JP4628643B2 - Plasma display panel and phosphor - Google Patents

Plasma display panel and phosphor Download PDF

Info

Publication number
JP4628643B2
JP4628643B2 JP2002254361A JP2002254361A JP4628643B2 JP 4628643 B2 JP4628643 B2 JP 4628643B2 JP 2002254361 A JP2002254361 A JP 2002254361A JP 2002254361 A JP2002254361 A JP 2002254361A JP 4628643 B2 JP4628643 B2 JP 4628643B2
Authority
JP
Japan
Prior art keywords
phosphor
activator
plasma display
display panel
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002254361A
Other languages
Japanese (ja)
Other versions
JP2004091622A (en
Inventor
博行 加道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002254361A priority Critical patent/JP4628643B2/en
Publication of JP2004091622A publication Critical patent/JP2004091622A/en
Application granted granted Critical
Publication of JP4628643B2 publication Critical patent/JP4628643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、テレビなどの画像表示に用いられ、且つ真空紫外線で励起され発光する蛍光体層を有するプラズマディスプレイパネルに関するものである。
【0002】
【従来の技術】
近年、コンピュータやテレビなどの画像表示に用いられているカラー表示デバイスにおいて、プラズマディスプレイパネル(以下、PDPという)を用いたプラズマディスプレイ装置は、大型で薄型軽量を実現することのできるカラー表示デバイスとして注目されている。
【0003】
プラズマディスプレイ装置は、いわゆる3原色(赤、緑、青)を加法混色することにより、フルカラー表示を行っている。このフルカラー表示を行うために、プラズマディスプレイ装置には3原色である赤(R)、緑(G)、青(B)の各色を発光する蛍光体層が備えられ、この蛍光体層を構成する蛍光体はPDPの放電セル内で発生する紫外線により励起され、各色の可視光を生成している。
【0004】
ここで、蛍光体層を構成する蛍光体としては、一般的に以下のような、母体材料に付活剤を分散した材料が用いられている(例えば、「エレクトロニクス実装技術」P23〜26、1997、Vol.13、No.7参照)。
「青色蛍光体」:BaMgAl1017:Eu
「緑色蛍光体」:ZnSiO:Mn、BaAl1219:Mn、BaMgAl1017:Mn、YBO:Mn
「赤色蛍光体」:(YGd1−X)BO:Eu
【0005】
【発明が解決しようとする課題】
従来、PDPにおいては、経時的な輝度劣化が著しい、いわゆるライフ時間が短いという課題があった。これは、PDP内部での放電により発生する真空紫外線あるいはイオン衝撃により蛍光体が損傷し、劣化するためであると考えられる。
【0006】
本発明はこのような課題に鑑みてなされたもので、真空紫外線あるいはイオン衝撃に強い耐性を持つ蛍光体、およびその製造方法、そしてその蛍光体を用いることで、輝度劣化が少なく、長いライフ時間を有するプラズマディスプレイパネルを実現することを目的とするものである。
【0007】
【課題を解決するための手段】
上記目的を実現するために本発明は、紫外線により励起して発光する蛍光体層を有するプラズマディスプレイパネルにおいて、前記蛍光体層を構成する蛍光体は、母体材料に付活剤を分散させたものであり、蛍光体中の付活剤濃度は、蛍光体表面から蛍光体内部に向かって増加し、その後、一定となることを特徴とするものである。
【0008】
また、上記目的を実現するために本発明は、プラズマディスプレイパネルと前記プラズマディスプレイパネルを駆動する駆動装置とを備えたプラズマディスプレイ装置であって、プラズマディスプレイパネルが請求項1から8のいずれかに記載のプラズマディスプレイパネルであることを特徴とするものである。
【0009】
また、上記目的を実現するために本発明は、母体材料に付活剤を分散させ、真空紫外線により励起して可視光を放出する蛍光体であって、蛍光体中の付活剤濃度は、蛍光体表面から蛍光体内部に向かって増加し、その後、一定となることを特徴とするものである
【0010】
【発明の実施の形態】
すなわち、本発明の請求項1に記載の発明は、紫外線により励起して発光する蛍光体層を有するプラズマディスプレイパネルにおいて、前記蛍光体層を構成する蛍光体は、母体材料に付活剤を分散させたものであり、蛍光体中の付活剤濃度は、蛍光体表面から蛍光体内部に向かって増加し、その後、一定となることを特徴とするものである。
【0011】
また、請求項に記載の発明は、請求項に記載の発明において、蛍光体粒径が0.1μm以上、5μm以下の粉体であることを特徴とするものである。
【0012】
また、請求項に記載の発明は、請求項1または2に記載の発明において、母体材料が、BaMgAl1017であり、付活剤がEuであることを特徴とするものである。
【0013】
また、請求項に記載の発明は、請求項1または2に記載の発明において、母体材料が、BaMgAl1017であり、付活剤がMnであることを特徴とするものである。
【0014】
また、請求項に記載の発明は、請求項1または2に記載の発明において、母体材料が、ZnSiOであり、付活剤がMnであることを特徴とするものである。
【0015】
また、請求項に記載の発明は、請求項1または2に記載の発明において、母体材料が、BaAl1219であり、付活剤がMnであることを特徴とするものである。
【0016】
また、請求項に記載の発明は、請求項1または2に記載の発明において、母体材料が、YBOであり、付活剤がTbであることを特徴とするものである。
【0017】
また、請求項に記載の発明は、請求項1または2に記載の発明において、母体材料が、(YGd1−X)BOであり、付活剤がEuであることを特徴とするものである。
【0018】
また、請求項に記載の発明は、プラズマディスプレイパネルと前記プラズマディスプレイパネルを駆動する駆動装置とを備えたプラズマディスプレイ装置であって、プラズマディスプレイパネルが請求項1からのいずれかに記載のプラズマディスプレイパネルであることを特徴とするものである。
【0019】
また、請求項10に記載の発明は、母体材料に付活剤を分散させ、真空紫外線により励起して可視光を放出する蛍光体であって、蛍光体中の付活剤濃度は、蛍光体表面から蛍光体内部に向かって増加し、その後、一定となることを特徴とするものである。
【0020】
また、請求項11に記載の発明は、請求項10に記載の発明において、粒径が、0.1μm以上、5μm以下の粉体であることを特徴とするものである。
【0021】
また、請求項12に記載の発明は、請求項10または11に記載の発明において、母体材料が、BaMgAl1017であり、付活剤がEuであることを特徴とするものである。
【0022】
また、請求項13に記載の発明は、請求項10または11に記載の発明において、母体材料が、BaMgAl1017であり、付活剤がMnであることを特徴とするものである。
【0023】
また、請求項14に記載の発明は、請求項10または11に記載の発明において、母体材料が、ZnSiOであり、付活剤がMnであることを特徴とするものである。
【0024】
また、請求項15に記載の発明は、請求項10または11に記載の発明において、母体材料が、BaAl1219であり、付活剤がMnであることを特徴とするものである。
【0025】
また、請求項16に記載の発明は、請求項10または11に記載の発明において、母体材料が、YBOであり、付活剤がTbであることを特徴とするものである。
【0026】
また、請求項17に記載の発明は、請求項10または11に記載の発明において、母体材料が、(YGd1−X)BOであり、付活剤がEuであることを特徴とするものである。
【0027】
以下、本発明の一実施の形態について、図面を参照しながら説明する。
【0028】
図1は本発明の一実施の形態のPDPの画像表示領域について一部を断面で示す斜視図である。
【0029】
PDP100は、前面ガラス基板101の1主面上に表示電極103、表示スキャン電極104、誘電体ガラス層105、MgO保護層106が配設された前面パネルと、背面ガラス基板102の1主面上にアドレス電極107、誘電体ガラス層108、隔壁109、及び蛍光体層110R、110G、110Bが配設された背面パネルとが張り合わされ、前面パネルと背面パネルとの間に形成される放電空間122内に放電ガスが封入され放電セル123が形成された構成となっており、図2に示すPDPの駆動装置に接続することによりプラズマディスプレイ装置を構成する。
【0030】
プラズマディスプレイ装置は、図2に示すように、PDP100に表示ドライバ回路153、表示スキャンドライバ回路154、アドレスドライバ回路155を有しており、コントローラ152の制御に従い点灯させようとする放電セルにおいて表示スキャン電極104とアドレス電極107に電圧を印加することによりその間でアドレス放電を行い、その後、表示電極103、表示スキャン電極104間にパルス電圧を印加して維持放電を行う。この維持放電により、当該放電セルにおいて波長の短い真空紫外線(波長147nm)が発生し、この真空紫外線により励起された蛍光体層(図1での110R、110G、110B)が発光することで放電セルが点灯するもので、各色放電セルの点灯、非点灯の組み合わせによって画像が表示される。
【0031】
ここで、以上の構成における蛍光体層110R、110G、110Bを構成する蛍光体について説明する。
【0032】
図3および図4に、本発明の一実施の形態における蛍光体(BaMgAl1017:Eu)の、表面から内部に向かう深さ方向での付活剤(Eu)の濃度分布を示す。蛍光体は、粒径3μmの粉体であり、母体材料としてBaMgAl1017を用い、付活剤としてEuを用いた青色発光蛍光体BaMgAl1017:Euである。図3は、蛍光体中の付活剤濃度が、深さと共に増加している例である。また、図4は、蛍光体表面から10nmまでは付活剤が存在せず、母体材料のみからなる例である。
【0033】
ここで、図5に、図3で示した蛍光体に146nmの真空紫外線を照射しつづけた場合の輝度の経時変化の評価結果を示す。縦軸は相対輝度、横軸は真空紫外線の照射時間(hour)である。図中には、付活剤(Eu)が蛍光体中に均一に分散した、すなわち、表面から内部に向かう深さ方向に対して一定の濃度分布を持つ、従来の蛍光体の結果も同時に示す。実線が本実施の形態の蛍光体の結果、破線が従来の蛍光体の結果である。
【0034】
図5から判るように、付活剤濃度が蛍光体の内部に向かって増加する本実施の形態の蛍光体では、真空紫外線照射による劣化が大幅に改善されることが判明した。
【0035】
これは、真空紫外線の照射による蛍光体劣化の発生の原因が、母体材料に付活剤をドープした際に生じる、付活剤周辺での母体材料の結晶構造の歪みに真空紫外線が照射されることであると考えられ、本実施の形態の蛍光体では、真空紫外線が主に吸収される蛍光体表面には付活剤が少なく、すなわち結晶欠陥が少なくなっており、その結果、真空紫外線照射に対して強くなったためと考えられる。
【0036】
一方、真空紫外線による蛍光体の励起は、主に母体材料で行われるために、表面付近の付活剤濃度が減少しても大きな輝度低下を起こすことはない。
【0037】
また、以上述べたような、蛍光体表面付近の結晶性が向上することによる効果は、真空紫外線照射に対してだけではなくイオン衝撃に対しても同様に効果が得られることを確認した。
【0038】
さらに、図4に示すような、表面から数10nmに付活剤が含まれない蛍光体では、さらに蛍光体表面付近の結晶性が向上し、真空紫外線照射やイオン衝撃に対しさらに強い耐性を示すことを確認した。
【0039】
以上述べた効果は、従来、真空紫外線に対して比較的弱かったBaMgAl1017:Euの蛍光体で顕著に確認できたが、特にこれに限るものではなく、同様に真空紫外線に対して比較的弱いBaMgAl1017:Mn(母体材料がBaMgAl1017であり、付活剤がMn)や、BaAl1219:Mn(母体材料がBaAl1219であり、付活剤がMn)、また、イオン衝撃に比較的弱いZnSiO:Mn(母体材料がZnSiOであり、付活剤がMn)などの蛍光体に対しても、同様に顕著な効果を確認した。
【0040】
さらに、比較的真空紫外線やイオン衝撃に対して強いYBO:Tb(母体材料がYBOであり、付活剤がTb)や、(YGd1−X)BO:Eu(母体材料が(YGd1−X)BOであり、付活剤がEu)などの蛍光体においても、効果を得ることができた。
【0041】
なお、以上の効果は蛍光体の粒径には特に依存しないが、粒径0.1μm以上5μm以下の粉体の蛍光体に対して顕著となることを確認している。
【0042】
以上述べたように、本発明によれば、真空紫外線あるいはイオン衝撃に強い耐性を持つ蛍光体が実現できる。
【0043】
また、本発明の実施の形態のPDPは、上述の蛍光体を用いていることから、輝度劣化が少なく、長いライフ時間を有するプラズマディスプレイパネルを実現することができる。ここで、ライフ時間とは、相対輝度の相対が所定の値となるまでの駆動時間を指すものであり、例えば、相対輝度が50%にまで低下するまでの駆動時間などで表現される。
【0044】
図6に本実施の形態のPDPに対して、青色表示し続けた場合の輝度の経時変化を示す。縦軸は青色の相対輝度、横軸は表示時間(hour)である。また図中には、従来の蛍光体の深さ方向に付活剤濃度分布を持たないBaMgAl1017:Eu蛍光体を用いた従来のPDPに対して、青色表示し続けた場合の輝度の変化も同時に示す。実線が本実施の形態の蛍光体を用いたPDPの結果、破線が従来の蛍光体を用いたPDPの結果である。
【0045】
図6から判るように、本実施の形態のPDPでは、輝度劣化が大幅に低減されライフ時間が長くなることが確認された。さらに、図4に示すような、表面から10nmの深さまでに付活剤が含まれない蛍光体を用いたPDPでは、さらに輝度劣化が改善され、さらにライフ時間が長くなることが確認された。
【0046】
同様に、緑色蛍光体層を構成する蛍光体としてBaMgAl1017:Mn(母体材料がBaMgAl1017であり、付活剤がMn)、BaAl1219:Mn(母体材料がBaAl1219であり、付活剤がMn)、ZnSiO:Mn(母体材料がZnSiOであり、付活剤がMn)あるいはYBO:Tb(母体材料がYBOであり、付活剤がTb)を用いた場合でも、同様に輝度劣化に対する改善効果が得られ、ライフ時間が長くなることが確認された。
【0047】
また、赤色蛍光体層を構成する蛍光体として(YGd1−X)BO:Eu((YGd1−X)BOであり、付活剤がEu)を用いた場合でも、同様に輝度劣化に対する改善効果が得られ、ライフ時間が長くなることが確認された。
【0048】
なお、以上の実施の形態においては、面放電型のPDPを例示したが、対向放電型のPDPなど、蛍光体が真空紫外線照射やイオン衝撃を受けるPDPあるいは放電ランプすべてに適用することができる。
【0049】
次に、以上述べた蛍光体の製造方法について説明する。
【0050】
まず、母体材料の原料として、炭酸バリウム(BaCo)、炭酸マグネシウム(MgCO)、酸化アルミニウム(α−Al)をBa、Mg、Alの原子比で1対1対10になるように混合する。
【0051】
次に、この混合物に対して、付活剤Euの原料として、所定量の酸化ユーロピウム(Eu)を添加する。
【0052】
そして、必要に応じて適量のフラックス(AlF、BaCl)と共にボールミルで混合し、1200℃〜1500℃で所定時間(例えば、0.5時間)、弱還元性雰囲気(H、N中)で焼成し合成する。合成された蛍光体に、さらに母体材料の原料である炭酸バリウム(BaCo)、炭酸マグネシウム(MgCO)、酸化アルミニウム(α−Al)をさらに混合し、そして再度、1100℃〜1300℃で所定時間、大気中で焼成することで、蛍光体(BaMgAl1017:Eu)表面の付活剤(Eu)濃度が、蛍光体内部の付活剤(Eu)濃度よりも小さい蛍光体を合成することができる。
【0053】
ここで、上述における、1100℃〜1300℃での所定時間、大気中で行う焼成の、温度、時間を調整することで、付活剤(Eu)の深さ方向への濃度分布を調整することが可能である。例えば、再焼成温度を低くするほど、また短くするほど、表面の付活剤(Eu)の濃度を低くすることができる。
【0054】
また、蛍光体の製造方法の他の実施の形態として、母体材料の原料と付活剤の原料を混合した混合物を焼成し、この焼成中に母体材料の原料をさらに追加するという方法でも、同様な付活剤(Eu)の濃度分布を有する蛍光体を合成することができることを確認した。
【0055】
【発明の効果】
以上のように本発明によれば、蛍光体の真空紫外線あるいはイオン衝撃による輝度劣化を抑えることが可能となり、その結果、ライフ時間の長いプラズマディスプレイパネルが実現できる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態のプラズマディスプレイパネルの画像表示領域の構造の一部を示す断面斜視図
【図2】 本発明の一実施の形態のプラズマディスプレイパネルを用いたプラズマディスプレイ装置のブロック図
【図3】 本発明の一実施の形態の蛍光体における、深さ方向の付活剤(Eu)濃度分布を示す図
【図4】 本発明の他の実施の形態の蛍光体における、深さ方向の付活剤(Eu)濃度分布を示す図
【図5】 本発明の一実施の形態の蛍光体と従来の蛍光体との、真空紫外線を照射しつづけた場合の輝度の経時変化の比較を示す図
【図6】 本発明の一実施の形態のプラズマディスプレイパネルと従来のプラズマディスプレイパネルとの、青色表示を連続して行った場合の輝度の経時変化の比較を示す図
【符号の説明】
100 PDP
101 前面ガラス基板
102 背面ガラス基板
103 表示電極
104 表示スキャン電極
105 誘電体ガラス層
106 MgO保護層
107 アドレス電極
108 誘電体ガラス層
109 隔壁
110R 蛍光体層(赤)
110G 蛍光体層(緑)
110B 蛍光体層(青)
122 放電空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma display panel having a phosphor layer that is used for image display such as a television and emits light when excited by vacuum ultraviolet rays.
[0002]
[Prior art]
2. Description of the Related Art In recent years, among color display devices used for image display such as computers and televisions, a plasma display device using a plasma display panel (hereinafter referred to as PDP) is a large, thin and light color display device that can be realized. Attention has been paid.
[0003]
The plasma display device performs full color display by additively mixing so-called three primary colors (red, green, and blue). In order to perform this full-color display, the plasma display device is provided with a phosphor layer that emits each of the three primary colors, red (R), green (G), and blue (B), and constitutes this phosphor layer. The phosphor is excited by ultraviolet rays generated in the discharge cell of the PDP, and generates visible light of each color.
[0004]
Here, as the phosphor constituting the phosphor layer, a material in which an activator is dispersed in a base material as described below is generally used (for example, “Electronic Packaging Technology” P23 to 26, 1997). , Vol.13, No.7).
“Blue phosphor”: BaMgAl 10 O 17 : Eu
“Green phosphor”: Zn 2 SiO 4 : Mn, BaAl 12 O 19 : Mn, BaMgAl 10 O 17 : Mn, YBO 3 : Mn
“Red phosphor”: (Y X Gd 1-X ) BO 3 : Eu
[0005]
[Problems to be solved by the invention]
Conventionally, the PDP has a problem that the so-called life time is short, in which luminance deterioration with time is remarkable. This is considered to be because the phosphor is damaged and deteriorated by vacuum ultraviolet rays or ion bombardment generated by discharge inside the PDP.
[0006]
The present invention has been made in view of such problems, and a phosphor having strong resistance to vacuum ultraviolet rays or ion bombardment, a method for producing the phosphor, and a phosphor having less luminance deterioration and a long life time. An object of the present invention is to realize a plasma display panel having
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plasma display panel having a phosphor layer that emits light when excited by ultraviolet rays. The phosphor constituting the phosphor layer is obtained by dispersing an activator in a base material. The activator concentration in the phosphor increases from the phosphor surface toward the inside of the phosphor and then becomes constant .
[0008]
In order to achieve the above object, the present invention provides a plasma display device comprising a plasma display panel and a driving device for driving the plasma display panel, wherein the plasma display panel is any one of claims 1 to 8. It is a plasma display panel as described .
[0009]
In order to achieve the above object, the present invention is a phosphor in which an activator is dispersed in a base material and excited by vacuum ultraviolet rays to emit visible light, and the activator concentration in the phosphor is It increases from the surface of the phosphor toward the inside of the phosphor, and thereafter becomes constant .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
That is, according to the first aspect of the present invention, in the plasma display panel having a phosphor layer that emits light by being excited by ultraviolet rays, the phosphor constituting the phosphor layer has an activator dispersed in a base material. The activator concentration in the phosphor is increased from the phosphor surface toward the inside of the phosphor, and then becomes constant .
[0011]
The invention according to claim 2 is characterized in that, in the invention according to claim 1 , the phosphor is a powder having a particle size of 0.1 μm or more and 5 μm or less.
[0012]
The invention according to claim 3 is the invention according to claim 1 or 2 , characterized in that the base material is BaMgAl 10 O 17 and the activator is Eu.
[0013]
The invention described in claim 4 is characterized in that, in the invention described in claim 1 or 2 , the base material is BaMgAl 10 O 17 and the activator is Mn.
[0014]
The invention according to claim 5 is the invention according to claim 1 or 2 , characterized in that the base material is Zn 2 SiO 4 and the activator is Mn.
[0015]
The invention described in claim 6 is characterized in that, in the invention described in claim 1 or 2 , the base material is BaAl 12 O 19 and the activator is Mn.
[0016]
The invention described in claim 7 is characterized in that, in the invention described in claim 1 or 2 , the base material is YBO 3 and the activator is Tb.
[0017]
The invention described in claim 8 is characterized in that, in the invention described in claim 1 or 2 , the base material is (Y X Gd 1-X ) BO 3 and the activator is Eu. To do.
[0018]
The invention according to claim 9 is a plasma display device comprising a plasma display panel and a driving device for driving the plasma display panel, wherein the plasma display panel is according to any one of claims 1 to 8 . It is a plasma display panel.
[0019]
The invention according to claim 10 is a phosphor in which an activator is dispersed in a base material and excited by vacuum ultraviolet rays to emit visible light, and the concentration of the activator in the phosphor is the phosphor. It increases from the surface toward the inside of the phosphor and thereafter becomes constant .
[0020]
The invention according to claim 11 is the invention according to claim 10 , characterized in that the particle diameter is a powder having a particle size of 0.1 μm or more and 5 μm or less.
[0021]
The invention described in claim 12 is characterized in that, in the invention described in claim 10 or 11 , the base material is BaMgAl 10 O 17 and the activator is Eu.
[0022]
The invention described in claim 13 is characterized in that, in the invention described in claim 10 or 11 , the base material is BaMgAl 10 O 17 and the activator is Mn.
[0023]
The invention described in claim 14 is characterized in that, in the invention described in claim 10 or 11 , the base material is Zn 2 SiO 4 and the activator is Mn.
[0024]
The invention described in claim 15 is characterized in that, in the invention described in claim 10 or 11 , the base material is BaAl 12 O 19 and the activator is Mn.
[0025]
The invention described in claim 16 is characterized in that, in the invention described in claim 10 or 11 , the base material is YBO 3 and the activator is Tb.
[0026]
The invention according to claim 17 is characterized in that, in the invention according to claim 10 or 11 , the base material is (Y X Gd 1-X ) BO 3 and the activator is Eu. To do.
[0027]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0028]
FIG. 1 is a perspective view partially showing a cross section of an image display area of a PDP according to an embodiment of the present invention.
[0029]
PDP 100 includes a front panel in which display electrode 103, display scan electrode 104, dielectric glass layer 105, and MgO protective layer 106 are disposed on one main surface of front glass substrate 101, and one main surface of rear glass substrate 102. Are connected to the rear panel on which the address electrode 107, the dielectric glass layer 108, the barrier rib 109, and the phosphor layers 110R, 110G, and 110B are disposed, and a discharge space 122 formed between the front panel and the rear panel. The discharge gas is enclosed in the discharge cell 123, and the plasma display device is configured by connecting to the PDP driving device shown in FIG.
[0030]
As shown in FIG. 2, the plasma display apparatus includes a display driver circuit 153, a display scan driver circuit 154, and an address driver circuit 155 in the PDP 100, and performs a display scan in a discharge cell to be lit under the control of the controller 152. A voltage is applied to the electrode 104 and the address electrode 107 to perform an address discharge between them, and then a pulse voltage is applied between the display electrode 103 and the display scan electrode 104 to perform a sustain discharge. Due to this sustain discharge, vacuum ultraviolet rays having a short wavelength (wavelength 147 nm) are generated in the discharge cells, and the phosphor layers (110R, 110G, 110B in FIG. 1) excited by the vacuum ultraviolet rays emit light, thereby causing the discharge cells. Is displayed, and an image is displayed by a combination of lighting and non-lighting of each color discharge cell.
[0031]
Here, the phosphor constituting the phosphor layers 110R, 110G, and 110B in the above configuration will be described.
[0032]
3 and 4 show the concentration distribution of the activator (Eu) in the depth direction from the surface toward the inside of the phosphor (BaMgAl 10 O 17 : Eu) in one embodiment of the present invention. The phosphor is a powder having a particle size of 3 μm, and is a blue light emitting phosphor BaMgAl 10 O 17 : Eu using BaMgAl 10 O 17 as a base material and Eu as an activator. FIG. 3 is an example in which the activator concentration in the phosphor increases with depth. FIG. 4 shows an example in which no activator is present up to 10 nm from the phosphor surface, and only the base material is used.
[0033]
Here, FIG. 5 shows an evaluation result of a change in luminance with time when the phosphor shown in FIG. 3 is continuously irradiated with vacuum ultraviolet rays of 146 nm. The vertical axis represents relative luminance, and the horizontal axis represents vacuum ultraviolet irradiation time (hour). In the figure, the result of the conventional phosphor in which the activator (Eu) is uniformly dispersed in the phosphor, that is, has a constant concentration distribution in the depth direction from the surface to the inside is also shown. . The solid line is the result of the phosphor of the present embodiment, and the broken line is the result of the conventional phosphor.
[0034]
As can be seen from FIG. 5, it has been found that the phosphor of this embodiment in which the concentration of the activator increases toward the inside of the phosphor is greatly improved in deterioration due to vacuum ultraviolet irradiation.
[0035]
This is because the cause of the phosphor deterioration due to the irradiation of vacuum ultraviolet rays is caused by the irradiation of vacuum ultraviolet rays to the distortion of the crystal structure of the matrix material around the activator, which occurs when the matrix material is doped with the activator. In the phosphor of the present embodiment, there are few activators on the phosphor surface that mainly absorbs vacuum ultraviolet rays, that is, there are fewer crystal defects. This is thought to be because it became stronger.
[0036]
On the other hand, since the phosphor is excited by vacuum ultraviolet light mainly using the host material, even if the concentration of the activator near the surface is decreased, the luminance is not greatly reduced.
[0037]
Further, it was confirmed that the effect of improving the crystallinity near the phosphor surface as described above can be obtained not only for vacuum ultraviolet irradiation but also for ion bombardment.
[0038]
Furthermore, as shown in FIG. 4, in the phosphor that does not contain an activator within a few tens of nanometers from the surface, the crystallinity near the phosphor surface is further improved, and it is more resistant to vacuum ultraviolet irradiation and ion bombardment. It was confirmed.
[0039]
The effects described above have been remarkably confirmed with a phosphor of BaMgAl 10 O 17 : Eu, which has been relatively weak against vacuum ultraviolet rays in the past. However, the present invention is not limited to this, and similarly compared with vacuum ultraviolet rays. BaMgAl 10 O 17 : Mn (base material is BaMgAl 10 O 17 and activator is Mn) and BaAl 12 O 19 : Mn (base material is BaAl 12 O 19 and activator is Mn) in addition, relatively weak Zn 2 SiO 4 in the ion bombardment: Mn (base material is Zn 2 SiO 4, activator Mn) against phosphors, such as was confirmed similarly pronounced effect.
[0040]
Furthermore, YBO 3 : Tb (matrix material is YBO 3 and activator is Tb) and (Y X Gd 1-X ) BO 3 : Eu (matrix material is relatively strong against vacuum ultraviolet rays and ion bombardment. The effect could also be obtained with a phosphor such as (Y X Gd 1-X ) BO 3 and the activator Eu).
[0041]
The above effect is not particularly dependent on the particle size of the phosphor, but it has been confirmed that it is significant for powdered phosphors having a particle size of 0.1 μm to 5 μm.
[0042]
As described above, according to the present invention, a phosphor having strong resistance to vacuum ultraviolet rays or ion bombardment can be realized.
[0043]
In addition, since the PDP according to the embodiment of the present invention uses the above-described phosphor, it is possible to realize a plasma display panel with little luminance deterioration and a long life time. Here, the life time indicates a driving time until the relative luminance becomes a predetermined value, and is expressed by, for example, a driving time until the relative luminance is reduced to 50%.
[0044]
FIG. 6 shows a change in luminance over time when blue display is continued for the PDP of the present embodiment. The vertical axis represents blue relative luminance, and the horizontal axis represents display time (hour). Also, in the figure, the luminance of the conventional PDP using a BaMgAl 10 O 17 : Eu phosphor that does not have an activator concentration distribution in the depth direction of the conventional phosphor when the blue display is continued. Changes are also shown. The solid line is the result of the PDP using the phosphor of the present embodiment, and the broken line is the result of the PDP using the conventional phosphor.
[0045]
As can be seen from FIG. 6, in the PDP of the present embodiment, it was confirmed that the luminance degradation was significantly reduced and the life time was lengthened. Furthermore, it was confirmed that the PDP using a phosphor that does not contain an activator up to a depth of 10 nm from the surface as shown in FIG. 4 further improves the luminance deterioration and further increases the life time.
[0046]
Similarly, BaMgAl 10 O 17 : Mn (matrix material is BaMgAl 10 O 17 and activator is Mn) as phosphors constituting the green phosphor layer, BaAl 12 O 19 : Mn (matrix material is BaAl 12 O) 19 and the activator is Mn), Zn 2 SiO 4 : Mn (the base material is Zn 2 SiO 4 and the activator is Mn) or YBO 3 : Tb (the base material is YBO 3 ) Even when Tb) was used as an agent, it was confirmed that an improvement effect on luminance deterioration was obtained in the same manner and the life time was prolonged.
[0047]
Further, even when (Y X Gd 1-X ) BO 3 : Eu ((Y X Gd 1-X ) BO 3 and the activator is Eu) is used as the phosphor constituting the red phosphor layer, Similarly, it was confirmed that an improvement effect on luminance deterioration was obtained and the life time was prolonged.
[0048]
In the above embodiment, the surface discharge type PDP is exemplified. However, the present invention can be applied to all PDPs or discharge lamps such as a counter discharge type PDP in which the phosphor is subjected to vacuum ultraviolet irradiation or ion bombardment.
[0049]
Next, a method for manufacturing the phosphor described above will be described.
[0050]
First, as a raw material of the base material, barium carbonate (BaCo 3), magnesium carbonate (MgCO 3), aluminum oxide (α-Al 2 O 3) Ba, Mg, so as to be 1: 1: 10 in terms of atomic ratio of Al To mix.
[0051]
Next, a predetermined amount of europium oxide (Eu 2 O 3 ) is added to the mixture as a raw material for the activator Eu.
[0052]
Then, if necessary mixed with a ball mill together with a suitable amount of flux (AlF 2, BaCl 2), 1200 ℃ ~1500 ℃ at a predetermined time (e.g., 0.5 hours), a weakly reducing atmosphere (H 2, N 2 in ) And then synthesized. The synthesized phosphor, further barium carbonate as a raw material of the base material (BaCo 3), magnesium carbonate (MgCO 3), further mixed with aluminum oxide (α-Al 2 O 3) , and again, 1100 ° C. to 1300 Phosphor having a phosphor (BaMgAl 10 O 17 : Eu) surface activator (Eu) concentration lower than the activator (Eu) concentration inside the phosphor by firing in the atmosphere at a temperature for a predetermined time. Can be synthesized.
[0053]
Here, the concentration distribution in the depth direction of the activator (Eu) is adjusted by adjusting the temperature and time of firing performed in the air for a predetermined time at 1100 ° C. to 1300 ° C. Is possible. For example, the concentration of the surface activator (Eu) can be lowered as the refiring temperature is lowered or shortened.
[0054]
Further, as another embodiment of the method for producing a phosphor, a method of firing a mixture of a raw material of a base material and a raw material of an activator and further adding the raw material of the base material during the firing is the same. It was confirmed that a phosphor having a concentration distribution of the activator (Eu) can be synthesized.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress luminance deterioration due to vacuum ultraviolet rays or ion bombardment of a phosphor, and as a result, a plasma display panel having a long life time can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional perspective view showing a part of the structure of an image display region of a plasma display panel according to an embodiment of the present invention. FIG. 2 is a plasma display device using the plasma display panel according to an embodiment of the present invention. FIG. 3 is a diagram showing an activator (Eu) concentration distribution in the depth direction in the phosphor according to one embodiment of the present invention. FIG. 4 is a diagram showing in the phosphor according to another embodiment of the present invention. FIG. 5 is a graph showing the concentration distribution of activator (Eu) in the depth direction. FIG. 5 shows the luminance over time when the phosphor of the embodiment of the present invention and the conventional phosphor are continuously irradiated with vacuum ultraviolet rays. FIG. 6 is a diagram showing comparison of changes in luminance. FIG. 6 is a diagram showing comparison of changes in luminance over time when blue display is continuously performed between the plasma display panel of one embodiment of the present invention and a conventional plasma display panel. Explanation of symbols]
100 PDP
DESCRIPTION OF SYMBOLS 101 Front glass substrate 102 Rear glass substrate 103 Display electrode 104 Display scan electrode 105 Dielectric glass layer 106 MgO protective layer 107 Address electrode 108 Dielectric glass layer 109 Partition 110R Phosphor layer (red)
110G phosphor layer (green)
110B phosphor layer (blue)
122 Discharge space

Claims (8)

真空紫外線により励起して発光する蛍光体層を有するプラズマディスプレイパネルにおいて、前記蛍光体層を構成する蛍光体は、母体材料であるBaMgAl 10 17 に付活剤を分散させたものであり、蛍光体中の付活剤濃度は、蛍光体表面から蛍光体内部に向かって深さと共に増加し、200nmを超えた深さで一定となることを特徴とするプラズマディスプレイパネル。In a plasma display panel having a phosphor layer that emits light when excited by vacuum ultraviolet rays, the phosphor constituting the phosphor layer is obtained by dispersing an activator in a base material BaMgAl 10 O 17. The plasma display panel is characterized in that the concentration of the activator in the body increases with the depth from the phosphor surface toward the inside of the phosphor and becomes constant at a depth exceeding 200 nm . 蛍光体の粒径が5μm以下の粉体であることを特徴とする請求項1に記載のプラズマディスプレイパネル。The plasma display panel according to claim 1, wherein the phosphor has a particle size of 5 μm or less . 付活剤がEuであることを特徴とする請求項1または2に記載のプラズマディスプレイパネル。  The plasma display panel according to claim 1 or 2, wherein the activator is Eu. 付活剤がMnであることを特徴とする請求項1または2に記載のプラズマディスプレイパネル。  The plasma display panel according to claim 1 or 2, wherein the activator is Mn. 母体材料であるBaMgAl 10 17 に付活剤を分散させ、真空紫外線により励起して可視光を放出する蛍光体であって、蛍光体中の付活剤濃度は、蛍光体表面から蛍光体内部に向かって深さと共に増加し、200nmを超えた深さで一定となることを特徴とする蛍光体。A phosphor in which an activator is dispersed in a base material , BaMgAl 10 O 17 , and is excited by vacuum ultraviolet rays to emit visible light. The concentration of the activator in the phosphor varies from the phosphor surface to the inside of the phosphor. phosphor toward increases with depth, characterized in that the constant depth beyond 200nm to. 蛍光体の粒径が、5μm以下の粉体であることを特徴とする請求項に記載の蛍光体。 The phosphor according to claim 5 , wherein the phosphor has a particle size of 5 μm or less . 付活剤がEuであることを特徴とする請求項またはに記載の蛍光体。The phosphor according to claim 5 or 6 , wherein the activator is Eu. 付活剤がMnであることを特徴とする請求項またはに記載の蛍光体。The phosphor according to claim 5 or 6 , wherein the activator is Mn.
JP2002254361A 2002-08-30 2002-08-30 Plasma display panel and phosphor Expired - Fee Related JP4628643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002254361A JP4628643B2 (en) 2002-08-30 2002-08-30 Plasma display panel and phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002254361A JP4628643B2 (en) 2002-08-30 2002-08-30 Plasma display panel and phosphor

Publications (2)

Publication Number Publication Date
JP2004091622A JP2004091622A (en) 2004-03-25
JP4628643B2 true JP4628643B2 (en) 2011-02-09

Family

ID=32060145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002254361A Expired - Fee Related JP4628643B2 (en) 2002-08-30 2002-08-30 Plasma display panel and phosphor

Country Status (1)

Country Link
JP (1) JP4628643B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291290B2 (en) * 2003-09-02 2007-11-06 Matsushita Electric Industrial Co., Ltd. Phosphor, method of manufacturing same, and plasma display panel using same
WO2006022211A1 (en) * 2004-08-27 2006-03-02 Konica Minolta Medical & Graphic, Inc. Phosphor and plasma display panel
JP2007106778A (en) * 2004-09-03 2007-04-26 Konica Minolta Medical & Graphic Inc Phosphor and plasma display panel
US8257612B2 (en) 2007-07-05 2012-09-04 Cabot Corporation Compositions having multiple responses to excitation radiation and methods for making same
US8252613B1 (en) * 2011-03-23 2012-08-28 General Electric Company Color stable manganese-doped phosphors

Also Published As

Publication number Publication date
JP2004091622A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US7138965B2 (en) Plasma display device, luminescent device and image and information display system using the same
EP1261013B1 (en) Phosphor material, phosphor material powder, plasma display panel, and method of producing the same
EP1681336A1 (en) Phosphor and plasma display panel using the same
KR100966764B1 (en) Phosphor for plasma display panel and plasma display panel having phosphor layer formed of the same
US8142684B2 (en) Method of manufacturing blue silicate phosphor, and blue silicate phosphor and light-emitting device
US6603448B2 (en) Plasma display panel
US20080048547A1 (en) Plasma display device and light emitting device
KR100696512B1 (en) Phosphor for plasma display panel and plasma display panel having phosphor layer formed of the same
US8129905B2 (en) Phosphor and light emitting device using the phosphor
JP4628643B2 (en) Plasma display panel and phosphor
EP1878779A1 (en) Fluorescent substance and light emitting device
US8410677B2 (en) Blue phosphor, light-emitting device, and plasma display panel
US7919922B2 (en) Green phosphor for plasma display panel and plasma display panel including a phosphor layer formed of the same
EP1876213B9 (en) Fluorescent substance and light emitting device
JP3264239B2 (en) Phosphor material, manufacturing method thereof, and phosphor film
KR100742061B1 (en) Plasma display panel and its manufacturing method
JP3753128B2 (en) Plasma display panel
JP2003336055A (en) Plasma display device
JP2005023317A (en) Phosphor and its manufacturing method, gas discharging display device using the same, and fluorescent lamp
JP2000034477A (en) Plasma display panel, phosphor, and production of phosphor
JP3412570B2 (en) Plasma display panel and method of manufacturing the same
JP2008303230A (en) Phosphor and manufacturing method therefor
JP2010177072A (en) Plasma display panel
JPWO2007013515A1 (en) Gas discharge light emitting panel
JP2005281526A (en) Vacuum ultraviolet-exciting aluminate fluorescent substance, vacuum ultraviolet-exciting aluminate fluorescent substance paste composition, vacuum ultraviolet-exciting luminescent device and plasma display panel display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080131

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080229

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees