JP4628386B2 - Distributed power supply operating status detection device, watt-hour meter, and distribution system control device - Google Patents

Distributed power supply operating status detection device, watt-hour meter, and distribution system control device Download PDF

Info

Publication number
JP4628386B2
JP4628386B2 JP2007072329A JP2007072329A JP4628386B2 JP 4628386 B2 JP4628386 B2 JP 4628386B2 JP 2007072329 A JP2007072329 A JP 2007072329A JP 2007072329 A JP2007072329 A JP 2007072329A JP 4628386 B2 JP4628386 B2 JP 4628386B2
Authority
JP
Japan
Prior art keywords
power
distributed power
distributed
power supply
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007072329A
Other languages
Japanese (ja)
Other versions
JP2008236897A (en
Inventor
幸夫 中野
崇 小野田
憲彦 伊藤
真宏 浅利
勝弘 松田
勝 和田
真弘 玉城
睦 吉田
直樹 半杭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Tohoku Electric Power Co Inc
Original Assignee
Central Research Institute of Electric Power Industry
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Tohoku Electric Power Co Inc filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007072329A priority Critical patent/JP4628386B2/en
Publication of JP2008236897A publication Critical patent/JP2008236897A/en
Application granted granted Critical
Publication of JP4628386B2 publication Critical patent/JP4628386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Description

本発明は、配電系統に接続された分散電源を設置した需要家における分散電源の運転を需要家入口における電流・電圧の測定により検出する分散電源運転状況検出装置及び電力量計並びに当該配電系統の制御装置に関する。   The present invention relates to a distributed power supply operating state detection device, a watt hour meter, and a power meter for detecting the operation of a distributed power supply in a consumer having a distributed power supply connected to the power distribution system by measuring current and voltage at the customer entrance. The present invention relates to a control device.

従来、自家発電設備は一般的に大口需要家に設置され、その運転状況は、連系する電力系統の電気事業者によって把握されていた。しかし、近年電力自由化の進展等と共に配電系統に接続される商店等の小口事業所を中心に内燃機関等を動力とする小型の発電設備の設置が広く普及している。
このような発電設備の電源は分散電源と呼ばれているが、このような分散電源が配電系統に連系されたことに伴い配電系統の運用上種々の問題が発生している。
Conventionally, private power generation facilities are generally installed in large consumers, and their operating status has been grasped by electric utilities of the connected power system. However, in recent years, with the progress of electric power liberalization and the like, installation of small power generation facilities powered by an internal combustion engine or the like has become widespread mainly in small-lot establishments such as shops connected to the power distribution system.
The power source of such a power generation facility is called a distributed power source, but various problems have occurred in the operation of the power distribution system as such a distributed power source is connected to the power distribution system.

上記の問題の一例を図12により説明する。変電所から遮断機CBを経て配電線(フィーダ)Fが引出される。配電線には電力供給する負荷を区分するために区分開閉器S1〜S5が挿入され、各区間の負荷が略均等となるように区分される。
図で区分開閉器S1〜S4は常時は投入され、S5は開路して配電系統を区分しており、5区間(D1〜D5)に区分した例を示している。
L1〜L5は負荷を示しており、G1〜G3は分散電源の発電機を示している。ここで、負荷L2と負荷L3、L4の需要家は分散電源G1、G2、G3を設置しているものとする。
An example of the above problem will be described with reference to FIG. A distribution line (feeder) F is drawn from the substation through the circuit breaker CB. Division switches S1 to S5 are inserted in the distribution lines in order to classify loads to be supplied with power, and the loads in each section are divided so as to be substantially equal.
In the figure, the division switches S1 to S4 are always turned on, and S5 is opened to divide the distribution system, and shows an example divided into five sections (D1 to D5).
L1 to L5 indicate loads, and G1 to G3 indicate generators of distributed power sources. Here, it is assumed that customers of the load L2 and the loads L3 and L4 have installed distributed power sources G1, G2, and G3.

図の矢印で示すように電力が供給されており、負荷L2及びL5の需要家は分散電源の発電により負荷(L2、L5)に電力供給すると共に余剰の発電電力を配電線に送電している。負荷L3の需要家は分散電源G2と系統から電力供給されている。L1、L4は通常の需要家の負荷である。   As indicated by the arrows in the figure, power is supplied, and consumers of the loads L2 and L5 supply power to the loads (L2, L5) by generating power from the distributed power source and transmit surplus generated power to the distribution lines. . The consumer of the load L3 is supplied with power from the distributed power source G2 and the system. L1 and L4 are normal consumer loads.

図13は、図12の変電所と区間D1〜D3の一例を示している。変電所10は送電線20から受電した特別高圧の電圧を変圧器11により降圧(通常6kv)し母線14を経て遮断器14を介して複数のフィーダF1、F2(図では2フィーダを例示している)が引出され、所定の地域に電力を供給する。各フィーダには電力計13が設けられフィーダの送り出し電力を計測する。   FIG. 13 shows an example of the substation and sections D1 to D3 in FIG. The substation 10 steps down the extra high voltage received from the power transmission line 20 by the transformer 11 (usually 6 kv) and passes through the bus 14 and the circuit breaker 14 to a plurality of feeders F1 and F2 (two feeders are illustrated in the figure). Is withdrawn to supply power to a given area. Each feeder is provided with a wattmeter 13 to measure the feeding power of the feeder.

配電線には分散電源を設置していない需要家Aと分散電源を設置している需要家Bが接続されている。各需要家は負荷L(図ではL1〜3)が電力を消費し、消費電力を計測する電力量計Mが電気事業者の設備として設置されている。分散電源を設置している需要家Bの発電機G(図ではG1、G2)が発電していない場合は、前記電力量計の電力の計測値が各需要家の負荷Lの消費電力であり、それらの負荷の総消費電力は変電所の電力計13が計測するフィーダF1の送り出し電力と一致する。   A customer A who does not have a distributed power source and a customer B who has a distributed power source are connected to the distribution line. In each consumer, a load L (L1 to L3 in the figure) consumes power, and a watt-hour meter M for measuring power consumption is installed as equipment of the electric utility. When the generator G (G1, G2 in the figure) of the customer B in which the distributed power source is installed is not generating power, the measured value of the electricity meter is the power consumption of the load L of each customer. The total power consumption of these loads coincides with the feed power of the feeder F1 measured by the power meter 13 of the substation.

需要家に設置された発電機Gが発電している状態では、電力量計Mの計測値は負荷Lの消費電力と発電機Gの発電電力の差となる。また、図12に示す区間D2、D5のように発電電力が負荷の消費電力より大である場合には電力計Mの消費電力の計測値は負、即ち配電系統に送電する電力の計測値になる。
このように、需要家の分散電源が運転状態の場合には変電所の電力計13が計測するフィーダF1の送り出し電力値は配電系統の負荷の総消費電力値と一致しなくなる。
In a state where the generator G installed at the consumer is generating power, the measured value of the watt-hour meter M is the difference between the power consumption of the load L and the generated power of the generator G. Further, when the generated power is larger than the power consumption of the load as in the sections D2 and D5 shown in FIG. 12, the measured value of the power consumption of the wattmeter M is negative, that is, the measured value of the power transmitted to the distribution system. Become.
Thus, when the distributed power source of the consumer is in an operating state, the power supply value of the feeder F1 measured by the power meter 13 of the substation does not match the total power consumption value of the load of the distribution system.

このような状態で、例えば、送電線20の事故等の何らかの原因で変電所に供給される電力が停止すると、配電線Fへの電力供給が停止し、それと同時に当該配電線に連系している分散電源であるG1〜G3は保護装置(分散電源の単独運転防止装置)の動作によって系統から解列(遮断)される。そして分散電源はその特質から直ちに発電を再開し系統に投入することができない。
そのため、系統の電源復旧時の電力供給は上記分散電源の発電電力がない状態で供給することになり、上記の例の場合、事故前と同様に区間D1〜D5に電力供給する場合に配電線(フィーダF1)が過負荷になることが懸念され、区分開閉器を操作して一部の区間の負荷を他の系統に切替えなければならなくなる。
その場合、適切に負荷の切替えを行なうためには、各区間D1〜D5の負荷L1〜L5を正確に把握しなければならない。
In such a state, for example, when the power supplied to the substation is stopped for some reason such as an accident of the transmission line 20, the power supply to the distribution line F is stopped, and at the same time, connected to the distribution line. The distributed power sources G1 to G3 are disconnected (shut off) from the system by the operation of the protection device (distributed power source isolated operation prevention device). And the distributed power supply cannot resume power generation immediately due to its characteristics and put it into the system.
Therefore, the power supply at the time of power recovery of the system is supplied in a state where there is no generated power of the distributed power source. In the case of the above example, the power distribution line is used when power is supplied to the sections D1 to D5 as before the accident. There is a concern that the (feeder F1) will be overloaded, and it becomes necessary to operate the segment switch to switch the load of some sections to another system.
In that case, in order to switch the load appropriately, it is necessary to accurately grasp the loads L1 to L5 of the sections D1 to D5.

また、事故復旧時以外でも、例えばD4の区間を電気工事のため作業停電とする場合、D5の区間の負荷を他の系統に切替えなければならない。このときは先ず連系用の開閉器S5(ループ開閉器)を投入しD5区間の負荷を切替える他の系統とループを形成し、次いで作業停電するD4の区間の開閉器S3、S4を開路し、D5の区間の負荷を他系統に切替える。
このときに、分散電源の運転時には変電所で計測しているフィーダF1の送出し電力の計測値のみでは各区間の電力潮流(電流)を把握することができず、S5の投入によるループ形成時のループ開閉器における位相差が算出できない。そのため、位相差が所定値を超える場合(通常10度程度)ループ形成により流れる横流(ループ横流)によって系統が動揺し分散電源が解列する危険があり、それによって配電線が過負荷に陥ること等が懸念される。
In addition, even when the accident is not recovered, for example, when the section D4 is set to work outage due to electrical work, the load in the section D5 must be switched to another system. At this time, the switch S5 (loop switch) for connection is first turned on to form a loop with another system for switching the load in the section D5, and then the switches S3 and S4 in the section D4 where the work is interrupted are opened. , The load in the section D5 is switched to another system.
At this time, the power flow (current) in each section cannot be grasped only by the measured value of the power sent from the feeder F1 measured at the substation during the operation of the distributed power source. The phase difference in the loop switch cannot be calculated. For this reason, when the phase difference exceeds a predetermined value (usually about 10 degrees), there is a risk that the system may be shaken by the cross current (loop cross current) flowing through the loop formation and the distributed power supply may be disconnected, which causes the distribution line to be overloaded. Etc. are concerned.

この対策として、特許文献1には、変電所で測定される事故直前の配電線の送出し電力と、同じく事故直前の分散電源G1〜G3の発電電力の計測値に基づいて各区間の実際の負荷を算出し、それによって各区間の電力潮流を把握することが開示されている。
しかしながら、需要家に設置された分散電源は電気事業者にとってはお客様の設備であり、分散電源を設置している全てのお客様に電気事業者の都合で電気事業者のための余分な計測装置の設置を要請することは困難である。
このように、現実の配電系統の制御においては上記に限らず、種々の不都合が生じている。例えば、配電系統の特定の区間で事故が発生した場合の遮断機CBの再投入、区分開閉器のS1、S2、S3…の順投等の事故復旧操作時に配電線の送出し電流が過大になり遮断器CBが遮断したり、通常の供給状態においても配電線の区間によっては電圧が規定値以上に低下又は上昇するような不都合が生じている。
特開2003−61247号公報
As a countermeasure, Patent Document 1 discloses an actual power distribution of each section based on the measured value of the power transmitted from the distribution line immediately before the accident measured at the substation and the generated power of the distributed power sources G1 to G3 immediately before the accident. It is disclosed that the load is calculated and thereby the power flow in each section is grasped.
However, the distributed power source installed at the customer is the customer's equipment for the electric power company, and all the customers who have installed the distributed power source have extra measuring equipment for the electric power company for the convenience of the electric power company. It is difficult to request installation.
Thus, the actual control of the power distribution system is not limited to the above, and various inconveniences occur. For example, when a fault occurs in a specific section of the power distribution system, the current delivered to the distribution line is excessive during an accident recovery operation such as re-injection of the circuit breaker CB and sequential throwing of the switch S1, S2, S3, etc. The breaker CB is interrupted, and even in a normal supply state, depending on the section of the distribution line, there is a problem that the voltage drops or rises above a specified value.
JP 2003-61247 A

本発明は、上記の不都合を解消するため、分散電源を設置している需要家と配電系統の連系点である需要家入口に設置する分散電源の運転状況を把握する検出装置又は同分散電源の運転状況検出機能を有する電力量計を提供する。さらに、各分散電源が設置されている需要家の入口に当該検出装置又は電力量計を設置し、それらの検出結果情報に基づいて区分開閉器で区分された配電線フィーダの区間ごとの電力潮流及び、当該需要家の実際の負荷電力値を推定し、該推定値に基づいて上記不都合を回避した配電系統の制御を実現するものである。   In order to eliminate the inconveniences described above, the present invention provides a detection device or a distributed power source for grasping the operating status of a distributed power source installed at a customer entrance that is a connection point between a customer who has installed a distributed power source and a distribution system. A watt-hour meter having a function of detecting an operating state of Furthermore, the detection device or watt hour meter is installed at the entrance of the customer where each distributed power source is installed, and the power flow for each section of the distribution line feeder divided by the division switch based on the detection result information And the actual load electric power value of the said consumer is estimated, Based on this estimated value, control of the distribution system which avoided the said inconvenience is implement | achieved.

本発明の第1の技術手段は、商用系統から分散電源を有する需要家に流入又は流出する電力の力率を検出し、該力率検出値を予め設定した閾値と比較し、検出値が閾値より低い場合に当該需要家の分散電源が発電状態であると判定する分散電源検出装置を特徴とする。   The first technical means of the present invention detects a power factor of power flowing into or out of a consumer having a distributed power source from a commercial system, compares the detected power factor with a preset threshold value, and the detected value is a threshold value. It is characterized by a distributed power source detection device that determines that the distributed power source of the consumer is in a power generation state when the power is lower.

第2の技術手段は、需要家に流入又は流出する電力及びその力率を検出し、該力率検出値により需要家の分散電源が発電状態であることを検出した際の前記電力の検出値に基づいて当該需要家の分散電源の発電電力を推定することを特徴とする。   The second technical means detects the electric power flowing into or out of the consumer and the power factor thereof, and the detected value of the electric power when detecting that the distributed power source of the consumer is in the power generation state based on the detected power factor. Based on the above, the generated power of the distributed power source of the consumer is estimated.

第3の技術手段は、分散電源が発電状態であることを検出した時に、当該検出時の前後に検出した前記電力の検出値の差から分散電源の発電電力を推定することを特徴とする。   The third technical means is characterized in that, when it is detected that the distributed power source is in a power generation state, the generated power of the distributed power source is estimated from the difference between the detected power values detected before and after the detection.

第4の技術手段は、分散電源の発電状態が検出されてない時の前記電力の検出値に基づいて需要家の平均負荷電力を推定し、分散電源が運転しているときの前記の電力の検出値との差によってリアルタイムに分散電源の発電電力を推定することを特徴とする。   The fourth technical means estimates an average load power of a consumer based on the detected value of the power when the power generation state of the distributed power source is not detected, and calculates the power when the distributed power source is operating. It is characterized in that the generated power of the distributed power source is estimated in real time based on the difference from the detected value.

第5の技術手段は、前記負荷電力の推定が、所定時間内の前記電力の検出値の平均値であることを特徴とする。   A fifth technical means is characterized in that the load power estimation is an average value of the detected power values within a predetermined time.

第6の技術手段は、前記力率の検出値は所定時間内の力率測定値の平均値であることを特徴とする。   The sixth technical means is characterized in that the detected value of the power factor is an average value of the power factor measured values within a predetermined time.

第7の技術手段は、前記分散電源運転状況検出装置が通信機能を備えたことを特徴とする。   A seventh technical means is characterized in that the distributed power supply operating state detecting device has a communication function.

第8の技術手段は、前記分散電源運転状況検出装置を備えた電力量計を特徴とする。   The eighth technical means is characterized by an watt-hour meter provided with the distributed power supply operating state detecting device.

第9の技術手段は、配電系統に接続された分散電源を有する各需要家と系統との連系点に前記第7の技術手段の分散電源運転状況検出装置を設置し、前記各需要家の分散電源の発電電力の情報を収集し、当該情報と少なくとも当該配電系統の送り出し電力に基づいて、該配電系統に挿入された電力供給区間を区分する区分開閉器によって区分された各供給区間における電力潮流を推定し、前記区分開閉器の開閉を制御することを特徴とする。   The ninth technical means installs the distributed power supply operating state detection device of the seventh technical means at a connection point between each customer having a distributed power source connected to the power distribution system and the system, Collects information on the generated power of the distributed power source, and based on the information and at least the power sent out of the distribution system, the power in each supply section divided by the division switch that divides the power supply section inserted into the distribution system The tidal current is estimated and the switching of the section switch is controlled.

第10の技術手段は、前記電力潮流の推定に基づいて、配電系統をループ接続する際に投入する前記区分開閉器における系統の位相差を検出し前記ループ接続の可否を決定することを特徴とする。   A tenth technical means is characterized in that, based on the estimation of the power flow, the phase difference of the system in the section switch to be inserted when the distribution system is connected in a loop is detected to determine whether or not the loop connection is possible. To do.

本発明により、需要家設備に格別な測定装置の設置を要請することなく、電気事業者が管理する電力量計が設置される需要家と系統との連系点に本発明の分散電源運転状況検出装置を併設することにより、又は電力量計に当該装置を内蔵/併設することにより、需要家の分散電源の発電の有無及び/又は発電電力などの運転状況を検出することが可能となる。   According to the present invention, the operation of the distributed power supply according to the present invention is performed at the connection point between the customer and the grid where the watt hour meter managed by the electric utility is installed without requesting the installation of a special measuring device in the customer facility. It is possible to detect the presence / absence of power generation of the distributed power source of the consumer and / or the operation status such as the generated power by installing the detection device or installing the device in the watt-hour meter.

さらに、検出した上記発電電力を営業所等の配電系統を制御する制御所に収集し、配電系統の区分開閉器で区分された各供給区間の電力潮流の状況、需要家の実際の負荷電力の状況を把握することが可能であり、系統の末端あるいは中途等における電圧の低下/上昇を未然に防ぐことができる。
また、事故復旧操作時など分散電源の解列状態における変電所の遮断機の再投入、区分開閉器の順投などの系統の制御操作において、予期しない過負荷による配電線の遮断器や開閉器の予期せぬ遮断等を回避することができる。
さらに、電力潮流を推定できるので、配電系統の負荷の切り替えなどの際の系統のループ操作において、投入するループ開閉器における位相差を正確に把握することが可能となり、ループ時の系統の動揺による分散電源の解列等を回避することができる。
In addition, the detected generated power is collected at a control station that controls the distribution system such as a sales office, and the power flow status of each supply section divided by the distribution switch of the distribution system, the actual load power of the customer It is possible to grasp the situation, and it is possible to prevent a voltage drop / rise at the end or midway of the system.
In addition, distribution system circuit breakers and switches due to unexpected overloads in system control operations such as re-insertion of substation circuit breakers when the distributed power source is disconnected, such as during accident recovery operations, and sequential throwing of divisional switches Can be avoided.
In addition, since the power flow can be estimated, it is possible to accurately grasp the phase difference in the loop switch to be inserted in the loop operation of the system when switching the load of the distribution system, etc. It is possible to avoid disconnection of distributed power sources.

第1図は、本発明が実施される配電系統の1部を示した図である。図1は前記図13に例示した配電系統における分散電源が設置された需要家Bに本発明に係る通信機能を備えた分散電源の運転状況検出装置を内蔵した電力量計1を設置すると共に、電気事業者の営業所等の制御所15が当該電力量計により検出される分散電源の発電電力等の運転状況と、変電所から電力計13によって計測される各フィーダの送り出し電力とを収集し当該配電系統を制御する例を示している。   FIG. 1 is a diagram showing a part of a power distribution system in which the present invention is implemented. FIG. 1 shows a watt-hour meter 1 having a built-in operating state detection device for a distributed power source having a communication function according to the present invention installed in a consumer B in which a distributed power source is installed in the distribution system illustrated in FIG. A control station 15 such as a business office of an electric power company collects the operation status such as the generated power of the distributed power source detected by the watt-hour meter and the power sent from each feeder measured by the power meter 13 from the substation. An example of controlling the power distribution system is shown.

図2は、本発明に係る分散電源の運転状況の検出原理を検証するために、分散電源が設置された需要家における分散電源の発電電力と系統から当該需要家への供給電力及びその力率の測定状況を説明した図である。4軒の各需要家に対し図に示すように、需要家と系統との連系点(需要家入口)に需要家に供給される電力及びその力率の測定器を設置すると共に、需要家の分散電源である発電機の接続点に発電電力と力率の測定器を設置した。
当該需要家は柱上変圧器を経て低圧(電圧)で受電しており、複数の負荷機器を有し、系統及び上記発電機の発電電力によってこれらの負荷に電力供給をする。
なお、当該分散電源は、定格出力0.8kwの同期発電機を駆動する発電設備であり、発電時にエンジンを冷却水で冷却することにより、加熱された冷却水(温水)を給湯に利用する給湯設備を併設した発電設備である。
FIG. 2 is a diagram illustrating the operation principle of the distributed power supply according to the present invention, in order to verify the generated power of the distributed power supply and the power supplied from the system to the consumer and the power factor thereof. It is a figure explaining the measurement condition. As shown in the figure for each of the four customers, a measuring instrument for the power supplied to the customer and its power factor is installed at the connection point (customer entrance) between the customer and the grid. A measuring device for generated power and power factor was installed at the connection point of the generator, which is a distributed power source.
The customer receives power at a low voltage (voltage) through a pole transformer, has a plurality of load devices, and supplies power to these loads by the power generated by the system and the generator.
The distributed power source is a power generation facility that drives a synchronous generator with a rated output of 0.8 kW, and hot water supply that uses heated cooling water (hot water) for hot water supply by cooling the engine with cooling water during power generation. It is a power generation facility with facilities.

図3は、上記需要家に設置した測定器の記録を示す図である。図3Aは需要家入口における有効電力、図3Bは同電力の力率の瞬時値を1分間隔で検出した記録、図3Cは該力率測定値の10分間の記録の平均値、図3Dは発電機(分散電源)の発電電力である。
発電機の発電電力の記録において負の電力を消費している状態が記録されているが、これは前記のように当該発電設備が給湯設備を併設しており、給湯設備の凍結防止用のヒータ電力の消費及び設備の制御用電力の消費が記録されているものである。(本記録は12月の記録)。
FIG. 3 is a diagram showing a record of a measuring instrument installed in the consumer. FIG. 3A shows the active power at the customer entrance, FIG. 3B shows a record in which instantaneous values of the power factor of the same power are detected at intervals of 1 minute, FIG. 3C shows an average value of the power factor measurement values for 10 minutes, and FIG. This is the power generated by the generator (distributed power supply).
In the record of the generated power of the generator, a state in which negative power is consumed is recorded. As described above, the power generation equipment is provided with the hot water supply equipment, and the heater for preventing freezing of the hot water supply equipment is used. The power consumption and the power consumption for equipment control are recorded. (This record is for December).

図3Aにおいて、需要家入口の有効電力測定値に針状のピークが多数記録されているが、これは電動機負荷の断続運転における投入時の瞬時的な起動電流に起因するものであり、これと対応して図3Bの力率測定値にも同様の針状ピークが記録されている。
図3Cの10分間平均の力率測定値では瞬時値の針状ピークが除去されている。
なお、分散電源の発電機Gの発電電力の力率測定値は略100%付近であった。これは、図3Dの記録から理解できるように、需要家に設置される発電機は高効率で運転されるので殆どの場合、高効率の定格出力付近で運転され、さらに、発電機が同期発電機の場合、定格出力付近で高効率運転するため、力率は必然的に100%で運転される。
なお、燃料電池等の直流電力を発電する発電設備では、DC/ACコンバータを介して供給され、また、誘導発電機による発電設備の場合もAC/ACコンバータを介して供給されるので、これらの発電設備からも通常力率100%で電力供給されることとなる。
In FIG. 3A, many needle-like peaks are recorded in the measured value of the active power at the customer entrance, which is caused by the instantaneous start-up current at the time of the intermittent operation of the motor load. Correspondingly, a similar acicular peak is recorded in the power factor measurement value of FIG. 3B.
In the 10-minute average power factor measurement value of FIG. 3C, the acicular peak of the instantaneous value is removed.
Note that the power factor measurement value of the generated power of the generator G of the distributed power source was approximately 100%. As can be understood from the record in FIG. 3D, since the generator installed in the consumer is operated with high efficiency, in most cases, it is operated near the rated output with high efficiency. In the case of a machine, since it operates at high efficiency near the rated output, the power factor is necessarily operated at 100%.
In addition, in a power generation facility that generates direct-current power such as a fuel cell, it is supplied via a DC / AC converter, and in the case of a power generation facility using an induction generator, it is also supplied via an AC / AC converter. Electric power is also supplied from the power generation facility at a normal power factor of 100%.

図3B又は図3Cの力率測定値の記録と図3Dの発電機Gの発電電力の記録を対比することにより以下の事実が観測できる。
つまり、図3B又は図3Cの力率測定値の力率変動の記録と発電機の運転/停止の記録が対応していることである。
上記の事項に加え、需要家の負荷の種類/特性は多少の負荷電力の変動があったとしても略一定、つまり、需要家の負荷の力率は略一定と考えられる。
The following facts can be observed by comparing the record of the power factor measurement value in FIG. 3B or FIG. 3C with the record of the generated power of the generator G in FIG. 3D.
That is, the record of the power factor fluctuation of the power factor measurement value in FIG. 3B or FIG. 3C corresponds to the record of the operation / stop of the generator.
In addition to the above items, the type / characteristics of the customer's load is considered to be substantially constant even if there is some variation in load power, that is, the power factor of the customer's load is considered to be substantially constant.

図4は以上の点を説明する図である。需要家の負荷Lには有効電力Pl、無効電力Qlが供給されなければならない。分散電源の発電機Gの停止状態のときはこの有効電力Pl、無効電力Qlはすべて系統から供給される。
発電機Gが出力Pgで発電を開始すると、系統から供給される有効電力はPs=Pl−Pgとなるが、発電機Gは前述のように力率100%、つまり無効電力Q=0に制御(キューゼロ制御)され、無効電力を供給しないため系統からは負荷の全無効電力Qs=Qlが供給されるため、需要家入口における力率測定値は低下する。
FIG. 4 is a diagram for explaining the above points. The load L of the consumer must be supplied with active power Pl and reactive power Ql. When the generator G of the distributed power source is in a stopped state, the active power Pl and the reactive power Ql are all supplied from the system.
When the generator G starts generating power at the output Pg, the active power supplied from the system becomes Ps = Pl−Pg, but the generator G is controlled to have a power factor of 100%, that is, reactive power Q = 0 as described above. (Cue zero control) Since the reactive power is not supplied, the total reactive power Qs = Ql of the load is supplied from the system, so that the power factor measurement value at the customer entrance decreases.

上記の事実から、需要家入口における力率測定値が所定の閾値以下に低下している場合は当該需要家に設置された分散電源が発電状態であることが検出できる。
当該需要家の負荷電力は図3Aの測定値から平均1kw前後、力率の測定値は略70〜95%で安定した値あることが読み取れる。これに対して分散電源の発電機の出力は定格出力の略0.8kw程度であり、負荷電力の80%に及んでいる。この状況で分散電源が発電を開始した場合、分散電源からの無効電力供給が零とすれば計算上力率は10%〜30%程度に低下する。
図3B、Cでは、10%〜60%超で変動しているが、これは、系統の電圧変動及び発電機電圧の変動に伴い分散電源の同期発電機が一時的に無効電力を供給するものと考えられる。しかし基本的には前述のとおり分散電源の発電設備はゼロキュー制御をしているので、需要家入口の力率測定値は大きく低下している。
図3B、3Cで閾値を65%に設定し判定した結果、夫々の需要家における判定の正答率は図5のとおりで、平均95%であった。なお、この閾値は負荷の特性を考慮して適切に設定される設計値である。
From the above facts, when the power factor measurement value at the customer entrance falls below a predetermined threshold value, it can be detected that the distributed power source installed in the consumer is in the power generation state.
It can be seen that the load power of the consumer is a stable value of about 1 to 10 kw on average and the measured value of power factor is approximately 70 to 95% from the measured value of FIG. 3A. On the other hand, the output of the generator of the distributed power supply is about 0.8 kw of the rated output, which is 80% of the load power. In this situation, when the distributed power source starts power generation, if the reactive power supply from the distributed power source is zero, the calculated power factor is reduced to about 10% to 30%.
In FIGS. 3B and 3C, it fluctuates by 10% to more than 60%. This is because the synchronous generator of the distributed power supply temporarily supplies reactive power in accordance with the fluctuation of the system voltage and the fluctuation of the generator voltage. it is conceivable that. However, basically, as described above, the power generation equipment of the distributed power source performs zero cue control, so the power factor measurement value at the customer entrance is greatly reduced.
As a result of setting and determining the threshold value to 65% in FIGS. 3B and 3C, the correct answer rate of the determination in each customer is as shown in FIG. This threshold value is a design value that is appropriately set in consideration of load characteristics.

図6は、上記事項の図解である。図においてW1、W2は需要家入口の測定電力を示しており、Pgは分散電源の発電機Gの発電電力の測定値、Pl、Qlは負荷の有効電力、無効電力を示している。図示のとおり、分散電源の発電機Gが運転を開始すると、需要家入口の力率測定値は、Cosθ1からCosθ2に低下することになる。
なお、破線で示したPg’、W2’、Ps’は、分散電源の発電電力が需要家の負荷を上回り系統へ発電電力の一部を送電している状態(逆潮)で、需要家入口の電力計の計測値は負の値を計測する場合を示している。この場合、分散電源が運転状態であることは明らかである。
FIG. 6 is an illustration of the above items. In the figure, W1 and W2 indicate the measured power at the customer entrance, Pg indicates the measured value of the generated power of the generator G of the distributed power source, and Pl and Ql indicate the active power and reactive power of the load. As illustrated, when the generator G of the distributed power source starts operation, the power factor measurement value at the customer entrance decreases from Cos θ1 to Cos θ2.
Pg ′, W2 ′, and Ps ′ indicated by broken lines indicate a state where the generated power of the distributed power source exceeds the load of the customer and a part of the generated power is transmitted to the grid (reverse tide), and the customer entrance The measured value of the wattmeter indicates a case where a negative value is measured. In this case, it is clear that the distributed power source is in operation.

図6に示すように、力率の測定値により分散電源の運転を検出することにより、当該運転開始を検出した前後の需要家入口の電力測定値の差から分散電源の発電電力を推定することができる。
また、力率測定値から分散電源の運転を確認した場合、分散電源の通常の運転状況から発電機の定格出力付近で運転しているものとして発電機の定格出力を発電電力として推定しても配電線の過負荷等を考慮する系統運用には充分活用できる。
As shown in FIG. 6, by detecting the operation of the distributed power source from the measured value of the power factor, the generated power of the distributed power source is estimated from the difference between the measured power values at the customer entrance before and after detecting the start of the operation. Can do.
In addition, when the operation of the distributed power source is confirmed from the power factor measurement value, the rated output of the generator is estimated as the generated power, assuming that it is operating near the rated output of the generator from the normal operating status of the distributed power source. It can be fully utilized for system operation considering overloading of distribution lines.

さらに、分散電源の運転状態が検出されない状態における需要家入口の電力測定値から当該需要家の実際の平均負荷電力を求めることができ、当該平均値に基づいて分散電源の運転を検出している際の入口電力の測定値との差からリアルタイムで分散電源の発電出力を推定することができる。
このように、分散電源の発電電力を推定できるので、これらの検出値を収集し系統の各区間における需要家の実際の負荷電力及び潮流の現状を把握することができ、事故復旧、負荷切替え等の際の系統の制御を的確に行なうことができる。
Furthermore, the actual average load power of the customer can be obtained from the measured power value at the customer entrance when the operating state of the distributed power source is not detected, and the operation of the distributed power source is detected based on the average value. The power generation output of the distributed power source can be estimated in real time from the difference from the measured value of the inlet power at the time.
In this way, the generated power of the distributed power source can be estimated, so these detected values can be collected to grasp the actual load power and current state of the customer in each section of the system, accident recovery, load switching, etc. In this case, the system can be controlled accurately.

図7は、本発明の分散電源運転状況検出装置30の一例を示す図である。図において31は需要家の受電端の電圧検出部、32は需要家に供給される電流検出部、33は需要家に供給される電力演算部、34は前記電圧電流の位相差により需要家に供給される前記電力の力率演算部、35は予め設定された閾値と前記力率の演算結果を比較し分散電源の運転の有無を検出する力率比較部、36は前記比較部が分散電源の運転を検出しない間の所定期間の電力演算値を平均し平均負荷電力を推定する平均負荷演算部、37は前記力率比較部が分散電源の運転を検出した際に分散電源の出力を推定する分散電源出力演算部、38は力率演算の際の平均時間の設定、力率比較部の閾値設定、平均負荷演算における期間設定、分散電源出力推定の手法の設定などの各種設定を入力する設定操作部、39は各検出部、演算部の検出値、演算値、各種設定値を記憶する記憶部、40は各種検出値、演算結果等を連絡する通信部、41は必要により各種検出値等を表示する表示部、42は各構成部を制御する制御部である。
なお、分散電源の発電電力を推定しない場合には、電力演算部33、平均負荷演算部36、分散電源出力演算部37を省略することができる。
また、本実施例に電力量演算部を追加することにより分散電源運転状況検出機能を有した電力量計として構成することもできる。あるいは、電子式電力量計の制御ソフトに前記分散電源運転状況検出機能を付加することによって同様の電力量計として構成することができる。
FIG. 7 is a diagram showing an example of the distributed power supply operating condition detection device 30 of the present invention. In the figure, 31 is a voltage detection unit at a power receiving end of a consumer, 32 is a current detection unit supplied to the consumer, 33 is a power calculation unit supplied to the consumer, and 34 is a consumer based on the phase difference of the voltage / current. The power factor calculation unit 35 of the power to be supplied, 35 is a power factor comparison unit that compares the calculation result of the power factor with a preset threshold value and detects the presence or absence of the operation of the distributed power source, and 36 is a distributed power source. An average load calculation unit that averages power calculation values for a predetermined period during which no operation is detected and estimates an average load power, 37 estimates the output of the distributed power source when the power factor comparison unit detects the operation of the distributed power source The distributed power supply output calculation unit 38 inputs various settings such as setting of the average time in power factor calculation, threshold setting of the power factor comparison unit, period setting in average load calculation, and setting of a method for estimating the distributed power output. A setting operation unit 39 is provided for each detection unit and calculation unit. Storage unit for storing output values, calculated values, and various set values; 40, a communication unit for communicating various detection values, calculation results, etc .; 41, a display unit for displaying various detection values, etc. as necessary; It is a control part to control.
If the generated power of the distributed power source is not estimated, the power calculation unit 33, the average load calculation unit 36, and the distributed power output calculation unit 37 can be omitted.
Moreover, it can also be comprised as a watt-hour meter which has a distributed power supply operating condition detection function by adding an electric energy calculating part to a present Example. Or it can comprise as a similar watt-hour meter by adding the said distributed power supply operating condition detection function to the control software of an electronic watt-hour meter.

分散電源出力演算部37の設定は、前述したように当該需要家に設置された分散電源の特性や運転形態に応じ、例えば発電機の定格出力としたり、力率比較部35による分散電源の運転検出時前後の電力演算部33の電力演算値の差としたり、平均負荷演算部が演算した平均負荷電力値と電力演算部が演算した電力値の差としてリアルタイムで発電出力を推定する等の手法を1又は複数設定することができる。
平均負荷演算部36の設定は、系統運用上生じる問題は軽負荷時と重負荷時では異なるので、平均負荷電力を推定する時間帯に対応して期間設定をすることができる。
力率比較部35の設定は、前記実測の例では65%に設定したが、需要家の負荷の特性に対応して最適値が設定される。また、力率演算における平均値を得る時間についても同様であり、需要家の負荷の特性に応じて最適値が設定される。例えば、主要な負荷が抵抗負荷であるような場合は平均値を演算する必要がないこともある。
As described above, the setting of the distributed power output calculation unit 37 is, for example, the rated output of the generator or the operation of the distributed power source by the power factor comparison unit 35 according to the characteristics and operation mode of the distributed power source installed in the consumer. A method of estimating a power generation output in real time as a difference between power calculation values of the power calculation unit 33 before and after detection, or as a difference between an average load power value calculated by the average load calculation unit and a power value calculated by the power calculation unit One or more can be set.
The setting of the average load calculation unit 36 can be set in accordance with the time zone for estimating the average load power because the problems that occur in system operation differ between light load and heavy load.
The setting of the power factor comparison unit 35 is set to 65% in the actual measurement example, but an optimum value is set corresponding to the load characteristic of the consumer. The same applies to the time for obtaining the average value in the power factor calculation, and the optimum value is set according to the load characteristics of the consumer. For example, when the main load is a resistance load, it may not be necessary to calculate an average value.

図8は、本実施例の動作を説明するフローチャートである。S1で電圧・電流の検出値を取得し、S2で上記電圧電流の位相差θを検出すると共に力率(Cosθ)を検出する。S3で検出した力率の瞬時値を平均化するか否かを判断し、平均化する(YES)場合S4で予め設定された平均化の時間を取得し、S5で平均化処理し、S6で当該力率値が予め設定した閾値以下か否かを判断し、設定値以下(YES)の場合にS7で分散電源が発電中であると判定する。所定値以下でない(NO)場合には分散電源は停止中と判定する。
S3で力率検出値を平均化しない(NO)場合にはS6にスキップし前記閾値と比較する。
FIG. 8 is a flowchart for explaining the operation of this embodiment. In S1, voltage / current detection values are acquired. In S2, the voltage / current phase difference θ is detected and the power factor (Cosθ) is detected. It is determined whether or not the instantaneous value of the power factor detected in S3 is averaged, and when averaging is performed (YES), the averaging time set in advance in S4 is acquired, the averaging process is performed in S5, and in S6 It is determined whether or not the power factor value is equal to or less than a preset threshold value. If the power factor value is equal to or less than a set value (YES), it is determined in S7 that the distributed power source is generating power. If it is not less than the predetermined value (NO), it is determined that the distributed power supply is stopped.
If the power factor detection value is not averaged in S3 (NO), the process skips to S6 and is compared with the threshold value.

次に、このようにしてS7で分散電源が発電中であると判定された際に、分散電源の発電電力の推定を行なう場合は次のステップに進む。
S8で電力演算をしているか否かを判断する。前述したように系統の分散電源の設置状況によっては、分散電源の運転を確認すれば分散電源が定格出力で運転しているものと推定する場合には必ずしも電力演算をしなくても良い。S16はこのケースを示している。
S9では平均負荷電力の演算値を取得するか否かを判断する。前述のように分散電源の発電電力をリアルタイムで推定する必要がなければ、必ずしも平均負荷電力の演算をしなくても良い。
S9で取得する(YES)場合には、S10で平均負荷電力演算値Pl0を取得し、S11でリアルタイムの電力演算値(測定値)Psを取得し、S12でPg=Pl0−Psを演算しリアルタイムの分散電源の発電出力と推定する。
S9で平均負荷電力の演算をしない又は演算結果を取得しない場合、S13で分散電源の運転を検出した直前の電力演算値Plを取得し、S14で同検出直後の電力演算値Psを取得し、S15でPg=Pl−Psを分散電源の発電出力と推定する。
Next, when it is determined in S7 that the distributed power source is generating power, if the generated power of the distributed power source is estimated, the process proceeds to the next step.
In S8, it is determined whether or not power calculation is being performed. As described above, depending on the installation status of the distributed power supply in the system, if it is estimated that the distributed power supply is operating at the rated output by confirming the operation of the distributed power supply, the power calculation is not necessarily performed. S16 shows this case.
In S9, it is determined whether or not to obtain a calculated value of average load power. As described above, if it is not necessary to estimate the generated power of the distributed power source in real time, it is not always necessary to calculate the average load power.
If it is acquired in S9 (YES), the average load power calculation value P10 is acquired in S10, the real-time power calculation value (measured value) Ps is acquired in S11, and Pg = P10-Ps is calculated in S12 and real time. Estimated power generation output of distributed power source.
If the average load power is not calculated or the calculation result is not acquired in S9, the power calculation value Pl immediately before detecting the operation of the distributed power source is acquired in S13, and the power calculation value Ps immediately after the detection is acquired in S14. In S15, Pg = P1-Ps is estimated as the power generation output of the distributed power source.

図9は実施例1に示した分散電源運転状況検出装置を分散電源が設置された各需要家入口(系統との連系点)に設置し、少なくとも当該検出装置の分散電源運転状況の検出情報を収集し、当該情報に基づいて配電系統を制御する制御装置の一例を示す図である。
配電系統制御装置50は、電気事業者の営業所等の制御所において変電所に設置した各フィーダの送り出し電力、電圧/電流の検出値と共に、通信機能を介して前記分散電源運転状況検出装置の検出情報を収集する。
FIG. 9 shows the distributed power supply operation status detection apparatus shown in the first embodiment installed at each customer entrance (connected to the grid) where the distributed power supply is installed, and at least the detection information of the distributed power supply operation status of the detection apparatus. It is a figure which shows an example of the control apparatus which collects and controls a power distribution system based on the said information.
The power distribution system control device 50 includes the distributed power supply operating state detection device of the distributed power supply operating state detection device via a communication function together with the detected power and voltage / current values of each feeder installed in the substation at a control station such as a business office of an electric power company. Collect detection information.

51は変電所及び/又は分散電源運転状況検出装置と連絡する通信部、52は分散電源運転状況の取得部で例えば前記実施例1の各検出部の検出結果又は各演算部の演算結果の情報を取得する。
53は変電所で検出されたフィーダの送り出し電力/電圧・電流の取得部、54は分散電源の発電電力情報と変電所の前記送り出し電力/電流に基づいて各フィーダの各区間における潮流を推定する潮流演算部、55は同様に分散電源が解列した場合の各区間の潮流を推定する解列時潮流演算部である。
55の解列時潮流推定の演算例としては、52の分散電源運転状況取得部で取得したフィーダの各分散電源の発電出力と53のフィーダ送り出し電力取得部で取得した当該フィーダの電力/電流との合計値を各区間に等分して推定する。この解列時の各区間の潮流推定値に基づき、54の潮流演算部は52で取得した当該区間内の各分散電源の発電出力を減算して潮流の現状を推定する。
56は負荷切替え時等にループ対象となるフィーダの特性情報(抵抗・リアクタンス)及び当該フィーダの潮流推定値を取得し、ループ開閉器における位相差を演算する位相演算部、57は前記位相差が予め設定した基準値以内の場合にループ投入を可とするループ判定部である。基準値は、フィーダの分散電源の特性に応じて定められる設計事項であるが、通常位相差が10度程度以上の場合、ループ接続による横流に伴う系統の動揺によって分散電源が解列する事例が報告されている。
51 is a communication unit that communicates with the substation and / or the distributed power supply operation state detection device, 52 is a distributed power supply operation state acquisition unit, for example, information of detection results of each detection unit or calculation results of each calculation unit of the first embodiment To get.
53 is an acquisition unit for feeder power / voltage / current detected by the substation, and 54 is for estimating the power flow in each section of each feeder based on the generated power information of the distributed power source and the power / current sent from the substation. Similarly, the power flow calculation unit 55 is a parallel power flow calculation unit that estimates a power flow in each section when the distributed power supply is disconnected.
As an example of calculation of power flow estimation at the time of disconnection 55, the power generation output of each distributed power source acquired by the distributed power source operation status acquisition unit 52 and the power / current of the feeder acquired by the feeder delivery power acquisition unit 53 Is estimated by equally dividing each section. Based on the estimated tidal current value of each section at the time of the separation, the tidal current calculation unit 54 subtracts the power generation output of each distributed power source in the section acquired in 52 to estimate the current state of the tidal current.
56 is a phase calculation unit that obtains characteristic information (resistance / reactance) of the feeder to be looped at the time of load switching and the like, and an estimated current flow of the feeder, and 57 calculates a phase difference in the loop switch. 57 is the phase difference This is a loop determination unit that allows a loop to be entered when it is within a preset reference value. The reference value is a design item determined according to the characteristics of the distributed power supply of the feeder. However, when the phase difference is usually about 10 degrees or more, there are cases where the distributed power supply is disconnected due to the fluctuation of the system due to the cross current caused by the loop connection. It has been reported.

58は同様にフィーダの潮流と特性情報に基づいて各区間(区分開閉器)における電圧値を演算する電圧演算部である。59は基準値等の各種設定値、データ等の設定操作部、60は分散電源運転状況関連以外の従来から収集されている各種の系統状態(区分開閉器の開閉情報、事故情報、保護装置の動作状況、事故区間、作業停電予定、負荷切替えその他)に関する系統情報取得部である。
61は、各演算結果、設定値、収集情報等の各種情報等の記憶部、62はこれらの演算、判定結果、各種情報に基づいて各フィーダの遮断器CB、区分開閉器Sの操作を指令する操作指令部、63は区分開閉器の開閉状態等の系統の状態を示す表示部、64はこれら各部を制御する制御部である。
Similarly, reference numeral 58 denotes a voltage calculation unit that calculates a voltage value in each section (section switch) based on the flow of the feeder and the characteristic information. 59 is a setting operation unit for various setting values such as reference values and data, and 60 is a variety of system statuses that have been collected in the past other than those related to the operation status of distributed power sources (switching information of classification switches, accident information, protection device It is a system information acquisition part about an operation condition, an accident area, a work blackout schedule, load switching, etc.).
61 is a storage unit for various information such as each calculation result, set value, and collection information, and 62 is a command for operating the circuit breaker CB and the section switch S of each feeder based on these calculations, determination results, and various information. An operation commanding unit 63, a display unit 63 indicating a system state such as an open / closed state of the segment switch, and a control unit 64 for controlling these units.

ここで、上記実施例のループ開閉器の位相演算部56及びループ可否を判定するループ判定部57について説明を補足する。
図10Aは配電線(フィーダ)の送り出し電圧Vsと末端(ループ開閉器)における電圧Vrの位相関係を示す図であり、フィーダを流れる電流Iによりフィーダの抵抗RとリアクタンスXによる電圧降下でVsとVrに位相差φが生じることを示している。図10Bは負荷電流IF1のフィーダF1と、同IF2のフィーダF2との間で一部負荷を切替えるためにループ接続する場合を示した図であり、ループ点の開閉器(ループ開閉器)Stを投入してループを形成する。
図10Cは当該フィーダF1とF2のループ点である開閉器Stにおける電圧Vr1、Vr2の位相関係を示す図である。図示のようにループ点ではVr1とVr2には位相差φが生じ、これによりVr1−Vr2の電圧差が発生しており、開閉器Stの投入によりループ横流が流れる。このループ横流は位相差が大きくなれば大となり、ループ横流の影響により系統が動揺し、分散電源の発電機が追随できなくなって解列することがある。
なお、図10は送り出し電圧と末端電圧に位相差が生じることを説明するための図であり、各フィーダの区間に電流値の相違等は反映していない。
Here, a supplementary description will be given of the phase calculation unit 56 and the loop determination unit 57 that determines whether or not the loop is possible in the loop switch according to the embodiment.
FIG. 10A is a diagram showing the phase relationship between the delivery voltage Vs of the distribution line (feeder) and the voltage Vr at the end (loop switch). The voltage drop due to the resistance R and reactance X of the feeder is caused by the current I flowing through the feeder. It shows that a phase difference φ occurs in Vr. FIG. 10B is a diagram showing a case in which a loop connection is made in order to switch a part of the load between the feeder F1 of the load current IF1 and the feeder F2 of the IF2, and the loop point switch (loop switch) St is To form a loop.
FIG. 10C is a diagram illustrating a phase relationship between the voltages Vr1 and Vr2 in the switch St that is a loop point of the feeders F1 and F2. As shown in the figure, a phase difference φ is generated between Vr1 and Vr2 at the loop point, thereby generating a voltage difference of Vr1−Vr2, and a loop cross current flows when the switch St is turned on. This loop cross current becomes large when the phase difference becomes large, and the system is shaken by the influence of the loop cross current, and the generator of the distributed power source cannot follow and may be disconnected.
Note that FIG. 10 is a diagram for explaining that a phase difference occurs between the sending voltage and the terminal voltage, and a difference in current value or the like is not reflected in each feeder section.

図11は、上記実施例によるループ開閉器Stのループ操作を説明するフローチャートである。
S20で、操作指令部62が選択したループ操作対象の開閉器StとそのフィーダF1、F2の情報を取得する。S21で各フィーダF1、F2の送り出し電力/電流を取得し、S22で当該フィーダF1、F2における需要家の分散電源の発電出力の推定値を取得し、S23で分散電源解列時の各区間の潮流を推定する(解列時潮流演算部55)。S24で前記推定値に分散電源の発電出力推定値を減算して各区間の潮流の現状を推定(潮流演算部56)し、S25で前記推定値とフィーダの抵抗・リアクタンスに基づいて前記図10Cに示すループ開閉器における位相差を演算する(位相演算部56)。S26で演算した位相差が基準値内か否かを判断し基準値内(YES)であれば当該開閉器が投入操作される(ループ判定部57)。基準値内でない場合(NO)であればループ不可の情報に基づき前記操作指令部62で他のループ箇所(開閉器)が選定される。
FIG. 11 is a flowchart for explaining the loop operation of the loop switch St according to the embodiment.
In S20, information on the switch St and the feeders F1 and F2 that are the loop operation target selected by the operation command unit 62 is acquired. In S21, the feed power / current of each feeder F1, F2 is acquired, in S22, the estimated value of the power generation output of the customer's distributed power source in the feeder F1, F2 is acquired, and in S23, each section at the time of the distributed power source disconnection is acquired. A tidal current is estimated (displacement tidal current calculation unit 55). In S24, the estimated power generation output value of the distributed power source is subtracted from the estimated value to estimate the current state of the tidal current in each section (tidal current calculation unit 56). In S25, based on the estimated value and the resistance / reactance of the feeder, FIG. The phase difference in the loop switch shown in FIG. It is determined whether or not the phase difference calculated in S26 is within the reference value. If it is within the reference value (YES), the switch is turned on (loop determination unit 57). If it is not within the reference value (NO), another loop point (switch) is selected by the operation command unit 62 based on the information indicating that the loop is not possible.

以上のように、本発明により従来取得できなかった需要家に設置された分散電源の運転状況の取得に基づいて、配電系統の各フィーダの各区間における電流・電圧、潮流を演算し、さらにループ点(開閉器)における位相差を演算しループ開閉器の投入可否等の情報を判断して、事故復旧、作業停電、負荷切替え等の際、上記遮断器・区分開閉器の操作指令部62が変電所の遮断機や各フィーダの区分開閉器、ループ開閉器の操作指令を行なうので、系統の操作/制御において予期せざる過負荷区間の発生、電圧の低下/上昇、運転中の分散電源の解列等の異常事態の発生を回避することができる。   As described above, based on the acquisition of the operating status of the distributed power supply installed in the consumer that could not be acquired conventionally by the present invention, the current / voltage and power flow in each section of each feeder of the distribution system are calculated, and further the loop By calculating the phase difference at the point (switch) and determining information such as whether or not the loop switch can be turned on, the operation command unit 62 of the circuit breaker / segment switch is Operation commands for substation circuit breakers, feeder switches, loop switches, and so on. Unexpected overload sections, voltage drops / rises, and operation of distributed power sources during operation. Occurrence of abnormal situations such as disconnection can be avoided.

本発明を適用した配電系統の説明図である。It is explanatory drawing of the power distribution system to which this invention is applied. 分散電源を設置した需要家の電力、力率、分散電源の発電電力の測定の説明図である。It is explanatory drawing of the measurement of the electric power of the consumer which installed the distributed power supply, a power factor, and the generated electric power of a distributed power supply. 図2の測定結果を示す図である。It is a figure which shows the measurement result of FIG. 分散電源の発電の説明図である。It is explanatory drawing of the electric power generation of a distributed power supply. 力率変動と分散電源の発電の関連を示す図表である。It is a graph which shows the relationship between a power factor fluctuation | variation and the power generation of a distributed power supply. 力率変動を説明するベクトル図である。It is a vector diagram explaining a power factor fluctuation | variation. 本発明の実施例1のブロック図である。It is a block diagram of Example 1 of the present invention. 実施例1の動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the first embodiment. 本発明の実施例2のブロック図である。It is a block diagram of Example 2 of the present invention. ループ開閉器の位相差の説明図である。It is explanatory drawing of the phase difference of a loop switch. 実施例2の動作の一例を説明するフローチャートである。10 is a flowchart illustrating an example of an operation according to the second embodiment. 従来技術の問題点の説明図である。It is explanatory drawing of the problem of a prior art. 従来の配電系統の説明図である。It is explanatory drawing of the conventional power distribution system.

符号の説明Explanation of symbols

10…変電所、14…変電所母線、15…制御所、F…配電線フィーダ、CB…遮断器、S…区分開閉器、L…負荷、G…発電機、Pl…負荷有効電力、Ql…負荷無効電力、Pg…分散電源発電出力、30…分散電源運転状況検出装置、31…電圧検出部、32…電流検出部、33…電力演算部、34…力率演算部、35…力率比較部、36…平均負荷演算部、37…分散電源出力演算部、50…配電系統制御装置、52…分散電源運転状況取得部、53…フィーダ送り出し電力取得部、54…潮流演算部、55解列時潮流演算部、56…位相演算部、57…ループ判定部、58…ループ演算部。 DESCRIPTION OF SYMBOLS 10 ... Substation, 14 ... Substation bus, 15 ... Control station, F ... Distribution line feeder, CB ... Circuit breaker, S ... Section switch, L ... Load, G ... Generator, Pl ... Load active power, Ql ... Load reactive power, Pg ... distributed power generation output, 30 ... distributed power supply operating state detection device, 31 ... voltage detection unit, 32 ... current detection unit, 33 ... power calculation unit, 34 ... power factor calculation unit, 35 ... power factor comparison , 36 ... Average load calculation unit, 37 ... Distributed power output calculation unit, 50 ... Distribution system control device, 52 ... Distributed power supply operating status acquisition unit, 53 ... Feeder feed power acquisition unit, 54 ... Power flow calculation unit, 55 disconnection Time flow calculation unit, 56 ... phase calculation unit, 57 ... loop determination unit, 58 ... loop calculation unit.

Claims (10)

商用系統から分散電源を有する需要家に流入又は流出する電力の力率を検出し、該力率検出値を予め設定した閾値と比較し、検出値が閾値より低い場合に当該需要家の分散電源が発電状態であると判定することを特徴とする需要家の分散電源運転状況検出装置。   A power factor of power flowing into or out of a consumer having a distributed power source from a commercial system is detected, the power factor detection value is compared with a preset threshold value, and when the detected value is lower than the threshold value, the distributed power source of the consumer It is determined that is in a power generation state. 需要家に流入又は流出する電力及びその力率を検出し、該力率検出値により需要家の分散電源が発電状態であることを検出した際の前記電力の検出値に基づいて当該需要家の分散電源の発電電力を推定することを特徴とする請求項1に記載の分散電源運転状況検出装置。   The electric power flowing into or out of the consumer and the power factor thereof are detected, and based on the detected value of the electric power when the distributed power source of the consumer is detected to be in the power generation state by the power factor detection value, The distributed power supply operating state detection apparatus according to claim 1, wherein the generated power of the distributed power supply is estimated. 分散電源が発電状態であることを検出した時に、当該検出時の前後に検出した前記電力の検出値の差から分散電源の発電電力を推定することを特徴とする請求項2に記載の分散電源運転状況検出装置。   3. The distributed power supply according to claim 2, wherein when it is detected that the distributed power supply is in a power generation state, the generated power of the distributed power supply is estimated from a difference between detection values of the power detected before and after the detection. Driving status detection device. 分散電源の発電状態が検出されていないときの前記電力の検出値に基づいて需要家の平均負荷電力を推定し、分散電源が運転をしている時の前記電力の検出値との差によってリアルタイムに分散電源の発電電力を推定することを特徴とする請求項2に記載の分散電源運転状況検出装置。   The average load power of the consumer is estimated based on the detected value of the power when the power generation state of the distributed power source is not detected, and real time is determined by the difference from the detected value of the power when the distributed power source is operating. 3. The distributed power supply operating state detection apparatus according to claim 2, wherein the generated power of the distributed power supply is estimated. 前記負荷電力の推定は、所定時間内の前記電力の検出値の平均値であることを特徴とする請求項4に記載の分散電源運転状況検出装置。   The distributed power supply operating state detection device according to claim 4, wherein the estimation of the load power is an average value of detection values of the power within a predetermined time. 前記力率の検出値は所定時間内の力率検出値の平均値であることを特徴とする請求項1〜5のいずれかに記載の分散電源運転状況検出装置。   The distributed power supply operating state detection device according to claim 1, wherein the detected value of the power factor is an average value of the detected power factor within a predetermined time. 通信機能を備えたことを特徴とする請求項1〜6に記載の分散電源運転状況検出装置。   The distributed power supply operating state detection device according to claim 1, further comprising a communication function. 請求項1〜7に記載の分散電源運転状況検出装置を備えたことを特徴とする電力量計。   A watt-hour meter comprising the distributed power supply operating state detection device according to claim 1. 配電系統に接続された分散電源を有する各需要家と系統との連系点に請求項7に記載の分散電源検出装置を設置し、前記各需要家の分散電源の発電電力の情報を収集し、当該情報と少なくとも当該配電系統の送り出し電力に基づいて、該配電系統に挿入された電力供給区間を区分する区分開閉器によって区分された各供給区間における電力潮流を推定し、前記区分開閉器の開閉を制御することを特徴とする配電系統制御装置。   A distributed power source detection device according to claim 7 is installed at a connection point between each customer having a distributed power source connected to the power distribution system and the system, and information on the generated power of the distributed power source of each customer is collected. , Based on the information and at least the delivery power of the distribution system, estimate the power flow in each supply section divided by the division switch for dividing the power supply section inserted in the distribution system, Distribution system control device characterized by controlling opening and closing. 前記電力潮流の推定に基づいて、配電系統をループ接続する際に投入する前記区分開閉器における系統の位相差を検出し前記ループ接続の可否を決定することを特徴とする請求項9に記載の配電系統制御装置。   10. The system according to claim 9, wherein based on the estimation of the power flow, a phase difference of the system in the section switch to be inserted when the distribution system is loop-connected is detected to determine whether or not the loop connection is possible. Distribution system controller.
JP2007072329A 2007-03-20 2007-03-20 Distributed power supply operating status detection device, watt-hour meter, and distribution system control device Active JP4628386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072329A JP4628386B2 (en) 2007-03-20 2007-03-20 Distributed power supply operating status detection device, watt-hour meter, and distribution system control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072329A JP4628386B2 (en) 2007-03-20 2007-03-20 Distributed power supply operating status detection device, watt-hour meter, and distribution system control device

Publications (2)

Publication Number Publication Date
JP2008236897A JP2008236897A (en) 2008-10-02
JP4628386B2 true JP4628386B2 (en) 2011-02-09

Family

ID=39909012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072329A Active JP4628386B2 (en) 2007-03-20 2007-03-20 Distributed power supply operating status detection device, watt-hour meter, and distribution system control device

Country Status (1)

Country Link
JP (1) JP4628386B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208822B2 (en) * 2008-03-17 2013-06-12 一般財団法人電力中央研究所 Distributed power supply operating state detection method, apparatus and program
JP5239657B2 (en) * 2008-09-09 2013-07-17 東京電力株式会社 Load amount estimation method, load curve derivation method, load curve derivation device, and load amount estimation device
JP5442282B2 (en) * 2009-03-12 2014-03-12 株式会社日立製作所 Method and apparatus for estimating generator output
JP5322716B2 (en) * 2009-03-17 2013-10-23 株式会社日立製作所 Distributed power output estimation apparatus and method for distribution system
JP5235738B2 (en) * 2009-03-19 2013-07-10 三菱電機株式会社 Distributed power output estimation device
JP5222211B2 (en) * 2009-04-14 2013-06-26 一般財団法人電力中央研究所 Generator operating state detection method and apparatus
JP5222261B2 (en) * 2009-09-25 2013-06-26 一般財団法人電力中央研究所 Distributed state power supply operation state determination method and apparatus, and operation state determination program
KR101174891B1 (en) * 2010-06-01 2012-08-17 삼성에스디아이 주식회사 Energy storage system and controlling method of the same
CN101882785B (en) * 2010-07-12 2012-08-01 沈阳工程学院 Flow analysis system and method for intelligent power distribution networks containing distributed generation
JP5597488B2 (en) * 2010-08-31 2014-10-01 一般財団法人電力中央研究所 Distributed power supply operation state detection method, operation state detection device, and operation state detection program
KR101145496B1 (en) 2010-09-29 2012-05-15 한국전력공사 Apparatus for detecting roof current in distribution automation system and method thereof
JP5663280B2 (en) * 2010-11-26 2015-02-04 京セラ株式会社 Control apparatus and control method
JP5773191B2 (en) * 2011-05-31 2015-09-02 オムロン株式会社 Detection apparatus and method, and program
JP5999406B2 (en) * 2012-01-06 2016-09-28 オムロン株式会社 Detection device, inspection device, inspection method, and program
CN102890206B (en) * 2012-03-23 2015-05-20 上海市电力公司 Method for detecting line loss information based on power flow method
JP6012517B2 (en) * 2013-03-19 2016-10-25 株式会社東芝 Power converter, power connection inspection method and program
CN106415971B (en) 2014-06-13 2019-10-15 三菱电机株式会社 Generated energy estimating device and power generation method of estimating rate
JP6385292B2 (en) * 2015-02-24 2018-09-05 一般財団法人電力中央研究所 Power generation output estimation method, estimation device, and estimation program
JP7251213B2 (en) * 2019-02-28 2023-04-04 中国電力株式会社 Bank reverse power flow suppression system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149697A (en) * 1994-11-16 1996-06-07 Meidensha Corp Parallel operation detector for generator
JP2003061247A (en) * 2001-08-10 2003-02-28 Toshiba Corp Device for calculating section load in distribution line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08149697A (en) * 1994-11-16 1996-06-07 Meidensha Corp Parallel operation detector for generator
JP2003061247A (en) * 2001-08-10 2003-02-28 Toshiba Corp Device for calculating section load in distribution line

Also Published As

Publication number Publication date
JP2008236897A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4628386B2 (en) Distributed power supply operating status detection device, watt-hour meter, and distribution system control device
US20220169131A1 (en) Electric-Vehicle Charging Apparatus
US7389189B2 (en) System and method for a self-healing grid using demand side management techniques and energy storage
KR100903304B1 (en) Device for covering the peak load
JP5662877B2 (en) Battery system
CN103765718B (en) Electric power distribution system
CN102668301B (en) Power distribution system
JP5118244B1 (en) Power control apparatus, power supply system, power control method and program
JP2002152976A (en) Power supply system for distributed source
KR101220773B1 (en) Intelligent Cabinet-Panel Having Energy Managing Function in the Smart Grid Environment
WO2011129054A1 (en) Electric-power management system, electric-power management method, and section controller
CN106688155B (en) System and method for switching electrical system to standby power in a utility power outage
US11241975B2 (en) Electric vehicle home microgrid power system
JP2008125295A (en) Method and device for selecting/interrupting load in consumer
TW201320524A (en) Multipurpose power management system and method
US9006925B2 (en) Distribution protection system and method
JP2010041782A (en) Power distribution system
KR101918625B1 (en) System and method for providing power service to a plurality of customers using an energy storage device
JPH10248180A (en) Power converting apparatus
CA2736219A1 (en) Smart bi-directional electric energy storage and multifunction power conversion system
JP2008104262A (en) Islanding pevention for apparatus distributed power unit
JP2021005938A (en) Power storage device and power storage system having the same
JP2006158069A (en) Control unit for non-utility generating equipment
JP2012090390A (en) Smart grid-type-cell monitor control device and method, and monitor control system
Kashem et al. Anti-islanding protection and islanding operation of grid-connected hydropower distributed generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4628386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250