP4631043B2 JP2003313323A JP2003313323A JP4631043B2 JP 4631043 B2 JP4631043 B2 JP 4631043B2 JP 2003313323 A JP2003313323 A JP 2003313323A JP 2003313323 A JP2003313323 A JP 2003313323A JP 4631043 B2 JP4631043 B2 JP 4631043B2
- Authority
- JP
- Japan
- Prior art keywords
- methane
- fermentation
- gas
- acid fermentation
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 272
- 238000000034 method Methods 0.000 title claims description 56
- 238000000855 fermentation Methods 0.000 claims description 111
- 230000004151 fermentation Effects 0.000 claims description 111
- 239000007789 gas Substances 0.000 claims description 53
- 239000002253 acid Substances 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 238000002485 combustion reaction Methods 0.000 claims description 20
- 241000894006 Bacteria Species 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 19
- 239000000446 fuel Substances 0.000 claims description 17
- 238000003860 storage Methods 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 238000005192 partition Methods 0.000 claims description 16
- 230000029087 digestion Effects 0.000 claims description 15
- 239000010802 sludge Substances 0.000 claims description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 12
- 238000003795 desorption Methods 0.000 claims description 10
- 238000005338 heat storage Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 239000002351 wastewater Substances 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 239000006228 supernatant Substances 0.000 claims description 5
- 238000006477 desulfuration reaction Methods 0.000 claims description 4
- 230000023556 desulfurization Effects 0.000 claims description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 239000002994 raw material Substances 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims 9
- 238000007664 blowing Methods 0.000 claims 2
- 239000007791 liquid phase Substances 0.000 claims 2
- 230000004888 barrier function Effects 0.000 claims 1
- 230000002051 biphasic effect Effects 0.000 claims 1
- 150000001720 carbohydrates Chemical class 0.000 claims 1
- 235000014633 carbohydrates Nutrition 0.000 claims 1
- 239000003054 catalyst Substances 0.000 claims 1
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 230000029553 photosynthesis Effects 0.000 claims 1
- 238000010672 photosynthesis Methods 0.000 claims 1
- 230000001376 precipitating effect Effects 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 230000008569 process Effects 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000004065 wastewater treatment Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 230000000243 photosynthetic effect Effects 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000003608 fece Anatomy 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- -1 iron ions Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000010801 sewage sludge Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 235000016425 Arthrospira platensis Nutrition 0.000 description 2
- 240000002900 Arthrospira platensis Species 0.000 description 2
- 241000195649 Chlorella <Chlorellales> Species 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 244000144972 livestock Species 0.000 description 2
- 239000010871 livestock manure Substances 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229940082787 spirulina Drugs 0.000 description 2
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 2
- 241000191368 Chlorobi Species 0.000 description 1
- 241000191366 Chlorobium Species 0.000 description 1
- 241000190831 Chromatium Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000203353 Methanococcus Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- IBIRZFNPWYRWOG-UHFFFAOYSA-N phosphane;phosphoric acid Chemical compound P.OP(O)(O)=O IBIRZFNPWYRWOG-UHFFFAOYSA-N 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Fuel Cell (AREA)
- Physical Water Treatments (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、熱エネルギーと電気エネルギーとを利用して、下水汚泥や家畜糞尿のような有機物含有廃棄物中の有機物を完全分解し、高い生産量でスラッジの生成なしにメタンガスを発生させる方法及びそれに用いる二相式メタン発生装置に関するものである。 The present invention uses thermal energy and electric energy to completely decompose organic matter in waste containing organic matter such as sewage sludge and livestock excreta, and to generate methane gas at a high production amount without generating sludge. The present invention relates to a two-phase methane generator used for that purpose.
下水汚泥や家畜糞尿を含む種々の有機物含有廃棄物をメタン発酵させてメタン系燃料ガスを生産する方法は、工業的に広く行われており、そのためにメタンガスの収容量に応じてガスホルダーの容量を変えるための上下可動天蓋を有するガスホルダーを内蔵した容量可変ガスホルダー型反応装置、ガスホルダーが発酵槽上部に固定されたガスホルダー固定型反応装置及び下水処理場で嫌気性処理を行うのに慣用されている下水消化槽、酸発酵槽及びメタン発酵槽を含む二相型反応装置などが開発され、実用に供されている。 A method for producing methane-based fuel gas by methane fermentation of various organic matter-containing wastes including sewage sludge and livestock manure is widely used industrially. For variable capacity gas holder reactor with built-in gas holder with up and down movable canopy to change the temperature, gas holder fixed reactor with gas holder fixed on top of fermentation tank and anaerobic treatment at sewage treatment plant Conventional two-phase reactors including sewage digesters, acid fermenters and methane fermenters have been developed and put into practical use.
しかしながら、これまで下水処理において実用化されているメタン発生装置は、バイオガスの生産速度が低く効率が劣るため、これを改善するものとして二相式メタン発酵装置が提案されている。このような装置としては、例えば光合成細菌を固定化した担体を収容した好気反応槽と、酸発酵槽及びメタン発酵槽からなる二相式メタン発酵槽とを備えた有機系廃水浄化装置(特許文献1参照)、発酵処理用の供給液を収容する発酵槽、上部空間をメタンガスホルダーとしたガスホルダー型メタン発酵槽とから構成された二相メタン発酵用反応装置(特許文献2参照)がある。 However, methane generators that have been put to practical use in sewage treatment so far have a low biogas production rate and poor efficiency. Therefore, a two-phase methane fermentation apparatus has been proposed as an improvement. As such an apparatus, for example, an organic wastewater purification apparatus comprising an aerobic reaction tank containing a carrier on which photosynthetic bacteria are immobilized and a two-phase methane fermentation tank comprising an acid fermentation tank and a methane fermentation tank (patented) There is a reactor for two-phase methane fermentation (see Patent Document 2), which is composed of a fermenter that contains a feed solution for fermentation treatment, and a gas holder type methane fermenter that uses the upper space as a methane gas holder. .
前者は光合成菌を酸発酵槽の好気的条件下で培養し、この際発生する熱をメタン発酵槽の加温に利用するものであるが、メタンの回収率が低下する欠点を有するし、また後者はガス貯留槽のガス圧力を利用して液を輸送する機構を有し、無動力で液体を酸発酵室よりメタン発酵室に移送しうるという利点はあるが、ガスを利用するシステムと連結しないと液体の移送ができない上、プラグフローの流路長さが十分に確保されず、またガス撹拌手段を備えられないためメタン菌の分散ができないなどの欠点がある。 The former cultivates photosynthetic bacteria under aerobic conditions in an acid fermenter, and uses the heat generated at this time for heating the methane fermenter, but has the disadvantage that the recovery rate of methane is reduced, The latter has a mechanism for transporting liquid using the gas pressure in the gas storage tank, and has the advantage that the liquid can be transferred from the acid fermentation chamber to the methane fermentation chamber without power, Unless connected, the liquid cannot be transferred, and the flow length of the plug flow cannot be sufficiently secured, and the gas stirring means cannot be provided, so that methane bacteria cannot be dispersed.
本発明は、前記した従来の二相式メタン発生装置を用いたメタン発生方法のもつ欠点やスラッジの減容化が図れないという欠点を克服し、さらにメタン発酵に伴う発生熱の有効利用を図り、バイオガス利用を優先させる自律型メタン発生方法としての効率を向上させるとともに、さらにメタン発酵方法における消化脱離液中のCOD、全窒素分、全リン含有量の除去率を高め、またアンモニア態窒素の含有量を低下させることにより、排水の河川中への放流を可能にした方法及び装置を提供することを目的としてなされたものである。 The present invention overcomes the disadvantages of the methane generation method using the above-described conventional two-phase methane generator and the inability to reduce the volume of sludge, and further makes effective use of the heat generated by methane fermentation. In addition to improving the efficiency as an autonomous methane generation method that prioritizes the use of biogas, the removal rate of COD, total nitrogen content, and total phosphorus content in the digestion and desorption liquid in the methane fermentation method is increased, and the ammonia state The object of the present invention is to provide a method and an apparatus that can discharge drainage into a river by reducing the nitrogen content.
本発明者らは、二相式メタン発生装置を用いたメタン発生方法についてその効率を高めるために鋭意研究を重ねた結果、ガス利用系としての内燃機関である小型マイクロガスタービンエンジン又は外燃機関として性能が向上したスターリングエンジン又は燃料電池などを、熱・電供給システムとしてメタン発生装置内に配置し、メタン発生過程における発生熱を有効に利用するとともに、バイオガス利用を優先させる自律型メタン発生装置としての性能を向上させるよう装置の構造に工夫を加えることにより、上記の課題を解決しうることを見出し、この知見に基づいて本発明をなすに至った。 As a result of intensive research to increase the efficiency of a methane generation method using a two-phase methane generator, the present inventors have conducted research into a small micro gas turbine engine or an external combustion engine that is an internal combustion engine as a gas utilization system. As a heat / electricity supply system, a Stirling engine or a fuel cell with improved performance is installed in the methane generator to make effective use of the heat generated during the methane generation process and give priority to biogas use. The inventors have found that the above-mentioned problems can be solved by adding a device to the structure of the apparatus so as to improve the performance as the apparatus, and have reached the present invention based on this knowledge.
すなわち、本発明は、有機物質含有廃水に酸発酵及びメタン発酵を連続的に行わせてメタンを発生させる方法において、酸発酵部とメタン発酵部とを、内部に熱交換器が付設された隔壁を介して一体的に構成した発生装置を用いるとともに、発生装置内に熱及び電気エネルギーの生成機構を配設し、この方法における必要な電力の供給及びメタンの発酵液の加温に必要な熱の供給を行わせることを特徴とするメタンの発生方法、及び酸発酵部とメタン発酵部とを有する二相式メタン発生装置において、酸発酵部とメタン発酵部とを隔壁を介して一体的に結合した横型円筒状タンクに構成するとともに、内燃機関又は外燃機関又は燃料電池と蓄熱部よりなる熱電供給機構を設 け、かつ燃料電池等で発生した電気エネルギーを内部動力として利用するための手段及び蓄熱部からの熱エネルギーを酸発酵部とメタン発酵部の加温に利用するための手段を備えたことを特徴とする二相式メタン発生装置を提供するものである。 That is, the present invention relates to a method for generating methane by continuously performing acid fermentation and methane fermentation on organic substance-containing wastewater, and the acid fermentation section and the methane fermentation section, and a partition wall provided with a heat exchanger inside And a heat and electric energy generation mechanism are arranged in the generator, and the heat necessary for supplying the necessary power and heating the fermentation liquid of methane in this method is provided. In a two-phase methane generator having an acid fermentation section and a methane fermentation section, the acid fermentation section and the methane fermentation section are integrated with each other through a partition wall. It is configured as a combined horizontal cylindrical tank, and is equipped with a thermoelectric supply mechanism consisting of an internal combustion engine, an external combustion engine, a fuel cell and a heat storage unit, and uses electric energy generated by the fuel cell as internal power There is provided a two-phase methane generator characterized by comprising means for heating and heat energy from the heat storage section for heating the acid fermentation section and the methane fermentation section.
本発明方法においては、熱及び電気エネルギーの生成機構を配設したメタン発生装置を用いることが必要である。このようなメタン発生装置を用いることにより、保温を簡単に行うことができ、発生する熱エネルギーの80〜90%をメタン発生部の保温に利用することができる。また、この方法において、消化脱離液処理及びスラッジ処理を付加した場合は、これらの処理より生じた熱エネルギーの20〜40%をメタン発酵に利用することができる。 In the method of the present invention, it is necessary to use a methane generator provided with a heat and electric energy generation mechanism. By using such a methane generator, it is possible to easily keep the heat, and 80 to 90% of the generated heat energy can be used to keep the methane generator warm. Moreover, in this method, when the digestion detachment liquid process and the sludge process are added, 20 to 40% of the thermal energy generated by these processes can be used for methane fermentation.
次に、本発明方法においては、発生ガス中に含まれる硫化水素の脱硫及び発生ガス中の二酸化炭素の酸素又はメタンへの変換を生物学的に行うのが好ましい。
本発明のメタン発生方法により得られる発生ガス中には、2000〜4000ppmの硫化水素が含まれているが、外燃機関では100ppm以下、内燃機関では10ppm以下、燃料電池では0.0ppm以下が要求されているため、それに適合するように脱硫処理しなければならない。
Next, in the method of the present invention, it is preferable to biologically desulfurize hydrogen sulfide contained in the generated gas and convert carbon dioxide in the generated gas into oxygen or methane.
The generated gas obtained by the methane generation method of the present invention contains 2000 to 4000 ppm of hydrogen sulfide, which requires 100 ppm or less for an external combustion engine, 10 ppm or less for an internal combustion engine, and 0.0 ppm or less for a fuel cell. Therefore, it must be desulfurized to fit it.
しかしながら、従来の酸化鉄ペレットを用いる処理では、低減値に限度があり、かつ処理コストが高いため実用的でない。
本発明方法における生物学的処理によれば、光エネルギーを利用し、二酸化炭素を栄養源として、紅色イオウ細菌(Chromatium属)又は緑色イオウ細菌(Chlorobium属)のような嫌気性脱硫菌を作用させることによって、簡単にかつ安価に脱硫することができる。
また、別の栄養源を用いるときは、脱硫菌として硫酸還元菌(Desulfovilo属)を利用することもできる。
However, the conventional treatment using iron oxide pellets is not practical because the reduction value is limited and the treatment cost is high.
According to the biological treatment in the method of the present invention, anaerobic desulfurization bacteria such as a red sulfur bacterium (genus Chromatium) or a green sulfur bacterium (genus Chlorobium) are caused to act using light energy and carbon dioxide as a nutrient source. Therefore, desulfurization can be performed easily and inexpensively.
In addition, when another nutrient source is used, a sulfate-reducing bacterium (Desulofilo genus) can be used as a desulfurizing bacterium.
そして、紅色イオウ細菌と緑色イオウ細菌は光合成細菌であり、これを用いた場合にはメタン菌濃度を上昇させることができるので好ましい。また、硫酸還元菌は、CO2/H2資化性メタン菌例えばメタノコックス属(Methanococcus)やメタノスピリルム属(Methanospirillum)と共生下、水の電気分解由来の水素を供給することにより、メタン濃度を95〜99%まで高めることができるので好ましい。
このように、本発明方法に生物的脱硫や生物的メタネーションを組み合わせることにより、発生ガスの精製を簡単に行うことができる。
And red sulfur bacteria and green sulfur bacteria are photosynthetic bacteria, and when this is used, the concentration of methane bacteria can be increased, which is preferable. In addition, sulfate-reducing bacteria supply methane concentration by supplying hydrogen derived from electrolysis of water under coexistence with CO 2 / H 2 assimilating methane bacteria such as Methanococcus and Methanospirilum. Since it can raise to 95 to 99%, it is preferable.
Thus, by combining biological desulfurization and biological methanation with the method of the present invention, the generated gas can be easily purified.
次に本発明方法及び装置を添付図面に従って説明する。
図1は本発明方法を実施するのに好適な装置の1例を示す縦断面図、図2は図1のA−A線に沿った横断面図、図3は図1のB−B線に沿った横断面図である。
Next, the method and apparatus of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an example of an apparatus suitable for carrying out the method of the present invention, FIG. 2 is a transverse sectional view taken along line AA in FIG. 1, and FIG. 3 is taken along line BB in FIG. FIG.
これらの図において酸発酵部1とメタン発酵部2とは連結し、全体として横型円筒状タンク3を構成している。原料の有機物質含有廃水は、パイプ4を介して酸発酵部1に導入され、酸発酵したのち、ガス貯留室5の圧力を利用して隔壁6に設けられたパイプ7を通ってメタン発酵部2に送られる。このメタン発酵部2では、メタン菌を担持した板状ロックウール又はグラスウールからなる担体8,…が複数個流線に対し垂直に立設され、これにより流線を伸長し、メタン菌と液との接触時間を長くするようになっている。
In these drawings, the
また、未分解物である粒子状のスラッジを排出し、回収するために、酸発酵部1とメタン発酵部2の下部に、スラッジ回収用とい9が設けられている。そして、このとい9は、横型円筒状タンク3内において、メタン発酵部2の酸発酵部1との接合端と反対側の端部付近に付設された消化脱離液室10の方向に向って下方に傾斜して配置されている。このとい9の頂部には、酸発酵部1及びメタン発酵部2における沈殿物を取り入れるために、複数の孔11,…が穿設されている。また、このとい9の下部には、下面に小孔を有するパイプ12をガス貯留室5との間にブロア13を介して配管し、これを通してガスを噴出させ、撹拌することによってスラッジに付着したメタン菌を脱離、分散させ、メタン発酵を促進させる。
なお、本発明装置における横型円筒状タンクには、断面正円状のもののみでなく、断面長円状のものも包含される。
Moreover, in order to discharge | emit and collect | recover the particulate sludge which is an undecomposed thing, the sludge collection needle 9 is provided in the lower part of the
The horizontal cylindrical tank in the apparatus of the present invention includes not only those having a perfect circular cross section but also those having an elliptical cross section.
酸発酵部1とメタン発酵部2とは、図3に示すような断面の外フランジ20及び内フランジ21からなるフランジ接続構造の隔壁6により分割され、メタン発酵部2の内部に支持用部材8´により装着された担体8,…を必要に応じて随時交換しうるようになっている。この隔壁6には酸発酵部1とメタン発酵部2との連通部18及びメタン排出孔19が設けられている。さらに、この隔壁6には温水熱交換器14及び貯湯槽15が付設され、熱電供給機構16から送られてくる温水を貯蔵し、これをタンク内に配設されたポンプ17により熱交換器14へ送って、この熱エネルギーを酸発酵部1とメタン発酵部2の加温に使用する。本発明においては、このようにして酸発酵部1及びメタン発酵部2は常に30〜36℃の範囲に保たれている。上記のポンプ17は、それぞれの発酵部1及び2に備えられた温度センサー(図示せず)により検知された温度に基づいてその作動が制御されている。
The
本発明装置においては、熱電供給機構16に、外燃機関のスターリングエンジンと燃料電池を配設し、これにより発生させた直流電力を蓄電池に蓄え、周波数変換手段により110V及び220Vの交流に変換して内部動力として用いるのが好ましい。また、電力供給の安定化を図るために、太陽電池を付設して直流電力を供給するのが好ましい。
In the apparatus of the present invention, the Stirling engine and the fuel cell of the external combustion engine are arranged in the
このようにして得られる外燃機関のスターリングエンジンの電力発生効率は約10%であり、温水温度60℃に換算した熱エネルギーとしての変換効率は65〜70%、総合効率は75〜80%であった。そして、温水として得た熱エネルギーの10〜30%がメタン発酵装置の保温に利用されることになるので、外部で利用しうる熱エネルギーは70〜90%である。しかしながら、断熱材を用いる保温効率の向上、メタン発酵装置外側部への熱交換用蛇管の取り付けなどにより、さらに利用可能な熱エネルギーの割合を大きくすることができる。 The power generation efficiency of the Stirling engine of the external combustion engine thus obtained is about 10%, the conversion efficiency as heat energy converted to a hot water temperature of 60 ° C. is 65 to 70%, and the overall efficiency is 75 to 80%. there were. And since 10 to 30% of the thermal energy obtained as warm water is used for heat retention of the methane fermentation apparatus, the thermal energy that can be used outside is 70 to 90%. However, the ratio of the heat energy which can be utilized can be enlarged further by the improvement of the heat retention efficiency which uses a heat insulating material, the attachment of the heat exchange serpentine tube to the outer side part of a methane fermentation apparatus, etc.
本発明方法においては、電気化学的廃水処理を併用するのが好ましい。
この電気化学的廃水処理は、酸化チタンのような遷移金属酸化物で被覆した金属表面に数百ボルトの電子を照射して水酸基ラジカルや酸素ラジカルを発生させることにより、アンモニア態窒素やリン酸態リンを分解して、前者を窒素ガス体に変換して無害化し、後者を酸化リンの沈殿として除去するものであるが、本発明方法におけるメタン発酵消化脱離液に対しては、この処理のみでは有効でない。それは、本発明方法におけるメタン消化脱離液には、多くの懸濁性物質(SS)が含まれ、これが電子照射を妨害し、陽極電圧を著しく低下させるためである。
In the method of the present invention, it is preferable to use electrochemical wastewater treatment together.
This electrochemical wastewater treatment is performed by irradiating a metal surface coated with a transition metal oxide such as titanium oxide with electrons of several hundred volts to generate hydroxyl radicals and oxygen radicals, thereby producing ammonia nitrogen and phosphate groups. Phosphorus is decomposed, the former is converted into a nitrogen gas body to make it harmless, and the latter is removed as a precipitate of phosphorus oxide. However, this treatment is only applied to the methane fermentation digestion desorption liquid in the method of the present invention. Is not valid. This is because the methane digestion and desorption liquid in the method of the present invention contains a lot of suspended substances (SS), which interferes with electron irradiation and significantly reduces the anode voltage.
したがって、本発明方法においては、懸濁性粒子を含む消化脱離液に鉄電極を浸漬し、20〜50Vの直流電流を通電して、液中に微量の二価鉄イオンを溶解させる処理をあらかじめ施すことが必要である。この際、フェントン効果により酸素ラジカルが発生すると同時に水素イオンが浮遊している懸濁粒子を凝集し、沈殿させる。一方において、リン成分は、この二価鉄イオンにより、リン酸鉄として沈殿し、また酸素ラジカルによって酸化されて酸化リンとなって凝集沈殿する。 Therefore, in the method of the present invention, the iron electrode is immersed in the digestion and detachment liquid containing suspended particles, and a direct current of 20 to 50 V is applied to dissolve a small amount of divalent iron ions in the liquid. It is necessary to apply in advance. At this time, oxygen radicals are generated by the Fenton effect, and at the same time, suspended particles in which hydrogen ions are suspended are aggregated and precipitated. On the other hand, the phosphorus component is precipitated as iron phosphate by the divalent iron ions, and is oxidized by oxygen radicals to be aggregated and precipitated as phosphorus oxide.
このように凝集沈殿させた処理液は、沈殿槽に移され、上澄液と沈殿物に分離され、上澄液は再度50〜120Hzの低周波パルス波(デューティ比80〜100%)で処理される。このようにしてTiO2とRuO2からなる混合陽極板を用い、電流密度1〜30mA/cm2、電圧10〜50Vの条件下で、炭素源となっている全有機炭素(TOC)を90%以上の効率で酸化分解することができた。この際、ポリフェノールのような着色性物質も分解され脱色された。 The treatment liquid coagulated and precipitated in this way is transferred to a sedimentation tank and separated into a supernatant and a precipitate, and the supernatant is again treated with a low-frequency pulse wave of 50 to 120 Hz (duty ratio 80 to 100%). Is done. In this way, using a mixed anode plate made of TiO 2 and RuO 2 , 90% of the total organic carbon (TOC) serving as the carbon source was obtained under the conditions of a current density of 1 to 30 mA / cm 2 and a voltage of 10 to 50 V. It was possible to oxidatively decompose with the above efficiency. At this time, coloring substances such as polyphenols were also decomposed and decolorized.
本発明方法においては、このようなフェントン効果と低周波パルス波による組合せを2段階繰り返すカスケード方式の処理により行うのが好ましいが、さらに3段階繰り返すカスケード方式による処理を施すと除去率をいっそう高めることができる。 In the method of the present invention, it is preferable to perform the combination of the Fenton effect and the low-frequency pulse wave by a cascade process that repeats in two stages. However, the removal rate can be further increased by performing the process in a cascade process that repeats further three stages. Can do.
図4は3段階のカスケード方式による処理部はA、B及びCの3段階で構成された電気化学的廃水処理システムを説明するための工程図である。この図において第2段階は低周波パルス波による照射が、また第3段階は高周波パルス波による照射がそれぞれ行われている。
ここで、カスケード方式とは、沈殿槽の上澄液がオーバーフローにより次段階に重力移動し、後続の沈殿形成が行われる方式を意味する。
FIG. 4 is a process diagram for explaining an electrochemical wastewater treatment system in which a treatment unit using a three-stage cascade system is composed of three stages of A, B, and C. In this figure, the second stage is irradiated with a low-frequency pulse wave, and the third stage is irradiated with a high-frequency pulse wave.
Here, the cascade system means a system in which the supernatant of the sedimentation tank is gravity moved to the next stage due to overflow, and subsequent sediment formation is performed.
本発明方法においては、50〜120Hzの条件下で2段階カスケード方式処理した場合、メタン消化脱離液の炭素源及びリン酸態リンを80〜90%の除去率で除去することができたが、全窒素成分の除去率は10〜20%と低かった。しかしながら、10〜100kHzの周波数帯の電磁波照射を行ったところ、電圧500V、電流密度1mA/cm2、デューティ比20%の低周波においてアンモニア態窒素の窒素ガスへの変換率は50〜60%に向上した。
In the method of the present invention, when the two-stage cascade process was performed under the condition of 50 to 120 Hz, the carbon source and phosphate phosphorus in the methane digestion and desorption liquid could be removed at a removal rate of 80 to 90%. The removal rate of all nitrogen components was as low as 10 to 20%. However, when electromagnetic wave irradiation of a frequency band of 10 to 100 kHz is performed, the conversion rate of ammonia nitrogen to nitrogen gas is 50 to 60% at a low frequency of voltage 500 V,
一方、本発明装置をプレハブ構造に構成する場合、構造物の工場からの運搬には、装置直径の制限を生じるため、メタン発酵容積は道路運送法の車幅及び長さ規制によって制限されるのを免れない。特に円筒形状の装置は、長さをこの規制値以上に設計すると現場で組み立てる外はないが、この現場組立は、時間がかかる上に労務費がかさむので実用的ではない。 On the other hand, when the device of the present invention is configured as a prefabricated structure, the transportation of the structure from the factory causes a restriction on the diameter of the device, so the methane fermentation volume is limited by the vehicle width and length regulations of the road transport method. I can not escape. In particular, if the length of the cylindrical device is designed to exceed the regulation value, it is necessary to assemble at the site. However, this site assembly is not practical because it takes time and labor costs.
本発明装置においては、これを回避するために、ハウジングのタンクを長円形断面形状とすることにより、大部分を工場組立とし、現場工事を最少限とすることができる。例えばタンクの片側胴部とスラッジ回収用といを一体化することにより断面正円の円筒断面積よりも1.8〜2.3倍の断面積を持つ断面とすることができ、2分割部品に形成することにより道路交通法の規制内での運搬が可能になる。 In the apparatus of the present invention, in order to avoid this, by making the tank of the housing into an oval cross-sectional shape, most of the factory assembly can be performed at the factory, and on-site work can be minimized. For example, by integrating the tank body on one side of the tank and a sludge recovery pad, the cross-section can be made 1.8 to 2.3 times the cross-sectional area of a circular cylinder with a perfect cross-section. By forming, transportation within the regulations of the Road Traffic Law becomes possible.
また、本発明装置においては、発生するメタンガスに対する耐圧用補強材兼用の担体支持材を着脱可能に取り付けるためのヒンジを装着することができる。 In the apparatus of the present invention, a hinge for detachably attaching a carrier support material that also serves as a pressure-resistant reinforcement for the generated methane gas can be attached.
本発明方法については、さらに以下のことが分った。
(1) 圧力変動型ガス改質器(PSR方式)により発生ガス中の二酸化炭素を吸収除去することによりメタン濃度を95〜99%得ることができる。一方、逆浸透膜を用いて二酸化炭素を除去すると、メタン濃度は70〜80%になるが、内部動力用電力との熱収支はちょうど釣合い状態であり、熱収支を発生ガスのもつエネルギー以内に止めるのは、この濃度が限界である。
Regarding the method of the present invention, the following was further found out.
(1) A methane concentration of 95 to 99% can be obtained by absorbing and removing carbon dioxide in the generated gas by a pressure fluctuation type gas reformer (PSR system). On the other hand, when carbon dioxide is removed using a reverse osmosis membrane, the methane concentration becomes 70 to 80%, but the heat balance with the power for internal power is just balanced, and the heat balance is within the energy of the generated gas. This concentration is the limit to stop.
(2) 光リアクターにより、藻類であるクロレラ、スピルリナ又はセネデスムスを用い、メタルハライドランプを直接光源とする方法及びリアクター内部に光を供給する方法では、いずれも二酸化炭素の30〜40%を酸素に変換することができた。この場合、3〜5%の消化脱離液を使用し、これを10〜20倍の消化脱離液で希釈した培地を半連続で供給したが、二酸化炭素は酸性を示すのでリン酸緩衝液によるpH制御をする必要があった。培養液のアンモニア態窒素や無機リン酸態リンの吸収除去は、ほぼ100%に近く、電力エネルギー消費の点については、日中の太陽光利用と夜間のみを人工光源とする制御を行うことによって最少の電力消費によってメタン濃度を増大させることができた。また副生物として得られるクロレラ、スピルリナ及びセネデスムスは、食材、飼料として利用することができる。なお、光合成細菌は、酸素を発生しないが、同じような効果を奏する。 (2) Using a photoreactor, the method using algae such as chlorella, spirulina, or seddesmus with a metal halide lamp as a direct light source and supplying light into the reactor both convert 30-40% of carbon dioxide into oxygen. We were able to. In this case, a 3-5% digestion and desorption solution was used, and a medium diluted with the 10 to 20-fold digestion and desorption solution was supplied semi-continuously. However, since carbon dioxide is acidic, a phosphate buffer solution is used. It was necessary to control the pH by the above. Absorption and removal of ammonia nitrogen and inorganic phosphorous phosphorus in the culture solution is close to 100%, and power consumption is controlled by using sunlight during the day and artificial light sources only at night. The methane concentration could be increased with minimal power consumption. Further, chlorella, spirulina and senedesmus obtained as by-products can be used as food and feed. Although photosynthetic bacteria do not generate oxygen, they have the same effect.
(3) 出力電圧28V、直流電力0.5kWの太陽電池を組み合わせ、電気分解装置に電解水として本発明方法の電気化学的な水処理を施した処理水を供給して、水の電気分解を行い、発生した水素を除湿及び活性炭素による不純ガスを除去して精製後、メタン発生用の水素とした。
他方、発生した酸素はそのまま大気中に放出した。上記の精製水素と前記したPSR法で得た高濃度メタンガスとを混合して、3kW出力の燃料電池を作動させたところ、電力効率20〜28%、総合効率80〜85%であった。この場合、水素濃度の増加とともに電力効率の向上が認められた。
また、精製水素と高濃度メタンを別々に燃料電池に供給することにより、電力効率を25〜35%に向上させることができた。
(3) Combined with a solar cell with an output voltage of 28 V and a DC power of 0.5 kW, the treated water subjected to the electrochemical water treatment of the method of the present invention is supplied as electrolyzed water to the electrolyzer, and the water is electrolyzed. The generated hydrogen was dehumidified and purified by removing impure gas due to activated carbon, and then used as hydrogen for methane generation.
On the other hand, the generated oxygen was released into the atmosphere as it was. When the purified hydrogen and the high-concentration methane gas obtained by the above-described PSR method were mixed to operate a 3 kW output fuel cell, the power efficiency was 20 to 28% and the overall efficiency was 80 to 85%. In this case, an improvement in power efficiency was observed with an increase in hydrogen concentration.
Further, by supplying purified hydrogen and high-concentration methane separately to the fuel cell, the power efficiency could be improved to 25 to 35%.
本発明によると有機物質含有廃棄物からメタンガスを効率よく生産することができるので、メタンガス回収優先の発生方法として好適であるとともに、各成分を排水基準以下の含有量に低下させることができるので、下水処理、排水処理用としても好適である。 According to the present invention, since methane gas can be efficiently produced from organic substance-containing waste, it is suitable as a method for generating methane gas priority, and each component can be reduced to a content below the wastewater standard. It is also suitable for sewage treatment and wastewater treatment.
次に実施例により本発明の最良の実施形態を説明するが、これにより本発明は何ら限定されるものではない。 Next, the best mode for carrying out the present invention will be described by way of examples, but the present invention is not limited thereby.
図1に示す構造を有し、全体積5m3、酸発酵部1m3、メタン発酵部3m3及びガス貯留室1m3とした二相式メタン発生装置を用い、豚糞尿(含水率91%)144kgに等量の水を加えた混合物をメタン発酵させた。10時間の処理後、メタンガスを0.75m3/kg−vsという高収率で回収することができた。また、排水中のCODは100ppm、全窒素量は50ppm、全リン量は2ppm、懸濁性物質濃度は20ppmであった。この場合のエネルギー収支は正の値であった。 Using the two-phase methane generator having the structure shown in FIG. 1 and having a total volume of 5 m 3 , acid fermentation section 1 m 3 , methane fermentation section 3 m 3 and gas storage chamber 1 m 3 , swine manure (water content 91%) A mixture obtained by adding an equal amount of water to 144 kg was subjected to methane fermentation. After 10 hours of treatment, methane gas could be recovered with a high yield of 0.75 m 3 / kg-vs. The COD in the wastewater was 100 ppm, the total nitrogen amount was 50 ppm, the total phosphorus amount was 2 ppm, and the suspended substance concentration was 20 ppm. The energy balance in this case was positive.
学校給食センターから排出された生ゴミを、実施例1で用いた装置に、毎日200kgずつ供給し処理したところ、メタンガス収率は0.72m3/kg−vsであった。また排水中のCODは20ppm、全窒素量は5ppm、全リン量は0.5ppm、懸濁性物質濃度は2ppmであった。またスラッジはほとんど認められず完全に分解していることが分った。
この例ではエネルギー収支は負であったが、処理後の排水の水質が良好なことから投入できる生ゴミ量は400kg/日まで増加しうることが分った。
When the raw garbage discharged from the school lunch center was supplied to the apparatus used in Example 1 at a rate of 200 kg daily, the methane gas yield was 0.72 m 3 / kg-vs. The COD in the wastewater was 20 ppm, the total nitrogen amount was 5 ppm, the total phosphorus amount was 0.5 ppm, and the suspended substance concentration was 2 ppm. It was also found that sludge was completely decomposed with almost no sludge.
In this example, although the energy balance was negative, it was found that the amount of raw garbage that can be input can be increased up to 400 kg / day due to the good quality of the wastewater after treatment.
実施例1で得た消化脱離液を、電圧300V、電流密度1mA/cm2、デューティ比20%で直流を通しながら先ず低周波パルス波(100Hz)で5分間、次いで高周波パルス波(100kHz)で5分間照射した。その際の全リン量(T−P)、全窒素量(T−N)、アンモニア態窒素量(NH4−N)、全有機炭素量(TOC)、BOD及びCODを表1に示す。 The digestion and detachment liquid obtained in Example 1 was first subjected to a low frequency pulse wave (100 Hz) for 5 minutes while passing a direct current at a voltage of 300 V, a current density of 1 mA / cm 2 and a duty ratio of 20%, and then a high frequency pulse wave (100 kHz). For 5 minutes. Table 1 shows the total phosphorus amount (TP), total nitrogen amount (TN), ammonia nitrogen amount (NH 4 -N), total organic carbon amount (TOC), BOD and COD.
この表から明らかなように、本発明方法によると、水中の有害成分をほぼ90%の除去率で除去することができるので、処理水をそのまま放流することができる。 As is apparent from this table, according to the method of the present invention, harmful components in water can be removed with a removal rate of approximately 90%, so that treated water can be discharged as it is.
本発明によると、下水汚泥や家畜糞尿のような有機物含有廃棄物から高濃度メタンを発生することができるので、燃料用ガスの製造に利用できる上に、排出される水は有害物質が完全に除かれたものとなり、そのまま放流しうるので、水処理法としても有用である。 According to the present invention, high-concentration methane can be generated from organic matter-containing waste such as sewage sludge and livestock excreta, so that it can be used for the production of fuel gas and the discharged water is completely free of harmful substances. Since it can be discharged as it is, it is also useful as a water treatment method.
1 酸発酵部
2 メタン発酵部
3 横型円筒状タンク
4 パイプ
5 ガス貯留室
6 隔壁
7 パイプ
8 担体
8´支持用部材
9 スラッジ回収用とい
10 消化脱離液室
11 孔
12 パイプ
13 ブロア
14 温水熱交換器
15 貯湯槽
16 熱電供給機構
17 ポンプ
18 連通部
19 メタン排出孔
20 外フランジ
21 内フランジ
DESCRIPTION OF
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003313323A JP4631043B2 (en) | 2003-09-04 | 2003-09-04 | Methane generation method and two-phase methane generator used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003313323A JP4631043B2 (en) | 2003-09-04 | 2003-09-04 | Methane generation method and two-phase methane generator used therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005081182A JP2005081182A (en) | 2005-03-31 |
JP4631043B2 true JP4631043B2 (en) | 2011-02-16 |
Family
ID=34414278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003313323A Expired - Lifetime JP4631043B2 (en) | 2003-09-04 | 2003-09-04 | Methane generation method and two-phase methane generator used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4631043B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4577719B2 (en) * | 2005-04-28 | 2010-11-10 | 荏原エンジニアリングサービス株式会社 | Methane fermentation method and apparatus using horizontal multi-stage methane fermenter |
JP2009045590A (en) * | 2007-08-22 | 2009-03-05 | Okayama Prefecture | Method and device for decoloring colored wastewater |
KR101087035B1 (en) * | 2009-02-20 | 2011-11-30 | 심순택 | a high temperature apparatus for disposing excretion by anaerobic mineralization |
CN101817575B (en) * | 2010-06-10 | 2012-09-19 | 华电水务工程有限公司 | Electric flocculation method and device for recovering and processing desulfurized wastewater |
JP5730120B2 (en) * | 2011-05-09 | 2015-06-03 | 日本エコ電力株式会社 | Methane fermentation system |
CN102944463B (en) * | 2012-11-22 | 2015-04-01 | 赵爱国 | Chemical oxygen demand (COD) digestion instrument and working method thereof |
JP7215822B2 (en) * | 2017-03-29 | 2023-01-31 | 住友重機械エンバイロメント株式会社 | Digestion equipment |
CN111689659B (en) * | 2020-07-13 | 2023-11-24 | 福建中盟环保有限公司 | Integrated vertical high-concentration sulfate wastewater treatment device |
CN112852599B (en) * | 2021-01-14 | 2022-10-18 | 北京工商大学 | Small-sized village and town organic waste treatment device and method based on microbial electrocatalysis |
CN115759841B (en) * | 2022-11-17 | 2023-08-18 | 北京林业大学 | Regional sewer methane calculation method based on statistics annual survey panel data |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147234U (en) * | 1981-03-09 | 1982-09-16 | ||
JPS57173898U (en) * | 1981-04-27 | 1982-11-02 | ||
JPS5895599A (en) * | 1981-11-30 | 1983-06-07 | Takuma Sogo Kenkyusho:Kk | Anaerobic digesting tank of transversely long type |
JPS6038093A (en) * | 1983-08-10 | 1985-02-27 | Meidensha Electric Mfg Co Ltd | Methane fermentation tank |
JPS60261599A (en) * | 1984-06-08 | 1985-12-24 | Matsushita Electric Ind Co Ltd | Methane fermentation vessel |
JPS62174700U (en) * | 1986-04-26 | 1987-11-06 | ||
JPH04277097A (en) * | 1991-03-06 | 1992-10-02 | Ebara Res Co Ltd | Method for treating organic waste water |
JPH06343994A (en) * | 1993-06-07 | 1994-12-20 | Meidensha Corp | Treatment process for digested sludge dehydrated filtrate |
JPH0711265A (en) * | 1993-06-24 | 1995-01-13 | Meidensha Corp | Method for utilizing energy of agricultural waste treating equipment |
JP2000033394A (en) * | 1998-07-15 | 2000-02-02 | Univ Tsukuba | Purifier using methane bacteria |
JP2000090953A (en) * | 1998-09-16 | 2000-03-31 | Sapporo Breweries Ltd | Fuel cell power generation facility |
JP2001000979A (en) * | 1999-04-19 | 2001-01-09 | Japan Science & Technology Corp | Septic apparatus |
JP2001017971A (en) * | 1999-05-06 | 2001-01-23 | Japan Science & Technology Corp | Oxidation-decomposition device for trace harmful substance |
JP2001229955A (en) * | 2000-02-14 | 2001-08-24 | Toto Ltd | Power generation system |
JP2001232388A (en) * | 2000-02-22 | 2001-08-28 | Sumitomo Heavy Ind Ltd | Method and apparatus for treating waste liquor |
JP2002153844A (en) * | 2000-11-16 | 2002-05-28 | Mitsubishi Heavy Ind Ltd | Method for treating organic waste and system therefor |
JP2002326071A (en) * | 2001-05-02 | 2002-11-12 | Chugoku Electric Power Co Inc:The | Method of and system for recycling circulating resource such as waste food |
JP2002538960A (en) * | 1999-03-15 | 2002-11-19 | バイオレックス株式会社 | Method and apparatus for treating wastewater containing organic substances |
JP2002336826A (en) * | 2001-05-17 | 2002-11-26 | Kawasaki Heavy Ind Ltd | Horizontal helical vane stirring type methane fermentation tank |
JP2003039052A (en) * | 2001-07-30 | 2003-02-12 | Toshiba Corp | Organic waste treatment system |
JP2003506199A (en) * | 1999-07-30 | 2003-02-18 | ダイシン設計株式会社 | Two-phase methane fermentation reactor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6262899U (en) * | 1985-10-09 | 1987-04-18 | ||
JPS62174699U (en) * | 1986-04-23 | 1987-11-06 | ||
JPS62282695A (en) * | 1986-06-02 | 1987-12-08 | Sanki Eng Co Ltd | Treatment of waste water |
-
2003
- 2003-09-04 JP JP2003313323A patent/JP4631043B2/en not_active Expired - Lifetime
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57147234U (en) * | 1981-03-09 | 1982-09-16 | ||
JPS57173898U (en) * | 1981-04-27 | 1982-11-02 | ||
JPS5895599A (en) * | 1981-11-30 | 1983-06-07 | Takuma Sogo Kenkyusho:Kk | Anaerobic digesting tank of transversely long type |
JPS6038093A (en) * | 1983-08-10 | 1985-02-27 | Meidensha Electric Mfg Co Ltd | Methane fermentation tank |
JPS60261599A (en) * | 1984-06-08 | 1985-12-24 | Matsushita Electric Ind Co Ltd | Methane fermentation vessel |
JPS62174700U (en) * | 1986-04-26 | 1987-11-06 | ||
JPH04277097A (en) * | 1991-03-06 | 1992-10-02 | Ebara Res Co Ltd | Method for treating organic waste water |
JPH06343994A (en) * | 1993-06-07 | 1994-12-20 | Meidensha Corp | Treatment process for digested sludge dehydrated filtrate |
JPH0711265A (en) * | 1993-06-24 | 1995-01-13 | Meidensha Corp | Method for utilizing energy of agricultural waste treating equipment |
JP2000033394A (en) * | 1998-07-15 | 2000-02-02 | Univ Tsukuba | Purifier using methane bacteria |
JP2000090953A (en) * | 1998-09-16 | 2000-03-31 | Sapporo Breweries Ltd | Fuel cell power generation facility |
JP2002538960A (en) * | 1999-03-15 | 2002-11-19 | バイオレックス株式会社 | Method and apparatus for treating wastewater containing organic substances |
JP2001000979A (en) * | 1999-04-19 | 2001-01-09 | Japan Science & Technology Corp | Septic apparatus |
JP2001017971A (en) * | 1999-05-06 | 2001-01-23 | Japan Science & Technology Corp | Oxidation-decomposition device for trace harmful substance |
JP2003506199A (en) * | 1999-07-30 | 2003-02-18 | ダイシン設計株式会社 | Two-phase methane fermentation reactor |
JP2001229955A (en) * | 2000-02-14 | 2001-08-24 | Toto Ltd | Power generation system |
JP2001232388A (en) * | 2000-02-22 | 2001-08-28 | Sumitomo Heavy Ind Ltd | Method and apparatus for treating waste liquor |
JP2002153844A (en) * | 2000-11-16 | 2002-05-28 | Mitsubishi Heavy Ind Ltd | Method for treating organic waste and system therefor |
JP2002326071A (en) * | 2001-05-02 | 2002-11-12 | Chugoku Electric Power Co Inc:The | Method of and system for recycling circulating resource such as waste food |
JP2002336826A (en) * | 2001-05-17 | 2002-11-26 | Kawasaki Heavy Ind Ltd | Horizontal helical vane stirring type methane fermentation tank |
JP2003039052A (en) * | 2001-07-30 | 2003-02-12 | Toshiba Corp | Organic waste treatment system |
Also Published As
Publication number | Publication date |
---|---|
JP2005081182A (en) | 2005-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aryal et al. | Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading | |
CN102674529A (en) | Method and special device for treating organic wastewater by combination of microbial fuel cell and microalgae culture | |
CN105967455A (en) | Refuse leachate self-powered denitration apparatus and method | |
JP4631043B2 (en) | Methane generation method and two-phase methane generator used therefor | |
CN105384302A (en) | Aquaculture wastewater processing system and method thereof | |
CN110790360A (en) | Resource, ammonia recovery and synchronous carbon dioxide absorption system for high ammonia nitrogen organic wastewater and regulation and control method thereof | |
CN116583588A (en) | Method for treating a gas comprising carbon dioxide | |
KR101297821B1 (en) | A system and the method for culturing micro algae using anaerobic digester | |
CN203346383U (en) | Device for preparing hydrogen by utilizing organic waste | |
CN104860397A (en) | Electrochemical-biological fluidized bed reactor and wastewater treatment method | |
JP4598976B2 (en) | Biomass power generation system and biomass power generation method using the same | |
KR20230033494A (en) | Biogas production system | |
CN210559658U (en) | Fuel cell device | |
CN217964069U (en) | Treatment system for reducing carbon emission in kitchen waste treatment | |
CN106277599A (en) | A kind of method utilizing microalgae to process sewage thus obtaining energy and fertilizer | |
CN105819626A (en) | Combined customized sewage disposal system | |
NL2029927B1 (en) | A process to treat a carbon dioxide comprising gas | |
CN212532677U (en) | Landfill leachate treatment system | |
CN205170492U (en) | Domestic sewage purification system of unpowered aeration | |
JP2002307065A (en) | Domestic wastewater reutilization equipment | |
CN205429079U (en) | Microorganism electrolytic bath device | |
CN103337653A (en) | Device for synthesizing biofuel and use thereof | |
CN204737787U (en) | Electrochemistry - biological fluidized bed reactor | |
CN211635954U (en) | Effluent water sump adds lid tail gas purification deodorizing device | |
CN203922925U (en) | Microorganism electrolysis cell and duckweed are cultivated the device in conjunction with recycling treatment organic waste water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090430 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090608 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4631043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |