JP4629527B2 - Magnetic circuit device and synchrotron device using the same - Google Patents

Magnetic circuit device and synchrotron device using the same Download PDF

Info

Publication number
JP4629527B2
JP4629527B2 JP2005218617A JP2005218617A JP4629527B2 JP 4629527 B2 JP4629527 B2 JP 4629527B2 JP 2005218617 A JP2005218617 A JP 2005218617A JP 2005218617 A JP2005218617 A JP 2005218617A JP 4629527 B2 JP4629527 B2 JP 4629527B2
Authority
JP
Japan
Prior art keywords
magnetic field
electron beam
circuit device
magnetic circuit
synchrotron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005218617A
Other languages
Japanese (ja)
Other versions
JP2007035495A (en
Inventor
廣成 山田
典生 豊杉
教之 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOTON PRODUCTION LABORATORY, LTD.
Tokin Corp
Original Assignee
PHOTON PRODUCTION LABORATORY, LTD.
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOTON PRODUCTION LABORATORY, LTD., NEC Tokin Corp filed Critical PHOTON PRODUCTION LABORATORY, LTD.
Priority to JP2005218617A priority Critical patent/JP4629527B2/en
Publication of JP2007035495A publication Critical patent/JP2007035495A/en
Application granted granted Critical
Publication of JP4629527B2 publication Critical patent/JP4629527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

本発明は、主として高エネルギー電子ビームを蓄積する小型シンクロトロン装置内に配置されると共に、電子ビームの蓄積効率を向上させてX線変換効率を上げるために電子ビームの送路における不必要な磁場を除去する機能を有する磁気回路装置及びそれを用いたシンクロトロン装置に関する。   The present invention is mainly disposed in a small synchrotron apparatus that accumulates a high-energy electron beam, and an unnecessary magnetic field in an electron beam transmission path in order to improve the electron beam accumulation efficiency and increase the X-ray conversion efficiency. The present invention relates to a magnetic circuit device having a function of removing the light and a synchrotron device using the same.

従来、加速器からの電子ビームを蓄積して周回させるためのシンクロトロン装置としては、一般に多数のの偏向電磁石を円環状に並べて構成した大型タイプのものが知られている。この大型タイプのシンクロトロン装置の場合、広域な設置場所を確保する必要があるもので、各電磁石からの漏れ磁場はあるものの、その領域は各電磁石の設置箇所周辺近傍に限られているため、漏れ磁場を補正するための電磁石や、或いは漏れ磁場を除去するための磁気回路装置を容易に設置できる(そのためのスペースも十分確保できる)ものであり、その他の点についても干渉等の問題を考慮する必要がないものとなっている。   2. Description of the Related Art Conventionally, as a synchrotron device for accumulating and circulating an electron beam from an accelerator, a large-sized type in which a large number of deflecting electromagnets are generally arranged in an annular shape is known. In the case of this large type synchrotron device, it is necessary to secure a wide installation location, and although there is a leakage magnetic field from each electromagnet, the area is limited to the vicinity of the installation location of each electromagnet, An electromagnet for correcting the leakage magnetic field, or a magnetic circuit device for removing the leakage magnetic field can be easily installed (a sufficient space can be secured for this). There is no need to do it.

ところが、この大型タイプのシンクロトロン装置の場合、複数台の偏向四極電磁石を円環状に並ベる必要がある構成上、設置には巨大な空間を占有してしまうばかりでなく、巨大な電力を必要とし、しかも価格も高くなってしまうという難点がある。   However, in the case of this large type synchrotron device, it is necessary to arrange a plurality of deflecting quadrupole magnets in an annular shape. There is a drawback that it is necessary and the price becomes high.

そこで、最近では小型の電子リングによる高輝度X線を工場サイズで設置できることが望まれているという事情があることに加え、共鳴入射法という新しい電子ビーム入射機構を導入することにより、卓上サイズにまでコンパクト化された単体の二極電磁石を用いた小型シンクロトロン装置も開発されている。   Therefore, in recent years, in addition to the fact that it is desired that high-intensity X-rays with a small electron ring can be installed at the factory size, by introducing a new electron beam injection mechanism called resonance injection method, A compact synchrotron device using a single dipole electromagnet that has been compacted to a minimum has been developed.

図3は、従来の小型シンクロトロン装置の要部構成(研究開発済みであるが、特許文献に係る発明でないもの)を示したもので、同図(a)は一部断面にした側面図に関するもの,同図(b)は上面方向からの一部透視した平面図に関するものである。但し、図3(a),(b)の対比から明らかであるように、ここでは概略構造を簡略的に示したことにより縮尺を含む細部構造が一致しない部分も含むものとする他、図3(b)に示される放射状の線は小型シンクロトロン装置内を真空に保つために接続される各種配管の接続開口部分を示すものである。   FIG. 3 shows a configuration of a main part of a conventional small synchrotron device (although it has been researched and developed but is not an invention related to a patent document). FIG. 3 (a) relates to a side view partially in section. FIG. 2B is a plan view partially seen from the top surface direction. However, as is apparent from the comparison between FIGS. 3A and 3B, the schematic structure is simply shown here to include a portion where the detailed structure including the scale does not match, and FIG. The radial lines shown in () indicate connection openings of various pipes connected to keep the inside of the small synchrotron device in a vacuum.

この小型シンクロトロン装置の要部は、ヨーク1内における上側にコイル2を配置し、その下側のポールピース3内に図示されないコイルを収納して単体の二極電磁石を成す構造のもので、内部には電子ビームを蓄積するための安定軌道領域の条件を満たす統制磁場分布領域Eが形成されるが、内部の電子ビームの入出射路付近(ステアリングコイル4を備えた近傍で矢印で示す入射ビームBINが入射される内部の領域、並びに矢印で示す出射ビームBOUTを出射する内部の領域)には統制磁場によるフリンジング磁場Bが発生する。 The main part of this small synchrotron device has a structure in which the coil 2 is arranged on the upper side in the yoke 1 and a coil (not shown) is housed in the pole piece 3 on the lower side to form a single bipolar electromagnet. A control magnetic field distribution region E B that satisfies the conditions of the stable orbital region for accumulating the electron beam is formed inside, but it is indicated by an arrow in the vicinity of the entrance / exit path of the internal electron beam (in the vicinity including the steering coil 4). A fringing magnetic field BF due to a control magnetic field is generated in an internal region where the incident beam B IN is incident and an internal region where the outgoing beam B OUT indicated by an arrow is emitted.

即ち、この小型シンクロトロン装置の場合、前段階として、図示されないマイクロトロン等の加速器において、進行する荷電粒子に垂直方向から磁場が印加されると、荷電粒子の進行方向及びそれに対して垂直な磁場印加方向の双方と直交する方向に力を受けるため、或る一定方向の磁場が印加される領域では電子ビームが一定の半径で円周上を回転し、この回転動を利用して電子ビームが加速出射されるようになっている。   That is, in the case of this small synchrotron device, when a magnetic field is applied from the vertical direction to the traveling charged particles in an accelerator (not shown) such as a microtron as a previous step, the traveling direction of the charged particles and the magnetic field perpendicular to the traveling direction. Since the force is applied in a direction perpendicular to both of the application directions, the electron beam rotates on the circumference with a constant radius in a region where a magnetic field in a certain direction is applied, and the electron beam is rotated using this rotational motion. Accelerated emission is performed.

そこで、加速出射された電子ビームは、小型シンクロトロン装置における入射部から入射ビームBINとして内部に入射された後、磁場の影響により矢印で示されるように電子ビームを蓄積するための安定周回軌道を満たす統制磁場分布領域Eに引き寄せられるように若干進路変更しながら統制磁場分布領域Eへ到達し、この統制磁場分布領域Eで数千回〜数万回の範囲で回転動しながらビーム量を蓄え、所定のビーム量を蓄えたら出射部から出射ビームBOUTとして出射される。尚、ここでの電子ビームの蓄積に際しては、該当する安定軌道領域に精度高く統制磁場分布領域Eが形成されている必要がある。 Therefore, an accelerated electron beam is incident on the inside of the small synchrotron device as an incident beam BIN, and then, as shown by an arrow due to the influence of a magnetic field, a stable orbit for accumulating the electron beam. reaches the control magnetic field distribution area E B controls the magnetic field distribution regions with slightly diverted so as to be attracted to E B satisfying, while rotational movement in the range of thousands to several tens of thousands times in the control field distribution region E B When the beam amount is stored and a predetermined beam amount is stored, the beam is emitted from the emission unit as an outgoing beam BOUT . Here, when the accumulation of the electron beam, it is necessary to appropriate stable orbit region accurately control the magnetic field distribution area E B is formed.

要するに、係る小型シンクロトロン装置の場合、実用レベルで高輝度X線を発生させるため、シンクロトロン原理により安定周回軌道上に電子ビームを周回させて蓄積し、ビーム強度を増強するもので、安定周回軌道を確保するためにシンクロトロン装置の径方向における限定された領域で統制磁場分布領域Eを規定している。 In short, in the case of such a small synchrotron device, in order to generate high-intensity X-rays at a practical level, the electron beam circulates and accumulates on a stable orbit according to the synchrotron principle to enhance the beam intensity. It defines a controlled magnetic field distribution area E B in a region defined in the radial direction of the synchrotron device to ensure the track.

ところが、この小型シンクロトロン装置の場合、電子ビームが内部に入出射する入出射路において、単体の二極電磁石(統制磁場)によるフリンジング磁場Bの不必要な磁場の影響を受けることを回避できず、これの及ぼす影響が大きくて電子ビームを発散させたり、或いは消滅させる原因となっているため、その対策として磁場補正するための手段を備えることが必要となっている。換言すれば、係る小型シンクロトロン装置では、単体の二極電磁石内にマイクロトロン等の加速器により生成された電子ビームが入射する際、安定周回軌道に導かれるまでに二極電磁石の統制磁場により内部に生じる強いフリンジング磁場B中を通過することにより、電子ビームの収束・安定に悪影響を及ぼすため、フリンジング磁場Bを除去するための永久磁石等を用いた磁場補正手段により磁場補正を行う必要がある。 However, in the case of this small synchrotron device, in the entrance / exit path where the electron beam enters and exits, it is avoided that it is affected by an unnecessary magnetic field of the fringing magnetic field BF by a single bipolar electromagnet (control magnetic field). However, the influence of this is so great that it causes the electron beam to diverge or extinguish. Therefore, it is necessary to provide means for correcting the magnetic field as a countermeasure. In other words, in such a small synchrotron device, when an electron beam generated by an accelerator such as a microtron is incident on a single dipole electromagnet, the internal magnetic field is controlled by the control magnetic field of the dipole electromagnet before being guided to a stable orbit. The magnetic field correction means using a permanent magnet or the like for removing the fringing magnetic field BF is used to adversely affect the convergence and stability of the electron beam by passing through the strong fringing magnetic field BF generated in the magnetic field. There is a need to do.

このような磁場補正手段としては、フリンジング磁場Bが影響を及ぼす電子ビームの入出射路付近における不要な磁場の除去を目的として、簡単な構造の対向する一対の永久磁石を内部(二極電磁石内)における安定周回軌道の全周に及ぶように設置した上、これらの各永久磁石のフリンジング磁場Bの影響により発生する逆磁場が安定周回軌道を満たす統制磁場分布領域Eに影響を及ぼすことを回避するための別な一対の対向する永久磁石を逆磁場除去用に別途設けて構成される磁気回路装置を用いている。因みに、この入出射路付近においても、安定周回軌道のための統制磁場分布領域Eの規定は厳格に適用されるもので、磁気回路装置として設置する永久磁石が発生する漏れ磁場によって、小型シンクロトロン装置における二極電磁石による統制磁場分布領域Eを乱すことはX線生成に悪影響を与えるために許されないものとなっている。 As such a magnetic field correction means, a pair of opposed permanent magnets having a simple structure is provided inside (bipolar) for the purpose of removing an unnecessary magnetic field in the vicinity of the entrance / exit path of the electron beam influenced by the fringing magnetic field BF. In the electromagnet), it is installed so as to cover the entire circumference of the stable orbit, and the reverse magnetic field generated by the influence of the fringing magnetic field BF of each of these permanent magnets affects the control magnetic field distribution region E B satisfying the stable orbit. In other words, a magnetic circuit device is used in which another pair of opposing permanent magnets are provided separately for removing the reverse magnetic field. Incidentally, also in this incident and exit paths around, the provision of control magnetic field distribution area E B for stable orbit intended to be strictly applied, the leakage magnetic field by the permanent magnet to be installed as a magnetic circuit device generates a small synchro disturbing the control magnetic field distribution area E B by two quadrupole magnets in Tron device has a those that are not to adversely affect the X-ray generation.

上述した図3(a),(b)に示す磁場補正手段としての2組の対向する総計4個の永久磁石による磁気回路装置を備えた小型シンクロトロン装置の場合、狭い空間での使用条件下であることにより対向する単体の永久磁石の2枚でも非常に強い磁場を発生できて非常に有効であるが、その反面として、対向設置させる空間の磁極間隔が広いと磁場強度が得られなくなってしまうという難点がある他、局所的にフリンジング磁場による逆磁場も大きくなって他の領域に新たに発生する逆磁場を打ち消すための別の永久磁石を設置する必要があって、統制磁場分布領域を乱すことなく各永久磁石を設置するための作業が容易でないという問題があるばかりでなく、構造上において電子ビームのエネルギーが高くなって補正を要する磁場強度も高くなった場合に磁場強度の発生効率を改善するための対策を施し難いという取り扱い上の不便さを回避できず、しかも寸法空間の制約があるために各永久磁石を全周に設置する構造は必ずしも適用し難く、結果として統制磁場分布領域を乱すことなく容易にフリンジング磁場を除去して電子ビームを高精度で効率良く蓄積することが困難な構造であるという問題がある。   In the case of the small synchrotron apparatus provided with the magnetic circuit device by two sets of a total of four permanent magnets as the magnetic field correction means shown in FIGS. 3 (a) and 3 (b) described above, the use conditions in a narrow space As a result, a very strong magnetic field can be generated with two single permanent magnets facing each other, which is very effective. On the other hand, if the spacing between the magnetic poles in the space to be opposed is wide, the magnetic field strength cannot be obtained. In addition, there is a problem that the reverse magnetic field due to the fringing magnetic field also increases locally, and it is necessary to install another permanent magnet to cancel the newly generated reverse magnetic field in the other region, and the control magnetic field distribution region In addition to the problem that the work for installing each permanent magnet without disturbing the magnetic field is not easy, the energy of the electron beam is high on the structure, and the magnetic field intensity that needs to be corrected is also high. In this case, it is impossible to avoid the inconvenience in handling that it is difficult to take measures to improve the generation efficiency of the magnetic field strength. There is a problem that it is difficult to apply, and as a result, it is difficult to remove the fringing magnetic field easily without disturbing the control magnetic field distribution region and to accumulate the electron beam with high accuracy and efficiency.

本発明は、このような問題点を解決すべくなされたもので、その技術的課題は、限られた空間でも統制磁場分布領域を乱すことなく容易にフリンジング磁場を除去して電子ビームを高精度で効率良く蓄積できる構造の磁気回路装置及びそれを用いた小型シンクロトロン装置を提供することにある。   The present invention has been made to solve such problems, and its technical problem is to easily remove the fringing magnetic field without disturbing the control magnetic field distribution region even in a limited space, thereby increasing the electron beam. An object of the present invention is to provide a magnetic circuit device having a structure capable of accumulating with accuracy and efficiency and a small synchrotron device using the magnetic circuit device.

本発明によれば、加速器からの電子ビームを蓄積して微小ターゲットへ衝突させたときの制動放射により高輝度X線を発生する小型シンクロトロン装置内に配置される磁気回路装置において、小型シンクロトロン装置内における電子ビームを蓄積するための安定周回軌道を満たす統制磁場分布領域近傍に配置されると共に、該統制磁場により該電子ビームの入出射路付近で発生するフリンジング磁場の影響を打ち消すための磁場を発生する磁場発生器を有し、前記磁場発生器は、前記統制磁場分布領域の磁束線に沿った磁化方向を持つ複数の磁石ブロックを前記電子ビームの入出射路近傍に延在するように配置してなり、該複数の磁石ブロックにあっての電子ビームの入射側には前記電子ビームを入射させる光路となる隙間、電子ビームの出射側には前記電子ビームを出射させる光路となる隙間がそれぞれ設けられて成ることを特徴とする磁気回路装置が得られる。 According to the present invention, in a magnetic circuit device disposed in a small synchrotron device that generates high-intensity X-rays by bremsstrahlung when an electron beam from an accelerator is accumulated and collides with a minute target, the small synchrotron It is arranged in the vicinity of a controlled magnetic field distribution region satisfying a stable orbit for accumulating an electron beam in the apparatus, and for canceling the influence of a fringing magnetic field generated near the entrance / exit path of the electron beam by the controlled magnetic field have a magnetic field generator for generating a magnetic field, the magnetic field generator, to extend a plurality of magnet blocks with the magnetization direction along the magnetic flux lines of the control magnetic field distribution area incident and exit path near the electron beam In the plurality of magnet blocks, on the incident side of the electron beam, a gap serving as an optical path for the incidence of the electron beam, the output of the electron beam The side magnetic circuit device is obtained, wherein a gap serving for the optical path for emitting the electron beam is made provided.

加えて、本発明によれば、上記磁気回路装置において、複数の磁石ブロックは、異なる種類の磁化方向を持つ所定数の永久磁石をそれぞれ前記安定周回軌道側寄り部分が開口され、且つ各永久磁石からの漏れ磁場の発生を抑制できるように組み合わせて成る磁気回路装置が得られる。 In addition, according to the present invention, in the above magnetic circuit device, the plurality of magnet blocks each include a predetermined number of permanent magnets having different types of magnetization directions, each of which has an opening portion near the stable orbit, and each permanent magnet. Thus, a magnetic circuit device can be obtained which is combined so as to suppress the generation of a leakage magnetic field.

一方、本発明によれば、上記何れか一つの磁気回路装置を備えたシンクロトロン装置が得られる。   On the other hand, according to the present invention, a synchrotron device including any one of the above magnetic circuit devices can be obtained.

本発明の磁気回路装置の場合、小型シンクロトロン装置内における電子ビームを蓄積するための安定周回軌道を満たす統制磁場分布領域近傍に磁場発生器を配置し、統制磁場により電子ビームの入出射路付近で発生するフリンジング磁場の影響を打ち消すための磁場を発生する構造としているため、小型シンクロトロン装置内に入射された電子ビームが安定周回軌道に移る直前までのフリンジング磁場による影響、並びに安定周回軌道から電子ビームが出射部へ出射される出射時のフリンジング磁場による影響を精度良く除去することが可能となり、限られた空間でも統制磁場分布領域を乱すことなく容易にフリンジング磁場を除去して電子ビームを高精度で効率良く蓄積でき、しかも安定して高エネルギーの電子ビームを出射することが可能でX線変換効率を向上させられる構造となり、結果として係る磁気回路装置を備えた小型シンクロトロン装置の基本性能を飛躍的に向上させられるようになる。   In the case of the magnetic circuit device of the present invention, a magnetic field generator is arranged in the vicinity of a controlled magnetic field distribution region that satisfies a stable orbit for accumulating an electron beam in a small synchrotron device, and the vicinity of the entrance / exit path of the electron beam by the controlled magnetic field. The structure that generates a magnetic field to counteract the influence of the fringing magnetic field generated in the case of the electron beam, the influence of the fringing magnetic field immediately before the electron beam incident in the small synchrotron device moves to the stable orbit, and the stable orbit It is possible to accurately remove the influence of the fringing magnetic field at the time of emission when the electron beam is emitted from the orbit to the emission part, and easily remove the fringing magnetic field without disturbing the control magnetic field distribution region even in a limited space. Electron beams can be accumulated with high accuracy and efficiency, and high-energy electron beams can be emitted stably. In it a structure that is to improve the X-ray conversion efficiency, the basic performance of the compact synchrotron apparatus provided with a magnetic circuit device according resulting so be dramatically increases.

本発明の最良の形態に係る磁気回路装置は、加速器からの電子ビームを蓄積して微小ターゲットへ衝突させたときの制動放射により高輝度X線を発生する小型シンクロトロン装置内に配置されるもので、小型シンクロトロン装置内における電子ビームを蓄積するための安定周回軌道を満たす統制磁場分布領域近傍に配置されると共に、統制磁場により電子ビームの入出射路付近で発生するフリンジング磁場の影響を打ち消すための磁場を発生する磁場発生器を有することを基本とするものである。   A magnetic circuit device according to the best mode of the present invention is disposed in a small synchrotron device that generates high-intensity X-rays by bremsstrahlung when an electron beam from an accelerator is accumulated and collides with a minute target. In the small synchrotron device, it is placed in the vicinity of the controlled magnetic field distribution region that satisfies the stable orbit for storing the electron beam, and the influence of the fringing magnetic field generated near the entrance / exit path of the electron beam by the controlled magnetic field is It is based on having a magnetic field generator that generates a magnetic field for canceling.

但し、この磁場発生器は、統制磁場分布領域に影響を与えずに新たな逆磁場を発生することなく、且つ逆磁場を補正するための新たな磁気回路を要しない1組の永久磁石から成るものか、或いは統制磁場分布領域の磁束線に沿った磁化方向を持つ複数の磁石ブロックを安定周回軌道に沿って電子ビームの入出射路近傍に延在するように配列した円環状結合構造から成ると共に、各磁石ブロックにあっての所定のものには電子ビームを入出射させる光路となる隙間が設けられて成るものである。更に、後者の磁場発生器の構造の場合、各磁石ブロックは、異なる種類の磁化方向を持つ所定数の永久磁石をそれぞれ安定周回軌道側寄り部分が開口され、且つ漏れ磁場の発生を抑制できるように組み合わせて成るものとすることが好ましい。   However, this magnetic field generator is composed of a set of permanent magnets that do not affect the control magnetic field distribution region, do not generate a new reverse magnetic field, and do not require a new magnetic circuit for correcting the reverse magnetic field. Or an annular coupling structure in which a plurality of magnet blocks having magnetization directions along the magnetic flux lines in the controlled magnetic field distribution region are arranged so as to extend in the vicinity of the entrance / exit path of the electron beam along a stable orbit. At the same time, a predetermined one in each magnet block is provided with a gap serving as an optical path for entering and exiting the electron beam. Further, in the case of the structure of the latter magnetic field generator, each magnet block has a predetermined number of permanent magnets having different types of magnetization directions, each of which is opened at a portion close to the stable orbit, so that generation of a leakage magnetic field can be suppressed. It is preferable that they are combined.

特に後者の構造の磁気回路装置では、磁場強度を上げるための効率高い磁気回路構成として、磁束線に沿った磁化方向を持つ複数の磁石ブロックを円環状に結合配列し、且つ各磁石ブロックがそれぞれ異なる種類の磁化方向を持つ所定数の永久磁石を組み合わせて成る円環状結合構造とすることにより、磁場強度を大きくすることができ、従来の対向させた永久磁石による磁気回路装置を用いた場合と較ベ、同じ磁場強度条件下では磁石の寸法をより小さくでき、使用する磁石の全体量を抑えることが可能となる。又、係る磁気回路装置は、小型シンクロトロン装置へ設置したときに漏れ磁場が単体の二極電磁石による統制磁場分布領域に対して影響を与えないもので、各磁石ブロックにおける各永久磁石の磁束線に沿った磁化方向の向きを異なる種類に設定した上で結合部分の寸法や結合の角度を調整して漏れ磁場の分布の調整を行うことにより、漏れ磁場の発生を極力小さく抑えることができるため、漏れ磁場を除去するための磁場補正手段(新たな永久磁石等による磁気回路装置)を別途に設置する必要がない。更に、係る磁気回路装置は、各磁石ブロックの所定のもの(磁石ブロック単体を示す)に電子ビームの入出射路となる隙間を設け、入出射される電子ビームを通す構造としているので、小型シンクロトロン装置内にあっての統制磁場分布領域の近傍であって、入出射路近傍の限られた設置条件下でも、電子ビームの入出射時にフリンジング磁場の影響を極力受けることがないように工夫している。   Particularly in the magnetic circuit device having the latter structure, as a highly efficient magnetic circuit configuration for increasing the magnetic field strength, a plurality of magnet blocks having magnetization directions along the magnetic flux lines are connected in an annular shape, and each magnet block is respectively The magnetic field strength can be increased by using an annular coupling structure in which a predetermined number of permanent magnets having different types of magnetization directions are combined, and when a conventional magnetic circuit device using opposed permanent magnets is used. In comparison, under the same magnetic field strength conditions, the size of the magnet can be made smaller, and the total amount of magnets used can be suppressed. In addition, the magnetic circuit device is such that when installed in a small synchrotron device, the leakage magnetic field does not affect the control magnetic field distribution region by a single bipolar electromagnet, and the magnetic flux line of each permanent magnet in each magnet block. By adjusting the size of the coupling part and the angle of coupling and adjusting the distribution of the leakage magnetic field after setting the direction of the magnetization direction along the axis to be different, the generation of the leakage magnetic field can be minimized There is no need to separately install magnetic field correction means (magnetic circuit device using a new permanent magnet or the like) for removing the leakage magnetic field. Furthermore, the magnetic circuit device has a structure in which a predetermined gap of each magnet block (indicating a magnet block alone) is provided with a gap serving as an entrance / exit path for the electron beam so that the incident / exited electron beam can pass therethrough. Even in the vicinity of the controlled magnetic field distribution area in the TRON device and in the limited installation conditions near the entrance / exit path, we devised to avoid the influence of the fringing magnetic field as much as possible when entering and exiting the electron beam. is doing.

何れにしても、上述したタイプの磁場発生器を有する磁気回路装置は、小型シンクロトロン装置に適用されることにより、その基本性能を飛躍的に向上させることができる。   In any case, a magnetic circuit device having a magnetic field generator of the type described above can drastically improve its basic performance by being applied to a small synchrotron device.

図1は、本発明の実施例1に係る磁気回路装置を備えた小型シンクロトロン装置の要部構成を示したもので、同図(a)は一部断面にした側面図に関するもの,同図(b)は上面方向からの一部透視した平面図に関するものである。但し、図1(a),(b)の対比で明らかであるように、ここでも概略構造を簡略的に示したことにより縮尺を含む細部構造が一致しない部分も含むものとする他、図1(b)に示される放射状の線は小型シンクロトロン装置内を真空に保つために接続される各種配管の接続開口部分を示すものとする。   FIG. 1 shows the configuration of the main part of a small synchrotron device provided with a magnetic circuit device according to Embodiment 1 of the present invention. FIG. 1 (a) relates to a side view partially in section. (B) relates to a partially transparent plan view from the upper surface direction. However, as is clear from the comparison between FIGS. 1A and 1B, the schematic structure is simply shown here to include a portion where the detailed structure including the scale does not match, and FIG. The radial lines shown in (2) indicate the connection opening portions of various pipes connected to keep the inside of the small synchrotron device in a vacuum.

図1(a)を参照すれば、この小型シンクロトロン装置の要部についても、ヨーク1内における上側にコイル2を配置し、その下側のポールピース3内に図示されないコイルを収納して単体の二極電磁石を成す構造のもので、内部には電子ビームを蓄積するための安定軌道領域の条件を満たす統制磁場分布領域Eが形成されるが、ここでは別途に図1(b)に示されるように、統制磁場分布領域Eの近傍に統制磁場により電子ビームの入出射路で発生するフリンジング磁場の影響を打ち消すための磁気回路装置を成すものであって、統制磁場分布領域Eの磁束線に沿った磁化方向を持つ複数(ここでは7個の)の磁石ブロック6〜12を安定周回軌道に沿って電子ビームに対する入出射路近傍に延在するように円環状に105度の範囲に及んで結合配列した円環状結合構造から成る磁場発生器(フリンジング磁場の影響を打ち消すための磁場を発生)を配置しており、磁石ブロック6,11には電子ビームを入出射させる光路となる隙間を設けている。但し、ここでの磁石ブロック6〜12は、後述するように異なる種類の磁化方向を持つ所定数の磁石をそれぞれ安定周回軌道側寄り部分が開口され、且つ漏れ磁場の発生を抑制できるように組み合わせて成っている。 Referring to FIG. 1 (a), the main part of this small synchrotron device is also arranged with a coil 2 on the upper side in the yoke 1 and a coil (not shown) in the pole piece 3 on the lower side. The control magnetic field distribution region E B that satisfies the conditions of the stable orbital region for accumulating the electron beam is formed inside, but here separately shown in FIG. as shown, there is forming a magnetic circuit device for canceling the effects of fringing magnetic field generated by the control magnetic field in the vicinity in incident and exit path of the electron beam control magnetic field distribution area E B, controls the magnetic field distribution region E A plurality (seven in this case) of magnet blocks 6 to 12 having a magnetization direction along the magnetic flux line B are circularly 105 degrees so as to extend in the vicinity of the entrance / exit path for the electron beam along a stable orbit. Range of A magnetic field generator (generating a magnetic field for canceling the influence of the fringing magnetic field) having an annular coupling structure that is coupled and arranged across the magnet blocks 6 and 11 is disposed, and an optical path for entering and exiting the electron beam is provided in the magnet blocks 6 and 11. A gap is provided. However, the magnet blocks 6 to 12 are combined in such a manner that a predetermined number of magnets having different types of magnetization directions are opened on the side of the stable orbit side and the generation of a leakage magnetic field can be suppressed, as will be described later. It is made up of.

即ち、ここでの小型シンクロトロン装置においても、内部の電子ビームの入出射路付近(ステアリングコイル4を備えた近傍で矢印で示す入射ビームBINが入射される内部の領域、並びに矢印で示す出射ビームBOUTを出射する内部の領域)には統制磁場により略図するフリンジング磁場が発生するが、ここではフリンジング磁場の影響を打ち消すための磁場を発生する磁場発生器(磁気回路装置を成すもの)として、7個の磁石ブロック6〜12を内部の統制磁場分布領域Eの近傍で電子ビームに対する入出射路近傍に延在するように配置して入出射路の広い範囲で不必要な磁場を効率的にして緻密に除去する構造とし、且つ磁石ブロック6,11の隙間から電子ビームを入出射させて磁石端部に発生する逆磁場の影響を少なくする構造としているため、入射ビームBINが入射部から磁石ブロック6の隙間の入射光路を通って統制磁場分布領域Eに引き寄せられるように若干進路変更しながら統制磁場分布領域Eへ到達し、この統制磁場分布領域Eで数千回〜数万回の範囲で回転動しながらビーム量を蓄え、所定のビーム量を蓄えたら磁石ブロック11の隙間の出射光路を通って出射部から出射ビームBOUTとして出射される際、小型シンクロトロン装置内に入射された電子ビームが安定周回軌道に移る直前までのフリンジング磁場による影響、並びに安定周回軌道から電子ビームが出射部へ出射される出射時のフリンジング磁場による影響を精度良く除去することができる。 That is, even in a small synchrotron apparatus wherein, inside the area where the incident beam B IN indicated by an arrow in the vicinity having a near incident and exit path inside the electron beam (steering coil 4 is incident, and emission indicated by the arrows A fringing magnetic field, which is schematically illustrated by a control magnetic field, is generated in an inner region where the beam B OUT is emitted. Here, a magnetic field generator (which forms a magnetic circuit device) that generates a magnetic field for canceling the influence of the fringing magnetic field is generated. as), seven of the magnet blocks 6-12 in a wide range of the vicinity of the internal control magnetic field distribution area E B arranged so as to extend in the input and output path proximal with respect to the electron beam incidence and emission path unnecessary magnetic field In order to reduce the influence of the reverse magnetic field generated at the end of the magnet by allowing the electron beam to enter and exit from the gap between the magnet blocks 6 and 11. Due to the structure, reaches the incident beam B IN is controlled magnetic field distribution area slightly while diverted to through the incident optical path is drawn to control the magnetic field distribution region E B of the gap E B magnet block 6 from the incident portion, the control field distribution region E B stored beam amount while rotating motion in a range of thousands to tens of thousands times, emitted from the emission unit through an exit optical path of the gap of the magnet blocks 11 After accumulated a predetermined beam weight When emitted as the beam B OUT , the influence of the fringing magnetic field immediately before the electron beam incident in the small synchrotron device moves to the stable orbit, and the emission from which the electron beam is emitted from the stable orbit to the emission unit The influence of the fringing magnetic field at the time can be accurately removed.

従って、この小型シンクロトロン装置の場合、限られた空間でも統制磁場分布領域Eを乱すことなく容易にフリンジング磁場を除去して電子ビームを高精度で効率良く蓄積でき、しかも安定して高エネルギーの電子ビームを出射することが可能でX線変換効率を向上させられる構造となる。 Therefore, in this case the small synchrotron devices, can be easily removed fringing magnetic field without disturbing the limited control field distribution region in space E B efficiently accumulate electron beam with high precision, and stably high in An energy electron beam can be emitted and the X-ray conversion efficiency can be improved.

図2は、この磁気回路装置の細部構造を示したもので、同図(a)は図1(b)中のA−A′線方向における磁石ブロック10の側面断面図に関するもの,同図(b)は同図(a)の一部分である所定数の永久磁石101〜105の組み合わせパターンを示した拡大図に関するものである。   FIG. 2 shows a detailed structure of the magnetic circuit device. FIG. 2A is a side sectional view of the magnet block 10 in the direction of the line AA ′ in FIG. b) relates to an enlarged view showing a combination pattern of a predetermined number of permanent magnets 101 to 105 which is a part of FIG.

図2(a)を参照すれば、磁場発生器の一部を示す磁石ブロック10は、ケース201内に固定され、枠体201を取り付け固定するためのハウジング202aに対し、ボルト203を用いてハウジング202bを取り付け固定できるようになっており、ハウジング202a,202bには予め所定数(ここでは5個)の永久磁石101〜105が組み込まれて合体結合される構造となっている。但し、ここでのケース201,枠体201,及びハウジング202aは、安定周回軌道側寄り部分が開口されており、組み合わされた永久磁石101〜105の形状もそれに対応するようになっており、永久磁石101〜105からの漏れ磁場の発生を抑制できるように工夫されている。   Referring to FIG. 2 (a), the magnet block 10 showing a part of the magnetic field generator is fixed in the case 201, and the housing 202a for attaching and fixing the frame body 201 is a housing using a bolt 203. 202b can be attached and fixed. The housings 202a and 202b have a structure in which a predetermined number (here, five) of permanent magnets 101 to 105 are incorporated and joined together. However, the case 201, the frame body 201, and the housing 202a here are opened at the portion near the stable orbit, and the shapes of the combined permanent magnets 101 to 105 correspond to the permanent magnet. It is devised so that generation | occurrence | production of the leakage magnetic field from the magnets 101-105 can be suppressed.

図2(b)を参照すれば、ここでは磁石ブロック10が数種類の磁化方向の異なる永久磁石101〜105を組み合わせ、磁束の流れを一方向に揃えて構成される様子を示している。   Referring to FIG. 2 (b), here, the magnet block 10 shows a state in which several types of permanent magnets 101 to 105 having different magnetization directions are combined and the flow of magnetic flux is aligned in one direction.

ここで示されるように、磁石ブロック10は、最低でも5つの永久磁石101〜105で構成されるもので、他の磁石ブロック6,7,8,9,11の場合も同様な構造のものであるが、磁石ブロック6には電子ビームを入射させるための光路となる隙間、磁石ブロック11には電子ビームを出射させるための光路となる隙間が設けられる。   As shown here, the magnet block 10 is composed of at least five permanent magnets 101 to 105, and the other magnet blocks 6, 7, 8, 9, and 11 have the same structure. However, the magnet block 6 is provided with a gap serving as an optical path for allowing an electron beam to enter, and the magnet block 11 is provided with a gap serving as an optical path for emitting an electron beam.

即ち、実施例1の磁気回路装置(磁場発生器)の全体に係る磁石ブロック6〜12について、電子ビームの進行方向については製作寸法に制限が生じるため、磁石ブロック6〜12を分割して並ベる必要があるが、磁石ブロック6〜12の数に関連する磁化方向の種類を多くすると磁場強度を上げることが可能となると共に、漏れ磁場の発生を抑えることが容易になる。又、磁石ブロック6〜12における一つ一つの永久磁石の形状や磁化方向を調整することにより、磁気回路装置からの距離に応じて漏れる磁場の強度を調整することが可能となる他、x方向,y方向のそれぞれの磁場成分の調整も可能となる。   That is, with respect to the magnet blocks 6 to 12 related to the whole magnetic circuit device (magnetic field generator) of the first embodiment, the manufacturing dimensions are limited in the traveling direction of the electron beam, so the magnet blocks 6 to 12 are divided and arranged in parallel. Although it is necessary to increase the number of types of magnetization directions related to the number of magnet blocks 6 to 12, it is possible to increase the magnetic field strength and to easily suppress the generation of a leakage magnetic field. Further, by adjusting the shape and magnetization direction of each permanent magnet in the magnet blocks 6 to 12, it is possible to adjust the strength of the magnetic field leaking according to the distance from the magnetic circuit device, and in the x direction. , Y direction magnetic field components can be adjusted.

本発明の実施例1に係る磁気回路装置を備えた小型シンクロトロン装置の要部構成を示したもので、(a)は一部断面にした側面図に関するもの,(b)は上面方向からの一部透視した平面図に関するものである。The principal part structure of the small-sized synchrotron device provided with the magnetic circuit device which concerns on Example 1 of this invention is shown, (a) is related with the side view made into a partial cross section, (b) is from an upper surface direction. This relates to a partially transparent plan view. 本発明の実施例1に係る磁気回路装置の細部構造を示したもので、(a)は図1(b)中のA−A′線方向における磁石ブロックの側面断面図に関するもの,(b)は(a)の一部分である所定数の永久磁石の組み合わせパターンを示した拡大図に関するものである。1 shows a detailed structure of a magnetic circuit device according to Embodiment 1 of the present invention, in which (a) relates to a side sectional view of a magnet block in the direction of the line AA ′ in FIG. FIG. 6 relates to an enlarged view showing a combination pattern of a predetermined number of permanent magnets which are a part of (a). 従来の小型シンクロトロン装置の要部構造を示したもので、(a)は一部断面にした側面図に関するもの,(b)は上面方向からの一部透視した平面図に関するものである。The principal part structure of the conventional small-sized synchrotron apparatus is shown, (a) is related with the side view made into the partial cross section, (b) is related with the top view seen through partially from the upper surface direction.

符号の説明Explanation of symbols

1 ヨーク
2 コイル
3 ポールピース
4 ステアリングコイル
6〜12 磁石ブロック
101〜105 永久磁石
201 ケース
202a,202b ハウジング
203 ボルト
204 枠体
IN 入射ビーム
OUT 出射ビーム
フリジング磁場
統制磁場分布領域
DESCRIPTION OF SYMBOLS 1 Yoke 2 Coil 3 Pole piece 4 Steering coil 6-12 Magnet block 101-105 Permanent magnet 201 Case 202a, 202b Housing 203 Bolt 204 Frame B IN incident beam B OUT outgoing beam B F fusing magnetic field E B Control magnetic field distribution area

Claims (3)

荷電粒子ビームを蓄積して周回させるシンクロトロン装置内に配置される磁気回路装置において
記シンクロトロン装置内における前記電子ビームを蓄積するための安定周回軌道を満たす統制磁場分布領域近傍に配置されると共に、該統制磁場により該電子ビームの入出射路付近で発生するフリンジング磁場の影響を取り除くための磁場を発生する磁場発生器を有し、
前記磁場発生器は、前記統制磁場分布領域の磁束線に沿った磁化方向を持つ複数の磁石ブロックを前記電子ビームの入出射路近傍に延在するように配置してなり、該複数の磁石ブロックにあっての電子ビームの入射側には前記電子ビームを入射させる光路となる隙間、電子ビームの出射側には前記電子ビームを出射させる光路となる隙間がそれぞれ設けられて成ることを特徴とする磁気回路装置。
In a magnetic circuit device disposed in a synchrotron device for accumulating and circulating a charged particle beam ,
While being disposed in controlled field distribution region near satisfying stable orbit for storing the electron beam before Symbol synchrotron devices, the fringing magnetic field generated in the vicinity of input and output paths of the electron beams by該統system field effect have a magnetic field generator for generating a magnetic field for removing,
The magnetic field generator is configured by arranging a plurality of magnet blocks having magnetization directions along magnetic flux lines in the controlled magnetic field distribution region so as to extend in the vicinity of the entrance / exit path of the electron beam. The electron beam incident side is provided with a gap serving as an optical path for allowing the electron beam to enter, and the electron beam exiting side is provided with a gap serving as an optical path for emitting the electron beam. Magnetic circuit device.
請求項記載の磁気回路装置において、前記複数の磁石ブロックは、異なる種類の磁化方向を持つ所定数の永久磁石をそれぞれ前記安定周回軌道側寄り部分が開口され、且つ各永久磁石からの漏れ磁場の発生を抑制できるように組み合わせて成ることを特徴とする磁気回路装置。 2. The magnetic circuit device according to claim 1 , wherein the plurality of magnet blocks include a predetermined number of permanent magnets having different types of magnetization directions, each of which is opened at a portion closer to the stable orbit, and a leakage magnetic field from each permanent magnet. A magnetic circuit device comprising a combination so as to suppress the occurrence of 請求項1又は2に記載の磁気回路装置を備えたことを特徴とするシンクロトロン装置。 Synchrotron apparatus characterized by comprising a magnetic circuit device according to claim 1 or 2.
JP2005218617A 2005-07-28 2005-07-28 Magnetic circuit device and synchrotron device using the same Expired - Fee Related JP4629527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218617A JP4629527B2 (en) 2005-07-28 2005-07-28 Magnetic circuit device and synchrotron device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218617A JP4629527B2 (en) 2005-07-28 2005-07-28 Magnetic circuit device and synchrotron device using the same

Publications (2)

Publication Number Publication Date
JP2007035495A JP2007035495A (en) 2007-02-08
JP4629527B2 true JP4629527B2 (en) 2011-02-09

Family

ID=37794492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218617A Expired - Fee Related JP4629527B2 (en) 2005-07-28 2005-07-28 Magnetic circuit device and synchrotron device using the same

Country Status (1)

Country Link
JP (1) JP4629527B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4110560Y1 (en) * 1964-09-09 1966-05-18
JPS442880Y1 (en) * 1965-01-23 1969-02-03
JPS58179800U (en) * 1982-05-26 1983-12-01 株式会社日本製鋼所 Cyclotron beam shaping device
JPH08195300A (en) * 1994-11-16 1996-07-30 Res Dev Corp Of Japan Radioactive ray generating method using electron accumulating ring and the electron accumulating ring
JP2004031871A (en) * 2002-06-28 2004-01-29 Hiroshige Yamada Electromagnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4110560Y1 (en) * 1964-09-09 1966-05-18
JPS442880Y1 (en) * 1965-01-23 1969-02-03
JPS58179800U (en) * 1982-05-26 1983-12-01 株式会社日本製鋼所 Cyclotron beam shaping device
JPH08195300A (en) * 1994-11-16 1996-07-30 Res Dev Corp Of Japan Radioactive ray generating method using electron accumulating ring and the electron accumulating ring
JP2004031871A (en) * 2002-06-28 2004-01-29 Hiroshige Yamada Electromagnet

Also Published As

Publication number Publication date
JP2007035495A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP2667832B2 (en) Deflection magnet
KR101249269B1 (en) Systems and methods for deflecting plasma-generated ions to prevent the ions from reaching an internal component of an euv light sourge
KR101586202B1 (en) System for magnetic shielding
JPS62259400A (en) Vacuum chamber for accelerator
JP2007149617A (en) Multi-beam klystron device
JP6265643B2 (en) Electron beam equipment
US20100176312A1 (en) Extreme ultra violet light source apparatus
JP2019149387A (en) Compact deflecting magnet
JP4937196B2 (en) Superconducting coil device
JP6820352B2 (en) Ion beam filter for neutron generator
US6770890B2 (en) Stage devices including linear motors that produce reduced beam-perturbing stray magnetic fields, and charged-particle-beam microlithography systems comprising same
JP4629527B2 (en) Magnetic circuit device and synchrotron device using the same
JP2008016753A (en) Extreme ultraviolet optical source equipment
WO2018138801A1 (en) Particle acceleration system and particle acceleration system adjustment method
JP5030893B2 (en) Charged particle beam accelerator and particle beam irradiation medical system using the accelerator
TW201632033A (en) Improved beam pipe
JP3956285B2 (en) Wiggle ring
JP3133155B2 (en) Electron beam accelerator and bending magnet used for the accelerator
KR102368704B1 (en) X-ray dose rate optimization of medical linear accelerator using pole / yoke type steering electromagnet
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
JP2018113161A (en) Superconductive magnet device, and magnetic field correction method in superconductive magnet device
JP2556112B2 (en) Charged particle device
JP4296001B2 (en) Circular accelerator
JP2813386B2 (en) Electromagnet of charged particle device
JP5362045B2 (en) Superconducting coil device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees