JP4626189B2 - Seismic reinforcement structure and structure provided with this seismic reinforcement structure - Google Patents

Seismic reinforcement structure and structure provided with this seismic reinforcement structure Download PDF

Info

Publication number
JP4626189B2
JP4626189B2 JP2004164899A JP2004164899A JP4626189B2 JP 4626189 B2 JP4626189 B2 JP 4626189B2 JP 2004164899 A JP2004164899 A JP 2004164899A JP 2004164899 A JP2004164899 A JP 2004164899A JP 4626189 B2 JP4626189 B2 JP 4626189B2
Authority
JP
Japan
Prior art keywords
shear reinforcement
reinforcement
shear
members
pin member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004164899A
Other languages
Japanese (ja)
Other versions
JP2005016723A (en
Inventor
敏雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2004164899A priority Critical patent/JP4626189B2/en
Publication of JP2005016723A publication Critical patent/JP2005016723A/en
Application granted granted Critical
Publication of JP4626189B2 publication Critical patent/JP4626189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Vibration Prevention Devices (AREA)
  • Pivots And Pivotal Connections (AREA)

Description

この発明は、耐震補強方法、および耐震補強方法に基づく構造、並びに前記構造を備える構造物に関する。   The present invention relates to a seismic reinforcement method, a structure based on the seismic reinforcement method, and a structure including the structure.

橋脚など耐震補強対象となる構造体に対し、近年、各種耐震補強の作業が行われている。例えば、PCストランド、鉄筋コンクリート、鋼板、或いは炭素繊維のシート等を前記構造体の周囲に巻き付けてその剛性を高める手法が採用されている。   In recent years, various seismic reinforcement work has been performed on structures such as piers that are subject to seismic reinforcement. For example, a technique is adopted in which a PC strand, reinforced concrete, a steel plate, a carbon fiber sheet, or the like is wound around the structure to increase its rigidity.

例えば、横方向鉄筋の組立てを短時間で行うことができ、しかも、この横方向鉄筋の配設により地震時の部材のエネルギー吸収能力を確実にするとの目的の下、1対の回転台のうち、スパイラル筋の巻回しドラムを設置する第1の回転台は既存橋脚に隣接して設置し、他の第2の回転台はその内側に既存橋脚が立ち、かつ、既存橋脚の下端付近でこの既存橋脚の周囲を回転できるように設置し、第1の回転台上のドラムから第2の回転台にスパイラル状に巻き取るようにスパイラル筋を移設し、この第2の回転台からスパイラル筋を順次取り上げながら、既存橋脚の周面側面に配置していくことを特徴とする橋脚の耐震補強方法(特許文献1参照)などが提案されている。   For example, it is possible to assemble horizontal rebars in a short time, and for the purpose of ensuring the energy absorption capacity of members in the event of an earthquake by arranging the horizontal rebars, The first turntable for installing the spiral winding drum is installed adjacent to the existing pier, and the other second turntable has an existing pier on the inside, and this is near the lower end of the existing pier. It is installed so that it can rotate around the existing pier, and the spiral streaks are transferred so as to be wound spirally from the drum on the first turntable to the second turntable, and the spiral streaks are transferred from the second turntable. A seismic reinforcement method for piers (see Patent Document 1), which is characterized by being arranged on the peripheral side surface of an existing pier while taking up sequentially, has been proposed.

また、現場溶接やボルト定着作業が一切不要で、簡単かつ迅速に施工でき、信頼性の高い、巻立鋼板及び既設柱体の補強方法を提供することを目的として、既設柱体の外周に巻き立てられる巻立鋼板において、既設柱体の全長とほぼ同じ長さを呈する複数の分割鋼板からなり、前記各分割鋼板の両側端部に、分割鋼板の長手方向の摺動により相互に嵌合可能な継手部を間欠的に形成したことを特徴とする、巻立鋼板(特許文献2参照)などが提案されている。
特開平9−25613号公報 特開平9−184303号公報
In addition, there is no need for on-site welding or bolt fixing work, and it can be easily and quickly constructed, and it can be wound around the outer periphery of the existing column body in order to provide a reliable method of reinforcing the wound steel plate and the existing column body. Standing rolled steel sheet consists of a plurality of divided steel sheets that have almost the same length as the existing pillars, and can be fitted to both ends of each divided steel sheet by sliding in the longitudinal direction of the divided steel sheets A rolled steel sheet (see Patent Document 2), which is characterized in that a simple joint portion is formed intermittently, has been proposed.
JP-A-9-25613 JP-A-9-184303

しかしながら従来手法においては、下記のような改善点が残されていた。例えば、補強対象となる構造体の周囲や補強面に対して鉄板等を貼りつけるために作業範囲を広くとる必要があった。しかも、この構造体(の一部)が店舗など他用途に共用されている状況下では、耐震補強作業の困難な箇所も生じた。またこの場合、耐震補強用の補強材を構造体に固定するためのアンカーを多数打ち込む必要があり、施工工期、効率およびコストの点で問題が残った。加えて、鋼板など平板にせん断力として力(地震等による応力)を伝えるたあ、所望耐力を実現するためにコスト上昇が伴った。   However, in the conventional method, the following improvements have been left. For example, it is necessary to widen the work range in order to attach an iron plate or the like around the structure to be reinforced or on the reinforcing surface. In addition, in a situation where this structure (a part) is shared for other uses such as a store, there are places where it is difficult to perform seismic reinforcement work. In this case, it is necessary to drive a large number of anchors for fixing the reinforcing material for seismic reinforcement to the structure, and problems remain in terms of construction period, efficiency and cost. In addition, a force (stress due to an earthquake, etc.) was transmitted as a shearing force to a flat plate such as a steel plate, which resulted in an increase in cost in order to achieve the desired yield strength.

そこで本発明はこのような課題に着目してなされたもので、施工性や施工効率、施工コストに優れ、確かな耐震補強性を実現する耐震補強方法、および耐震補強方法に基づく構造、並びに前記構造を備える構造物を提供する。   Therefore, the present invention has been made paying attention to such problems, and is excellent in workability, construction efficiency, construction cost, and a seismic reinforcement method that realizes reliable seismic reinforcement, a structure based on the seismic reinforcement method, and the above A structure comprising the structure is provided.

上記目的を達成する本発明の耐震補強構造は、耐震補強対象の構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、前記複数のせん断補強部材を、傾斜方向が交互に逆向きとなるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前記構造体の側面角部を覆うように設けられたコーナー部材を介して前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記コーナー部材を介して前記所定面に取り付けることを特徴とする。 The seismic reinforcement structure of the present invention that achieves the above object is a seismic reinforcement structure that reinforces a structure to be seismically reinforced with a plurality of shear reinforcement members connected to each other, and the plurality of shear reinforcement members are inclined in the direction of inclination. Corner members provided so as to cover the side corners of the structure by connecting ends of adjacent shear reinforcement members by connecting them with pin members so that they are alternately reversed. It attaches to the predetermined surface of the said structure via, and it attaches to the said predetermined surface via the said corner member with the pin member at the both ends of the said some connected shear reinforcement member.

第2の発明は、耐震補強対象の構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、前記複数のせん断補強部材を、傾斜方向が交互に逆向きとなるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記所定面に取り付けることを特徴とするA second invention is a seismic reinforcement structure in which a structure to be seismically reinforced is reinforced by a plurality of shear reinforcement members connected to each other, the slope directions of the plurality of shear reinforcement members being alternately reversed. And connecting one end of adjacent shear reinforcement members with a pin member, attaching the pin member to a predetermined surface of the structure, and connecting both ends of the plurality of shear reinforcement members to the pin member And attaching to the predetermined surface .

第3の発明は、耐震補強対象である柱状構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、前記複数のせん断補強部材を、前記柱状の構造体の長手方向に対する傾斜方向が交互に逆向きとなるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前記柱状構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記所定面に取り付けることを特徴とするA third invention is an earthquake-resistant reinforcement structure in which a columnar structure that is an object of earthquake-proof reinforcement is reinforced by a plurality of shear reinforcement members connected to each other, and the plurality of shear reinforcement members are arranged in a longitudinal direction of the columnar structure. The ends of adjacent shear reinforcement members are connected by a pin member so that the inclination directions are alternately reversed, and the pin member is attached to a predetermined surface of the columnar structure, and Both ends of the plurality of connected shear reinforcement members are attached to the predetermined surface with pin members .

第4の発明は、耐震補強対象である柱状構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、前記複数のせん断補強部材を、前記柱状構造体の長手方向と直角なせん断補強部材と、前記長手方向に対して傾斜したせん断補強部材とが交互に配置されるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記所定面に取り付けることを特徴とする。 A fourth invention, the columnar structure is a seismic be reinforced, a seismic reinforcement structure for reinforced by a plurality of shear reinforcement member connected to each other, said plurality of shear reinforcement members, the longitudinal direction of the columnar structure The pins are connected by connecting one ends of adjacent shear reinforcement members with pin members so that the shear reinforcement members perpendicular to each other and the shear reinforcement members inclined with respect to the longitudinal direction are alternately arranged. member, with attachment to a predetermined surface of the front Symbol structure, characterized in that attached to the front Symbol predetermined surface at both ends of the plurality of shear reinforcement members has the connecting Te to the pin member.

第5の発明は、第3又は第4の発明において、隣接するせん断補強部材の一端どうしを連結するピン部材を、前記構造体の側面角部を覆うように設けられたコーナー部材を介して前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記コーナー部材を介して前記所定面に取り付けることを特徴とする。 According to a fifth invention, in the third or fourth invention, the pin member that connects the ends of the adjacent shear reinforcing members is connected to the pin via the corner member provided so as to cover the side corners of the structure. It attaches to the predetermined surface of a structure, and attaches the both ends of the connected several shear reinforcement member to the predetermined surface via the corner member with a pin member .

第6の発明は、第1〜5のいずれかの発明において、前記ピン結合におけるピン部材の周面と、せん断補強部材における前記ピン部材の挿通孔の内周面との間に、摩擦材を挟設することを特徴とするAccording to a sixth aspect, in the first to fifth invention of any one of the circumferential surface of the pin member in the pin coupling, between the inner peripheral surface of the insertion hole of the pin member at a shear reinforcement member, the friction material It is characterized by being sandwiched .

第7の発明は、第1〜第6の何れかの発明の耐震補強構造を備えることを特徴とする構造物にかかる。 A seventh aspect of the invention relates to a structure including the seismic reinforcement structure according to any one of the first to sixth aspects of the invention.

以上詳細に説明したように、本発明の耐震補強方法等によれば、従来手法に比べて作業範囲を広くとる必要がなく、構造体(の一部)が店舗など他用途に共用されている状況下にも迅速かつ容易に対応可能となる。しかもせん断補強部材は、構造体に加わるせん断力を軸力として受けて有効に働く。また、ピン結合の部位で摩擦減衰を生じさせ、制振機能を発現することも可能となる。   As explained in detail above, according to the seismic reinforcement method of the present invention, it is not necessary to take a wider working range than the conventional method, and the structure (part) is shared for other uses such as stores. It is possible to respond quickly and easily even under circumstances. Moreover, the shear reinforcement member works effectively by receiving the shear force applied to the structure as an axial force. In addition, it is possible to cause frictional damping at the pin coupling site and to exhibit a damping function.

そこで、施工性や施工効率、施工コストに優れ、確かな耐震補強性を実現する耐震補強方法、および耐震補強方法に基づく構造、並びに前記構造を備える構造物を提供可能となる。   Therefore, it is possible to provide a seismic reinforcement method that is excellent in workability, construction efficiency, construction cost, and realizes reliable seismic reinforcement, a structure based on the seismic reinforcement method, and a structure including the structure.

以下に本発明の実施形態について図面を用いて詳細に説明する。図1は本実施形態における耐震補強方法の具体例を示す図であり、(a)は実施形態1、(b)は実施形態2の平面図、(c)は実施形態2の側断面図を示す。既設のRC橋脚など耐震補強対象となる構造体100に対して、本発明の耐震補強方法を実施するものとする。前記構造体100は、例えば横断面が方形で、各側面が平面をなしているものとする。そのうち1つの側面を耐震補強方法を実際に施す施工面101とする。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing a specific example of the seismic reinforcement method in this embodiment, where (a) is Embodiment 1, (b) is a plan view of Embodiment 2, and (c) is a side sectional view of Embodiment 2. FIG. Show. It is assumed that the seismic reinforcement method of the present invention is performed on a structure 100 that is an object of seismic reinforcement such as an existing RC pier. The structure 100 has, for example, a square cross section and flat side surfaces. One of the side surfaces is a construction surface 101 on which the seismic reinforcement method is actually applied.

本発明の耐震補強方法においては、この施工面101に対し、せん断補強部材110の両端をピン結合させる。このピン結合の処理は、せん断補強部材110の挿通孔111を貫通するピン部材120を、構造体100の側面角を覆って固定されたコーナー部材105を通じて、前記構造体に打設することで実行する。   In the seismic reinforcement method of the present invention, both ends of the shear reinforcement member 110 are pin-coupled to the construction surface 101. This pin coupling process is performed by driving a pin member 120 penetrating through the insertion hole 111 of the shear reinforcement member 110 into the structure through a corner member 105 fixed so as to cover a side surface corner of the structure 100. To do.

なお、コーナー部材105を通じて前記ピン部材120を構造体100に打設するとしたが、コーナー部材105が構造体100と一体に固定されている、或いは構造体と元来一体となっているものである場合などにおいては、コーナー部材105そのものにピン部材120を打設し、構造体100まで到達させないとすることも想定できる。   Although the pin member 120 is driven into the structure 100 through the corner member 105, the corner member 105 is fixed integrally with the structure 100 or originally integrated with the structure. In some cases, it can be assumed that the pin member 120 is driven on the corner member 105 itself and does not reach the structure 100.

また、コーナー部材105と構造体100とで、前記ピン部材120から伝達される応力や、前記ピン部材120の支持或いは固定の役割を分担するとしてもよい。   Further, the corner member 105 and the structure 100 may share the stress transmitted from the pin member 120 and the role of supporting or fixing the pin member 120.

このように構造体100にピン結合されるせん断補強部材110には、例えば棒鋼を採用することが好適である。これは、構造体100に加わるせん断力を軸力として受けて有効に働く部材形態を備えているためである。施工面101における設置方向についても、構造体100に加わるであろうせん断力の方向を軸力として受けやすい方向を設定する。図で示す例では、前記施工面101上において、構造体100の長手方向に約45度ほどの角度でせん断補強部材110の設置がなされている。   For example, a steel bar is preferably used for the shear reinforcement member 110 that is pin-coupled to the structure 100 as described above. This is because it has a member form that effectively receives the shear force applied to the structure 100 as an axial force. As for the installation direction on the construction surface 101, a direction in which the direction of the shearing force that will be applied to the structure 100 is easily received as an axial force is set. In the example shown in the figure, the shear reinforcement member 110 is installed on the construction surface 101 at an angle of about 45 degrees in the longitudinal direction of the structure 100.

ただし、構造体100に想定されるせん断力の作用方向と作用量とに応じて、棒鋼以外の形状、材質のせん断補強部材110を採用するとしてもよい。つまり、せん断力を軸力として負担することが可能な形状であり、当該軸力に対する十分な耐力を備える材質であればいずれのものでも採用出来る。   However, the shear reinforcing member 110 having a shape and a material other than the steel bar may be employed in accordance with the acting direction and amount of the shearing force assumed for the structure 100. That is, it is a shape that can bear a shearing force as an axial force, and any material can be used as long as it has a sufficient resistance to the axial force.

本実施形態における前記せん断補強部材110は、施工面101上に複数設置される。そしてそれら複数のせん断補強部材110は、互いのピン部材120(ヒンジ支点)を共有すべく連結されている。図の例では、施工面101上において、構造体100の長手方向に約45度ほどの角度で設置されたせん断補強部材110同士が、互いにピン部材120を共用し連結している。したがって、構造体100の様々な箇所に作用するせん断力を、互いに連結した複数のせん断補強部材110のいずれかにて軸力として負担することができる。   A plurality of the shear reinforcing members 110 in the present embodiment are installed on the construction surface 101. The plurality of shear reinforcing members 110 are connected so as to share each other's pin member 120 (hinge fulcrum). In the example of the figure, on the construction surface 101, the shear reinforcing members 110 installed at an angle of about 45 degrees in the longitudinal direction of the structure 100 share the pin member 120 and are connected to each other. Therefore, the shear force acting on various parts of the structure 100 can be borne as an axial force by any of the plurality of shear reinforcement members 110 connected to each other.

また、前記ピン結合におけるピン部材120の周面121と、せん断補強部材110における前記ピン部材120の挿通孔111の内周面112との間に、摩擦材130を挟設するとすれば好適である。構造体100に作用したせん断力の方向がせん断補強部材110の軸方向と完全に一致しない場合、せん断補強部材110が前記せん断力の方向にピン部材120をヒンジ支点として回転しようとする。この時、前記摩擦材130が、ピン部材120と挿通孔111との間にあって前記回転力、つまりはせん断力の摩擦減衰を生じさせるのである。これにより、制振機能を発現することも可能となる。   In addition, it is preferable that a friction material 130 is interposed between the peripheral surface 121 of the pin member 120 in the pin connection and the inner peripheral surface 112 of the insertion hole 111 of the pin member 120 in the shear reinforcement member 110. . When the direction of the shearing force acting on the structure 100 does not completely coincide with the axial direction of the shearing reinforcement member 110, the shearing reinforcement member 110 tries to rotate in the direction of the shearing force using the pin member 120 as a hinge fulcrum. At this time, the friction material 130 is between the pin member 120 and the insertion hole 111 and causes frictional damping of the rotational force, that is, shearing force. As a result, it is possible to develop a vibration control function.

他方、図1(b)および(c)で示すように、前記連結させたせん断補強部材110の互いの当接面の間に摩擦材130を挟設するとしてもよい。或いは、前記ピン部材120にて構造体100の施工面101にピン結合されたせん断補強部材110と前記施工面101(所定面)との間に摩擦材130を挟設するとしてもよい。または、せん断補強部材110同士の当接面、およびせん断補強部材110と施工面101との当接面の両面に摩擦材130を挟設するとしてもよい。   On the other hand, as shown in FIGS. 1B and 1C, a friction material 130 may be interposed between the contact surfaces of the connected shear reinforcing members 110. Alternatively, the friction material 130 may be sandwiched between the shear reinforcement member 110 pin-connected to the construction surface 101 of the structure 100 by the pin member 120 and the construction surface 101 (predetermined surface). Alternatively, the friction material 130 may be sandwiched between the contact surfaces of the shear reinforcement members 110 and the contact surfaces of the shear reinforcement member 110 and the construction surface 101.

これらの場合、せん断補強部材110と施工面101との当接面、或いはせん断補強部材110同士の当接面といった“面”に摩擦材130が作用してせん断力の摩擦減衰を生じさせることとなる。これにより、上記同様に制振機能を発現することも可能となる。   In these cases, the friction material 130 acts on a “surface” such as a contact surface between the shear reinforcement member 110 and the construction surface 101 or a contact surface between the shear reinforcement members 110 to cause frictional damping of the shear force. Become. As a result, it is also possible to exhibit a vibration damping function as described above.

なお、前記摩擦材130は、前記摩擦減衰を発揮するに必要な摩擦係数を備えた布材、ゴム材、金属材のいずれかを採用することができる。また、せん断補強部材110に取り付けられた締結具135により、ピン部材120と挿通孔111との間の間隙を調整することで、当該間隙に挟設される摩擦材130と、ピン部材120および挿通孔111との摩擦程度を任意に設定できるものとする。他方、前記摩擦材130を面で作用させる場合(図1(b)(c)の例)、ピン部材120と施工面101との締付け程度を増減させることで、摩擦材130とせん断補強部材110や施工面101との摩擦程度を任意に設定できる。   As the friction material 130, any one of a cloth material, a rubber material, and a metal material having a friction coefficient necessary to exhibit the friction damping can be adopted. Further, by adjusting the gap between the pin member 120 and the insertion hole 111 by the fastener 135 attached to the shear reinforcement member 110, the friction material 130 sandwiched in the gap, the pin member 120 and the insertion member are inserted. It is assumed that the degree of friction with the hole 111 can be arbitrarily set. On the other hand, when the friction material 130 is caused to act on the surface (examples of FIGS. 1B and 1C), the friction material 130 and the shear reinforcement member 110 are increased or decreased by increasing or decreasing the tightening degree between the pin member 120 and the construction surface 101. The degree of friction with the construction surface 101 can be arbitrarily set.

図2はせん断補強部材の設置パターンを示す図である。上述してきた本発明におけるせん断補強部材110は、施工面101において様々に連結させて設置することができる。例えば、図2(a)のパターン200に示すような、構造体100の長手方向に約45度ほどの角度で複数のせん断補強部材110同士を連結させるパターンがある。また例えば同図(b)のように、構造体100の長手方向と直角に設置したせん断補強部材110の間を、約45度ほどの角度でせん断補強部材110で互いに連結するパターンなどがある。いずれにしても、構造体100に作用するせん断力の方向と平行になるようせん断補強部材110を配置したパターンであれば好適である。   FIG. 2 is a diagram showing an installation pattern of shear reinforcement members. The above-described shear reinforcing member 110 according to the present invention can be installed in various ways on the construction surface 101. For example, there is a pattern in which a plurality of shear reinforcement members 110 are connected to each other at an angle of about 45 degrees in the longitudinal direction of the structure 100 as shown in a pattern 200 of FIG. Further, for example, as shown in FIG. 5B, there is a pattern in which the shear reinforcement members 110 installed at right angles to the longitudinal direction of the structure 100 are connected to each other by the shear reinforcement members 110 at an angle of about 45 degrees. In any case, any pattern in which the shear reinforcement member 110 is arranged so as to be parallel to the direction of the shear force acting on the structure 100 is suitable.

次に、本発明の他の実施形態についても説明する。図3は他の実施形態における耐震補強方法の具体例を示す図であり、(a)は実施形態1、(b)は実施形態2の平面図、(c)は実施形態2の側断面図を示す。この実施形態においては、前記構造体100の側面角を覆って固定したコーナー部材105を通じて、前記構造体に前記せん断補強部材110のピン部材120を打設するのではない。   Next, other embodiments of the present invention will be described. FIG. 3 is a diagram showing a specific example of the seismic reinforcement method in another embodiment, (a) is Embodiment 1, (b) is a plan view of Embodiment 2, and (c) is a side sectional view of Embodiment 2. FIG. Indicates. In this embodiment, the pin member 120 of the shear reinforcement member 110 is not driven into the structure through the corner member 105 fixed to cover the side corners of the structure 100.

なお、ここでの前記構造体100は、既出の上記実施例と同様に、例えば横断面が方形で、各側面が平面をなしているものとする。そして、そのうち1つの側面を耐震補強方法を実際に施す施工面101とする。   In addition, the said structure 100 here assumes that a cross section is a square and each side is making a plane similarly to the said Example mentioned above, for example. And one side is made into the construction surface 101 which actually performs an earthquake-proof reinforcement method.

本実施形態においては、この施工面101に対し、せん断補強部材110の両端をピン結合させる。このピン結合の処理は、せん断補強部材110の挿通孔111を貫通するピン部材120を、構造体100の施工面101に打設することで実行する。つまり、前記コーナー部材105は用いない。   In this embodiment, both ends of the shear reinforcement member 110 are pin-coupled to the construction surface 101. The pin coupling process is performed by driving a pin member 120 penetrating the insertion hole 111 of the shear reinforcement member 110 to the construction surface 101 of the structure 100. That is, the corner member 105 is not used.

このように、コーナー部材105を用いずに耐震補強方法を実施するとすれば、コーナー部材105の部材費用や設置費用を省略するとともに、構造体100に対するコーナー部材105の設置手順を省略することが可能となり、コストおよび工期の低減をはかることができる。加えて、コーナー部材105を現場搬入する必要がないため、作業スペースの確保が容易になる。   As described above, if the seismic reinforcement method is performed without using the corner member 105, it is possible to omit the member cost and the installation cost of the corner member 105 and to omit the installation procedure of the corner member 105 with respect to the structure 100. Thus, cost and construction period can be reduced. In addition, since it is not necessary to carry the corner member 105 on site, it is easy to secure a work space.

また、コーナー部材105により構造体100の表面を覆うことがなくなり、躯体表面の露出部分が増大する。このため、躯体表面の劣化性状等の把握が容易となる。更に、コーナー部材105等と躯体表面との密着度を適宜なものとするために躯体表面の不陸調整を行うといった手間を省くことも可能となる。   Further, the surface of the structure 100 is not covered with the corner member 105, and the exposed portion of the surface of the housing is increased. For this reason, grasping | ascertaining of the deterioration property etc. of the housing | casing surface becomes easy. Furthermore, it is possible to save the trouble of adjusting the unevenness of the surface of the housing in order to make the degree of adhesion between the corner member 105 and the like and the surface of the housing appropriate.

このように構造体100にピン結合されるせん断補強部材110には、例えば棒鋼を採用することが好適である。これは、構造体100に加わるせん断力を軸力として受けて有効に働く部材形態を備えているためである。施工面101における設置方向についても、構造体100に加わるであろうせん断力の方向を軸力として受けやすい方向を設定する。図で示す例では、前記施工面101上において、構造体100の長手方向に約45度ほどの角度でせん断補強部材110の設置がなされている。   For example, a steel bar is preferably used for the shear reinforcement member 110 that is pin-coupled to the structure 100 as described above. This is because it has a member form that effectively receives the shear force applied to the structure 100 as an axial force. As for the installation direction on the construction surface 101, a direction in which the direction of the shearing force that will be applied to the structure 100 is easily received as an axial force is set. In the example shown in the figure, the shear reinforcement member 110 is installed on the construction surface 101 at an angle of about 45 degrees in the longitudinal direction of the structure 100.

ただし、構造体100に想定されるせん断力の作用方向と作用量とに応じて、棒鋼以外の形状、材質のせん断補強部材110を採用するとしてもよい。つまり、せん断力を軸力として負担することが可能な形状であり、当該軸力に対する十分な耐力を備える材質であればいずれのものでも採用出来る。   However, the shear reinforcing member 110 having a shape and a material other than the steel bar may be employed in accordance with the acting direction and amount of the shearing force assumed for the structure 100. That is, it is a shape that can bear a shearing force as an axial force, and any material can be used as long as it has a sufficient resistance to the axial force.

本実施形態における前記せん断補強部材110は、施工面101上に複数設置される。そしてそれら複数のせん断補強部材110は、互いのピン部材120(ヒンジ支点)を共有すべく連結されている。図の例では、施工面101上において、構造体100の長手方向に約45度ほどの角度で設置されたせん断補強部材110同士が、互いにピン部材120を共用し連結している。したがって、構造体100の様々な箇所に作用するせん断力を、互いに連結した複数のせん断補強部材110のいずれかにて軸力として負担することができる。   A plurality of the shear reinforcing members 110 in the present embodiment are installed on the construction surface 101. The plurality of shear reinforcing members 110 are connected so as to share each other's pin member 120 (hinge fulcrum). In the example of the figure, on the construction surface 101, the shear reinforcing members 110 installed at an angle of about 45 degrees in the longitudinal direction of the structure 100 share the pin member 120 and are connected to each other. Therefore, the shear force acting on various parts of the structure 100 can be borne as an axial force by any of the plurality of shear reinforcement members 110 connected to each other.

また、前記ピン結合におけるピン部材120の周面121と、せん断補強部材110における前記ピン部材120の挿通孔111の内周面112との間に、摩擦材130を挟設するとすれば好適である。構造体100に作用したせん断力の方向がせん断補強部材110の軸方向と完全に一致しない場合、せん断補強部材110が前記せん断力の方向にピン部材120をヒンジ支点として回転しようとする。この時、前記摩擦材130が、ピン部材120と挿通孔111との間にあって前記回転力、つまりはせん断力の摩擦減衰を生じさせるのである。これにより、制振機能を発現することも可能となる。   In addition, it is preferable that a friction material 130 is interposed between the peripheral surface 121 of the pin member 120 in the pin connection and the inner peripheral surface 112 of the insertion hole 111 of the pin member 120 in the shear reinforcement member 110. . When the direction of the shearing force acting on the structure 100 does not completely coincide with the axial direction of the shearing reinforcement member 110, the shearing reinforcement member 110 tries to rotate in the direction of the shearing force using the pin member 120 as a hinge fulcrum. At this time, the friction material 130 is between the pin member 120 and the insertion hole 111 and causes frictional damping of the rotational force, that is, shearing force. As a result, it is possible to develop a vibration control function.

他方、図3(b)および(c)で示すように、前記連結させたせん断補強部材110の互いの当接面の間に摩擦材130を挟設するとしてもよい。或いは、前記ピン部材120にて構造体100の施工面101にピン結合されたせん断補強部材110と前記施工面101(所定面)との間に摩擦材130を挟設するとしてもよい。または、せん断補強部材110同士の当接面、およびせん断補強部材110と施工面101との当接面の両面に摩擦材130を挟設するとしてもよい。   On the other hand, as shown in FIGS. 3 (b) and 3 (c), a friction material 130 may be sandwiched between the contact surfaces of the connected shear reinforcement members 110. Alternatively, the friction material 130 may be sandwiched between the shear reinforcement member 110 pin-connected to the construction surface 101 of the structure 100 by the pin member 120 and the construction surface 101 (predetermined surface). Alternatively, the friction material 130 may be sandwiched between the contact surfaces of the shear reinforcement members 110 and the contact surfaces of the shear reinforcement member 110 and the construction surface 101.

これらの場合、せん断補強部材110と施工面101との当接面、或いはせん断補強部材110同士の当接面といった“面”に摩擦材130が作用してせん断力の摩擦減衰を生じさせることとなる。これにより、上記同様に制振機能を発現することも可能となる。   In these cases, the friction material 130 acts on a “surface” such as a contact surface between the shear reinforcement member 110 and the construction surface 101 or a contact surface between the shear reinforcement members 110 to cause frictional damping of the shear force. Become. As a result, it is also possible to exhibit a vibration damping function as described above.

なお、前記摩擦材130は、前記摩擦減衰を発揮するに必要な摩擦係数を備えた布材、ゴム材、金属材のいずれかを採用することができる。また、せん断補強部材110に取り付けられた締結具135により、ピン部材120と挿通孔111との間の間隙を調整することで、当該間隙に挟設される摩擦材130と、ピン部材120および挿通孔111との摩擦程度を任意に設定できるものとする。他方、前記摩擦材130を面で作用させる場合(図3(b)(c)の例)、ピン部材120と施工面101との締付け程度を増減させることで、摩擦材130とせん断補強部材110や施工面101との摩擦程度を任意に設定できる。   As the friction material 130, any one of a cloth material, a rubber material, and a metal material having a friction coefficient necessary to exhibit the friction damping can be adopted. Further, by adjusting the gap between the pin member 120 and the insertion hole 111 by the fastener 135 attached to the shear reinforcement member 110, the friction material 130 sandwiched in the gap, the pin member 120 and the insertion member are inserted. It is assumed that the degree of friction with the hole 111 can be arbitrarily set. On the other hand, when the friction material 130 acts on the surface (examples of FIGS. 3B and 3C), the friction material 130 and the shear reinforcement member 110 are increased or decreased by increasing or decreasing the tightening degree between the pin member 120 and the construction surface 101. The degree of friction with the construction surface 101 can be arbitrarily set.

次に、コーナー部材105を用いずに耐震補強方法を実施する上記例について、適宜な解析モデルを設定して行った、2次元および3次元のFEM(Finite Element Method)解析過程および解析結果、ならびに前記解析結果に基づく性能確認の結果を以下に説明する。   Next, with respect to the above example in which the seismic reinforcement method is performed without using the corner member 105, two-dimensional and three-dimensional FEM (Finite Element Method) analysis processes and analysis results performed by setting an appropriate analysis model, and The result of the performance confirmation based on the analysis result will be described below.

−−−抵抗機構−−−
本実施形態の解析処理に際し、補強対象に作用するせん断力に抗する抵抗機構は以下の通り想定できる。図4にその抵抗機構の概念を示す。一般にRC構造物の、せん断力に対する耐荷力機構(つまり抵抗機構)はアーチ機構(図中(a))とトラス機構(図中(b))とに大きくは分けられる。各抵抗機構においては、各抵抗機構を構成する部材(図中“C”)と交差するよう部材300を設け、補強対象のせん断破壊防止を企図している。アーチ機構の補強に際しては、補強対象の躯体等におけるひび割れ幅の抑制、斜め圧縮応力伝達能力の向上が目的とされる。また、トラス機構の補強に際しては、補強対象におけるコンクリートの圧縮トラス負担を増強することが目的とされる。
--- Resistance mechanism ---
In the analysis processing of the present embodiment, a resistance mechanism that resists the shearing force acting on the object to be reinforced can be assumed as follows. FIG. 4 shows the concept of the resistance mechanism. In general, the load-bearing force mechanism (that is, the resistance mechanism) with respect to the shearing force of the RC structure is roughly divided into an arch mechanism ((a) in the figure) and a truss mechanism ((b) in the figure). In each resistance mechanism, a member 300 is provided so as to intersect with a member (“C” in the drawing) constituting each resistance mechanism, and is intended to prevent a shear failure to be reinforced. When reinforcing the arch mechanism, the purpose is to suppress the crack width of the reinforcing body or the like and to improve the ability to transmit oblique compressive stress. In addition, the reinforcement of the truss mechanism is intended to increase the load of the concrete compression truss on the object to be reinforced.

−−−解析モデル−−
ここでの解析手法における試験体の考え方としては、例えば従来より提案されているものを採用できる。本実施形態においては、参考文献(「RC柱の一面から施工する耐震補強工法の鋼板の補強効果に関する実験的研究」,土木学会論文集No.683/V-52,PP.75-89,2001.8,小林、石橋)に記載されている、「柱の一面補強実験における試験体」を採用した。図5(a)、(b)では、この解析に採用した解析モデルを示している。2次元モデルにおいて、補強対象のコンクリートは4節点平面応力要素にモデル化し、主鉄筋、せん断補強筋および補強トラス材はトラス要素としてモデル化している。また、3次元モデルにおいて、コンクリート要素は8節点SOLID要素にモデル化し、主鉄筋、せん断補強筋および補強トラス材をトラス要素にモデル化した。
---- Analysis model--
As the concept of the specimen in the analysis method here, for example, a conventionally proposed one can be adopted. In this embodiment, reference literature ("Experimental study on the reinforcing effect of the steel plate of the seismic reinforcement method constructed from one side of the RC column", JSCE Proceedings No. 683 / V-52, PP.75-89, 2001.8 , Kobayashi, Ishibashi), "The test specimen in the column reinforcement test on one side" was adopted. FIGS. 5A and 5B show analysis models employed for this analysis. In the two-dimensional model, the concrete to be reinforced is modeled as a four-node plane stress element, and the main reinforcing bar, the shear reinforcing bar, and the reinforcing truss member are modeled as truss elements. In the three-dimensional model, the concrete element was modeled as an 8-node SOLID element, and the main rebar, shear reinforcement and reinforced truss material were modeled as truss elements.

ここで、前記補強トラス材は、材両端のみでコンクリート要素の節点にピン結合されるものとする。また、基部からの鉄筋の抜け出しは考慮しないものとする。また、図5(c)に示す通り、実験試験体は400mm×400mmの正方形断面で、その試験体長は1200mmを有するものとする。またこの実験試験体における載荷点は基部から1150mmの位置とした。   Here, the said reinforcing truss material shall be pin-coupled to the node of a concrete element only at both ends of the material. In addition, the removal of the reinforcing bars from the base is not considered. Moreover, as shown in FIG.5 (c), an experimental test body shall have a square cross section of 400 mm x 400 mm, and the test body length shall have 1200 mm. The loading point in this experimental specimen was 1150 mm from the base.

−−−材料特性(コンクリート)−−−
また、前記解析モデルにおける補強対象たる躯体のコンクリートの材料特性につき、図6に示す通り、弾性係数を24.4kN/mm、圧縮強度を26.7N/mm、引張強度を1.63N/mm、ポアソン比を0.167とした。更に、コンクリートの応カ−ひずみ関係を図7に併せて示す。
---- Material characteristics (concrete) ---
Further, as shown in FIG. 6, the material properties of the concrete of the frame to be reinforced in the analysis model are as follows: the elastic modulus is 24.4 kN / mm 2 , the compressive strength is 26.7 N / mm 2 , and the tensile strength is 1.63 N / mm 2 and Poisson's ratio were set to 0.167. Furthermore, the relationship between the stress and the strain of concrete is also shown in FIG.

−−−材料特性(鋼材)−−−
また、前記解析モデルにおけるせん断補強部材をなす鋼材の材料特性につき、図8に示す通り、主鉄筋(SD345)のヤング係数:178kN/mm、降伏強度:369N/mm、降伏ひずみ2070μ、とし、せん断補強筋(SD345)のヤング係数:186kN/mm、降伏強度:355N/mm、降伏ひずみ1910μ、とし、補強トラス材のヤング係数:222kN/mm、降伏強度:332N/mm、降伏ひずみ150μ、とした。更に、鋼材の応力−ひずみ関係(Bilinearモデル)を図9に併せて示す。
---- Material characteristics (steel) ---
In addition, as shown in FIG. 8, the Young's modulus of the main reinforcing steel (SD345) is 178 kN / mm 2 , the yield strength is 369 N / mm 2 , and the yield strain is 2070 μ. Young modulus of shear reinforcement (SD345): 186 kN / mm 2 , yield strength: 355 N / mm 2 , yield strain 1910 μ, Young modulus of reinforcing truss material: 222 kN / mm 2 , yield strength: 332 N / mm 2 , The yield strain was 150 μm. Furthermore, the stress-strain relationship (Bilinear model) of steel materials is also shown in FIG.

−−−解析結果−−−
上記のような各種設定条件のもと、FEM解析を行った。その解析結果のうち、荷重−変位関係の結果を図10に示す。図10では、無補強と補強時とにおける荷重−変位の関係を表すグラフを示している。また、図10中に示す「実験値」としては、従来より提案されている「一面鋼板貼り付け実験」(図11参照)の実験結果を採用できる。なお、ここでは、前出の参考文献(「RC柱の一面から施工する耐震補強工法の鋼板の補強効果に関する実験的研究」,土木学会論文集No.683/V-52,PP.75-89,2001.8,小林、石橋)における実験結果を採用している。本実施形態の解析における材料諸元もこの参考文献中の実験結果に出来る限り一致させている。
---- Analysis results ---
FEM analysis was performed under various setting conditions as described above. Of the analysis results, the results of the load-displacement relationship are shown in FIG. In FIG. 10, the graph showing the relationship of the load-displacement in the time of non-reinforced and at the time of reinforcement is shown. Further, as the “experimental value” shown in FIG. 10, the experimental result of the “one-side steel plate pasting experiment” (see FIG. 11) that has been conventionally proposed can be adopted. It should be noted that here, the above-mentioned reference ("Experimental Study on the Effect of Reinforcement of Steel Plates for Seismic Reinforcement Method Applied from One Side of RC Column", JSCE Proceedings No. 683 / V-52, PP.75-89 , 2001.8, Kobayashi, Ishibashi). The material specifications in the analysis of the present embodiment are matched with the experimental results in this reference as much as possible.

解析結果のうち3次元解析結果においては、図10(a)、(b)に示す通り、補強の有無に関わらず、最大荷重に達するまでは実験値と良好な対応を示している。しかし2次元解析結果においては、無補強時において実験値と比較して低めの解析結果となっている。これは、2次元解析においてコンクリートの拘束効果などが評価されないことによるものと考えられる。なお、図10(b)に示す通り、補強有りの実験値は鋼板がt=4.5mmと薄くなっているが、前出の参考文献における実験結果を鑑みると鋼板厚を例えばt=9mmと厚くしても実験結果に大きな相違が無かった為、本解析においてはt=4.5mmを鋼板厚として採用した。   Among the analysis results, the three-dimensional analysis results show good correspondence with the experimental values until the maximum load is reached, regardless of the presence or absence of reinforcement, as shown in FIGS. 10 (a) and 10 (b). However, in the two-dimensional analysis result, the analysis result is lower than the experimental value when there is no reinforcement. This is considered to be due to the fact that the constraint effect of concrete is not evaluated in the two-dimensional analysis. As shown in FIG. 10B, the experimental value with reinforcement is as thin as t = 4.5 mm for the steel sheet. However, considering the experimental results in the above-mentioned reference, the thickness of the steel sheet is, for example, t = 9 mm. Since there was no significant difference in the experimental results even when the thickness was increased, t = 4.5 mm was adopted as the steel plate thickness in this analysis.

−−−破壊状況−−−
本実施形態においては、せん断力の最大荷重時における、補強対象たる前記コンクリートの変形モード、鋼材の降伏状況、およびコンクリートのひび割れ状況についても解析を行った。三次元解析の結果において、前記変形モードは補強有無により大きな相違はみられなかった。一方、ひび割れについては、補強により曲げひび割れがやや卓越する傾向を示し、また、せん断補強筋の降伏箇所がやや減少し、主筋の降伏領域が増加し、中立軸位置が圧縮側になった。
---- Destruction situation ---
In the present embodiment, the deformation mode of the concrete to be reinforced, the yielding state of the steel material, and the cracking state of the concrete were also analyzed at the maximum load of the shearing force. As a result of the three-dimensional analysis, the deformation mode was not significantly different depending on the presence or absence of reinforcement. On the other hand, with respect to cracks, bending cracks tended to be slightly superior due to reinforcement, and the yield location of the shear reinforcement was slightly reduced, the yield region of the main reinforcement was increased, and the neutral axis position was on the compression side.

他方、二次元解析の結果において、前記変形モードは三次元解析よりも補強有無による結果相違が明確に表れ、補強無しではせん断変形が卓越する。また、せん断補強筋や主筋の降伏状況にも補強有無により明確な差が現れ、補強無しではせん断破壊に近い性状となった。一方、補強有りでは曲げ変形は卓越しており、その補強効果は明らかとなった。   On the other hand, in the result of the two-dimensional analysis, the deformation mode clearly shows a difference in the result depending on the presence / absence of the reinforcement than in the three-dimensional analysis. In addition, there was a clear difference in the yield of the shear reinforcement bars and main bars depending on the presence or absence of reinforcement. On the other hand, the bending deformation was excellent with reinforcement, and the reinforcement effect became clear.

−−−解析結果の総括−−−
上述したFEM解析を行った結果、以下のことが明らかになった。まず、二次元解析と三次元解析ともせん断補強部材の補強効果が確認された。また、二次元解析では、補強なしの場合には実験値より低めの耐荷力を示したが、三次元解析では補強の有無に関わらず、実験結果と概ね良好な対応を示した。更に、二次元解析の場合、ひび割れや降伏状況に関して補強効果が顕著に見られた。また、補強によって破壊モードがせん断破壊から曲げ破壊に明瞭に変化した。
--- Summary of analysis results ---
As a result of the above-mentioned FEM analysis, the following became clear. First, the reinforcement effect of the shear reinforcement member was confirmed in both the two-dimensional analysis and the three-dimensional analysis. In the two-dimensional analysis, the load capacity lower than the experimental value was shown in the case of no reinforcement, but the three-dimensional analysis showed a good correspondence with the experimental result regardless of the presence or absence of reinforcement. Furthermore, in the case of two-dimensional analysis, the reinforcing effect was noticeable with respect to cracks and yield conditions. In addition, the failure mode clearly changed from shear failure to bending failure due to reinforcement.

本実施形態における耐震補強方法の具体例を示す図であり、(a)は実施形態1、(b)は実施形態2の平面図、(c)は実施形態2の側断面図を示す。It is a figure which shows the specific example of the earthquake-proof reinforcement method in this embodiment, (a) is Embodiment 1, (b) is a top view of Embodiment 2, (c) shows the sectional side view of Embodiment 2. FIG. せん断補強部材の設置パターンを示す図である。It is a figure which shows the installation pattern of a shear reinforcement member. 他の実施形態における耐震補強方法の具体例を示す図であり、(a)は実施形態1、(b)は実施形態2の平面図、(c)は実施形態2の側断面図を示す。It is a figure which shows the specific example of the earthquake-proof reinforcement method in other embodiment, (a) is Embodiment 1, (b) is a top view of Embodiment 2, (c) shows the sectional side view of Embodiment 2. FIG. 本実施形態における抵抗機構の概念を示す図である。It is a figure which shows the concept of the resistance mechanism in this embodiment. 本実施形態における、(a)二次元解析モデル、(b)三次元解析モデル、(c)既存文献より採用した実験試験体を示す図である。It is a figure which shows the experimental test body employ | adopted from (a) two-dimensional analysis model, (b) three-dimensional analysis model, and (c) existing literature in this embodiment. 本実施形態におけるコンクリートの材料定数を示す図である。It is a figure which shows the material constant of the concrete in this embodiment. 本実施形態におけるコンクリートの応力−ひずみ関係を示す図である。It is a figure which shows the stress-strain relationship of concrete in this embodiment. 本実施形態における鋼材の材料定数を示す図である。It is a figure which shows the material constant of the steel materials in this embodiment. 本実施形態における鋼材の応力−ひずみ関係(トラス材以外)を示す図である。It is a figure which shows the stress-strain relationship (except truss material) of the steel materials in this embodiment. 本実施形態における解析結果のうち、荷重−変位関係を示す図である。It is a figure which shows a load-displacement relationship among the analysis results in this embodiment. 本実施形態において実験値を採用した、従来技術である「一面鋼板貼り付け実験」の概要を示す図である。It is a figure which shows the outline | summary of the "one surface steel plate sticking experiment" which is a prior art which employ | adopted the experimental value in this embodiment.

符号の説明Explanation of symbols

100 構造体
101 施工面
105 コーナー部材
110 せん断補強部材
111 挿通孔
112 (挿通孔の)内周面
120 ピン部材
121 (ピン部材の)周面
130 摩擦材
135 締結具
DESCRIPTION OF SYMBOLS 100 Structure 101 Construction surface 105 Corner member 110 Shear reinforcement member 111 Insertion hole 112 Inner peripheral surface 120 (insertion hole) Pin member 121 (Pin member) peripheral surface 130 Friction material 135 Fastener

Claims (7)

耐震補強対象の構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、
前記複数のせん断補強部材を、傾斜方向が交互に逆向きとなるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前記構造体の側面角部を覆うように設けられたコーナー部材を介して前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記コーナー部材を介して前記所定面に取り付けることを特徴とする耐震補強構造。
The structure of the earthquake-proof reinforcement target, a seismic reinforcement structure for reinforced by a plurality of shear reinforcement member connected to each other,
The plurality of shear reinforcement members are coupled by connecting one end of adjacent shear reinforcement members with a pin member so that the inclination directions are alternately reversed, and the pin members are connected to the side surface of the structure. Attaching to the predetermined surface of the structure through a corner member provided to cover the corner, and attaching both ends of the plurality of connected shear reinforcement members to the predetermined surface through the corner member with pin members Seismic reinforcement structure characterized by that.
耐震補強対象の構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、
前記複数のせん断補強部材を、傾斜方向が交互に逆向きとなるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記所定面に取り付けることを特徴とする耐震補強構造。
The structure of the earthquake-proof reinforcement target, a seismic reinforcement structure for reinforced by a plurality of shear reinforcement member connected to each other,
Said plurality of shear reinforcement members, so that the inclination direction is reversed alternately connected by connecting one end each other of the adjacent shear reinforcement member at the pin member, the pin member, before Symbol structure seismic reinforcement structure, characterized in that the attachment is attached to the predetermined plane, the ends of the plurality of shear reinforcement members has the connecting Te to the pin member prior Symbol predetermined plane.
耐震補強対象である柱状構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、
前記複数のせん断補強部材を、前記柱状の構造体の長手方向に対する傾斜方向が交互に逆向きとなるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前柱状構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記所定面に取り付けることを特徴とする耐震補強構造。
The columnar structure is a seismic be reinforced, a seismic reinforcement structure for reinforced by a plurality of shear reinforcement members linked together,
The plurality of shear reinforcement members are connected by connecting one end of adjacent shear reinforcement members with a pin member so that the inclination directions with respect to the longitudinal direction of the columnar structures are alternately reversed. Retrofit structure the pin member, is attached to the predetermined surface of the front Symbol columnar structure, characterized in that attached to the predetermined surface at both ends of a plurality of shear reinforcement members described above connected by pin member.
耐震補強対象である柱状構造体を、互いに連結した複数のせん断補強部材により補強する耐震補強構造であって、
前記複数のせん断補強部材を、前記柱状構造体の長手方向と直角なせん断補強部材と、前記長手方向に対して傾斜したせん断補強部材とが交互に配置されるように、隣接するせん断補強部材の一端どうしをピン部材にて接続することにより連結し、このピン部材を、前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記所定面に取り付けることを特徴とする耐震補強構造。
The columnar structure is a seismic be reinforced, a seismic reinforcement structure for reinforced by a plurality of shear reinforcement member connected to each other,
The plurality of shear reinforcement members are arranged so that adjacent shear reinforcement members are alternately arranged such that shear reinforcement members perpendicular to the longitudinal direction of the columnar structure and shear reinforcement members inclined with respect to the longitudinal direction are alternately arranged . connected by connecting one end to each other at the pin member, the pin member, is attached to the predetermined surface of the front Symbol structure, both ends of the plurality of shear reinforcement members has the connecting Te to the pin member prior Symbol predetermined plane Seismic reinforcement structure characterized by mounting.
隣接するせん断補強部材の一端どうしを連結するピン部材を、前記構造体の側面角部を覆うように設けられたコーナー部材を介して前記構造体の所定面に取り付けると共に、前記連結した複数のせん断補強部材の両端をピン部材にて前記コーナー部材を介して前記所定面に取り付けることを特徴とする請求項3又は4に記載の耐震補強構造 A pin member that connects one end of adjacent shear reinforcement members is attached to a predetermined surface of the structure via a corner member provided to cover a side corner of the structure, and the plurality of connected shears The seismic reinforcement structure according to claim 3 or 4, wherein both ends of the reinforcing member are attached to the predetermined surface by the pin member via the corner member . 前記ピン結合におけるピン部材の周面と、せん断補強部材における前記ピン部材の挿通孔の内周面との間に、摩擦材を挟設することを特徴とする請求項1〜5の何れか1項に記載の耐震補強構造 The friction material is sandwiched between the peripheral surface of the pin member in the pin connection and the inner peripheral surface of the insertion hole of the pin member in the shear reinforcement member. Seismic reinforcement structure described in the section . 請求項1〜6の何れか1項に記載の耐震補強構造を備えることを特徴とする構造物 A structure comprising the earthquake-proof reinforcement structure according to any one of claims 1 to 6 .
JP2004164899A 2003-06-03 2004-06-02 Seismic reinforcement structure and structure provided with this seismic reinforcement structure Expired - Fee Related JP4626189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164899A JP4626189B2 (en) 2003-06-03 2004-06-02 Seismic reinforcement structure and structure provided with this seismic reinforcement structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003158098 2003-06-03
JP2004164899A JP4626189B2 (en) 2003-06-03 2004-06-02 Seismic reinforcement structure and structure provided with this seismic reinforcement structure

Publications (2)

Publication Number Publication Date
JP2005016723A JP2005016723A (en) 2005-01-20
JP4626189B2 true JP4626189B2 (en) 2011-02-02

Family

ID=34196686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164899A Expired - Fee Related JP4626189B2 (en) 2003-06-03 2004-06-02 Seismic reinforcement structure and structure provided with this seismic reinforcement structure

Country Status (1)

Country Link
JP (1) JP4626189B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638396B2 (en) * 2006-08-07 2011-02-23 アジアンシルバーウッド株式会社 Analysis method of truss wall structure of steel house
JP6170425B2 (en) * 2013-12-18 2017-07-26 ニッタ株式会社 Friction damper
JP6174476B2 (en) * 2013-12-24 2017-08-02 ニッタ株式会社 Friction damper

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125495A (en) * 1983-12-13 1985-07-04 バブコツク日立株式会社 Duct device
JPH0531286A (en) * 1991-07-31 1993-02-09 Sharp Corp Unit stand for dryer
JPH1018639A (en) * 1996-07-02 1998-01-20 Shimizu Corp Reinforcing construction of building
JPH10169244A (en) * 1996-12-06 1998-06-23 Tatsuji Ishimaru Vibration control device having toggle mechanism
JPH10280725A (en) * 1997-04-08 1998-10-20 Shimizu Corp Damping skeleton construction
JPH11256823A (en) * 1998-03-09 1999-09-21 Sanwa Koki Kk Form preventing torsion
JP2001254312A (en) * 2000-03-10 2001-09-21 Ohbayashi Corp Vibration control device for cable-stayed bridge cable
JP2002180419A (en) * 2000-12-13 2002-06-26 Mitsubishi Heavy Ind Ltd Earthquake resistant device for architectural structure and reinforcing method of architectural structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125495A (en) * 1983-12-13 1985-07-04 バブコツク日立株式会社 Duct device
JPH0531286A (en) * 1991-07-31 1993-02-09 Sharp Corp Unit stand for dryer
JPH1018639A (en) * 1996-07-02 1998-01-20 Shimizu Corp Reinforcing construction of building
JPH10169244A (en) * 1996-12-06 1998-06-23 Tatsuji Ishimaru Vibration control device having toggle mechanism
JPH10280725A (en) * 1997-04-08 1998-10-20 Shimizu Corp Damping skeleton construction
JPH11256823A (en) * 1998-03-09 1999-09-21 Sanwa Koki Kk Form preventing torsion
JP2001254312A (en) * 2000-03-10 2001-09-21 Ohbayashi Corp Vibration control device for cable-stayed bridge cable
JP2002180419A (en) * 2000-12-13 2002-06-26 Mitsubishi Heavy Ind Ltd Earthquake resistant device for architectural structure and reinforcing method of architectural structure

Also Published As

Publication number Publication date
JP2005016723A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
Pavese et al. Experimental assessment of the seismic performance of a prefabricated concrete structural wall system
JP5123378B2 (en) Seismic joint device
CN108442514B (en) Assembly type flexible concrete frame node structure with additional hidden damper
US8997437B2 (en) Structural members with improved ductility and method for making same
US10753096B2 (en) Ductile chord connectors for use in concrete rods in structures
TW482850B (en) Buckling restrained braces and damping steel structures
US8196368B2 (en) Ductile seismic shear key
JP4626189B2 (en) Seismic reinforcement structure and structure provided with this seismic reinforcement structure
JP4419844B2 (en) Seismic reinforcement method for columnar structure, seismic reinforcement structure for columnar structure and seismic reinforcement structure
JP2005048393A (en) Mounting method for toggle vibration control device
JP4414833B2 (en) Seismic walls using corrugated steel
KR101209363B1 (en) Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same
JP4624288B2 (en) Method for assembling reinforcing structure of existing ALC vertical wall panel
JP2005083136A (en) Composite structure support
JP2005248651A (en) Earthquake resistant reinforcing structure
JP5756719B2 (en) Precast concrete floor slab and its design method
JP2011162943A (en) Damping panel
KR102495592B1 (en) Assembly type aseismic reinforcement apparatus
JP2008038559A (en) Vibration control wall
JPH09195386A (en) Antiseismic construction method and reinforced brace used therefor
JP3951785B2 (en) Damper for beam support in concrete frame
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets
CN212742891U (en) High-strength screw rod sliding embedded part connecting node for supporting concrete frame
JP4092651B2 (en) Seismic reinforcement structure for existing buildings
JP2010018985A (en) Portal frame with damper of brace structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees