JP4626738B2 - Method for manufacturing winding core for inductance element and method for manufacturing inductance element - Google Patents

Method for manufacturing winding core for inductance element and method for manufacturing inductance element Download PDF

Info

Publication number
JP4626738B2
JP4626738B2 JP2001219007A JP2001219007A JP4626738B2 JP 4626738 B2 JP4626738 B2 JP 4626738B2 JP 2001219007 A JP2001219007 A JP 2001219007A JP 2001219007 A JP2001219007 A JP 2001219007A JP 4626738 B2 JP4626738 B2 JP 4626738B2
Authority
JP
Japan
Prior art keywords
core
inductance element
manufacturing
cutting
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001219007A
Other languages
Japanese (ja)
Other versions
JP2003031431A (en
Inventor
雅広 鬼塚
博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2001219007A priority Critical patent/JP4626738B2/en
Publication of JP2003031431A publication Critical patent/JP2003031431A/en
Application granted granted Critical
Publication of JP4626738B2 publication Critical patent/JP4626738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、インダクタンス素子に使用される巻芯体の製造方法及びインダクタンス素子の製造方法に係り、とくに超小型の表面実装型インダクタンス素子の作製に適用可能なインダクタンス素子用巻芯体の製造方法及びインダクタンス素子の製造方法に関する。
【0002】
【従来の技術】
インダクタンス素子は電子機器には不可欠な素子として利用されているものである。近年、電子機器は小型化、高機能化が進み、それに伴い電子機器に使用される基板の部品集積度が高まってきた。
【0003】
基板の部品集積度が高くなることで各部品には、部品形状の小型化が求められている。例えばインダクタンス素子においては、現在主流としては2520サイズ(2.5mm×2.0mmの面積)であるが、最近は2012サイズ(2.0mm×l.2mm)、1608サイズ(1.6mm×0.8mm)へと小型化が進み、コンデンサにおいては0505サイズ(0.5mm×0.5mm)まで市場に出始めている。このようにインダクタンス素子を含む各種部品は小型化が更に進むことが容易に推測される。
【0004】
また、近年の環境問題に対する関心の高まりにより、電子機器の低消費電力化も進んできた。電子機器の省電力化のためには、使用する部品の直流抵抗を小さくすることが必要であり要求が高まっている。
【0005】
【発明が解決しようとする課題】
表面実装型インダクタンス素子は代表的なものに、図10に示す特開平11−87126号公報に記載されているような、巻芯体1にフェライト、アルミナ、フォルステライト等のセラミックスを用い、その巻芯体1にワイヤー2を巻き、それを樹脂3にてモールドすることで部品外装を形成し電極4を施し構成されたものがある。
【0006】
図10に示した表面実装型インダクタンス素子に使用されている巻芯体は、巻芯部断面が円、鍔部形状も円である。このような巻芯体の製造方法は、巻芯体の元となる素体を成型後に巻芯部を切削すること、又はフェライト、アルミナ、フォルステライトに代表されるセラミックスの場合は焼成後に巻芯部を切削することで製造される。
【0007】
巻芯体の切削は、図11乃至図13に示すような構造の設備にて行われる。図11(A)のように巻芯体の素体10を切削設備にセットした際、巻芯体の素体10を回転車20にて回転させながら巻芯部11を切削する切削用砥石21を素体10に当て、回転車20若しくは砥石21を素体10に押し当て所望の距離まで移動させることで図11(B)のように巻芯部11を設ける。その際、回転車20が素体10を回転させるため、回転車20に接触する巻芯体用素体10は、断面が円である円柱形状が好ましい。切削後の巻芯体1おいて、砥石21で切削されなかった部分は巻芯体1の鍔部12となるため、鍔部断面形状は円となる。なお、図11乃至図13の設備では回転車20の軸方向の幅は素体10の幅よりも大きく、かつ切削用砥石21の幅よりも大きくなっている。
【0008】
また、特開平8−97064公報にも外周に溝を有する円柱形の素体の周面中央部を研削し、ドラム状の部品に加工する方法と装置の記載があるが、素体を下から支えるブレードが鍔部に接触する為、真円が得られず、多角形状(異型)の鍔部を有するドラム状の部品に加工することが出来ない。つまり、図13の設備において、素体10を下から支えるブレード22で砥石21が当たらない素体部分を支持する構成に相当する。
【0009】
巻芯体1の鍔部12を円以外の形状とするには、切削前の巻芯体用素体10を円柱以外の形状とすれば可能であり、円柱形状以外の素体、例えば多角柱、楕円柱等であっても、回転車20と常に接触しているのであれば、素体10を回転させ切削することは可能である。しかしながら、素体10を回転させる際、素体断面の中心を回転軸とすることができず、切削された巻芯部11断面形状は真円度が極めて低い。更に、定常的な断面積が得られず、鍔部中心と巻芯部11断面中心がずれやすい。このことは巻芯部11の断面積はインダクタンスに影響する要素であるため、品質の安定化の観点よりみて好ましくない。
【0010】
また、図11乃至図13の製造法による巻芯体1の鍔部12形状は通常円であるため(上記したように円以外では品質の安定化が図れない)、小型化のために従来使用されていた図10の外装樹脂3を取り去り巻芯体1に直接電極4を塗布し表面実装型インダクタンス素子を構成する場合、基板装着面となる鍔部12が面で接触できず、安定した実装ができず、機器の信頼性を低下させる。
【0011】
そこで、図14に示す特許3116513号公報で開示されたような、前述の切削による巻芯体の製造法でなく、成型にて巻芯体を製造する方法が提案されている。図14の製造方法は、成型後に巻芯体形状をなすよう予め巻芯部11、鍔部12を構成できるような金型を使用し、巻芯体1を製造する方法である。図14(A)は成型により得られる巻芯体1の一般的な例であり、巻芯部11及び鍔部12共に四角形であり、図14(B),(C)は巻芯部11を略八角形に、鍔部12を方形に成型した例である。図14の製造方法であれば、巻芯体鍔部の形状は多角形、例えば四角形でも製造が可能である。また切削工程が不要のため低コストで生産が可能である。
【0012】
しかしながら、図14の製造法の場合、巻芯体1の巻芯部11断面形状は、成型金型の構造上の制約から、円にすることが不可能であり、四角形等の多角形、もしくは一部弧とフラット部分を有した形状となる。巻芯体1の断面形状は同一断面積で比較した場合、円が一番周回距離が短くなる。同一断面積で周回距離が短いということは、巻線のワイヤーを短くすることができるので、同一インダクタンスで低直流抵抗を実現することができる。低直流抵抗であることは、省電力化につながる。図14の製造方法による巻芯体1は小型化を実現できる表面実装型インダクタンス素子を構成するには適しているが、省電力化には好ましくない。また、鍔部12の端面13は金型の枠にて成型されるため、側面にワイヤーを導くため若しくは電極を容易に形成できるような溝等の凹凸を形成することは困難である。
【0013】
そこで、図15に示すような小型化、省電力化を実現できる表面実装型インダクタンス素子に最適な多角形、例えば四角形状の鍔部を有し、巻芯部断面形状が円である巻芯体を製造する方法として、特開平10−163033号公報、特開平10−172853号公報で開示されているように、図15(A)の巻芯体用素体10の端部15に位置決めの凹凸部16を設け、これを利用して図15(B),(C)のように切削する、もしくは図15(D)〜(G)のように側面又は端面に溝17又は溝18を設け、切削時にこれらを利用し素体10の中心位置を固定するために固定用治具にて素体10を固定しながら切削し、図15(C),(G)のように巻芯部11を形成する方法が提案されている。
【0014】
図15の製造方法を用いれば、巻芯部11は切削により形成されるため断面は円にすることが可能であり、鍔部12は円以外の形状に形成することが可能である考えられる。しかしながら、図15の製造方法は巻芯体用素体10を切削時に位置決めのため固定することが必要不可欠で、位置決めのために素体をセットする時間は必要となる。また切削時に素体10を回転させる必要があるが、素体10を回転させるための力は位置決め治具から与える必要があり、位置決めの際は一度回転させる作業を止める必要がある。素体を回転させる力を位置決め治具からではなく、素体側面から回転車で与える場合も、素体断面形状が円でないため、円滑な回転を行うことができず、生産性を向上させるには問題がある。
【0015】
そこで、本発明は、上記の点に鑑み、巻芯部断面形状を円とし、ワイヤー長さを短くして直流抵抗値を低減でき、また鍔部形状を表面実装に適したフラット面を有する多角形等にし、基板実装時の安定性を向上させることが可能なインダクタンス素子用巻芯体の製造方法及びインダクタンス素子の製造方法を提供することを目的とする。
【0016】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0017】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明に係るインダクタンス素子用巻芯体の製造方法は、
インダクタンス素子用巻芯体となるべき素体の側面に回転力を与える回転車と巻芯部を切削する切削用砥石とを用い、前記素体を回転させながら前記切削用砥石を宛い、切削加工により前記巻芯部を形成する場合において、
前記素体を、断面が円以外もしくは多角形であり且つ側面にフラット面を有する部分が円柱部の軸方向両側の端面上に当該端面からはみ出さずに存在する形状にしておき、
前記素体に接触する前記回転車の接触幅を前記素体に接触する切削用砥石の接触幅より狭く且つ前記円柱部の軸方向の長さ範囲内とし、前記巻芯部として切削される部分に前記回転車が接触しかつ当該部分をブレードで支持し、断面が円以外もしくは多角形であって側面にフラット面を有する鍔部を円柱状の巻芯部の両側に備える形状に前記素体を前記切削用砥石で切削することを特徴としている。
本願請求項2の発明に係るインダクタンス素子用巻芯体の製造方法は、請求項1において、断面が円以外もしくは多角形であり且つ側面にフラット面を有する前記部分が、前記素体の軸方向の両端部であることを特徴としている。
【0020】
本願請求項の発明に係る表面実装型インダクタンス素子の製造方法は、
インダクタンス素子用巻芯体となるべき素体の側面に回転力を与える回転車と巻芯部を切削する切削用砥石とを用い、前記素体を回転させながら前記切削用砥石を宛い、切削加工により前記巻芯部を形成してインダクタンス素子用巻芯体を得て、前記巻芯体の前記巻芯部にワイヤーを巻線し、該ワイヤー端部を前記巻芯体端部に形成した電極部に接続する表面実装型インダクタンス素子の製造方法であり、前記インダクタンス素子用巻芯体を作製するときに、
前記素体を、断面が円以外もしくは多角形であり且つ側面にフラット面を有する部分が円柱部の軸方向両側の端面上に当該端面からはみ出さずに存在する形状にしておき、
前記素体に接触する前記回転車の接触幅を前記素体に接触する切削用砥石の接触幅より狭く且つ前記円柱部の軸方向の長さ範囲内とし、前記巻芯部として切削される部分に前記回転車が接触しかつ当該部分をブレードで支持し、断面が円以外もしくは多角形であって側面にフラット面を有する鍔部を円柱状の巻芯部の両側に備える形状に前記素体を前記切削用砥石で切削することを特徴としている。
本願請求項4の発明に係る表面実装型インダクタンス素子の製造方法は、請求項3において、断面が円以外もしくは多角形であり且つ側面にフラット面を有する前記部分が、前記素体の軸方向の両端部であることを特徴としている。
【0021】
本願請求項5の発明に係る表面実装型インダクタンス素子の製造方法は、請求項3又は4において、前記ワイヤー巻線後、前記巻芯部に樹脂を設けて前記巻芯部を被覆することを特徴としている。
【0022】
本願請求項6の発明に係る表面実装型インダクタンス素子の製造方法は、請求項5において、前記樹脂に磁性体粉を含有させたことを特徴としている。
【0023】
本願請求項7の発明に係る表面実装型インダクタンス素子の製造方法は、請求項3から6のいずれかにおいて、前記ワイヤー巻線後、前記巻芯部に磁性体を配したことを特徴としている。
【0024】
【発明の実施の形態】
以下、本発明に係るインダクタンス素子用巻芯体の製造方法及びインダクタンス素子の製造方法の実施の形態を図面に従って説明する。
【0025】
図1乃至図3を用い、本発明の第1の実施の形態であってインダクタンス素子用巻芯体の製造方法を説明する。これらの図において、インダクタンス素子用巻芯体の製造設備は、インダクタンス素子用巻芯体1となるべき素体10の側面に回転力を与える回転車30と、巻芯部11を切削して形成する切削用砥石31と、素体10を下側から支えるブレード32と、図2のように素体10の軸方向の位置を規制するストッパ33とを備えている。
【0026】
ここで、前記切削用砥石31は円板状の回転砥石であり、その外周部分はダイヤモンド等の砥粒が設けられた研削周面となっている。この研削周面幅は、切削加工しようとする素体10に形成する巻芯部11の幅に実質的に一致する。前記素体10は主にフェライト、アルミナ、フォルステライト等のセラミックスが用いられる。また、素体10に接触する前記回転車30の軸方向の接触幅を素体10に接触する切削用砥石31の接触幅より狭くし、前記巻芯部11として切削される部分に前記回転車30が接触しかつ当該部分を図3のようにブレード32で下から支持するようになっている。図3のようにブレード32の上辺は回転車30側が低く、砥石31側が高くなるように傾斜を有する。
【0027】
そして、巻芯体となるべき素体10を回転車30と切削用砥石31等を有する上記製造設備に設置する。この際、回転車30と素体10の接触部分は、切削用砥石31と素体10が接触する面内であることが重要である。つまり切削用砥石31で切削された面(円周面)に回転車30が接触している必要があるからである。切削は、回転車30若しくは切削用砥石31を所望の巻芯部11の断面径となる距離まで切削しながら移動させることで円柱状の巻芯部11を形成する。このとき、素体10の砥石31が接触して切削する部分の両側(鍔となる部分)は回転車30及び砥石31の両者共に接触しないから任意の形状を取り得る。従って、素体10の両側の鍔となる部分の断面を、円以外、もしくは多角形とすることで、非円形、あるいは多角形の断面形状の鍔を得ることができる。
【0028】
図4及び図5は巻芯体となるべき切削前素体と得られる巻芯体とを対比した形状図である。図4(A)の素体を用い、素体両側の方形鍔部42となるべき方形板状部を残し、中間の円柱部分43を切削して小径円柱状とすれば同図(A’)の方形鍔部42を持ち巻芯部11が円柱状の巻芯体40とすることが可能である。以下、図4(B),(B’)及び(C),(C’)についても同様であり、巻線ワイヤー引出用の溝42a,42bを方形鍔部42に形成している点が図4(A),(A’)と異なる。
【0029】
さらに図5(A),(A’)は鍔部44が六角形状の例、同図(B),(B’)は鍔部45が十字形状の例、同図(C),(C’)は鍔部46の各辺が弧を含んだ形状の略菱形形状の例である。これらの図4及び図5において、鍔部端面形状は電極形成を好ましくするため凹凸部、ワイヤーの通る溝等を設ける場合もある。
【0030】
このインダクタンス素子用巻芯体の製造方法の実施の形態によれば、次の通りの効果を得ることができる。
【0031】
(1) 巻芯体用素体10の巻芯部11となる部分(例えば、図4(A)の円柱部分43)の断面が円であるために、回転車30を素体10の側面に接触させることで素体10を円滑に回転させることが可能であり、更に常に回転車30の当たる部分は回転車30の接触面積より軸方向に幅広の接触面積である切削用砥石31で切削されることから、切削終了まで回転車30の接触部分は円を維持しながら回転車30の力で素体10を円滑に回転駆動することが可能となる。従って、巻芯部11の断面形状が円で、かつ鍔部の形状が表面実装に適したフラット面を有する非円形又は多角形状となった巻芯体を生産性良く製造可能であり、インダクタンス素子を作製したときに、小型化及び直流抵抗値の低減を実現可能とするとともに、基板実装時の安定性を向上させることができる。
【0032】
(2) 従来の製造方法(図11)では切削を進めると、切削されない部分である素体10端部の2箇所が回転車に当接し、切削砥石が設置された中心部である切削部の1箇所で砥石による力が加わるとともに、切削が進むにつれ切削部が細くなるため、折れが生じやすかった。本実施の形態で説明した製造方法の場合、切削が進んでも回転車30と素体10は1箇所、切削用砥石31と素体10も1箇所で力を加え、更に、回転車30と砥石31は素体軸方向よりみて同位置にあるため、素体を折る力は発生しにくい。とくに、この折れの発生の問題は近年の小型化でより小さな素体形状になればなるほど無視できなくなるが、本実施の形態に係る製法によれば、今後小型化が進んだ場合にもこの問題を解消可能である。
【0033】
(3) 切削用砥石31によって切削されずに残る素体部分は、巻芯体1の鍔部となるため、その部分の断面を図4や図5のように円以外の形状とすることで、巻芯部11断面が円であり、かつ多様な鍔部を有する巻芯体1の製造が可能となる。
【0034】
(4) 巻芯体の巻芯部11の断面が円であり、巻芯部11にワイヤーを巻線してインダクタンス素子を作製する場合、小型化及び省電力化が実現できる。
【0035】
次に、図6を用い、本発明の第2の実施の形態であるインダクタンス素子の製造方法について説明する。図6(A)のように、第1の実施の形態の製造方法で得られた巻芯体1を用い、この巻芯部11にワイヤー2を巻線し、巻芯部11両側の方形鍔部12端面に設けた電極部14にワイヤー2端部をはんだ付け等で接続し表面実装型インダクタンス素子を構成する。そして、基板実装時には図6(B)のように基板50上に載置し、はんだ51等で固着する。
【0036】
このように鍔部12が方形であると、そのフラット面で基板実装時に固着(横置き)でき、実装時の信頼性を確保でき、図10のような部品外装を不要して小型化を図ることもできる。
【0037】
図7は本発明の第3の実施の形態であって、第2の実施の形態では電極部を両方の鍔部端面に設けたが、鍔部12の同一端面に2個以上の電極部を施す場合を示している。図7(A)に示す例では一方の鍔部12に2個の電極部14a,14bが形成され、巻芯部11に巻かれたワイヤー2の端部はそれぞれ電極部14a,14bに接続される。その他の構成は第2の実施の形態と同じでよい。
【0038】
前述の第2の実施の形態の場合には図6(B)で示すように基板への実装は横置きであるが、図7の第3の実施の形態の場合は図7(B)で示すように基板50への縦置きが可能となる。
【0039】
なお、同一巻芯体に2ライン以上の巻線を施せば、コモンモードチョークコイル、バルントランス等の用途に使用できる表面実装型インダクタンス素子を構成することも可能となる。
【0040】
図8は本発明の第4の実施の形態であって、図6の構成において予め巻芯体1の鍔部12にワイヤー2を引き出すためのガイドとなる溝25を形成している。
その他の構成は図6と同じである。
【0041】
この第4の実施の形態では、ワイヤー引出用のガイドとなるよう鍔部12に溝部25を設けることで、ワイヤー2の引出しが容易になる。更には基板接着面にワイヤー2を引き出した面が接触する場合、溝部25がない場合はワイヤー2の径寸法分、表面実装型インダクタンス素子と基板間に隙間が生じ、安定度が悪くなることが推測され、溝部25にワイヤー2を引き出すことが好ましい。溝部25の形状、寸法、位置、数については実際の使用上、同等の効果が得られる限り、特に限定しない。
【0042】
図9(A),(B),(C)は本発明の第5、第6及び第7の実施の形態を示し、図6のように巻芯体1の巻芯部11にワイヤー2を巻線して鍔部12の端面にある電極14に接続後、樹脂26を塗布して表面実装型インダクタンス素子を作製した概略図である。
【0043】
図9(A)の第5の実施の形態では巻芯部11周囲に樹脂26を塗布して、巻芯部11に巻いたワイヤー2が樹脂被覆で保護されるため信頼性が向上する。
【0044】
更に、図9(B)の第6の実施の形態に示すような磁性体粉27を含有させた樹脂28を使用することで、磁気回路上、閉磁路に近くなるため、同一形状、同一巻線数ではインダクタンスが高くなり、更に小型化の可能性が出てくる。それに伴い、巻線数の減少からワイヤー2の長さも短くでき省電力化につながる。
【0045】
図9(C)の第7の実施の形態では、巻芯体1の巻芯部11にワイヤー2を巻線後、磁性体片29を巻芯部11の周囲に配置して樹脂26を設けてインダクタンス素子を作製した。第6の実施の形態の磁性体粉27を含有させた樹脂28と比較すると、固形の磁性体片29を樹脂26中に設置(埋設)するため、より閉磁路に近づき、更に小型化の可能性及び省電力化につながる。
【0046】
なお、本発明に使用する巻芯体の素材は主にフェライト、アルミナ、フォルステライト等のセラミックスが用いられるが、特に限定されない。
【0047】
巻芯体形状については本発明の切削方法にて製造される限り、特に限定されない。また、表面実装型インダクタンス素子に使用される電極材質、ワイヤー材質、樹脂材質、磁性体材質、電極形状等の構成部位に関しても特に限定されない。
【0048】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0049】
【発明の効果】
以上説明したように、本発明によれば、表面実装インダクタンス素子として、小型化及び省電力化が可能となる巻芯体の製造が可能となり、これを用いた表面実装インダクタンス素子の提供により、電子機器の小型化、省電力化を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態であってインダクタンス素子用巻芯体の製造方法に用いる設備概略を示し、(A)は巻芯体の素体をこれから切削する場合の斜視図、(B)は巻芯体に切削加工を施した状態の斜視図である。
【図2】本発明の第1の実施の形態で用いる設備の概略平面図である。
【図3】本発明の第1の実施の形態で用いる設備の概略正面図である。
【図4】第1の実施の形態において用いることのできる巻芯体の切削前素体及びこれより得られる巻芯体の例を示す斜視図である。
【図5】第1の実施の形態において用いることのできる巻芯体の切削前素体及びこれより得られる巻芯体のその他の例を示す斜視図である。
【図6】本発明の第2の実施の形態であってインダクタンス素子用巻芯体を用いたインダクタンス素子の製造方法を示し、(A)は斜視図、(B)は基板実装時の正面図である。
【図7】本発明の第3の実施の形態であってインダクタンス素子用巻芯体を用いたインダクタンス素子の製造方法を示し、(A)は斜視図、(B)は基板実装時の正面図である。
【図8】本発明の第4の実施の形態であってインダクタンス素子用巻芯体を用いたインダクタンス素子の製造方法を示す斜視図である。
【図9】本発明の第5、第6及び第7の実施の形態をそれぞれ示す正断面図である。
【図10】従来の表面実装型インダクタンス素子の斜視図である。
【図11】従来の巻芯体の製造方法に用いる設備概略を示し、(A)は巻芯体の素体をこれから切削する場合の斜視図、(B)は巻芯体に切削加工を施した状態の斜視図である。
【図12】同じく概略平面図である。
【図13】同じく概略正面図である。
【図14】従来の成型による巻芯体の例で、(A)は成型による巻芯体の一般的な例を示す斜視図、(B)は巻芯部を多角形とした巻芯体の例を示す正面図、(C)は(B)の巻芯体の巻芯部断面図である。
【図15】従来の表面実装型インダクタンス素子の巻芯体の他の例を示し、(A)〜(C)は位置決め用凹凸部を端部に設けた例の説明図、(D)〜(G)は側面又は端面に固定用の溝を設けた例の説明図である。
【符号の説明】
1 巻芯体
2 ワイヤー
3,26,28 樹脂
4,14 電極部
10 巻芯用素体
11 巻芯部
12,42,44,45,46 鍔部
17,42a,42b 溝
20,30 回転車
21,31 切削用砥石
22,32 ブレード
27 磁性体粉
29 磁性体片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a core used for an inductance element and a method of manufacturing an inductance element, and more particularly to a method of manufacturing a core for an inductance element that can be applied to the manufacture of an ultra-small surface-mount type inductance element, and The present invention relates to a method for manufacturing an inductance element.
[0002]
[Prior art]
An inductance element is used as an indispensable element for electronic equipment. In recent years, electronic devices have been reduced in size and functionality, and accordingly, the degree of component integration of substrates used in electronic devices has increased.
[0003]
Each component is required to have a smaller component shape due to the higher integration of components on the board. For example, the inductance element currently has a 2520 size (2.5 mm × 2.0 mm area) as the mainstream, but recently it has a 2012 size (2.0 mm × 1.2 mm) and a 1608 size (1.6 mm × 0.2 mm). 8mm), the capacitor has begun to be marketed to 0505 size (0.5mm x 0.5mm). As described above, it is easily estimated that various parts including the inductance element are further reduced in size.
[0004]
In addition, the recent increase in interest in environmental problems has led to a reduction in power consumption of electronic devices. In order to reduce the power consumption of electronic devices, it is necessary to reduce the DC resistance of the components used, and the demand is increasing.
[0005]
[Problems to be solved by the invention]
A typical surface-mount type inductance element is a ceramic body such as ferrite, alumina, forsterite, etc., as described in JP-A-11-87126 shown in FIG. There is one in which a wire 2 is wound around a core body 1 and molded with a resin 3 to form a component exterior and an electrode 4 is applied.
[0006]
The core used in the surface-mount type inductance element shown in FIG. 10 has a circular cross section of the core part and a circular shape of the collar part. Such a method of manufacturing a core body is obtained by cutting the core portion after molding the core body that is the origin of the core body, or in the case of ceramics typified by ferrite, alumina, and forsterite, after the core is fired. Manufactured by cutting parts.
[0007]
The core body is cut by equipment having a structure as shown in FIGS. When the core body 10 is set in a cutting facility as shown in FIG. 11A, a cutting grindstone 21 that cuts the core 11 while rotating the core body 10 with a rotary wheel 20. Is applied to the base body 10, and the rotary wheel 20 or the grindstone 21 is pressed against the base body 10 and moved to a desired distance to provide the core portion 11 as shown in FIG. At that time, since the rotary wheel 20 rotates the base body 10, the core body base body 10 that contacts the rotary wheel 20 preferably has a cylindrical shape with a circular cross section. Oite the core member 1 after cutting, was not cut by the grindstone 21 parts to become the flange portion 12 of Makishintai 1, the flange portion cross-sectional shape is a circle. 11 to 13, the axial width of the rotary wheel 20 is larger than the width of the base body 10 and larger than the width of the cutting grindstone 21.
[0008]
Japanese Patent Laid-Open No. 8-97064 also describes a method and apparatus for grinding a central portion of a peripheral surface of a cylindrical element having a groove on the outer periphery to process it into a drum-shaped part. Since the supporting blade comes into contact with the collar part, a perfect circle cannot be obtained, and it cannot be processed into a drum-shaped part having a polygonal (atypical) collar part. That is, in the facility of FIG. 13, this corresponds to a configuration in which the element body portion to which the grindstone 21 does not hit is supported by the blade 22 that supports the element body 10 from below.
[0009]
In order to make the flange portion 12 of the core body 1 have a shape other than a circle, it is possible to make the core body body 10 before cutting into a shape other than a cylinder. Even if it is an elliptical cylinder or the like, the element body 10 can be rotated and cut as long as it is always in contact with the rotating wheel 20. However, when the element body 10 is rotated, the center of the element body cross section cannot be set as the rotation axis, and the cut cross-sectional shape of the core part 11 has extremely low roundness. Furthermore, a steady cross-sectional area cannot be obtained, and the center of the collar portion and the cross-sectional center of the core portion 11 are likely to be shifted. This is not preferable from the viewpoint of stabilizing the quality because the cross-sectional area of the core 11 is an element that affects the inductance.
[0010]
Moreover, since the shape of the collar part 12 of the core body 1 by the manufacturing method of FIG. 11 thru | or FIG. 13 is a normal circle (As mentioned above, quality cannot be stabilized except a circle), Therefore It uses conventionally for size reduction 10 is removed, and the electrode 4 is directly applied to the core body 1 to form a surface-mount type inductance element, the flange 12 serving as the substrate mounting surface cannot be contacted with the surface, and stable mounting is achieved. Cannot be performed, and the reliability of the device is lowered.
[0011]
Then, the method of manufacturing a core body by shaping | molding is proposed instead of the manufacturing method of the core body by the above-mentioned cutting as disclosed by the patent 3116513 shown in FIG. The manufacturing method of FIG. 14 is a method of manufacturing the core body 1 by using a mold that can form the core portion 11 and the flange portion 12 in advance so as to form the core body shape after molding. FIG. 14A is a general example of the core body 1 obtained by molding, and both the core portion 11 and the flange portion 12 are square, and FIGS. 14B and 14C show the core portion 11. This is an example in which the flange 12 is formed into a substantially octagonal shape. If it is the manufacturing method of FIG. 14, the shape of the core body collar part can also be manufactured even if it is a polygon, for example, a quadrangle. Moreover, since a cutting process is unnecessary, production is possible at low cost.
[0012]
However, in the case of the manufacturing method of FIG. 14, the cross-sectional shape of the core portion 11 of the core body 1 cannot be made into a circle due to the structural limitations of the molding die, It has a shape with a partial arc and flat part. When the cross-sectional shapes of the core body 1 are compared with the same cross-sectional area, the circle has the shortest turning distance. The short sectional distance with the same cross-sectional area means that the wire of the winding can be shortened, so that a low DC resistance can be realized with the same inductance. Low DC resistance leads to power saving. The winding core body 1 produced by the manufacturing method of FIG. 14 is suitable for constructing a surface-mount type inductance element that can be miniaturized, but is not preferable for power saving. Moreover, since the end surface 13 of the collar part 12 is shape | molded by the frame of a metal mold | die, it is difficult to form unevenness | corrugations, such as a groove | channel, in order to guide a wire to a side surface or to form an electrode easily.
[0013]
Accordingly, a core body having a polygonal shape, for example, a quadrangular collar portion, which is optimal for a surface-mount type inductance element capable of realizing miniaturization and power saving as shown in FIG. As disclosed in Japanese Patent Application Laid-Open Nos. 10-163033 and 10-172853, positioning irregularities are formed on the end 15 of the core body 10 shown in FIG. A portion 16 is provided, and this is used to cut as shown in FIGS. 15B and 15C, or as shown in FIGS. 15D to 15G, a side surface or an end surface is provided with a groove 17 or a groove 18, In order to fix the center position of the element body 10 by using these at the time of cutting, the element body 10 is cut while being fixed by a fixing jig, and the core part 11 is formed as shown in FIGS. 15 (C) and 15 (G). A method of forming has been proposed.
[0014]
If the manufacturing method of FIG. 15 is used, since the core part 11 is formed by cutting, a cross section can be made into a circle | round | yen, and the collar part 12 can be formed in shapes other than a circle | round | yen. However, in the manufacturing method of FIG. 15, it is indispensable to fix the core body 10 for positioning at the time of cutting, and it takes time to set the core for positioning. In addition, it is necessary to rotate the element body 10 at the time of cutting. However, it is necessary to apply a force for rotating the element body 10 from a positioning jig, and it is necessary to stop the operation of rotating the element body once at the time of positioning. Even when the force for rotating the element body is applied not from the positioning jig but from the side surface of the element body with the rotating wheel, the sectional shape of the element body is not a circle, so smooth rotation cannot be performed and productivity is improved. Has a problem.
[0015]
Therefore, in view of the above points, the present invention can reduce the DC resistance value by making the cross-sectional shape of the winding core portion a circle, shortening the wire length, and making the collar shape a flat surface suitable for surface mounting. It is an object of the present invention to provide a method for manufacturing a winding body for an inductance element and a method for manufacturing an inductance element that can be formed into a square shape or the like and can improve the stability when mounted on a substrate.
[0016]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, a method of manufacturing an inductor core for an inductance element according to claim 1 of the present application is as follows.
Using a rotating wheel that gives a rotational force to the side surface of the element body to be the core body for the inductance element and a cutting grindstone that cuts the core portion, the cutting grindstone is addressed while rotating the element body, and cutting is performed. In forming the core part by processing,
The element body has a cross-sectional shape other than a circle or a polygonal shape, and a portion having a flat surface on the side surface has a shape that does not protrude from the end surface on both end surfaces in the axial direction of the cylindrical portion,
The contact width of the rotating wheel that contacts the element body is narrower than the contact width of the cutting grindstone that contacts the element body and is within the axial length range of the cylindrical portion, and is cut as the core portion. The element is shaped so that the rotating wheel contacts the part and supports the part with a blade, and has a cross-section other than a circle or a polygonal shape and a flange having a flat surface on both sides of the cylindrical core part. The body is cut with the cutting grindstone .
The method for manufacturing a core body for an inductance element according to the invention of claim 2 of the present application is the method according to claim 1, wherein the section having a cross section other than a circle or a polygon and having a flat surface on a side surface is the axial direction of the element body. It is characterized by being the both ends of.
[0020]
A manufacturing method of the surface mount type inductance element according to the invention of claim 3 is as follows:
Using a rotating wheel that gives a rotational force to the side surface of the element body to be the core body for the inductance element and a cutting grindstone that cuts the core portion, the cutting grindstone is addressed while rotating the element body, and cutting is performed. Forming the core part by processing to obtain a core body for an inductance element, winding a wire around the core part of the core body, and forming the wire end at the end of the core body A method for manufacturing a surface mount type inductance element connected to an electrode part , and when producing the winding core for the inductance element,
The element body has a cross-sectional shape other than a circle or a polygonal shape, and a portion having a flat surface on the side surface has a shape that does not protrude from the end surface on both end surfaces in the axial direction of the cylindrical portion,
The contact width of the rotating wheel that contacts the element body is narrower than the contact width of the cutting grindstone that contacts the element body, and is within the length range in the axial direction of the cylindrical portion, and the portion that is cut as the core portion The element body has a shape in which the rotating wheel is in contact with and supports the portion with a blade, and has a cross section other than a circle or a polygonal shape and a flange having a flat surface on both sides of the cylindrical core portion. Is cut with the cutting grindstone .
The method of manufacturing a surface-mount type inductance element according to the invention of claim 4 is the method according to claim 3, wherein the section having a cross section other than a circle or a polygon and having a flat surface on a side surface is in the axial direction of the element body. It is characterized by being both ends.
[0021]
The method for manufacturing a surface-mount type inductance element according to the invention of claim 5 is characterized in that, in claim 3 or 4, after the wire winding, a resin is provided on the core part to cover the core part. It is said.
[0022]
According to a sixth aspect of the present invention, there is provided a method for manufacturing a surface-mount type inductance element according to the fifth aspect, wherein the resin contains magnetic powder.
[0023]
A manufacturing method of a surface mount type inductance element according to the invention of claim 7 is characterized in that in any one of claims 3 to 6 , a magnetic material is disposed on the core after the wire winding.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a method for manufacturing an inductor core for inductance element and a method for manufacturing an inductance element according to the present invention will be described with reference to the drawings.
[0025]
A method for manufacturing an inductor core for an inductance element according to the first embodiment of the present invention will be described with reference to FIGS. In these drawings, the manufacturing facility for the inductance element core body is formed by cutting the rotating wheel 30 for applying a rotational force to the side surface of the element body 10 to be the inductance element core body 1 and the core portion 11. A cutting grindstone 31 for cutting, a blade 32 for supporting the element body 10 from below, and a stopper 33 for restricting the axial position of the element body 10 as shown in FIG.
[0026]
Here, the cutting grindstone 31 is a disk-shaped rotary grindstone, and the outer peripheral portion thereof is a grinding peripheral surface provided with abrasive grains such as diamond. This grinding peripheral surface width substantially matches the width of the core part 11 formed in the element body 10 to be cut. The element body 10 is mainly made of ceramics such as ferrite, alumina, and forsterite. Further, the contact width in the axial direction of the rotating wheel 30 that contacts the element body 10 is made narrower than the contact width of the cutting grindstone 31 that contacts the element body 10, and the rotating wheel is formed on the portion to be cut as the winding core portion 11. 30 is in contact and the part is supported from below by a blade 32 as shown in FIG. As shown in FIG. 3, the upper side of the blade 32 is inclined so that the rotary wheel 30 side is low and the grindstone 31 side is high.
[0027]
And the base body 10 which should become a winding core body is installed in the said manufacturing equipment which has the rotary wheel 30 and the grindstone 31 for cutting. At this time, it is important that the contact portion between the rotary wheel 30 and the element body 10 is in a plane where the cutting grindstone 31 and the element body 10 are in contact. That is, the rotating wheel 30 needs to be in contact with the surface (circumferential surface) cut by the cutting grindstone 31. In the cutting, the cylindrical core 11 is formed by moving the rotating wheel 30 or the cutting grindstone 31 while cutting it to a distance corresponding to the cross-sectional diameter of the desired core 11. At this time, both sides (portions that become the ridges) of the portion to be cut by contact with the grindstone 31 of the element body 10 can take any shape because neither the rotating wheel 30 nor the grindstone 31 are in contact. Therefore, by setting the cross-sections of the portions serving as the wrinkles on both sides of the element body 10 to be other than a circle or a polygon, a wrinkle having a non-circular or polygonal cross-sectional shape can be obtained.
[0028]
4 and 5 are shape diagrams comparing the pre-cutting element body to be the core body and the obtained core body. If the element body of FIG. 4 (A) is used, the rectangular plate-like parts 42 to be the square flanges 42 on both sides of the element body are left, and the intermediate cylinder part 43 is cut into a small-diameter columnar shape (A ′). It is possible to make the winding core portion 11 into a cylindrical winding core body 40 having the rectangular flange portion 42. The same applies to FIGS. 4B, 4B, 4C, and 4C, and the winding wire drawing grooves 42a and 42b are formed in the rectangular flange 42. 4 (A), different from (A ′).
[0029]
5A and 5A show an example in which the collar portion 44 is a hexagonal shape, FIGS. 5B and 5B show an example in which the collar portion 45 has a cross shape, and FIGS. ) Is an example of a substantially rhombus shape in which each side of the collar portion 46 includes an arc. In these FIG.4 and FIG.5, in order to make an electrode formation preferable, the uneven | corrugated | grooved part, the groove | channel where a wire passes may be provided.
[0030]
According to the embodiment of the method for manufacturing the inductor core for inductance element, the following effects can be obtained.
[0031]
(1) Since the cross section of the portion (for example, the cylindrical portion 43 in FIG. 4A) that becomes the core portion 11 of the core body 10 is a circle, the rotating wheel 30 is placed on the side surface of the core body 10. It is possible to smoothly rotate the element body 10 by bringing them into contact with each other, and the portion where the rotating wheel 30 contacts is always cut with a cutting grindstone 31 having a contact area wider in the axial direction than the contact area of the rotating wheel 30. Therefore, it is possible to smoothly rotate the element body 10 by the force of the rotating wheel 30 while maintaining a circle at the contact portion of the rotating wheel 30 until the end of cutting. Therefore, it is possible to manufacture with high productivity a core body in which the cross-sectional shape of the core portion 11 is a circle and the shape of the flange portion is a non-circular or polygonal shape having a flat surface suitable for surface mounting. Can be made smaller and the DC resistance value can be reduced, and the stability when mounted on the substrate can be improved.
[0032]
(2) In the conventional manufacturing method (FIG. 11), when the cutting is advanced, two portions of the end portion of the element body 10 which is not cut are brought into contact with the rotating wheel, and the cutting portion which is the central portion where the cutting grindstone is installed While force by a grindstone was applied at one place and the cutting portion became thinner as the cutting progressed, it was easy to break. In the case of the manufacturing method described in the present embodiment, even if cutting progresses, the rotating wheel 30 and the base body 10 are applied with force at one place, the cutting grindstone 31 and the base body 10 are applied with one place, and further, the rotating wheel 30 and the grinding wheel are applied. Since 31 is in the same position as seen from the direction of the element body axis, it is difficult to generate a force for folding the element body. In particular, the problem of the occurrence of this crease cannot be ignored as the size of the element body becomes smaller due to recent miniaturization. However, according to the manufacturing method according to the present embodiment, this problem may occur even if miniaturization proceeds in the future. Can be eliminated.
[0033]
(3) Since the element body portion that remains without being cut by the cutting grindstone 31 becomes a flange portion of the core body 1, the cross section of the portion is made into a shape other than a circle as shown in FIGS. In addition, it is possible to manufacture the core body 1 having a circular cross section of the core part 11 and having various flanges.
[0034]
(4) When the core part 11 of the core body has a circular cross section and a wire is wound around the core part 11 to produce an inductance element, downsizing and power saving can be realized.
[0035]
Next, a method for manufacturing an inductance element according to the second embodiment of the present invention will be described with reference to FIG. As shown in FIG. 6 (A), the winding core 1 obtained by the manufacturing method of the first embodiment is used, and the wire 2 is wound around the winding core portion 11, and the rectangular irons on both sides of the winding core portion 11 are used. The end portion of the wire 2 is connected to the electrode portion 14 provided on the end face of the portion 12 by soldering or the like to constitute a surface mount type inductance element. Then, when mounted on the board, it is placed on the board 50 as shown in FIG.
[0036]
Thus, when the collar portion 12 is square, the flat surface can be fixed (horizontal) when mounted on the board, reliability during mounting can be ensured, and the component exterior as shown in FIG. You can also
[0037]
FIG. 7 shows a third embodiment of the present invention. In the second embodiment, the electrode portions are provided on both flange end faces, but two or more electrode portions are provided on the same end face of the flange 12. The case where it applies is shown. In the example shown in FIG. 7A, two electrode portions 14a and 14b are formed on one flange portion 12, and the ends of the wire 2 wound around the core portion 11 are connected to the electrode portions 14a and 14b, respectively. The Other configurations may be the same as those of the second embodiment.
[0038]
In the case of the second embodiment described above, the mounting on the substrate is horizontal as shown in FIG. 6B, but in the case of the third embodiment in FIG. As shown, it can be placed vertically on the substrate 50.
[0039]
If two or more windings are applied to the same winding core, it is possible to configure a surface mount type inductance element that can be used for applications such as a common mode choke coil and a balun transformer.
[0040]
FIG. 8 shows a fourth embodiment of the present invention. In the configuration of FIG. 6, a groove 25 serving as a guide for pulling out the wire 2 is formed in the flange portion 12 of the core body 1 in advance.
Other configurations are the same as those in FIG.
[0041]
In the fourth embodiment, the wire 2 can be easily pulled out by providing the groove portion 25 in the flange portion 12 so as to serve as a guide for pulling out the wire. Furthermore, when the surface from which the wire 2 is drawn out contacts the substrate bonding surface, and there is no groove 25, a gap is generated between the surface mount type inductance element and the substrate by the diameter of the wire 2 and the stability may deteriorate. It is presumed that it is preferable to pull out the wire 2 into the groove 25. The shape, size, position, and number of the groove portions 25 are not particularly limited as long as an equivalent effect can be obtained in actual use.
[0042]
9A, 9B, and 9C show fifth, sixth, and seventh embodiments of the present invention, and the wire 2 is attached to the core portion 11 of the core body 1 as shown in FIG. FIG. 4 is a schematic view of a surface-mount type inductance element that is wound and connected to an electrode 14 on the end face of the flange 12 and then coated with a resin 26.
[0043]
In the fifth embodiment shown in FIG. 9A, since the resin 26 is applied around the core part 11 and the wire 2 wound around the core part 11 is protected by the resin coating, the reliability is improved.
[0044]
Further, since the resin 28 containing the magnetic powder 27 as shown in the sixth embodiment in FIG. 9B is used, the magnetic circuit is close to a closed magnetic path, so that the same shape and the same winding are obtained. Inductance increases with the number of wires, and there is a possibility of further miniaturization. Accordingly, the length of the wire 2 can be shortened due to the decrease in the number of windings, which leads to power saving.
[0045]
In the seventh embodiment shown in FIG. 9C, after winding the wire 2 around the core part 11 of the core body 1, the magnetic piece 29 is arranged around the core part 11 and the resin 26 is provided. Thus, an inductance element was produced. Compared with the resin 28 containing the magnetic powder 27 of the sixth embodiment, since the solid magnetic piece 29 is installed (embedded) in the resin 26, it is closer to the closed magnetic path and can be further reduced in size. Leads to energy and power saving.
[0046]
The material of the core used in the present invention is mainly ceramics such as ferrite, alumina, and forsterite, but is not particularly limited.
[0047]
The core body shape is not particularly limited as long as it is produced by the cutting method of the present invention. Also, there are no particular restrictions on the constituent parts such as the electrode material, wire material, resin material, magnetic material, electrode shape, etc. used for the surface mount type inductance element.
[0048]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0049]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a wound core body that can be reduced in size and power consumption as a surface-mount inductance element. By providing a surface-mount inductance element using this, an electronic It becomes possible to reduce the size and power consumption of the device.
[Brief description of the drawings]
FIG. 1 shows an outline of equipment used in a method for manufacturing a core body for an inductance element according to a first embodiment of the present invention, and FIG. 1 (A) is a perspective view when the core body is cut from now on. , (B) is a perspective view of a state in which the core body is cut.
FIG. 2 is a schematic plan view of equipment used in the first embodiment of the present invention.
FIG. 3 is a schematic front view of equipment used in the first embodiment of the present invention.
FIG. 4 is a perspective view showing an example of a core body before cutting of a core body that can be used in the first embodiment and an example of a core body obtained therefrom.
FIG. 5 is a perspective view showing another example of the core body before cutting of the core body that can be used in the first embodiment and a core body obtained therefrom.
6A and 6B show a manufacturing method of an inductance element using a winding core for an inductance element according to a second embodiment of the present invention, where FIG. 6A is a perspective view, and FIG. 6B is a front view when mounted on a substrate. It is.
FIGS. 7A and 7B show a manufacturing method of an inductance element using a winding core for an inductance element according to a third embodiment of the present invention, where FIG. 7A is a perspective view and FIG. 7B is a front view when mounted on a substrate; It is.
FIG. 8 is a perspective view showing a method of manufacturing an inductance element according to a fourth embodiment of the present invention and using an inductance element core.
FIG. 9 is a front cross-sectional view showing fifth, sixth and seventh embodiments of the present invention.
FIG. 10 is a perspective view of a conventional surface mount type inductance element.
11A and 11B show an outline of equipment used in a conventional method of manufacturing a core body, in which FIG. 11A is a perspective view when the core body is cut from now on, and FIG. FIG.
FIG. 12 is a schematic plan view of the same.
FIG. 13 is a schematic front view of the same.
14A is a perspective view showing a typical example of a core body formed by molding, and FIG. 14B is a perspective view showing a general example of the core body formed by molding; FIG. The front view which shows an example, (C) is a core part sectional drawing of the core body of (B).
FIGS. 15A and 15B show another example of a core body of a conventional surface mount type inductance element, wherein FIGS. 15A to 11C are explanatory views of an example in which positioning uneven portions are provided at the ends, and FIGS. (G) is explanatory drawing of the example which provided the groove | channel for fixation in the side surface or the end surface.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core body 2 Wire 3,26,28 Resin 4,14 Electrode part 10 Core body 11 Core part 12,42,44,45,46 ridge part 17,42a, 42b Groove 20,30 Rotating wheel 21 , 31 Cutting wheel 22, 32 Blade 27 Magnetic powder 29 Magnetic body piece

Claims (7)

インダクタンス素子用巻芯体となるべき素体の側面に回転力を与える回転車と巻芯部を切削する切削用砥石とを用い、前記素体を回転させながら前記切削用砥石を宛い、切削加工により前記巻芯部を形成するインダクタンス素子用巻芯体の製造方法において、
前記素体を、断面が円以外もしくは多角形であり且つ側面にフラット面を有する部分が円柱部の軸方向両側の端面上に当該端面からはみ出さずに存在する形状にしておき、
前記素体に接触する前記回転車の接触幅を前記素体に接触する切削用砥石の接触幅より狭く且つ前記円柱部の軸方向の長さ範囲内とし、前記巻芯部として切削される部分に前記回転車が接触しかつ当該部分をブレードで支持し、断面が円以外もしくは多角形であって側面にフラット面を有する鍔部を円柱状の巻芯部の両側に備える形状に前記素体を前記切削用砥石で切削することを特徴とするインダクタンス素子用巻芯体の製造方法。
Using a rotating wheel that gives a rotational force to the side surface of the element body to be the core body for the inductance element and a cutting grindstone that cuts the core portion, the cutting grindstone is addressed while rotating the element body, and cutting is performed. In the manufacturing method of the core body for an inductance element that forms the core portion by processing,
The element body has a cross-sectional shape other than a circle or a polygonal shape, and a portion having a flat surface on the side surface has a shape that does not protrude from the end surface on both end surfaces in the axial direction of the cylindrical portion,
The contact width of the rotating wheel that contacts the element body is narrower than the contact width of the cutting grindstone that contacts the element body and is within the axial length range of the cylindrical portion, and is cut as the core portion. The element is shaped so that the rotating wheel contacts the part and supports the part with a blade, and has a cross-section other than a circle or a polygonal shape and a flange having a flat surface on both sides of the cylindrical core part. A method of manufacturing a core body for an inductance element , wherein the body is cut with the cutting grindstone .
断面が円以外もしくは多角形であり且つ側面にフラット面を有する前記部分が、前記素体の軸方向の両端部である請求項1記載のインダクタンス素子用巻芯体の製造方法。The method for manufacturing a core body for an inductance element according to claim 1, wherein the portion having a cross-section other than a circle or a polygon and having a flat surface on a side surface is both ends in the axial direction of the element body. インダクタンス素子用巻芯体となるべき素体の側面に回転力を与える回転車と巻芯部を切削する切削用砥石とを用い、前記素体を回転させながら前記切削用砥石を宛い、切削加工により前記巻芯部を形成してインダクタンス素子用巻芯体を得て、前記巻芯体の前記巻芯部にワイヤーを巻線し、該ワイヤー端部を前記巻芯体端部に形成した電極部に接続する表面実装型インダクタンス素子の製造方法であり、前記インダクタンス素子用巻芯体を作製するときに、
前記素体を、断面が円以外もしくは多角形であり且つ側面にフラット面を有する部分が円柱部の軸方向両側の端面上に当該端面からはみ出さずに存在する形状にしておき、
前記素体に接触する前記回転車の接触幅を前記素体に接触する切削用砥石の接触幅より狭く且つ前記円柱部の軸方向の長さ範囲内とし、前記巻芯部として切削される部分に前記回転車が接触しかつ当該部分をブレードで支持し、断面が円以外もしくは多角形であって側面にフラット面を有する鍔部を円柱状の巻芯部の両側に備える形状に前記素体を前記切削用砥石で切削することを特徴する表面実装型インダクタンス素子の製造方法。
Using a rotating wheel that gives a rotational force to the side surface of the element body to be the core body for the inductance element and a cutting grindstone that cuts the core portion, the cutting grindstone is addressed while rotating the element body, and cutting is performed. Forming the core part by processing to obtain a core body for an inductance element, winding a wire around the core part of the core body, and forming the wire end at the end of the core body A method for manufacturing a surface mount type inductance element connected to an electrode part , and when producing the winding core for the inductance element,
The element body has a cross-sectional shape other than a circle or a polygonal shape, and a portion having a flat surface on the side surface has a shape that does not protrude from the end surface on both end surfaces in the axial direction of the cylindrical portion,
The contact width of the rotating wheel that contacts the element body is narrower than the contact width of the cutting grindstone that contacts the element body, and is within the length range in the axial direction of the cylindrical portion, and the portion that is cut as the core portion The element body has a shape in which the rotating wheel is in contact with and supports the portion with a blade, and has a cross section other than a circle or a polygonal shape and a flange having a flat surface on both sides of the cylindrical core portion. Is cut with the cutting grindstone . A method for manufacturing a surface mount inductance element.
断面が円以外もしくは多角形であり且つ側面にフラット面を有する前記部分が、前記素体の軸方向の両端部である請求項3記載の表面実装型インダクタンス素子の製造方法。4. The method for manufacturing a surface-mounted inductance element according to claim 3, wherein the portion having a cross-section other than a circle or a polygon and having a flat surface on the side surface is both ends of the element body in the axial direction. 前記ワイヤー巻線後、前記巻芯部に樹脂を設けて前記巻芯部を被覆する請求項3又は4記載の表面実装型インダクタンス素子の製造方法。The method for manufacturing a surface-mount type inductance element according to claim 3 or 4, wherein after the wire winding, a resin is provided on the core portion to cover the core portion. 前記樹脂に磁性体粉を含有させた請求項5記載の表面実装型インダクタンス素子の製造方法。  The method for manufacturing a surface-mount type inductance element according to claim 5, wherein magnetic powder is contained in the resin. 前記ワイヤー巻線後、前記巻芯部に磁性体を配した請求項3から6のいずれか記載の表面実装型インダクタンス素子の製造方法。The method for manufacturing a surface-mount type inductance element according to any one of claims 3 to 6 , wherein a magnetic material is disposed on the core after the wire winding.
JP2001219007A 2001-07-19 2001-07-19 Method for manufacturing winding core for inductance element and method for manufacturing inductance element Expired - Fee Related JP4626738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001219007A JP4626738B2 (en) 2001-07-19 2001-07-19 Method for manufacturing winding core for inductance element and method for manufacturing inductance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001219007A JP4626738B2 (en) 2001-07-19 2001-07-19 Method for manufacturing winding core for inductance element and method for manufacturing inductance element

Publications (2)

Publication Number Publication Date
JP2003031431A JP2003031431A (en) 2003-01-31
JP4626738B2 true JP4626738B2 (en) 2011-02-09

Family

ID=19053087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001219007A Expired - Fee Related JP4626738B2 (en) 2001-07-19 2001-07-19 Method for manufacturing winding core for inductance element and method for manufacturing inductance element

Country Status (1)

Country Link
JP (1) JP4626738B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614119B2 (en) * 2004-01-30 2011-01-19 日立金属株式会社 Ferrite core, surface mount coil component using the same, and manufacturing method thereof
JP5954071B2 (en) * 2012-09-14 2016-07-20 Tdk株式会社 Inductance core manufacturing method and inductance core
JP6534902B2 (en) 2015-09-30 2019-06-26 太陽誘電株式会社 Method of manufacturing magnetic body, and method of manufacturing coil component using the magnetic body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162217U (en) * 1988-04-22 1989-11-10
JPH0525707U (en) * 1991-09-11 1993-04-02 富士電気化学株式会社 Inductance core
JP2001155937A (en) * 1999-11-26 2001-06-08 Taiyo Yuden Co Ltd Surface-mounting coil and manufacture therefore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162217U (en) * 1988-04-22 1989-11-10
JPH0525707U (en) * 1991-09-11 1993-04-02 富士電気化学株式会社 Inductance core
JP2001155937A (en) * 1999-11-26 2001-06-08 Taiyo Yuden Co Ltd Surface-mounting coil and manufacture therefore

Also Published As

Publication number Publication date
JP2003031431A (en) 2003-01-31

Similar Documents

Publication Publication Date Title
US7373715B2 (en) Method of adjusting a characteristic of wire-wound type chip coil by adjusting the space between conductive wires
EP1238401B1 (en) Inductor core-coil assembly and manufacturing thereof
JP6098126B2 (en) Coil parts
JP6534902B2 (en) Method of manufacturing magnetic body, and method of manufacturing coil component using the magnetic body
KR20000071255A (en) Coil device and processes for producing same
JP4626738B2 (en) Method for manufacturing winding core for inductance element and method for manufacturing inductance element
JP2007115761A (en) Winding coil and its winding method
JPH10163033A (en) Wound electronic part and its manufacture and implementation
JP2008071858A (en) Manufacturing method of coil component
JP2004111457A (en) Method of manufacturing coil component
JP2002075748A (en) Coil
JPH0661059A (en) Inductor and its manufacture
JPH11144959A (en) Inductance element and manufacture thereof
JP2004006606A (en) Surface mount coil component and its manufacturing process
JP2004241587A (en) Winding coil component
JPH0536530A (en) Chip type inductor and manufacture thereof
JP2002343641A (en) Chip inductor and manufacturing method therefor
JP2000299234A (en) Cored coil
JPH0238412Y2 (en)
JPS6051247B2 (en) High frequency choke coil for switching power supply
JP4070146B2 (en) Helical antenna
JP3824981B2 (en) Method for manufacturing helical antenna
JPH05182855A (en) Manufacture of choke coil
JP2007181160A (en) Method of winding coil, and coil
JP4234802B2 (en) Manufacturing method of thin magnetic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees