JP4625553B2 - Vibration / sound wave insulation structure of double structure - Google Patents

Vibration / sound wave insulation structure of double structure Download PDF

Info

Publication number
JP4625553B2
JP4625553B2 JP15231299A JP15231299A JP4625553B2 JP 4625553 B2 JP4625553 B2 JP 4625553B2 JP 15231299 A JP15231299 A JP 15231299A JP 15231299 A JP15231299 A JP 15231299A JP 4625553 B2 JP4625553 B2 JP 4625553B2
Authority
JP
Japan
Prior art keywords
bimorph
vibration
sound wave
space
piezoelectric actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15231299A
Other languages
Japanese (ja)
Other versions
JP2000340850A (en
Inventor
貞夫 秋下
惠 飴山
幸夫 岩清水
Original Assignee
貞夫 秋下
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 貞夫 秋下 filed Critical 貞夫 秋下
Priority to JP15231299A priority Critical patent/JP4625553B2/en
Publication of JP2000340850A publication Critical patent/JP2000340850A/en
Application granted granted Critical
Publication of JP4625553B2 publication Critical patent/JP4625553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、極性の異なる2枚の圧電素子を積層したバイモルフ素子からなるバイモルフ型圧電アクチュエータ、及び例えば航空機の2重隔壁等の2重構造体の振動・音波遮断構造に関する。
【0002】
【従来の技術】
図7に示すように、従来のこの種のバイモルフ型圧電アクチュエータ51としては、例えば、極性の異なる2枚の圧電素子2,3を電極板6を介して積層し、これら2枚の圧電素子2,3の表面にそれぞれ電極板7,8を接合したバイモルフ素子(振動子)4からなるものが知られている。
【0003】
このバイモルフ型圧電アクチュエータ51は、2枚の圧電素子2,3にそれぞれ電圧を印加した際に、一方の圧電素子2(3)に伸び変位が発生すると共に、他方の圧電素子3(2)に収縮変位が発生するように構成されている。これにより、バイモルフ素子4に全体として屈曲変位が発生するので、所定周波数の交流電圧を印加すれば、所定の振動数で発振するようになる。
【0004】
また、このように構成されるバイモルフ型圧電アクチュエータ51の使用例としては、図8及び図9に示すように、例えば航空機24の機体25のハニカム外壁と吸音内壁とからなる2重隔壁A,B等の2つの構造体A,Bの間にバイモルフ型圧電アクチュエータ51を配設し、図8(a) 中の▲1▼で示すエンジン音や図8(a) 中の▲2▼及び▲3▼で示す機体25と空気との摩擦等によって生じる振動及び音波を能動的に減衰、遮断するというアイデアが提案されている(例えば、Thomas,D.R. and Nelson,P.A.,“ The Application of an Implicit Self Tuning LQG Algorithm to the Active Control of Sound Transmission ", ACTIVE95 (1995), 299-309, USA.)。
【0005】
このような2重構造体の振動・音波遮断構造は、図9に示すように、所定間隔を開けて相対向して配置された2つの構造体A,Bの間の空間21を伝搬する振動及び伝播する音波を遮断可能であって、空間21に面する一方の構造体Aの内面aに固定された固定部材22に、バイモルフ型圧電アクチュエータ51の長手方向の一端4aを前記バイモルフ素子4の面方向が2つの構造体A,Bの面方向に対して平行となるように固定し、且つ、空間21に面する他方の構造体Bの内面bに固定された支持部材23に、バイモルフ型圧電アクチュエータ51の長手方向の他端4bを2つの構造体A,Bの面方向に対して平行な軸心回りに回転自在に固定している。
【0006】
この状態で2枚の圧電素子2,3にそれぞれ交流電圧を印加すれば、バイモルフ素子4に曲げモーメントが発生するので、2つの構造体A,Bの間の距離を変化させるような力が作用する。そのため、例えば他方の構造体Bから一方の構造体Aに伝搬しようとする振動及び伝播しようとする音波の振動数に応じて交流電圧の周波数を設定、又は適宜に変化させれば、振動伝搬と音波伝播を有効に減衰、遮断することができる。
【0007】
【発明が解決しようとする課題】
上記のようにして従来のバイモルフ型圧電アクチュエータ51を2重構造体の振動・音波遮断構造に使用する場合には、バイモルフ素子4の一端4aにおける固定部材22への固定部分に曲げモーメントによる集中応力が作用する。ここで、圧電素子4はジルコンチタン酸鉛Pb(Zr,Ti)O3 〔PZT(PbZrO3とPbTiO3の固溶体)〕等の脆いセラミックス材料等から構成され、機械的強度が低いので、上記の集中応力によって固定部分付近で破損又は破断するおそれがあるという問題点がある。
【0008】
そのため、2重構造体の振動・音波遮断構造にこのような機械的強度の低いバイモルフ型圧電アクチュエータ51を使用する場合には、信頼性に欠けるという問題点がある。
【0009】
この発明は、以上のような問題点に鑑みてなされたものであり、機械的強度や信頼性に優れたバイモルフ型圧電アクチュエータを用いた2重構造体の振動・音波遮断構造を提供することを目的とする。
【0014】
上記目的を達成するために、請求項の2重構造体の振動・音波遮断構造は、所定間隔を開けて相対向して配置された2つの構造体の間の空間を伝搬する振動及び伝播する音波を遮断可能な2重構造体の振動・音波遮断構造において、前記空間は、間仕切りにより複数の小空間に分けられており、複数の前記空間夫々において、該小空間に面するいずれか一方の構造体の内面に固定された固定部材に、極性の異なる2枚の圧電素子を積層したバイモルフ素子からなり、該バイモルフ素子の長手方向の少なくとも一端における両面にそれぞれ補強板を接合したバイモルフ型圧電アクチュエータの長手方向の一端を前記バイモルフ素子の面方向が前記2つの構造体の面方向に対して平行となるように固定し、且つ、前記空間に面する他方の構造体の内面に固定された支持部材に、前記バイモルフ型圧電アクチュエータの長手方向の他端を前記2つの構造体の面方向に対して平行な軸心回りに回転自在に固定したものである。
【0015】
【発明の実施の形態】
以下、この発明の実施形態を図面に基づいて説明する。なお、既述の従来技術と同じ構成については、同一符号を付してその説明を省略する。
【0016】
図1に示すように、第1実施形態に係るバイモルフ型圧電アクチュエータ1は、極性の異なる2枚の圧電素子2,3を積層したバイモルフ素子4からなり、このバイモルフ素子4の長手方向の例えば一端4aにおける両面4c,4dにそれぞれ補強板5を接合したものである。
【0017】
圧電素子2,3は、所定長さ及び所定厚さの矩形板状に形成され、それぞれの極性を変えて構成されている。なお、圧電素子2,3の材質としては、例えばジルコンチタン酸鉛Pb(Zr,Ti)O3 〔PZT(PbZrO3とPbTiO3の固溶体)〕やこれに金属酸化物等の添加物を配合して焼成した磁器の他、水晶やニオブ酸リチウムLiNbO3の単結晶等の従来公知の各種の圧電性材料が挙げられる。
【0018】
バイモルフ素子4は、極性の異なる2枚の圧電素子2,3と、これらの間及び表面にそれぞれ接合された3枚の電極板6,7,8とからなる。なお、電極板6,7,8と圧電素子2,3とは、接着剤等の従来公知の手段で接合されている。
【0019】
補強板5は、バイモルフ素子4の長手方向の例えば一端4aにおける両面4c,4dにそれぞれ接合されている。なお、この実施形態においては、補強板5の長さを比較的短くしてバイモルフ素子4の一端4aにのみ接合するようにしているが、これに限定されるものではなく、図2に示すように、より長く形成してバイモルフ素子4の両面4c,4dにそれぞれ全体的に接合する等してもよい。
【0020】
このように構成されるバイモルフ型圧電アクチュエータ1は、バイモルフ素子4の少なくとも一端4aが補強板5により補強されているので、バイモルフ素子4の一端4aに曲げモーメントによる集中応力が作用する場合でも、破損又は破断しにくいという利点がある。
【0021】
ここで、補強板5が、例えばアルミニウム、銅、銀、金、白金等の低剛性且つ高延性の金属からなる場合には、上記のような集中応力が作用してもクラックが発生しにくいので、機械的強度がより高いという利点がある。また、補強板5を、圧電素子2,3の表面に接合された電極板7,8にプラズマ接合する場合には、簡単且つ安価に接合できるので、安価なバイモルフ型圧電アクチュエータ1を量産できるという利点がある。
【0022】
図3に示すように、第2実施形態に係るバイモルフ型圧電アクチュエータ11は、前記2枚の補強板5の間に、極性の異なる2枚の圧電素子2,3を積層したバイモルフ素子14を例えば2組積層したものである。なお、この場合も、圧電素子2と圧電素子3の間にそれぞれ電極板6を接合しておくと共に、最上層の圧電素子2の表面及び最下層の圧電素子3の表面にも電極板7,8をそれぞれ接合しておけばよい。
【0023】
このように、2枚の補強板5の間に複数組のバイモルフ素子14を積層しておけば、変位力が大きくなるので、高荷重下での使用も可能であるという利点がある。
【0024】
図4に示すように、第3実施形態に係る2重構造体の振動・音波遮断構造は、所定間隔を開けて相対向して配置された2つの構造体A,Bの間の空間21に、第1実施形態のバイモルフ型圧電アクチュエータ1を配設することによって、空間21を伝搬する振動及び伝播する音波を遮断可能としたものである。
【0025】
具体的には、空間21に面する例えば一方の構造体Aの内面aに固定された固定部材22に、バイモルフ型圧電アクチュエータ1の長手方向の一端4aをバイモルフ素子4の面方向が2つの構造体A,Bの面方向に対して平行となるように固定し、且つ、空間21に面する例えば他方の構造体Bの内面bに固定された支持部材23に、バイモルフ型圧電アクチュエータ1の長手方向の他端4bを2つの構造体A,Bの面方向に対して平行な軸心回りに回転自在に固定している。
【0026】
2つの構造体A,Bとしては、既述した航空機24の機体25の2重隔壁A,Bの他、例えば、建物の外壁と内壁、2重壁、2重床、上階床と下階天井、乗用車やバスの車室床とシャシ、鉄道車両の客室床とシャシ等が挙げられる。
【0027】
固定部材22は、例えば一方の構造体Aの内面aに固定されている。支持部材23は、例えば他方の構造体Bの内面bに固定されている。
【0028】
バイモルフ型圧電アクチュエータ1の長手方向の一端4aは、バイモルフ素子4の面方向が2つの構造体A,Bの面方向に対して平行となるようにして、例えば埋設、ネジ止め、又はクランプ止め等により固定部材22に固定されている。長手方向の他端4bは、2つの構造体A,Bの面方向に対して平行な軸心回りに回転自在となるように、支持部材23に突設した例えば軸26等に固定されている。
【0029】
ここで、例えば他方の構造体B側で騒音等による振動及び音波が発生する場合には、この他方の構造体Bの所定部位に図示しない振動センサを取付けておき、この振動センサで検出される振動及び音波の振動数に応じて、2枚の圧電素子2,3にそれぞれ印加する交流電圧の周波数を設定又は適宜に変化させて発振させるようにすれば、他方の構造体Bから一方の構造体Aに伝搬しようとする振動及び伝播しようとする音波を有効に減衰、遮断することができる。
【0030】
この場合、バイモルフ素子4の一端4aに曲げモーメントによる集中応力が作用しても、補強板5により破損又は破断しにくくなっているので、このように構成されたバイモルフ型圧電アクチュエータ1を配設しておけば、信頼性が高いという利点がある。
【0031】
なお、この実施形態においては、固定部材22を一方の構造体Aに固定し、支持部材23を他方の構造体Bに固定しているが、これに限定されるものではなく、その逆に固定してもよい。即ち、空間21にバイモルフ型圧電アクチュエータ1を配設しておけば、2つの構造体A,Bのいずれからの振動及び音波であっても、その伝搬及び伝播を遮断することができる。また、バイモルフ型圧電アクチュエータ1の大きさや配設数は、用途等に応じて適宜に設定すればよい。
【0032】
図5及び図6に示すように、第4実施形態に係る2重構造体の振動・音波遮断構造は、第3実施形態における一方の構造体Aを建物の下階天井とし、他方の構造体Bを上階床としたものであって、前記空間21を間仕切り31によって複数の小空間32に分けたものである。
【0033】
このように、空間21を複数の小空間32に分けておけば、例えば上階床側において特定の小空間32の上方で振動等が発生した場合には、振動及び音波が他の小空間32に伝搬及び伝播しにくい。そこで、これら複数の小空間32に第3実施形態と同様にしてバイモルフ型圧電アクチュエータ1を少なくとも1つずつ配設しておけば、各小空間32内で確実に振動及び音波を遮断できるという利点がある。
【0034】
なお、2つの構造体A,Bの間隔が大きい場合には、この実施形態のように必要に応じて固定部材22と支持部材23の両方又は一方をより長く形成したり、あるいは構造体A(B)との間にスペーサを介在させたりしておけばよい。また、間仕切り31は、吸音性部材又は遮音性部材等から構成しておくのが望ましい。
【0039】
請求項の発明によれば、バイモルフ素子の一端に曲げモーメントによる集中応力が作用しても、補強板により破損又は破断しにくくなっているので、このように構成されたバイモルフ型圧電アクチュエータを配設しておけば、信頼性が高いという利点がある。また、空間を複数の小空間に分けておくことにより、特定の小空間の上方で振動等が発生した場合には、振動及び音波が他の小空間に伝搬及び伝播しにくい。そして、これら複数の小空間にバイモルフ型圧電アクチュエータを少なくとも1つずつ配設しておけば、各小空間内で確実に振動及び音波を遮断できるという利点がある。
【図面の簡単な説明】
【図1】第1実施形態に係るバイモルフ型圧電アクチュエータの斜視図。
【図2】補強板をバイモルフ素子の両面にそれぞれ全体的に接合した例を示す斜視図。
【図3】第2実施形態に係るバイモルフ型圧電アクチュエータの斜視図。
【図4】第3実施形態に係る2重構造体の振動・音波遮断構造を示す概略拡大断面図。
【図5】第4実施形態に係る2重構造体の振動・音波遮断構造を示す概略平面図。
【図6】図5の小空間にバイモルフ型圧電アクチュエータを配設した状態を示す概略拡大断面図。
【図7】従来のバイモルフ型圧電アクチュエータの斜視図。
【図8】 (a) は航空機の機体に振動及び音波が発生する様子を示す概略斜視図、(b) は機体の概略拡大断面図、(c) は2重隔壁の概略拡大断面図、(d) はバイモルフ型圧電アクチュエータの配設状態を示す概略拡大断面図。
【図9】バイモルフ型圧電アクチュエータの配設状態を示す概略拡大断面図。
【符号の説明】
1,11 バイモルフ型圧電アクチュエータ
2,3 圧電素子
4,14 バイモルフ素子
4a 一端
4b 他端
4c,4d 両面
5 補強板
7,8 電極板
A,B 構造体
a,b 内面
21 空間
22 固定部材
23 支持部材
31 間仕切り
32 小空間
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bimorph type piezoelectric actuator composed of a bimorph element in which two piezoelectric elements having different polarities are laminated, and a vibration / sound wave blocking structure of a double structure such as a double bulkhead of an aircraft.
[0002]
[Prior art]
As shown in FIG. 7, as a conventional bimorph type piezoelectric actuator 51 of this type, for example, two piezoelectric elements 2 and 3 having different polarities are stacked via an electrode plate 6, and these two piezoelectric elements 2 are stacked. , 3 is composed of a bimorph element (vibrator) 4 in which electrode plates 7 and 8 are respectively joined to the surface.
[0003]
This bimorph type piezoelectric actuator 51 causes an elongation displacement in one piezoelectric element 2 (3) when a voltage is applied to each of the two piezoelectric elements 2 and 3, and the other piezoelectric element 3 (2). A contraction displacement is generated. As a result, bending displacement is generated in the bimorph element 4 as a whole, and therefore, when an alternating voltage having a predetermined frequency is applied, the bimorph element 4 oscillates at a predetermined frequency.
[0004]
Further, as an example of use of the bimorph type piezoelectric actuator 51 configured in this way, as shown in FIGS. 8 and 9, for example, double partition walls A and B composed of a honeycomb outer wall and a sound absorbing inner wall of an aircraft body 25 of an aircraft 24. The bimorph piezoelectric actuator 51 is disposed between the two structural bodies A and B, and the engine sound indicated by (1) in FIG. 8 (a) and (2) and (3) in FIG. 8 (a). The idea of actively attenuating and blocking vibrations and sound waves caused by friction between the airframe 25 and air shown by ▼ has been proposed (for example, Thomas, DR and Nelson, PA, “The Application of an Implicit Self Tuning”). LQG Algorithm to the Active Control of Sound Transmission ", ACTIVE95 (1995), 299-309, USA.).
[0005]
As shown in FIG. 9, this double structure vibration / sound wave blocking structure is a vibration that propagates in a space 21 between two structures A and B that are arranged to face each other at a predetermined interval. The bimorph type piezoelectric actuator 51 has one end 4a in the longitudinal direction of the bimorph element 4 attached to the fixing member 22 fixed to the inner surface a of one structure A facing the space 21. The support member 23 fixed to the inner surface b of the other structure B facing the space 21 is fixed to a bimorph type so that the surface direction is parallel to the surface direction of the two structures A and B. The other end 4b in the longitudinal direction of the piezoelectric actuator 51 is fixed so as to be rotatable about an axis parallel to the surface direction of the two structures A and B.
[0006]
If an alternating voltage is applied to each of the two piezoelectric elements 2 and 3 in this state, a bending moment is generated in the bimorph element 4, so that a force that changes the distance between the two structures A and B acts. To do. Therefore, for example, if the frequency of the alternating voltage is set or appropriately changed according to the vibration to be propagated from the other structure B to the one structure A and the frequency of the sound wave to be propagated, Sound wave propagation can be effectively attenuated and blocked.
[0007]
[Problems to be solved by the invention]
As described above, when the conventional bimorph type piezoelectric actuator 51 is used for the vibration / sound wave insulation structure of the double structure, the concentrated stress due to the bending moment is applied to the fixing portion to the fixing member 22 at the one end 4a of the bimorph element 4. Works. Here, the piezoelectric element 4 is made of a brittle ceramic material such as lead zirconate titanate Pb (Zr, Ti) O 3 [PZT (solid solution of PbZrO 3 and PbTiO 3 )] and has low mechanical strength. There is a problem in that there is a risk of breakage or fracture near the fixed portion due to concentrated stress.
[0008]
Therefore, when such a bimorph piezoelectric actuator 51 having a low mechanical strength is used for the vibration / sound wave insulation structure of the double structure, there is a problem that the reliability is lacking.
[0009]
The present invention has been made in view of the above problems, and provides a vibration / sound wave insulation structure for a double structure using a bimorph piezoelectric actuator having excellent mechanical strength and reliability. Objective.
[0014]
In order to achieve the above object, the vibration / sound wave blocking structure of the double structure according to claim 1 is a vibration and propagation that propagates in a space between two structures that are arranged to face each other at a predetermined interval. in the vibration-wave blocking structure for blocking possible double structure sound waves, the space partition is divided into a plurality of small spaces, the in each of the plurality of the small space husband, either facing the small space A bimorph type comprising a bimorph element in which two piezoelectric elements having different polarities are laminated on a fixing member fixed to the inner surface of one structure , and reinforcing plates are bonded to both surfaces at least at one end in the longitudinal direction of the bimorph element. One end in the longitudinal direction of the piezoelectric actuator is fixed so that the surface direction of the bimorph element is parallel to the surface direction of the two structures, and the other structure facing the space A support member fixed to the inner surface of, is obtained by rotatably fixed to the parallel axis direction with respect to the plane direction of the longitudinal direction of the other end two structures of the bimorph type piezoelectric actuator.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In addition, about the same structure as the prior art mentioned above, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
[0016]
As shown in FIG. 1, the bimorph piezoelectric actuator 1 according to the first embodiment includes a bimorph element 4 in which two piezoelectric elements 2 and 3 having different polarities are stacked, and one end of the bimorph element 4 in the longitudinal direction, for example, The reinforcing plate 5 is joined to both surfaces 4c and 4d of 4a.
[0017]
The piezoelectric elements 2 and 3 are formed in a rectangular plate shape having a predetermined length and a predetermined thickness, and are configured with different polarities. The material of the piezoelectric elements 2 and 3 is, for example, lead zirconate titanate Pb (Zr, Ti) O 3 [PZT (solid solution of PbZrO 3 and PbTiO 3 )] or an additive such as a metal oxide. In addition to ceramics fired in this way, various known piezoelectric materials such as quartz and single crystal of lithium niobate LiNbO 3 can be used.
[0018]
The bimorph element 4 includes two piezoelectric elements 2 and 3 having different polarities, and three electrode plates 6, 7, and 8 bonded between and on the surface of the piezoelectric elements 2 and 3, respectively. The electrode plates 6, 7, 8 and the piezoelectric elements 2, 3 are joined by a conventionally known means such as an adhesive.
[0019]
The reinforcing plate 5 is joined to both surfaces 4c and 4d, for example, at one end 4a in the longitudinal direction of the bimorph element 4. In this embodiment, the length of the reinforcing plate 5 is made relatively short so as to be joined only to the one end 4a of the bimorph element 4. However, the present invention is not limited to this, as shown in FIG. In addition, it may be formed longer and bonded to both surfaces 4c and 4d of the bimorph element 4 respectively.
[0020]
In the bimorph piezoelectric actuator 1 configured in this way, since at least one end 4a of the bimorph element 4 is reinforced by the reinforcing plate 5, even if concentrated stress due to a bending moment acts on the one end 4a of the bimorph element 4, it is damaged. Or there is an advantage that it is hard to break.
[0021]
Here, when the reinforcing plate 5 is made of a low-rigidity and high-ductility metal such as aluminum, copper, silver, gold, or platinum, cracks are unlikely to occur even when the above concentrated stress acts. There is an advantage that the mechanical strength is higher. In addition, when the reinforcing plate 5 is plasma bonded to the electrode plates 7 and 8 bonded to the surfaces of the piezoelectric elements 2 and 3, since the bonding can be performed easily and inexpensively, the inexpensive bimorph piezoelectric actuator 1 can be mass-produced. There are advantages.
[0022]
As shown in FIG. 3, the bimorph piezoelectric actuator 11 according to the second embodiment includes a bimorph element 14 in which two piezoelectric elements 2 and 3 having different polarities are stacked between the two reinforcing plates 5. Two sets are laminated. In this case, the electrode plate 6 is bonded between the piezoelectric element 2 and the piezoelectric element 3, and the electrode plates 7 and 7 are also formed on the surface of the uppermost piezoelectric element 2 and the surface of the lowermost piezoelectric element 3. What is necessary is just to join 8 respectively.
[0023]
Thus, if a plurality of sets of bimorph elements 14 are laminated between the two reinforcing plates 5, the displacement force increases, so that there is an advantage that it can be used under a high load.
[0024]
As shown in FIG. 4, the vibration / sound wave blocking structure of the double structure according to the third embodiment is provided in a space 21 between the two structures A and B that are arranged to face each other at a predetermined interval. By arranging the bimorph piezoelectric actuator 1 of the first embodiment, the vibration propagating in the space 21 and the propagating sound wave can be blocked.
[0025]
Specifically, for example, one end 4a in the longitudinal direction of the bimorph piezoelectric actuator 1 is arranged on the fixing member 22 fixed to the inner surface a of one structure A facing the space 21, and the bimorph element 4 has two surface directions. The bimorph piezoelectric actuator 1 is fixed to a support member 23 fixed to be parallel to the surface direction of the bodies A and B and fixed to the inner surface b of the other structure B facing the space 21. The other end 4b in the direction is fixed so as to be rotatable around an axis parallel to the surface direction of the two structures A and B.
[0026]
Examples of the two structures A and B include the double bulkheads A and B of the airframe 25 of the aircraft 24 described above, for example, the outer wall and inner wall of the building, the double wall, the double floor, the upper floor and the lower floor. Examples include ceilings, passenger car and bus cabin floors and chassis, and railway vehicle cabin floors and chassis.
[0027]
For example, the fixing member 22 is fixed to the inner surface a of one structure A. The support member 23 is fixed to the inner surface b of the other structure B, for example.
[0028]
One end 4a in the longitudinal direction of the bimorph type piezoelectric actuator 1 is embedded, screwed, clamped or the like so that the surface direction of the bimorph element 4 is parallel to the surface direction of the two structures A and B, for example. Thus, the fixing member 22 is fixed. The other end 4b in the longitudinal direction is fixed to, for example, a shaft 26 or the like protruding from the support member 23 so as to be rotatable around an axis parallel to the surface direction of the two structures A and B. .
[0029]
Here, for example, when vibration and sound waves due to noise or the like are generated on the other structure B side, a vibration sensor (not shown) is attached to a predetermined portion of the other structure B and is detected by this vibration sensor. If the frequency of the AC voltage applied to each of the two piezoelectric elements 2 and 3 is set or appropriately changed to oscillate according to the vibration frequency and the vibration frequency of the sound wave, the other structure B to one structure The vibration to be propagated to the body A and the sound wave to be propagated can be effectively attenuated and blocked.
[0030]
In this case, even if concentrated stress due to a bending moment acts on the one end 4a of the bimorph element 4, the reinforcing plate 5 makes it difficult to break or break, so the bimorph piezoelectric actuator 1 configured in this way is provided. If so, there is an advantage of high reliability.
[0031]
In this embodiment, the fixing member 22 is fixed to one structure A and the support member 23 is fixed to the other structure B. However, the present invention is not limited to this. May be. That is, if the bimorph piezoelectric actuator 1 is disposed in the space 21, the propagation and propagation of vibrations and sound waves from any of the two structures A and B can be blocked. Further, the size and the number of the bimorph piezoelectric actuators 1 may be set as appropriate according to the application.
[0032]
As shown in FIGS. 5 and 6, the vibration / sound wave insulation structure of the double structure according to the fourth embodiment is such that one structure A in the third embodiment is a lower-floor ceiling of the building and the other structure. B is an upper floor, and the space 21 is divided into a plurality of small spaces 32 by partitions 31.
[0033]
In this way, if the space 21 is divided into a plurality of small spaces 32, for example, when vibration or the like is generated above the specific small space 32 on the upper floor side, vibration and sound waves are transmitted to the other small spaces 32. It is difficult to propagate and propagate. Therefore, if at least one bimorph piezoelectric actuator 1 is disposed in each of the plurality of small spaces 32 in the same manner as in the third embodiment, vibration and sound waves can be reliably blocked in each small space 32. There is.
[0034]
When the interval between the two structures A and B is large, both or one of the fixing member 22 and the support member 23 is formed longer as necessary, or the structure A ( A spacer may be interposed between B). Moreover, it is desirable that the partition 31 is composed of a sound absorbing member or a sound insulating member.
[0039]
According to the first aspect of the present invention, even if concentrated stress due to a bending moment acts on one end of the bimorph element, it is difficult to break or break by the reinforcing plate. If installed, there is an advantage of high reliability. Further, by dividing the space into a plurality of small spaces, when vibration or the like occurs above a specific small space, the vibration and the sound wave are difficult to propagate and propagate to other small spaces. If at least one bimorph type piezoelectric actuator is disposed in each of the plurality of small spaces, there is an advantage that vibrations and sound waves can be reliably blocked in each small space.
[Brief description of the drawings]
FIG. 1 is a perspective view of a bimorph piezoelectric actuator according to a first embodiment.
FIG. 2 is a perspective view showing an example in which a reinforcing plate is entirely bonded to both surfaces of a bimorph element.
FIG. 3 is a perspective view of a bimorph piezoelectric actuator according to a second embodiment.
FIG. 4 is a schematic enlarged cross-sectional view showing a vibration / sound wave blocking structure of a double structure according to a third embodiment.
FIG. 5 is a schematic plan view showing a vibration / sound wave blocking structure of a double structure according to a fourth embodiment.
6 is a schematic enlarged cross-sectional view showing a state where a bimorph piezoelectric actuator is disposed in the small space of FIG.
FIG. 7 is a perspective view of a conventional bimorph piezoelectric actuator.
8A is a schematic perspective view showing how vibrations and sound waves are generated in the aircraft body, FIG. 8B is a schematic enlarged sectional view of the aircraft, FIG. 8C is a schematic enlarged sectional view of the double bulkhead, d) is a schematic enlarged cross-sectional view showing the arrangement of the bimorph piezoelectric actuator.
FIG. 9 is a schematic enlarged cross-sectional view showing an arrangement state of a bimorph type piezoelectric actuator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,11 Bimorph type piezoelectric actuators 2, 3 Piezoelectric element 4, 14 Bimorph element 4a One end 4b The other end 4c, 4d Both sides 5 Reinforcement plate 7, 8 Electrode plate A, B Structure a, b Inner surface 21 Space 22 Fixing member 23 Support Member 31 Partition 32 Small space

Claims (1)

所定間隔を開けて相対向して配置された2つの構造体の間の空間を伝搬する振動及び伝播する音波を遮断可能な2重構造体の振動・音波遮断構造において、In the vibration / sound wave blocking structure of the double structure capable of blocking the vibration propagating through the space between the two structures arranged opposite to each other with a predetermined interval and the propagating sound wave,
前記空間は、間仕切りにより複数の小空間に分けられており、The space is divided into a plurality of small spaces by partitions,
複数の前記小空間夫々において、該小空間に面するいずれか一方の構造体の内面に固定された固定部材に、極性の異なる2枚の圧電素子を積層したバイモルフ素子からなり、該バイモルフ素子の長手方向の少なくとも一端における両面にそれぞれ補強板を接合したバイモルフ型圧電アクチュエータの長手方向の一端を前記バイモルフ素子の面方向が前記2つの構造体の面方向に対して平行となるように固定し、且つ、前記空間に面する他方の構造体の内面に固定された支持部材に、前記バイモルフ型圧電アクチュエータの長手方向の他端を前記2つの構造体の面方向に対して平行な軸心回りに回転自在に固定したことを特徴とする2重構造体の振動・音波遮断構造。Each of the plurality of small spaces includes a bimorph element in which two piezoelectric elements having different polarities are stacked on a fixing member fixed to the inner surface of one of the structures facing the small space. Fixing one end in the longitudinal direction of the bimorph type piezoelectric actuator in which reinforcing plates are bonded to both surfaces at at least one end in the longitudinal direction so that the surface direction of the bimorph element is parallel to the surface direction of the two structures, The other end in the longitudinal direction of the bimorph piezoelectric actuator is fixed to a support member fixed to the inner surface of the other structure facing the space around an axis parallel to the surface direction of the two structures. A double structure vibration / sound wave blocking structure characterized by being fixed rotatably.
JP15231299A 1999-05-31 1999-05-31 Vibration / sound wave insulation structure of double structure Expired - Fee Related JP4625553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15231299A JP4625553B2 (en) 1999-05-31 1999-05-31 Vibration / sound wave insulation structure of double structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15231299A JP4625553B2 (en) 1999-05-31 1999-05-31 Vibration / sound wave insulation structure of double structure

Publications (2)

Publication Number Publication Date
JP2000340850A JP2000340850A (en) 2000-12-08
JP4625553B2 true JP4625553B2 (en) 2011-02-02

Family

ID=15537782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15231299A Expired - Fee Related JP4625553B2 (en) 1999-05-31 1999-05-31 Vibration / sound wave insulation structure of double structure

Country Status (1)

Country Link
JP (1) JP4625553B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714242B2 (en) * 2008-05-30 2011-06-29 株式会社アドバンテスト Bimorph switch, electronic circuit, and electronic circuit manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166094A (en) * 1986-01-16 1987-07-22 Daido Steel Co Ltd Powder material for powder welding
JPH08288564A (en) * 1995-04-11 1996-11-01 Matsushita Electric Ind Co Ltd Bimorph piezoelectric actuator
JPH09141201A (en) * 1995-11-22 1997-06-03 Tokai Rubber Ind Ltd Vibrator
JPH09289342A (en) * 1996-04-19 1997-11-04 Sony Corp Multilayer piezoelectric actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166094A (en) * 1986-01-16 1987-07-22 Daido Steel Co Ltd Powder material for powder welding
JPH08288564A (en) * 1995-04-11 1996-11-01 Matsushita Electric Ind Co Ltd Bimorph piezoelectric actuator
JPH09141201A (en) * 1995-11-22 1997-06-03 Tokai Rubber Ind Ltd Vibrator
JPH09289342A (en) * 1996-04-19 1997-11-04 Sony Corp Multilayer piezoelectric actuator

Also Published As

Publication number Publication date
JP2000340850A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
US5473214A (en) Low voltage bender piezo-actuators
KR102269171B1 (en) Piezoelectric Actuator, Submersible Acoustic Transducer and Method for Manufacturing Submersible Acoustic Transducer
JPH038907A (en) Response control device
JPS62261983A (en) Underwater sonar-transducer
WO2018041241A1 (en) Piezoelectric actuator and low frequency underwater projector
JP5584913B2 (en) Floor structure
JP4625553B2 (en) Vibration / sound wave insulation structure of double structure
KR102469287B1 (en) Electromechanical actuator, excitation method of electromechanical actuator and ultrasonic motor
JP4509207B2 (en) Ultrasonic sensor
JP2002530267A (en) Highly sensitive piezoelectric composite material and ultrasonic transducer manufactured using the same
JP4043031B2 (en) Noise reduction device for bridges
JP2020156015A (en) Ultrasonic device and ultrasonic apparatus
JP2002067217A (en) Panel member
Prasad et al. Application of piezoelectrics to smart structures
Wu et al. Influence of applied electric field on the energy release rate for cracked PZT/elastic laminates
KR101747406B1 (en) Piezoelectric Composite Body and Fabrication Method thereof
JPH0674292A (en) Panel exciting device
JP3119218B2 (en) Vibration source for transmitter
JPH1150574A (en) Vibration control partition wall panel
JPH0546184A (en) Sound insulation panel
JPH10287270A (en) Vibration damping device for panel unit for automobile
JPH04166586A (en) Sound insulating window
JP2005283699A (en) Active sound insulation panel
JPH0612081A (en) Soundproof panel
JPH0932150A (en) Building structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees