JP4627105B2 - High thermal conductive composition and its use - Google Patents

High thermal conductive composition and its use Download PDF

Info

Publication number
JP4627105B2
JP4627105B2 JP2000209550A JP2000209550A JP4627105B2 JP 4627105 B2 JP4627105 B2 JP 4627105B2 JP 2000209550 A JP2000209550 A JP 2000209550A JP 2000209550 A JP2000209550 A JP 2000209550A JP 4627105 B2 JP4627105 B2 JP 4627105B2
Authority
JP
Japan
Prior art keywords
heat
powder
volume
ethylene
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000209550A
Other languages
Japanese (ja)
Other versions
JP2002020625A (en
Inventor
幹敏 佐藤
正人 川野
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2000209550A priority Critical patent/JP4627105B2/en
Publication of JP2002020625A publication Critical patent/JP2002020625A/en
Application granted granted Critical
Publication of JP4627105B2 publication Critical patent/JP4627105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高熱伝導性組成物とその用途に関するものである。
【0002】
【従来の技術】
近年、発熱性電子部品は高密度化により、放熱部材の高熱伝導化の要求が益々高まっている。また、携帯用パソコンをはじめ電子機器は小型化、薄型化、軽量化が進み、従って、これら電子機器に用いられる放熱部材も高熱伝導性のものが要求されている。
【0003】
従来、放熱部材の熱伝導率を向上させる方法としては、高熱伝導性フィラーを含有する放熱グリースや、シリコーンゴムなどの柔軟かつ復元力のあるマトリックスに、熱伝導性の高い粒子を分散させたものが主流となっている。
【0004】
しかしながら、放熱グリースは塗布工程での作業性の悪さ、周辺部位の汚れなどの問題から敬遠される傾向にある。また、熱伝導率の高い粒子を分散させた柔軟性部材では使用時の厚みが比較的厚くなるため、発熱性電子部品と放熱フィンの間に装着した場合、放熱部材自身の熱伝導性が高くとも、実装を踏まえた伝熱指標である熱抵抗を極端に下げることは難しかった。
【0005】
すなわち、放熱部材自身の熱伝導率を上げ、しかも放熱部材が発熱性電子部品と放熱フィンのそれぞれの接合面に微視的に追随して密着することで熱接触抵抗を低滅させるとともに、部材厚みを極力薄くすることが理想的である。
【0006】
一方、高熱伝導性フィラーとしては窒化アルミニウムが適しており、これを用いた放熱部材は数多く提案されている(特開平2−133450号公報、特開平3−14873号公報、特開平4−174910号公報、特開平6−164174号公報、特開平6−209057号公報など)。
しかしながら、前述のように放熱部材にこれら高熱伝導性フィラーを分散させたとしても、放熱部材自身の熱伝導率の向上は期待できるものの、熱抵抗を飛躍的に低減せしめることは難しかった。
【0007】
他方、特開平10−67910号公報では、メチルシロキサンホストと単一末端に不飽和結合を有する線状炭化水素のポリオルガノシロキサングラフト重合体からなる熱的に安定なワックスと、アルミナ、窒化ほう素、黒鉛、炭化けい素、ダイヤモンド、金属粉末あるいはそれらの混合物からなる群から選択された熱伝導性粒状固体粘度安定化剤からなる界面材が開示されているが、このようなポリオルガノシロキサングラフト重合体は高価であるとともに、比較的溶融粘度が高くなるため、所期の流動性を発現させるためには高熱伝導性フィラーの充填量も極めて限られていた。
【0008】
一方、特開平6−13508号公報では、加熱時に粘性流を示す熱伝導性半流体物質が充填された金属メッシュを含むことを特徴とする熱インターフェースが開示されており、該熱インターフェースの熱伝導率が2.3〜2.7W/mKであることが記載されている。しかし、補強材が金属メッシュであり導電性を有するため、その用途が限られると同時に、接合面が複雑な形状であるときにはその形状に追随したものとするのは困難である。
【0009】
また、特許第3032505号公報では、熱伝導フィラーが分散され、外部からの加熱により、相変化を生じ、電子部品に当接して電子部品と放熱板とを連接することができる相変化部材が開示されている。加熱により容易に相変化を生じることで、電子部品に当接させることはできるものの、部材の熱伝導率は0.5W/mK以上であり、より高い放熱特性に対する要求が高まってきている。
【0010】
【発明が解決しようとする課題】
本発明は上記に鑑みてなされたものであり、その目的はフィラーとして窒化アルミニウム焼結体の粉末を、マトリックスとしてワックス及び/又はパラフィンと、好ましくは熱可塑性樹脂を用いて、加熱によって容易に流動化する高熱伝導性組成物を提供することである。また、その組成物を厚みを薄化した成形体として用いることにより、所定の温度で流動化せしめ、発熱性電子部品と放熱フィンのそれぞれの接合面に微視的に密着させると同時に、発熱性電子部品と放熱フィンとの間隔を極力近接させ、優れた放熱特性、低熱抵抗を有する放熱部材を提供することである。
【0011】
また、網目状構造体と一体化しても、高熱伝導率の著しい低下を伴なわず、格段に扱いやすくなり、切断等により所望の形状のものに加工することが可能な放熱部材および、これを用いた放熱フィン一体型発熱性部品の構造体を提供することである。
【0012】
【課題を解決するための手段】
すなわち、本発明は以下の通りである。
(請求項1)40〜100℃に融点を有するワックス及び/又はパラフィン24.5〜32体積%、40〜100℃で軟化する熱可塑性樹脂としてエチレン系樹脂、プロピレン系樹脂、エチレン−α−オレフィン共重合体、又はエチレン−酢酸ビニル共重合体8〜10.5体積%、窒化アルミニウム焼結体の粉末42〜50体積%、平均粒子径が10μm以下の良熱伝導性微粉末10〜19.5体積%とからなることを特徴とする高熱伝導性組成物。
(請求項2)40〜100℃で軟化する熱可塑性樹脂がエチレン−酢酸ビニル共重合体であることを特徴とする請求項1記載の高熱伝導性組成物。
(請求項3)良熱伝導性微粉末が窒化アルミニウム粉末又は酸化アルミニウム粉末であることを特徴とする請求項1または2記載の高熱伝導性組成物。
(請求項4)請求項1〜3のいずれかに記載の高熱伝導性組成物の成形体からなることを特徴とする発熱性電子部品の放熱部材。
(請求項5)40〜100℃に融点を有するワックス及び/又はパラフィン24.5〜32体積%、40〜100℃で軟化する熱可塑性樹脂としてエチレン系樹脂、プロピレン系樹脂、エチレン−α−オレフィン共重合体、又はエチレン−酢酸ビニル共重合体8〜10.5体積%、窒化アルミニウム焼結体の粉末42〜50体積%、平均粒子径が10μm以下の良熱伝導性微粉末10〜19.5体積%とからなる高熱伝導性組成物と、網目状構造体とが一体化されてなる成形体からなることを特徴とする発熱性電子部品の放熱部材。
(請求項6)40〜100℃で軟化する熱可塑性樹脂がエチレン−酢酸ビニル共重合体であることを特徴とする請求項5記載の発熱性電子部品の放熱部材。
(請求項7)良熱伝導性微粉末が窒化アルミニウム粉末又は酸化アルミニウム粉末であることを特徴とする請求項5又は6記載の発熱性電子部品の放熱部材。
(請求項8)請求項5〜7のいずれかに記載の放熱部材を用いて発熱性電子部品と放熱フィンが接着されてなることを特徴とする放熱フィン一体型発熱性電子部品の構造体。
【0013】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
本発明の大きな特徴は窒化アルミニウム焼結体の粉末をワックス及び/又はパラフィンに充填することにより、所要の温度で流動性の優れた高熱伝導性組成物が得られることである。さらには、網目状構造体と一体化することにより、取り扱い性及び加工性の良好な放熱部材が得られることである。
【0014】
本発明に使用されるワックス又はパラフィンとしては、融点を40〜100℃の範囲に有するものであって、従って常温においては固体であり、加熱により低粘度の液体となる。ワックス及び/又はパラフィンをマトリックスとした放熱部材を用いて、発熱性電子部品と放熱フィンを加熱・加圧して接合させると、流動性が良好であるので、それぞれの接合面に微視的に追随して密着し、隙間を十分に埋めることによって熱接触抵抗を低滅させ、発生した熱を放熱フィン方向に円滑に伝達することができる。また両者を極近接させることが可能となり、放熱効率が向上する。
【0015】
本発明に使用されるワックス又はパラフィンの融点が40℃未満であれば、成形体として用いたときに、夏場などの高温期に組成物が液状化してしまい形状が保持できなくなる懸念があり、融点が100℃を超えると加熱溶融させて発熱性電子部品に接着する際に、電子部品を高温にしてしまうことになるので好ましくない。
【0016】
ワックスの種類としては、マイクロクリスタリンワックス、モンタン酸ワックス、モンタン酸エステルワックス等を挙げることができるが、融点が上記の条件を満たすものであれば、これらに限定されるものではない。
パラフィンとしてはパラフィンワックスが挙げられ、流動パラフィンに対して常温で固体のパラフィンを特にパラフィンワックスと称する。
これらの具体例としては日本精蝋社製の「パラフィンワックス・シリーズ」、「マイクロクリスタリンワックス Hi−Mic・シリーズ」などを例示することができる。
また、これらのワックス及びパラフィンは単独でも2種類以上を混合して使用してもよい。
【0017】
本発明における40〜100℃で軟化する熱可塑性樹脂は、ワックス又はパラフィンに混合し成形体としたときに、クリープ性、脆さの改善効果を示すものである。例えば、エチレン系樹脂、プロピレン系樹脂、エチレン−α−オレフィン共重合体、エチレン−酢酸ビニル共重合体等を挙げることができるが、上記効果を示すものであれば、これらに限定されるものではない。ワックス又はパラフィンを融点以上の温度で加熱溶融させて混合する際に、均一に混合されるものが好ましい。
これらの具体例としては三井化学社製の「ハイワックス110P」、「ハイワックスNP055」、「タフマーP−0180」、三井・デュポンポリケミカル社製の「エバフレックスEV150」などを例示することができる。
【0018】
また、上記の熱可塑性樹脂はワックス又はパラフィンよりも比較的熱伝導率が高いので、放熱部材の放熱特性を向上させる一端を担う作用も期待できる。
【0019】
上記の熱可塑性樹脂はワックス及び/又はパラフィンに対して40体積%以下で混合することができる。
40体積%を超えて混合すると、放熱部材として加熱・加圧したときに、流動性が不良となり、発熱性電子部品と放熱フィンの接合面への密着性が不良となり、従って両者の隙間を十分に埋めることが困難となる。また、密着性を上げるためには加圧を大きくする必要があり、電子部品の信頼性のためには好ましくない。
【0020】
また、本発明に用いられる窒化アルミニウム焼結体の粉末は、例えば原料の窒化アルミニウム粉末に酸化イットリウム等の焼結助剤を0.5〜10%程度添加し、成型後、窒素、アルゴン等の非酸化性雰囲気下、温度1600〜2000℃程度の温度で焼結された窒化アルミニウム焼結体を粉砕して得ることができる。
【0021】
本発明に用いられる窒化アルミニウム焼結体粉末は、その粒子径が大きいものほど熱伝導パスが生じて伝熱しやすくなるので好ましい。しかし、あまりにも粒子径が大きくなると、粒子表面の凸凹が大きくなり、伝熱抵抗となる空気層が形成されやすくなり、更には、近接した発熱性電子部品と放熱フィンに接触してしまい、それらの近接を妨げる懸念があるので、平均粒子径が10〜50μmにあることが好ましい。
【0022】
本発明に用いられる窒化アルミニウム焼結体粉末の含有率は、全組成物に対して、45〜55体積%であることが好ましく、特に47〜50体積%であることが好ましい。45体積%未満では所要の熱伝導性が得られにくく、55体積%超ではマトリックスであるワックス及び/又はパラフィンの溶融温度における流動性が悪くなる。
【0023】
一方、本発明においては窒化アルミニウム焼結体の粉末と平均粒子径10μm以下の良熱伝導性微粉末を併用することが好ましい。何故ならば、窒化アルミニウム焼結体の粉末を充填することで高熱伝導性の組成物が得られるが、該粉末のみでは、その平均粒子径が比較的大きいことから充填密度が限られるが、良熱伝導性微粉末を併用することで充填密度が上げられることにより、さらなる熱伝導性の向上がはかられることによる。
良熱伝導性微粉末としては、窒化アルミニウム焼結体以外の窒化アルミニウム粉末、窒化けい素、窒化ほう素、炭化けい素、アルミナ、酸化亜鉛等の高絶縁性の微粉末が挙げられる、中でも窒化アルミニウム焼結体以外の窒化アルミニウム粉末およびアルミナ粉末が好ましいが、平均粒子径が10μm以下のものであれば、これらに限定されるものではない。
上記の良熱伝導性微粉末は1種又は2種以上を混合して用いても良い。なお、窒化アルミニウム焼結体の粉末と良熱伝導性微粉末の混合粉末の含有率は全組成物に対して75体積%以下であることが好ましく、特に50〜70体積%であることが好ましい。75体積%を超えるとマトリックスとなるワックス及び/又はパラフィンの溶融温度における流動性が悪くなる。
【0024】
上記の窒化アルミニウム焼結体粉末及び良熱伝導性微粉末のマトリックスへの濡れ性を改善し、分散性を高める目的で、混合する前にそれら粉末の表面改質処理を行なっておくこともできる。表面処理としては、一般的な界面活性剤やカップリング剤を混合することで行なうことができる。表面改質処理により、窒化アルミニウム表面に薄い被膜層が形成され、マトリックスに対する濡れ性が向上する。特に窒化アルミニウム焼結体粉末以外の窒化アルミニウム微粉末については耐水性が著しく向上する。
【0025】
本発明の組成物には上記材料の他に熱伝導率及び流動性に影響のない範囲であれば、必要に応じて炭化水素系合成油、α−オレフィンのオリゴマーなどの軟化剤、ハロゲン系、リン酸エステル系などの難燃剤、シラン系、チタネート系カップリング剤などの粉体表面改質剤、ビスフェノール系、ヒンダード・フェノール系などの抗酸化剤、ピリジン系、トリアジン系などの抗菌剤、べんがら、アルミン酸コバルトなどの着色剤等の添加剤を混合しても良い。
【0026】
本発明の組成物は、ワックス及び/又はパラフィン、窒化アルミニウム焼結体粉末、熱可塑性樹脂及び良熱伝導性微粉末を、ワックス又はパラフィンの融点以上の温度で、ブレンダーや、ミキサー等を用いて混合することによって調製できる。
【0027】
本発明の組成物の用途は、それを成形して放熱部材として用いることができるが、その成形方法としては、プレス法、押出法、ドクターブレード法等の一般的な成形方法を用いて製造することが可能である。
【0028】
本発明の放熱部材は、本発明の上記組成物の成形体からなるものであり、網目状構造体で一体化されていることが好ましい。網目状構造体としては、ガラスクロス、ポリエステルクロスなどを挙げることができる。具体例としては鐘紡社製の「テキストグラス スクリムクロス KSシリーズ」、NBC工業社製の「MONOFILAMENT POLYESTER TNo.60、タイプ55」等を例示することができる。
【0029】
網目状構造体としては、繊維状素材を織って形成されたものを例示することができる。また、本発明における網目状構造体は、厚みが150μm以下のものが好ましく、特に120μm以下のもので、より薄いほうが好ましい。さらには、網目状の目開きは大きいものほど高熱伝導性組成物の伝熱面積が確保できて好ましいが、大きすぎると細部の補強効果が失われる。これらのことを勘案すると、目開きは200〜1000μmが望ましく、さらに好ましくは350〜800μmであり、網目状構造体を用いても、熱伝導率が大きく低下することはない。
【0030】
本発明の放熱部材の製造方法は、網目状構造体と一体化された放熱部材が得られる方法であれば特に限定はされないが、例えば、ワックス又はパラフィン、熱可塑樹脂、窒化アルミニウム焼結体粉末、及び良熱伝導性微粉末からなる混合物をワックス又はパラフィンの融点以上の温度に保持したまま、金型へ流し込み、その上にさらに網目状絶縁体をのせ、プレスすることにより製造することができる。
【0031】
本発明の放熱部材は用途に応じた形状に成形することができるが、量産性、実装性を勘案するとシートであることが好適である。さらに、網目状構造体と一体化されたものであっても、裁断等の加工が容易である。例えば、通常の打ち抜き刃で、容易に連続して切断することができる。
用途によってはブロック形状のものを実装することも可能である。
【0032】
本発明の放熱部材の熱伝導率は2.0W/mK以上であることが望ましい。より好ましくは2.5W/mk以上である。
【0033】
上記のようにして得られた放熱部材は、発熱性電子部品に接触させて用いられる。より具体的には、発熱性電子部品と放熱フィンの間にこの放熱部材(好ましくはシート)を挟み込み、加熱しながら加圧することで放熱部材が両者の隙間に溶け広がり、発熱性電子部品と放熱フィンのそれぞれの接合面に微視的に追随して密着すると同時に、発熱性電子部品と放熱フィンを極近接せしめた状態で接合することができる。
【0034】
このときの加熱条件は用いるワックス及/又はパラフィンの融点以上で、なおかつ熱可塑性樹脂の軟化温度以上であれば良く、加圧条件は高圧になるほど厚みを薄くすることができて好ましいが、電子部品を損傷させないためには、0.05〜1.0MPaの範囲であることが好ましい。
【0035】
【実施例】
以下、実施例及び比較例をあげて更に本発明を説明する。
【0036】
窒化アルミニウム焼結体の粉末の製造
質量基準で平均粒子径4.1μmの窒化アルミニウム粉末(電気化学工業社製「AP−50」)100部と酸化イットリウム粉末(三菱化学製、比表面積20m2/g)5部の混合粉を圧力20MPaをかけて直径50mmの成形体とし、窒素雰囲気下、温度1950℃で焼結した。
【0037】
次いで、焼結体をジョークラッシャー、ロールクラッシャーの順で粗粉砕した後、JIS篩により74μm以下の粉末を回収し、篩上粗粉は再度ロールクラッシャーにかけ、74μm篩下の収率が80〜90%程度になるまでこの操作を繰り返した。回収された焼結体粉末をボールミルで微粉砕した。粉砕時間にて粒度を調整して焼結体微粉末を得、さらに目開き44μmのJIS篩により篩い分けして、平均粒子径23μmの窒化アルミニウム焼結体の粉末を得た。
【0038】
実施例1
日本精蝋社製「パラフィンワックス115(融点47℃)」を用い、窒化アルミニウム焼結体の粉末として上記粉末を、表1に示す割合で80℃で混合し、スラリー状物を得た。このスラリー状物を80℃に保ったまま真空脱泡し、金型内に離型剤処理したPETフィルムをセットしたものに注ぎ込み、室温下でシート状にプレス成形した。プレス後、PETフィルムごと試料を取り出し、PETフィルムから室温硬化した高熱伝導性組成物を剥がし、厚さ0.18mmのシートを得た。これを後記の方法にて熱抵抗、熱伝導率を測定し、自重曲がりテストを行った。また、取り扱い性及び加工性を後記の基準に従って評価した。その結果を表1に示す。
【0039】
実施例2
日本精蝋社製「パラフィンワックス115」を用い、上記の窒化アルミニウム焼結体の粉末と、さらに良熱伝導性微粉末としてトクヤマ社製窒化アルミニウム粉末「Hグレード(平均粒子径1.6μm)」を表1に示す割合で、80℃で混合し、実施例1と同様にして厚さ0.18mmのシートを得た。その結果を表1に示す。
【0040】
実施例3
日本精蝋社製「パラフィンワックス115」の所定量を80℃に加熱溶解した中にエチレン−酢酸ビニル共重合体として三井・デュポンポリケミカル社製「エバフレックスEV150」を所定量添加し、加熱混合したものを用いた以外は、、実施例1と同様にして厚さ0.18mmのシートを得た。それらの結果を表1に示す。
【0041】
実施例4〜7
上記の窒化アルミニウム焼結体と、良熱伝導性粉末として窒化アルミニウム粉末又はアルミナ(平均粒子径4.5μm)を表1に示す割合で用いた以外は実施例3と同様にして厚さ0.18mmのシートを得た。それらの結果を表1に示す。
【0042】
実施例8、9
実施例5、6と同様にしてスラリー状物を得、これを80℃に保ったまま真空脱泡し、離型剤処理したPETフィルムをセットした金型に注ぎ込み、その上にポリエステル製網目状構造体(NBC工業社製「MONOFILAMENT POLYESTER TNo.60、タイプ55」、目開き370μm、厚さ90μm)をのせ、室温下でシート状にプレス成形した。プレス後、PETフィルムごと試料を取り出し、PETフィルムから室温硬化した成型物を剥がし、厚さ0.18mmのシートを得た。その結果を表2に示す。
【0043】
比較例1
窒化アルミニウム焼結体の粉末の代わりに窒化アルミニウム粉末を表3に示す割合で実施例1と同様に混合したが、混合物は湿粉状のままであり、成形することができなかった。
【0044】
熱抵抗
本発明における熱抵抗は、シート化した高熱伝導性組成物をTO−3型銅製ヒーターケースと銅板の間に0.34MPaの圧力がかかるようにネジ止めした後、ヒーターケースと銅板が55℃になるまで加熱し、さらにそれらを室温まで冷却した後、ヒーターケースに電力15Wをかけて4分間保持した際における銅製ヒーターケースと銅板の温度差を測定し、下記(1)式により算出した。
熱抵抗(℃/W)=温度差(℃)/印加電力(W) (1)
【0045】
熱伝導率
本発明における熱伝導率は、下記(2)式により算出した。なお、ここで試料厚みは熱抵抗測定時の厚み(試料に0.34MPaの圧力がかかるようにネジ止めし、ヒーターケースと銅板を55℃に加熱した後、室温冷却した時の試料厚み)とする。また、伝熱面積はTO−3型の伝熱面積0.0006m2とする。
熱伝導率(W/mK)=[試料厚み(m)]/[熱抵抗(℃/W)×伝熱面積(m2)] (2)
【0046】
自重曲がりテスト
シート化された高熱伝導性組成物を10×50×0.18mmの短冊状に打ち抜き、その長さ50mmのうち20mm分を突き出した状態で平板上に置き、室温7日間放置した後の自重曲がりによる先端部の曲がり変位を測定した。値が小さいほどクリープ性が改善されて、放熱部材としたときに形状安定性に優れ、放熱特性のバラツキが小さくなるものである。
【0047】
取り扱い性
シート化した高熱伝導性組成物を手で軽く引っ張ったときの状態について2段階に分けて評価した。
○:手で軽く引っ張っても破損しない。
△:手で軽く引っ張ると容易に破損する。
【0048】
加工性
シート化した高熱伝導性組成物を打ち抜き型で連続的に裁断を行ない、そのときの状態について2段階に分けて評価した。
○:ワレ・カケを生じず連続裁断ができる。
△:裁断時に、一部の試料にワレ・カケが生ずる。
【0049】
【表1】

Figure 0004627105
【0050】
【表2】
Figure 0004627105
【0051】
【表3】
Figure 0004627105
【0052】
本願発明の実施例で得られたシートを、発熱性電子部品と放熱フィンの間に挟み、55℃に加熱して、0.34MPaの圧力をかけて放熱フィン一体型発熱性電子部品を作製した。いずれもシートが発熱性電子部品と放熱フィンの接合面に微視的に追随して密着し、両者の隙間を十分に埋めている構造が確認された。
【0053】
【発明の効果】
本発明によれば、熱によって容易に流動化する高熱伝導性組成物及びそれからなる熱伝導性に優れた放熱部材が提供される。
【0054】
また、本発明によれば、優れた放熱特性を有する放熱フィン一体型発熱性電子部品の構造体がが提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly heat conductive composition and its use.
[0002]
[Prior art]
In recent years, heat-generating electronic components have been increasingly demanded for higher heat conductivity of heat dissipation members due to higher density. In addition, electronic devices such as portable personal computers have been reduced in size, thickness, and weight, and accordingly, heat radiating members used in these electronic devices are required to have high thermal conductivity.
[0003]
Conventionally, as a method for improving the thermal conductivity of the heat radiating member, particles having high thermal conductivity are dispersed in a heat radiating grease containing a high thermal conductive filler or a flexible and resilient matrix such as silicone rubber. Has become the mainstream.
[0004]
However, the heat-dissipating grease tends to be avoided from problems such as poor workability in the application process and contamination of surrounding parts. In addition, since a flexible member in which particles having high thermal conductivity are dispersed has a relatively large thickness when used, when mounted between a heat generating electronic component and a heat radiating fin, the heat radiating member itself has a high heat conductivity. However, it was difficult to extremely reduce the thermal resistance, which is a heat transfer index based on mounting.
[0005]
That is, the thermal conductivity of the heat radiating member itself is increased, and the heat radiating member microscopically follows and closely adheres to the joint surfaces of the heat-generating electronic component and the heat radiating fin, thereby reducing the thermal contact resistance and the member. Ideally, the thickness should be as thin as possible.
[0006]
On the other hand, aluminum nitride is suitable as the high thermal conductive filler, and many heat radiating members using the same are proposed (Japanese Patent Laid-Open Nos. 2-133450, 3-14873, and 4-174910). JP, 6-164174, JP 6-209057, etc.).
However, even if these high thermal conductive fillers are dispersed in the heat radiating member as described above, although it is expected that the heat conductivity of the heat radiating member itself is improved, it is difficult to drastically reduce the thermal resistance.
[0007]
On the other hand, Japanese Patent Application Laid-Open No. 10-67910 discloses a thermally stable wax comprising a methylsiloxane host and a linear hydrocarbon polyorganosiloxane graft polymer having an unsaturated bond at a single end, alumina, boron nitride. , Graphite, silicon carbide, diamond, metal powder or mixtures thereof are disclosed as interfacial materials comprising a thermally conductive granular solid viscosity stabilizer. The coalescence is expensive and has a relatively high melt viscosity, so that the amount of high thermal conductive filler filling is extremely limited in order to develop the desired fluidity.
[0008]
On the other hand, Japanese Patent Application Laid-Open No. 6-13508 discloses a thermal interface characterized by including a metal mesh filled with a thermally conductive semi-fluid substance that exhibits a viscous flow when heated, and the thermal conductivity of the thermal interface is disclosed. It is described that the rate is 2.3 to 2.7 W / mK. However, since the reinforcing material is a metal mesh and has conductivity, its use is limited, and at the same time, it is difficult to follow the shape when the joint surface has a complicated shape.
[0009]
Japanese Patent No. 3032505 discloses a phase change member in which a thermally conductive filler is dispersed, a phase change is caused by heating from the outside, and the electronic component and the heat sink can be connected by contacting the electronic component. Has been. Although it can be brought into contact with an electronic component by easily causing a phase change by heating, the thermal conductivity of the member is 0.5 W / mK or more, and the demand for higher heat dissipation characteristics is increasing.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object thereof is to easily flow by heating using powder of aluminum nitride sintered body as a filler, wax and / or paraffin as a matrix, and preferably a thermoplastic resin. It is to provide a highly thermally conductive composition. In addition, by using the composition as a molded body having a reduced thickness, it is fluidized at a predetermined temperature and is microscopically adhered to each joint surface of the heat-generating electronic component and the heat-radiating fin, and at the same time, heat-generating The object is to provide a heat dissipating member having excellent heat dissipating characteristics and low thermal resistance by making the distance between the electronic component and the heat dissipating fin as close as possible.
[0011]
Further, even if it is integrated with the mesh structure, the heat dissipation member which can be processed into a desired shape by cutting or the like, without markedly lowering the high thermal conductivity, becomes much easier to handle, and this It is to provide a structure of a heat-radiating fin-integrated exothermic part used.
[0012]
[Means for Solving the Problems]
That is, the present invention is as follows.
(Claim 1) Wax having a melting point at 40 to 100 ° C. and / or paraffin 24.5 to 32% by volume, thermoplastic resin softening at 40 to 100 ° C., ethylene resin, propylene resin, ethylene-α-olefin Copolymer or ethylene-vinyl acetate copolymer 8 to 10.5% by volume, aluminum nitride sintered powder 42 to 50% by volume, good heat conductive fine powder 10 to 19% having an average particle size of 10 μm or less. A high thermal conductive composition comprising 5% by volume.
(2) The high thermal conductive composition according to the above (1), wherein the thermoplastic resin softening at 40 to 100 ° C. is an ethylene-vinyl acetate copolymer.
(3) The high thermal conductive composition according to (1) or (2), wherein the fine heat conductive fine powder is an aluminum nitride powder or an aluminum oxide powder.
(Claim 4) A heat radiating member for a heat-generating electronic component, comprising a molded body of the high thermal conductive composition according to any one of claims 1 to 3.
(Claim 5) Wax having a melting point of 40 to 100 ° C. and / or paraffin 24.5 to 32% by volume, thermoplastic resin softening at 40 to 100 ° C., ethylene resin, propylene resin, ethylene-α-olefin Copolymer or ethylene-vinyl acetate copolymer 8 to 10.5% by volume, aluminum nitride sintered powder 42 to 50% by volume, good heat conductive fine powder 10 to 19% having an average particle size of 10 μm or less. A heat dissipating member for a heat-generating electronic component, comprising a molded body obtained by integrating a highly heat-conductive composition comprising 5% by volume and a network structure.
(Claim 6) The heat-radiating member for an exothermic electronic component according to claim 5, wherein the thermoplastic resin softening at 40 to 100 ° C is an ethylene-vinyl acetate copolymer .
(7) A heat dissipating member for a heat-generating electronic component according to (5) or (6), wherein the fine heat conductive fine powder is an aluminum nitride powder or an aluminum oxide powder .
(8) A heat-radiating fin-integrated heat-generating electronic component structure comprising a heat-dissipating member according to any one of claims 5 to 7 and an exothermic electronic component and a heat-dissipating fin bonded together.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
A major feature of the present invention is that a highly thermally conductive composition having excellent fluidity at a required temperature can be obtained by filling a powder of aluminum nitride sintered body with wax and / or paraffin. Furthermore, a heat radiating member with good handleability and workability can be obtained by integrating with the mesh structure.
[0014]
The wax or paraffin used in the present invention has a melting point in the range of 40 to 100 ° C., and is therefore a solid at ordinary temperature and becomes a low viscosity liquid by heating. When heat-generating electronic components and heat-dissipating fins are heated and pressurized and bonded using a heat-dissipating member made of wax and / or paraffin as a matrix, the fluidity is good. Thus, the thermal contact resistance is reduced by sufficiently filling the gap, and the generated heat can be smoothly transferred in the direction of the radiation fin. In addition, it is possible to bring them into close proximity, and the heat dissipation efficiency is improved.
[0015]
If the melting point of the wax or paraffin used in the present invention is less than 40 ° C., when used as a molded product, there is a concern that the composition may be liquefied during the high temperature period such as summer and the shape cannot be maintained. If the temperature exceeds 100 ° C., it is not preferable because the electronic component is heated to a high temperature when it is melted by heating and bonded to the heat-generating electronic component.
[0016]
Examples of the wax include microcrystalline wax, montanic acid wax, and montanic acid ester wax. However, the wax is not limited to these as long as the melting point satisfies the above conditions.
Examples of paraffin include paraffin wax. Paraffin that is solid at room temperature with respect to liquid paraffin is particularly referred to as paraffin wax.
Specific examples of these include “paraffin wax series” and “microcrystalline wax Hi-Mic series” manufactured by Nippon Seiwa Co., Ltd.
These waxes and paraffins may be used alone or in combination of two or more.
[0017]
The thermoplastic resin that softens at 40 to 100 ° C. in the present invention exhibits an effect of improving creep properties and brittleness when mixed with wax or paraffin to form a molded product. For example, an ethylene resin, a propylene resin, an ethylene-α-olefin copolymer, an ethylene-vinyl acetate copolymer, and the like can be mentioned. Absent. When the wax or paraffin is heated and melted at a temperature equal to or higher than the melting point, it is preferably mixed uniformly.
Specific examples thereof include “High Wax 110P”, “High Wax NP055”, “Tuffmer P-0180” manufactured by Mitsui Chemicals, and “Evaflex EV150” manufactured by Mitsui DuPont Polychemical Co., Ltd. .
[0018]
In addition, since the above thermoplastic resin has a relatively higher thermal conductivity than wax or paraffin, it can also be expected to play a part in improving the heat dissipation characteristics of the heat dissipation member.
[0019]
Said thermoplastic resin can be mixed in 40 volume% or less with respect to wax and / or paraffin.
When mixed over 40% by volume, the fluidity becomes poor when heated and pressurized as a heat radiating member, and the adhesion between the heat-generating electronic component and the heat radiating fin becomes poor, so that there is sufficient clearance between the two. It becomes difficult to fill in. Further, it is necessary to increase the pressure in order to improve the adhesion, which is not preferable for the reliability of the electronic component.
[0020]
Further, the powder of the aluminum nitride sintered body used in the present invention is, for example, about 0.5 to 10% of a sintering aid such as yttrium oxide is added to the raw material aluminum nitride powder, and after molding, such as nitrogen and argon It can be obtained by pulverizing an aluminum nitride sintered body sintered at a temperature of about 1600 to 2000 ° C. in a non-oxidizing atmosphere.
[0021]
As the aluminum nitride sintered powder used in the present invention, the larger the particle diameter, the more preferable it is because a heat conduction path is generated and heat transfer is facilitated. However, if the particle diameter becomes too large, the unevenness of the particle surface becomes large, an air layer that becomes a heat transfer resistance is likely to be formed, and furthermore, it comes into contact with the adjacent heat-generating electronic components and the heat-dissipating fins. The average particle diameter is preferably 10 to 50 μm.
[0022]
The content of the aluminum nitride sintered body powder used in the present invention is preferably 45 to 55% by volume, particularly 47 to 50% by volume, based on the entire composition. If it is less than 45% by volume, the required thermal conductivity is difficult to obtain, and if it exceeds 55% by volume, the fluidity of the matrix wax and / or paraffin at the melting temperature is poor.
[0023]
On the other hand, in the present invention, it is preferable to use a powder of an aluminum nitride sintered body and a fine powder of good heat conductivity having an average particle diameter of 10 μm or less. This is because a highly heat-conductive composition can be obtained by filling a powder of an aluminum nitride sintered body. However, the packing density is limited because the average particle diameter of the powder alone is relatively large. This is because the thermal conductivity can be further improved by increasing the packing density by using the thermally conductive fine powder in combination.
Examples of the fine heat conductive fine powder include aluminum nitride powder other than aluminum nitride sintered body, high insulating fine powder such as silicon nitride, boron nitride, silicon carbide, alumina, and zinc oxide. Aluminum nitride powder and alumina powder other than the aluminum sintered body are preferable, but the average particle diameter is not limited thereto as long as the average particle diameter is 10 μm or less.
The above fine heat conductive fine powders may be used alone or in combination of two or more. The content of the mixed powder of the aluminum nitride sintered powder and the fine heat conductive fine powder is preferably 75% by volume or less, particularly preferably 50 to 70% by volume, based on the total composition. . If it exceeds 75% by volume, the fluidity at the melting temperature of the wax and / or paraffin used as a matrix is deteriorated.
[0024]
In order to improve the wettability of the above-mentioned aluminum nitride sintered body powder and good heat conductive fine powder to the matrix and enhance the dispersibility, it is also possible to perform surface modification treatment of the powder before mixing. . The surface treatment can be performed by mixing a general surfactant or coupling agent. By the surface modification treatment, a thin coating layer is formed on the aluminum nitride surface, and the wettability with respect to the matrix is improved. In particular, the water resistance of the aluminum nitride fine powder other than the aluminum nitride sintered powder is remarkably improved.
[0025]
In addition to the above materials, the composition of the present invention has a range that does not affect the thermal conductivity and fluidity, and if necessary, a softening agent such as a hydrocarbon-based synthetic oil or an α-olefin oligomer, a halogen-based material, Flame retardants such as phosphate esters, powder surface modifiers such as silane and titanate coupling agents, antioxidants such as bisphenols and hindered phenols, antibacterials such as pyridines and triazines, bengara An additive such as a colorant such as cobalt aluminate may be mixed.
[0026]
The composition of the present invention comprises a wax and / or paraffin, an aluminum nitride sintered powder, a thermoplastic resin and a fine heat conductive fine powder at a temperature equal to or higher than the melting point of the wax or paraffin using a blender or a mixer. It can be prepared by mixing.
[0027]
The composition of the present invention can be used as a heat radiating member by molding it, and as the molding method, it is produced by using a general molding method such as a press method, an extrusion method, a doctor blade method or the like. It is possible.
[0028]
The heat radiating member of the present invention is composed of a molded body of the above composition of the present invention, and is preferably integrated with a network structure. Examples of the network structure include glass cloth and polyester cloth. Specific examples include “Text Glass Scrim Cloth KS Series” manufactured by Kanebo Co., Ltd., “MONOFILAMENT POLYESTER TNo. 60, Type 55” manufactured by NBC Industrial Co., Ltd., and the like.
[0029]
Examples of the network structure include those formed by weaving a fibrous material. The network structure in the present invention preferably has a thickness of 150 μm or less, particularly 120 μm or less, and is preferably thinner. Furthermore, the larger the mesh opening, the better the heat transfer area of the highly heat-conductive composition can be secured, but if it is too large, the effect of reinforcing the details is lost. Taking these into consideration, the mesh opening is desirably 200 to 1000 μm, more preferably 350 to 800 μm, and even when a network structure is used, the thermal conductivity is not greatly reduced.
[0030]
The manufacturing method of the heat radiating member of the present invention is not particularly limited as long as the heat radiating member integrated with the network structure is obtained. For example, wax or paraffin, thermoplastic resin, aluminum nitride sintered powder , And a mixture of fine heat conductive fine powders, while maintaining the temperature above the melting point of the wax or paraffin, poured into a mold, and a mesh insulator is further placed thereon and pressed. .
[0031]
The heat dissipating member of the present invention can be formed into a shape according to the application, but is preferably a sheet in consideration of mass productivity and mountability. Furthermore, even if it is integrated with the mesh structure, processing such as cutting is easy. For example, it can be easily and continuously cut with a normal punching blade.
Depending on the application, it is also possible to mount a block shape.
[0032]
The heat conductivity of the heat dissipating member of the present invention is desirably 2.0 W / mK or more. More preferably, it is 2.5 W / mk or more.
[0033]
The heat dissipation member obtained as described above is used in contact with a heat-generating electronic component. More specifically, the heat radiating member (preferably a sheet) is sandwiched between the heat generating electronic component and the heat radiating fin, and by applying pressure while heating, the heat radiating member melts into the gap between them, and the heat generating electronic component and the heat radiating At the same time, the heat generating electronic component and the heat dissipating fins can be joined in close proximity to each other in close contact with the respective joining surfaces of the fins.
[0034]
The heating conditions at this time should be higher than the melting point of the wax and / or paraffin used, and higher than the softening temperature of the thermoplastic resin, and the pressurization condition is preferable because the thickness can be reduced as the pressure increases. Is preferably in the range of 0.05 to 1.0 MPa.
[0035]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
[0036]
100 parts of aluminum nitride powder (“AP-50” manufactured by Denki Kagaku Kogyo Co., Ltd.) having an average particle diameter of 4.1 μm and a yttrium oxide powder (manufactured by Mitsubishi Chemical, specific surface area of 20 m 2 / g) 5 parts of the mixed powder was subjected to a pressure of 20 MPa to form a molded body having a diameter of 50 mm and sintered at a temperature of 1950 ° C. in a nitrogen atmosphere.
[0037]
Next, the sintered body was coarsely pulverized in the order of jaw crusher and roll crusher, and then a powder of 74 μm or less was collected by JIS sieve, and the coarse powder on the sieve was again subjected to roll crusher, and the yield under 74 μm sieve was 80-90. This operation was repeated until about%. The collected sintered powder was finely pulverized with a ball mill. The particle size was adjusted by pulverization time to obtain a sintered fine powder, and further sieved with a JIS sieve having an opening of 44 μm to obtain an aluminum nitride sintered powder having an average particle diameter of 23 μm.
[0038]
Example 1
Using “paraffin wax 115 (melting point: 47 ° C.)” manufactured by Nippon Seiwa Co., Ltd., the above powder was mixed as a powder of the aluminum nitride sintered body at 80 ° C. in the ratio shown in Table 1 to obtain a slurry. The slurry was vacuum degassed while maintaining at 80 ° C., poured into a mold set with a PET film treated with a release agent, and press-molded into a sheet at room temperature. After pressing, a sample was taken out together with the PET film, and the high thermal conductive composition cured at room temperature from the PET film was peeled off to obtain a sheet having a thickness of 0.18 mm. The thermal resistance and thermal conductivity were measured by the method described later, and a self-weight bending test was performed. Moreover, the handleability and workability were evaluated according to the criteria described below. The results are shown in Table 1.
[0039]
Example 2
Using “Paraffin Wax 115” manufactured by Nippon Seiwa Co., Ltd., powder of the above aluminum nitride sintered body, and aluminum nitride powder “H grade (average particle size 1.6 μm)” manufactured by Tokuyama Co., Ltd. as fine heat conductive fine powder Were mixed at 80 ° C. in the proportions shown in Table 1, and a sheet having a thickness of 0.18 mm was obtained in the same manner as in Example 1. The results are shown in Table 1.
[0040]
Example 3
A predetermined amount of “Paraffin Wax 115” manufactured by Nippon Seiwa Co., Ltd. is heated and dissolved at 80 ° C., and a predetermined amount of “Evaflex EV150” manufactured by Mitsui DuPont Polychemical Co., Ltd. is added as an ethylene-vinyl acetate copolymer. A sheet having a thickness of 0.18 mm was obtained in the same manner as in Example 1 except that the obtained one was used. The results are shown in Table 1.
[0041]
Examples 4-7
A thickness of 0. 0 was obtained in the same manner as in Example 3 except that the aluminum nitride sintered body and aluminum nitride powder or alumina (average particle diameter: 4.5 µm) were used as the good heat conductive powder in the ratio shown in Table 1. An 18 mm sheet was obtained. The results are shown in Table 1.
[0042]
Examples 8 and 9
A slurry-like product was obtained in the same manner as in Examples 5 and 6, and this was vacuum degassed while being kept at 80 ° C., and poured into a mold set with a PET film treated with a release agent, and a polyester mesh was formed thereon. The structure (“MONOFILAMENT POLYESTER TNo. 60, type 55” manufactured by NBC Kogyo Co., Ltd., mesh size 370 μm, thickness 90 μm) was placed and pressed into a sheet at room temperature. After pressing, the sample was taken out together with the PET film, and the molded product cured at room temperature from the PET film was peeled off to obtain a sheet having a thickness of 0.18 mm. The results are shown in Table 2.
[0043]
Comparative Example 1
Aluminum nitride powder was mixed in the same manner as in Example 1 in place of the aluminum nitride sintered powder in the ratio shown in Table 3, but the mixture remained in the form of a wet powder and could not be molded.
[0044]
Thermal resistance The thermal resistance in the present invention is such that the sheet-like high thermal conductive composition is screwed so that a pressure of 0.34 MPa is applied between the TO-3 type copper heater case and the copper plate, and then the heater case and the copper plate are 55 After heating to 0 ° C. and further cooling them to room temperature, the temperature difference between the copper heater case and the copper plate was measured for 4 minutes by applying power of 15 W to the heater case, and calculated by the following equation (1) .
Thermal resistance (° C / W) = Temperature difference (° C) / Applied power (W) (1)
[0045]
Thermal conductivity The thermal conductivity in the present invention was calculated by the following equation (2). Here, the sample thickness is the thickness at the time of thermal resistance measurement (sample thickness when the sample is screwed so that a pressure of 0.34 MPa is applied to the sample, the heater case and the copper plate are heated to 55 ° C., and then cooled to room temperature) To do. Further, the heat transfer area is assumed to be a TO-3 type heat transfer area of 0.0006 m 2 .
Thermal conductivity (W / mK) = [sample thickness (m)] / [thermal resistance (° C./W)×heat transfer area (m 2 )] (2)
[0046]
After punching the high thermal conductive composition formed into a test sheet of its own weight into a strip of 10 × 50 × 0.18 mm and placing it on a flat plate with a 20 mm portion protruding out of its length of 50 mm, it is allowed to stand at room temperature for 7 days The bending displacement of the tip portion due to the self-weight bending of was measured. As the value is smaller, the creep property is improved, and when the heat radiation member is formed, the shape stability is excellent, and the variation in the heat radiation characteristic is reduced.
[0047]
The state when the thermally conductive composition formed into a handleable sheet was pulled lightly by hand was evaluated in two stages.
○: Even if pulled lightly by hand, it is not damaged.
Δ: It is easily damaged when pulled lightly by hand.
[0048]
The highly heat conductive composition formed into a workable sheet was continuously cut with a punching die, and the state at that time was evaluated in two stages.
○: Continuous cutting is possible without cracks and burrs.
(Triangle | delta): A crack and a crack generate | occur | produce in a part of sample at the time of cutting.
[0049]
[Table 1]
Figure 0004627105
[0050]
[Table 2]
Figure 0004627105
[0051]
[Table 3]
Figure 0004627105
[0052]
The sheet obtained in the example of the present invention was sandwiched between the heat generating electronic component and the heat radiating fin, heated to 55 ° C., and a pressure of 0.34 MPa was applied to produce a heat radiating fin integrated heat generating electronic component. . In both cases, a structure was confirmed in which the sheet microscopically followed and adhered to the joint surface between the heat-generating electronic component and the radiating fin, and the gap between the two was sufficiently filled.
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the heat radiating member excellent in the heat conductivity which consists of the highly heat conductive composition which fluidizes easily with a heat | fever, and it is provided.
[0054]
Further, according to the present invention, a heat radiating fin-integrated exothermic electronic component structure having excellent heat dissipation characteristics is provided.

Claims (8)

40〜100℃に融点を有するワックス及び/又はパラフィン24.5〜32体積%、40〜100℃で軟化する熱可塑性樹脂としてエチレン系樹脂、プロピレン系樹脂、エチレン−α−オレフィン共重合体、又はエチレン−酢酸ビニル共重合体8〜10.5体積%、窒化アルミニウム焼結体の粉末42〜50体積%、平均粒子径が10μm以下の良熱伝導性微粉末10〜19.5体積%とからなることを特徴とする高熱伝導性組成物。Wax having a melting point at 40 to 100 ° C. and / or paraffin 24.5 to 32% by volume, thermoplastic resin softening at 40 to 100 ° C., ethylene resin, propylene resin, ethylene-α-olefin copolymer, or From 8 to 10.5% by volume of ethylene-vinyl acetate copolymer, 42 to 50% by volume of aluminum nitride sintered powder, and 10 to 19.5% by volume of fine heat conductive fine powder having an average particle size of 10 μm or less. A highly heat-conductive composition characterized by comprising: 40〜100℃で軟化する熱可塑性樹脂がエチレン−酢酸ビニル共重合体であることを特徴とする請求項1記載の高熱伝導性組成物。The high thermal conductivity composition according to claim 1, wherein the thermoplastic resin softening at 40 to 100 ° C is an ethylene-vinyl acetate copolymer. 良熱伝導性微粉末が窒化アルミニウム粉末又は酸化アルミニウム粉末であることを特徴とする請求項1または2記載の高熱伝導性組成物。The highly heat-conductive composition according to claim 1 or 2, wherein the fine heat-conductive fine powder is an aluminum nitride powder or an aluminum oxide powder. 請求項1〜3のいずれかに記載の高熱伝導性組成物の成形体からなることを特徴とする発熱性電子部品の放熱部材。A heat dissipating member for a heat-generating electronic component, comprising a molded body of the highly heat-conductive composition according to claim 1. 40〜100℃に融点を有するワックス及び/又はパラフィン24.5〜32体積%、40〜100℃で軟化する熱可塑性樹脂としてエチレン系樹脂、プロピレン系樹脂、エチレン−α−オレフィン共重合体、又はエチレン−酢酸ビニル共重合体8〜10.5体積%、窒化アルミニウム焼結体の粉末42〜50体積%、平均粒子径が10μm以下の良熱伝導性微粉末10〜19.5体積%とからなる高熱伝導性組成物と、網目状構造体とが一体化されてなる成形体からなることを特徴とする発熱性電子部品の放熱部材。 Wax having a melting point at 40 to 100 ° C. and / or paraffin 24.5 to 32% by volume, thermoplastic resin softening at 40 to 100 ° C., ethylene resin, propylene resin, ethylene-α-olefin copolymer, or From 8 to 10.5% by volume of ethylene-vinyl acetate copolymer, 42 to 50% by volume of aluminum nitride sintered powder, and 10 to 19.5% by volume of fine heat conductive fine powder having an average particle size of 10 μm or less. A heat dissipating member for a heat-generating electronic component, comprising a molded body obtained by integrating a highly heat-conductive composition and a network structure. 40〜100℃で軟化する熱可塑性樹脂がエチレン−酢酸ビニル共重合体であることを特徴とする請求項5記載の発熱性電子部品の放熱部材。The heat radiating member for an exothermic electronic component according to claim 5, wherein the thermoplastic resin softening at 40 to 100 ° C is an ethylene-vinyl acetate copolymer . 良熱伝導性微粉末が窒化アルミニウム粉末又は酸化アルミニウム粉末であることを特徴とする請求項5又は6記載の発熱性電子部品の放熱部材。The heat-radiating member for a heat-generating electronic component according to claim 5 or 6, wherein the fine heat-conductive fine powder is aluminum nitride powder or aluminum oxide powder . 請求項5〜7のいずれかに記載の放熱部材を用いて発熱性電子部品と放熱フィンが接着されてなることを特徴とする放熱フィン一体型発熱性電子部品の構造体。A heat-radiating fin-integrated heat-generating electronic component structure, wherein the heat-generating electronic component and the heat-dissipating fin are bonded using the heat-dissipating member according to claim 5.
JP2000209550A 2000-07-11 2000-07-11 High thermal conductive composition and its use Expired - Lifetime JP4627105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000209550A JP4627105B2 (en) 2000-07-11 2000-07-11 High thermal conductive composition and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000209550A JP4627105B2 (en) 2000-07-11 2000-07-11 High thermal conductive composition and its use

Publications (2)

Publication Number Publication Date
JP2002020625A JP2002020625A (en) 2002-01-23
JP4627105B2 true JP4627105B2 (en) 2011-02-09

Family

ID=18705941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000209550A Expired - Lifetime JP4627105B2 (en) 2000-07-11 2000-07-11 High thermal conductive composition and its use

Country Status (1)

Country Link
JP (1) JP4627105B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540266B2 (en) * 2000-12-07 2004-07-07 北川工業株式会社 Thermal conductive material and manufacturing method thereof
JP2003264261A (en) * 2002-03-07 2003-09-19 Hitachi Industrial Equipment Systems Co Ltd Power device and sheet for heat connection
JP4511858B2 (en) * 2004-03-26 2010-07-28 ポリマテック株式会社 Phase change heat conductive molding
KR101611747B1 (en) 2014-11-05 2016-04-14 주식회사 포스코 Method of manufacturing heat sink having roughness
JP7211923B2 (en) * 2019-10-08 2023-01-24 アイシン化工株式会社 Composition for heat-dissipating moldings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182331A (en) * 1988-01-14 1989-07-20 Denki Kagaku Kogyo Kk Filler
JPH03126765A (en) * 1989-10-02 1991-05-29 Siemens Ag Composite material resistant to high temperature
JPH0624715A (en) * 1992-02-07 1994-02-01 Ciba Geigy Ag Filler for heat-conductive plastic material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3814842B2 (en) * 1994-07-12 2006-08-30 住友化学株式会社 Aluminum nitride powder, production method thereof and use thereof
JP3813301B2 (en) * 1997-06-04 2006-08-23 エフコ株式会社 Thermally conductive rubber composition and thermally conductive rubber sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182331A (en) * 1988-01-14 1989-07-20 Denki Kagaku Kogyo Kk Filler
JPH03126765A (en) * 1989-10-02 1991-05-29 Siemens Ag Composite material resistant to high temperature
JPH0624715A (en) * 1992-02-07 1994-02-01 Ciba Geigy Ag Filler for heat-conductive plastic material

Also Published As

Publication number Publication date
JP2002020625A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
EP1797155B1 (en) Thermally conductive composition and method for preparing the same
KR100852070B1 (en) Phase Change Thermal Interface Composition Having Induced Bonding Property
JP5882581B2 (en) Thermally conductive sheet, method for producing the same, and heat dissipation device
JP4047126B2 (en) Deformable fillers and thermal interface materials
US7294394B2 (en) Phase change material containing fusible particles as thermally conductive filler
US20070241303A1 (en) Thermally conductive composition and method for preparing the same
TWI251320B (en) Thermal conductive composition, a heat-dissipating putty sheet and heat-dissipating structure using the same
JP2005502776A (en) Dry heat interface material
WO2002091395A1 (en) Interface materials and methods of production and use thereof
WO2020153346A1 (en) Method for producing thermally conductive sheet
EP2257610A2 (en) Thermally enhanced electrically insulative adhesive paste
JP2002003830A (en) Highly heat conductive composition and its application
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
JP4627105B2 (en) High thermal conductive composition and its use
JP2003113313A (en) Heat-conductive composition
JP2004075760A (en) Heat-conductive resin composition and phase-change type heat radiation member
JP4749631B2 (en) Heat dissipation member
WO2022176725A1 (en) Thermally-conductive sheet, and electronic device
JP2000185328A (en) Heat conductive silicone moldings and manufacture thereof and use applications
JP2002217342A (en) Phase-change-type heat radiation member and its manufacturing method and application
JP2001342352A (en) Highly thermally conductive composition and its use
WO2022176823A1 (en) Heat conductive sheet
JP4409118B2 (en) Granular material for forming heat dissipation member and its use
Jiang et al. Fabrication and characterization of carbon-aluminum thermal management composites
TWI224123B (en) Thermal interface material composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4627105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term