JP4624273B2 - Endoskeleton robot exterior - Google Patents

Endoskeleton robot exterior Download PDF

Info

Publication number
JP4624273B2
JP4624273B2 JP2006029663A JP2006029663A JP4624273B2 JP 4624273 B2 JP4624273 B2 JP 4624273B2 JP 2006029663 A JP2006029663 A JP 2006029663A JP 2006029663 A JP2006029663 A JP 2006029663A JP 4624273 B2 JP4624273 B2 JP 4624273B2
Authority
JP
Japan
Prior art keywords
exterior
robot
internal structure
urethane foam
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006029663A
Other languages
Japanese (ja)
Other versions
JP2007209391A (en
Inventor
雅一 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawada Industries Inc
Original Assignee
Kawada Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawada Industries Inc filed Critical Kawada Industries Inc
Priority to JP2006029663A priority Critical patent/JP4624273B2/en
Publication of JP2007209391A publication Critical patent/JP2007209391A/en
Application granted granted Critical
Publication of JP4624273B2 publication Critical patent/JP4624273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toys (AREA)
  • Manipulator (AREA)

Description

この発明は、ロボットの機能に対応する形状のフレームを持つ内部構造物を柔らかい素材で覆って当該ロボットの外形を生物の外形に似せる等任意の形状にする内骨格型ロボット用外装に関するものである。   The present invention relates to an exterior for an endoskeletal robot that covers an internal structure having a frame having a shape corresponding to the function of the robot with a soft material so that the external shape of the robot is similar to that of a living organism. .

従来の通常の二足歩行型等のロボットは、駆動機構や制御回路等を内蔵する殻状のフレームを、硬質の素材で形成した薄肉の外装で覆ったり、その殻状のフレーム自体が外骨格状をなして外装を兼ねたりして、形状と剛性とを保っていた。   Conventional robots such as the normal biped walking type have a shell-like frame with a built-in drive mechanism and control circuit covered with a thin exterior made of a hard material, or the shell-like frame itself is an exoskeleton. The shape and rigidity were maintained, and the shape and rigidity were maintained.

ところで、上記のように殻状のフレームに硬質のカバーを取り付けたりフレーム自体が外装を兼ねたりすると外形の自由度が小さくなるため、ロボットの外形を生物に似せる等任意の形状にするのが困難であり、このため近年、ロボットに求められる外形に関わらずそのロボットの機能に対応して必要位置に駆動機構を配置する形状のいわゆる内骨格状のフレームを持つ内部構造物を柔らかい素材で覆って、ロボットの外形を生物の外形等に似せる内骨格型ロボット用外装が試行されている。   By the way, if a hard cover is attached to the shell-shaped frame as described above or the frame itself also serves as an exterior, the degree of freedom of the outer shape is reduced, so it is difficult to make the robot's outer shape similar to a living organism. Therefore, in recent years, an internal structure having a so-called endoskeleton-shaped frame in which a drive mechanism is arranged at a required position corresponding to the function of the robot regardless of the outer shape required for the robot is covered with a soft material. Attempts have been made to create an exterior for an endoskeleton that resemble the external shape of a robot.

かかる内骨格型ロボットとしては、例えば、図5(a),(b)および(c)に正面図、平面図および側面図を示す、本願出願人が製作した恐竜型ロボットが知られており(非特許文献1参照)、図6(a),(b)は、その恐竜型ロボットの外装1および内部構造物2をそれぞれ示す斜視図、図7は、その恐竜型ロボットの外装1の分解斜視図、そして図8は、その恐竜型ロボットの外装1および内部構造物2の、図5(c)のA−A線に沿う横断面図である。   As such an endoskeleton-type robot, for example, a dinosaur-type robot manufactured by the applicant of the present application, which is shown in front, top and side views in FIGS. 5 (a), (b) and (c), is known ( 6 (a) and 6 (b) are perspective views showing the exterior 1 and the internal structure 2 of the dinosaur type robot, respectively, and FIG. 7 is an exploded perspective view of the exterior 1 of the dinosaur type robot. FIG. 8 and FIG. 8 are cross-sectional views of the exterior 1 and the internal structure 2 of the dinosaur-type robot taken along line AA in FIG.

この恐竜型ロボットは、図6(b)に示す如き、二足歩行型ロボットの機能に対応して必要位置に駆動機構を配置する形状のいわゆる内骨格状のフレームを持つ内部構造物2を、図6(a)および図5(a)〜(c)に示す如き恐竜型の外装1で覆ったものであり、ここにおける外装1は、図7に示すように、頭部Hと左右胴体部Bと尾部Tとを図示しないジッパーで結合して内部構造物2を覆うように構成されたもので、図8に示すように、当該外装1の外部形状を形成する柔らかい素材としての発泡ウレタンフォーム製の肉部1aの外表面上にシリコン製の外皮1bを設けて構成されている。
http://www.nedo.go.jp/expo2005/robot/dinosaur/
As shown in FIG. 6B, this dinosaur type robot has an internal structure 2 having a so-called endoskeleton-like frame having a shape in which a driving mechanism is arranged at a necessary position corresponding to the function of the biped walking robot. 6 (a) and FIGS. 5 (a) to 5 (c) are covered with a dinosaur-type exterior 1, and the exterior 1 here includes a head H and left and right body parts as shown in FIG. B and tail T are joined with a zipper (not shown) so as to cover the internal structure 2. As shown in FIG. 8, foamed urethane foam as a soft material that forms the external shape of the exterior 1 A silicon outer skin 1b is provided on the outer surface of the made meat portion 1a.
http://www.nedo.go.jp/expo2005/robot/dinosaur/

しかしながら、上記外装1の肉部1aに使用されている発泡ウレタンフォームは反発弾性率が高いことから、押し付けられる形状への馴染みが良くないため、フレームや駆動機構等の内部構造物2上に載置されて外装1の自重を支持する外装上部の内側形状がそこに押し付けられる内部構造物2の凹凸形状に即したものとならず、それゆえ外装1の位置の保持や外装1の自重の分散を良好に行えないという問題があった。そしてこの問題の解決のために外装1の上部の内側形状を内部構造物2の凹凸形状に対応させてあらかじめ形成しておくと、その内部構造物2の設計変更で凹凸形状が変更された場合に対応が困難であるという問題があった。   However, since the foamed urethane foam used for the meat portion 1a of the exterior 1 has a high impact resilience, it is not well adapted to the shape to be pressed, so it is mounted on the internal structure 2 such as a frame or a drive mechanism. The inner shape of the upper part of the exterior that is placed and supports the weight of the exterior 1 does not conform to the uneven shape of the internal structure 2 pressed against it, and therefore the position of the exterior 1 is maintained and the weight of the exterior 1 is distributed There was a problem that it could not be performed well. In order to solve this problem, if the inner shape of the upper part of the exterior 1 is formed in advance corresponding to the uneven shape of the internal structure 2, the uneven shape is changed by the design change of the internal structure 2. There was a problem that it was difficult to cope with.

また上記外装1の肉部1a用の発泡ウレタンフォームは、内部構造物2の関節部等の可動部との干渉で、局部的に摩耗したり、引っかかって位置がずれたり引きちぎられたりするという問題もあった。   Further, the foamed urethane foam for the meat part 1a of the exterior 1 is subject to local wear due to interference with the movable part such as the joint part of the internal structure 2, or the position is shifted or torn off due to being caught. There was also.

この発明は、上記課題を有利に解決することを目的とするものであり、この発明の内骨格型ロボット用外装は、ロボットの機能に対応する形状のフレームを持つ内部構造物を柔らかい素材で覆って当該ロボットの外形を任意の形状にする内骨格型ロボット用外装において、前記内部構造物と当接する部分の少なくとも一部を、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで、前記内部構造物と当接して前記内部構造物の凹凸形状に嵌まり合うように変形するパッド状に形成することを特徴とするものである。
また、この発明の内骨格型ロボット用外装は、上記内骨格型ロボット用外装において、前記内部構造物と当接する部分の少なくとも一部を、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで形成し、前記内部構造物と摺接する部分の少なくとも一部を、テフロンコーティングしたアクリル変性塩化ビニールで形成することを特徴とするものであり、更に、上記内骨格型ロボット用外装において、前記内部構造物と当接する部分の少なくとも一部を、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで形成し、前記内部構造物から離間した可動部分の少なくとも一部に、ゴムシートを張り渡すことを特徴とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to advantageously solve the above-described problems, and an exterior for an endoskeleton robot of the present invention covers an internal structure having a frame having a shape corresponding to the function of the robot with a soft material. In an exterior for an endoskeleton type robot having an external shape of the robot, at least a part of the portion that comes into contact with the internal structure has a lower rebound resilience than the urethane foam that forms the external shape of the exterior The foam is formed in a pad shape that contacts the internal structure and deforms so as to fit into the uneven shape of the internal structure .
In addition, the exterior for the endoskeleton robot according to the present invention is such that at least a part of a portion in contact with the internal structure in the exterior for the endoskeleton robot is more resilient than a urethane foam that forms an external shape of the exterior. Is formed of urethane foam having a low thickness, and at least a part of the portion in sliding contact with the internal structure is formed of Teflon-coated acrylic-modified vinyl chloride. In this case, at least a part of the portion in contact with the internal structure is formed of urethane foam having a lower rebound resilience than the urethane foam forming the external shape of the exterior, and at least one of the movable portions spaced from the internal structure. A rubber sheet is stretched around the part.

かかるこの発明の内骨格型ロボット用外装によれば、ロボットの機能に対応する形状のフレームを持つ内部構造物に当該外装を適用すると、その内部構造物と当接する部分の少なくとも一部が、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで、内部構造物と当接して内部構造物の凹凸形状に嵌まり合うように変形するパッド状に形成されているので、当該外装の自重等によりその内部構造物の凹凸形状に押し付けられて、その内部構造物の凹凸形状に嵌まり合うように変形、当該外装の位置ずれを防止して外装の位置を良好に保持し得るとともに、外装の自重の少なくとも一部をその反発弾性率が低いウレタンフォーム全体で受けて良好に分散させることができる。 According to the endoskeleton-type robot exterior of the present invention, when the exterior is applied to an internal structure having a frame having a shape corresponding to the function of the robot, at least a part of a portion in contact with the internal structure is Because the urethane foam has a lower rebound resilience than the urethane foam that forms the outer shape of the exterior, it is formed in a pad shape that deforms so as to fit into the concave and convex shape of the internal structure by contacting the internal structure. It is pressed against the uneven shape of the internal structure by exterior its own weight, modified as mate the irregularities of the internal structure, better retain the exterior position to prevent displacement of the sheath In addition, at least a part of the weight of the exterior can be received and dispersed well by the entire urethane foam having a low impact resilience.

さらにこの発明の内骨格型ロボット用外装によれば、ロボットの内部構造物の凹凸形状に変更があった場合でも、当該外装をそのまま適用するだけで、その変更があった内部構造物の凹凸形状に嵌まり合うように変形して、上述した外装位置の保持効果と外装自重の分散効果とをもたらすことができるので、内部構造物の設計変更に容易に対応することができる。   Furthermore, according to the outer skeleton type robot exterior of the present invention, even when the irregular shape of the internal structure of the robot is changed, the irregular shape of the internal structure that has been changed can be simply applied by applying the exterior as it is. Therefore, it is possible to easily cope with the design change of the internal structure.

なお、この発明の内骨格型ロボット用外装においては、前記外装の外部形状を形成するウレタンフォームを発泡ウレタンフォームとし、前記外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームを軟質ウレタンフォーム、好ましくはその軟質ウレタンフォームの一種である低反発弾性フォームとしても良く、このようにすれば、軟質ウレタンフォームは粘性と弾性を併せ持ち、中でも特に低反発弾性フォームは弾性を抑えて粘性を高めてあるため、押し付けられた凹凸形状への追従性が高く、ロボットの内部構造物の凹凸形状により良好に嵌まり合うことができる。   In the outer skeleton robot exterior of the present invention, the urethane foam that forms the external shape of the exterior is a foamed urethane foam, and the urethane foam that has a lower rebound resilience than the urethane foam that forms the external shape is a flexible urethane foam. However, it may be a low-rebound resilience foam, which is preferably a kind of the flexible urethane foam. By doing so, the soft urethane foam has both viscosity and elasticity, and in particular, the low-rebound resilience foam suppresses elasticity and increases the viscosity. Therefore, the followability to the pressed uneven shape is high, and it can fit well with the uneven shape of the internal structure of the robot.

また、この発明の内骨格型ロボット用外装においては、前記内部構造物と摺接する部分の少なくとも一部を、テフロン(登録商標)コーティングしたアクリル変性塩化ビニールで形成しても良く、このようにすれば、アクリル変性塩化ビニールで外装内面を平坦に維持しつつ、テフロンコーティングで内部構造物との摺接による摩擦を僅かなものとして、関節部等の可動部との干渉で外装が局部的に摩耗したり引っかかって位置がずれたり引きちぎられたりするのを防止することができる。   Further, in the endoskeleton robot exterior of the present invention, at least a part of the portion in sliding contact with the internal structure may be formed of acrylic-modified vinyl chloride coated with Teflon (registered trademark). For example, while maintaining the inner surface of the exterior flat with acrylic-modified vinyl chloride, the friction due to sliding contact with the internal structure is made small with Teflon coating, and the exterior is locally worn by interference with movable parts such as joints. It is possible to prevent the position from being shifted or torn by being caught.

さらに、この発明の内骨格型ロボット用外装においては、前記内部構造物から離間した可動部分の少なくとも一部にゴムシートを張り渡しても良く、このようにすれば、外装の外部形状を形成するウレタンフォームの弾性をゴムシートで補って、ロボットの動作に対する外装の伸縮性を維持し、外装の動きを自然なものにすることができる。   Furthermore, in the endoskeleton-type robot exterior of the present invention, a rubber sheet may be stretched over at least a part of the movable part separated from the internal structure, thereby forming the external shape of the exterior. The elasticity of the urethane foam can be supplemented with a rubber sheet to maintain the stretchability of the exterior with respect to the movement of the robot and make the movement of the exterior natural.

さらに、この発明の内骨格型ロボット用外装においては、前記外部形状を形成するウレタンフォームの内部に、廃熱用の通気経路を形成しても良く、このようにすれば、外装が位置ずれしたり自重で局部的に潰れたりすることがないので、廃熱用通気経路の位置ずれや閉鎖を防止し得て、内部構造物から発生する熱を効率良く排出することができる。   Furthermore, in the endoskeleton robot exterior of the present invention, a waste heat ventilation path may be formed inside the urethane foam forming the external shape, and in this way, the exterior is displaced. Therefore, the waste heat ventilation path can be prevented from being displaced or closed, and the heat generated from the internal structure can be efficiently discharged.

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1(a)は、この発明の内骨格型ロボット用外装を内骨格型ロボットの一例としての図6(a)および図7に示す恐竜型ロボットに適用した一実施例を図5中のA−A線に沿う断面以降の外装後部についてその断面とともに示す斜視図、図1(b)は、その図1(a)に示す外装後部の構成を示す分解斜視図、図2は、上記実施例の外装の、図5中のA−A線に沿う断面図、そして図3は、上記恐竜型ロボットの内部構造物と上記実施例の外装との位置関係を示す説明図であり、図中先の従来例と同様の部分はそれと同一の符号にて示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 (a) shows an embodiment in which the exterior for an endoskeleton robot of the present invention is applied to the dinosaur robot shown in FIGS. 6 (a) and 7 as an example of the endoskeleton robot. FIG. 1B is an exploded perspective view showing the configuration of the exterior rear portion shown in FIG. 1A, and FIG. 5 is a cross-sectional view taken along line AA in FIG. 5 of the exterior of the embodiment, and FIG. 3 is an explanatory diagram showing the positional relationship between the internal structure of the dinosaur robot and the exterior of the embodiment. In the figure, the same parts as those in the prior art are denoted by the same reference numerals.

すなわち、この実施例の内骨格型ロボット用外装1は、図6〜図8に示す従来例と同様、図6(b)に示す如き、二足歩行型ロボットの機能に対応して必要位置に駆動機構を配置する形状のいわゆる内骨格状のフレームを持つ内部構造物2を覆うものであり、この実施例の外装1も、図7に示すように、頭部H(図1では図示せず)と左右胴体部Bと尾部Tとを図示しないジッパーで結合して内部構造物2を覆うように構成されたもので、図2に示すように、当該外装1の外部形状を形成する柔らかい素材としての発泡ウレタンフォーム製の肉部1aの外表面上にシリコン製の外皮1bを設けている。   That is, the endoskeleton-type robot exterior 1 of this embodiment is in a necessary position corresponding to the function of the biped walking robot as shown in FIG. 6B, as in the conventional example shown in FIGS. It covers the internal structure 2 having a so-called endoskeleton-shaped frame in which the drive mechanism is arranged, and the exterior 1 of this embodiment also has a head H (not shown in FIG. 1) as shown in FIG. ), The left and right body parts B, and the tail part T are joined with a zipper (not shown) to cover the internal structure 2, and a soft material that forms the external shape of the exterior 1 as shown in FIG. A silicon outer skin 1b is provided on the outer surface of the meat part 1a made of urethane foam.

しかして、この実施例の外装1ではまた、図1および図2に示すように、左右胴体部Bを合わせた胴体部の内側上部に、発泡ウレタンフォームよりも反発弾性率が低い低反発弾性フォーム製の背部パッド1cが設けられるとともに、左右胴体部Bの後脚部の付け根の内側下部にも上記低反発弾性フォーム製の脚部パッド1dが設けられ、さらに左右胴体部Bの脇腹部の内側にも上記低反発弾性フォーム製の脇腹部パッド1eが設けられており、背部パッド1cは主に外装1の胴体部Bの自重で内部構造物2の上部2aに押し付けられてその上部と当接して、その上部の凹凸形状に嵌まり合うように変形し、また脚部パッド1dと脇腹部パッド1eとは、内部構造物2の後脚部2bの付け根の内側と脇腹部2cとにそれぞれ当接して、それら後脚部2bの付け根と脇腹部2cとの凹凸形状に嵌まり合うように変形している。なお、ここにおける低反発弾性フォームは、JIS K 6400のA法に準拠した測定法で測定した反発弾性率が1〜20%の低反発弾性ポリウレタンフォームとすることが好ましい。1%未満ではパッド形状の維持が困難であり、20%を超えると当接相手の形状に充分に嵌まり合う(倣う)ように変形しづらくなるからである。   Thus, in the exterior 1 of this embodiment, as shown in FIGS. 1 and 2, the low resilience elastic foam having a lower resilience elastic modulus than the foamed urethane foam is formed on the inner upper part of the body part including the left and right body parts B. A back pad 1c made of plastic, a leg pad 1d made of the above-mentioned low-resilience elastic foam is also provided on the inner lower portion of the base of the rear leg portion of the left and right body portions B, and further inside the flank portions of the left and right body portions B The side pad 1e made of the low resilience elastic foam is also provided, and the back pad 1c is pressed against the upper part 2a of the internal structure 2 mainly by its own weight of the body part B of the exterior 1, and comes into contact with the upper part. The leg pad 1d and the flank pad 1e correspond to the inner side of the base of the rear leg 2b of the internal structure 2 and the flank 2c, respectively. Touching them after It is deformed to fit fits to the uneven shape of the root and flank portion 2c parts 2b. In addition, it is preferable that the low rebound resilience foam here is a low rebound resilience polyurethane foam having a rebound resilience of 1 to 20% measured by a measurement method based on the method A of JIS K 6400. If it is less than 1%, it is difficult to maintain the pad shape, and if it exceeds 20%, it is difficult to deform so as to fit (follow) the shape of the contact partner.

これにより、背部パッド1cは外装1の胴体部Bの背部を内部構造物2の上部2aに対して位置決めし、脚部パッド1dは外装1の胴体部Bの後脚部を内部構造物2の後脚部2bに対して位置決めし、脇腹部パッド1eは外装1の胴体部Bの脇腹部を内部構造物2の脇腹部2cに対して位置決めして、外装1の胴体部Bのそれぞれの部位の、内部構造物2に対する位置ずれを防止することができ、背部パッド1cはさらに、外装1の胴体部Bの自重を背部パッド1c全体で受けて良好に分散させることができる。   Thereby, the back pad 1c positions the back part of the body part B of the exterior 1 with respect to the upper part 2a of the internal structure 2, and the leg pad 1d connects the rear leg part of the body part B of the exterior 1 to the internal structure 2. Positioned with respect to the rear leg 2b, the flank pad 1e positions the flank of the body B of the exterior 1 with respect to the flank 2c of the internal structure 2, and each part of the body B of the exterior 1 Therefore, the back pad 1c can receive the weight of the body part B of the exterior 1 by the entire back pad 1c and can be dispersed well.

この実施例の外装1ではさらに、図1および図2に示すように、左右胴体部Bの後脚部の付け根の内側上部に、表面をテフロンコーティングしたアクリル変性塩化ビニール製の脚部プレート1fが設けられるともに、それらの脚部プレート1fの上下の位置にそれぞれ、ゴムシート1gが上下方向に張り渡されており、脚部プレート1fは主に外装1の胴体部Bの自重で内部構造物2の後脚部2bの付け根の外側角部に押し付けられて、後脚部2bの動きに連れてその付け根の外側角部と摺接し、ゴムシート1gは、発泡ウレタンフォーム製の肉部1bの弾性を補って、内部構造物2の後脚部2bの動きに対する外装1の左右胴体部Bの後脚部の追従性を良くするとともに、左右胴体部Bの後脚部の自重によるその左右胴体部Bの後脚部の垂れ下がりを防止することができる。   Further, in the exterior 1 of this embodiment, as shown in FIGS. 1 and 2, a leg plate 1f made of acrylic-modified vinyl chloride whose surface is coated with Teflon is formed on the inner upper part of the base of the rear legs of the left and right body parts B. While being provided, rubber sheets 1g are stretched in the vertical direction at the upper and lower positions of the leg plates 1f, respectively, and the leg plates 1f are mainly internal weights 2 of the body portion B of the exterior 1. The rubber sheet 1g is pressed against the outer corner of the base of the rear leg 2b and slidably contacts the outer corner of the base as the rear leg 2b moves, and the rubber sheet 1g is elastic of the meat part 1b made of urethane foam. To improve the followability of the rear legs of the left and right body parts B of the exterior 1 with respect to the movement of the rear legs 2b of the internal structure 2, and the left and right body parts due to the weight of the rear legs of the left and right body parts B B hind leg droop It is possible to prevent the fall.

この実施例の外装1ではさらに、図1〜図3に示すように、外装1の胴体部Bの背部に沿ってその内部に、肉部1aをくり抜いて廃熱用の通気経路1hが形成されており、その通気経路1hは複数に分岐して、内部構造物2の上部2aに設けられた胴体排気ファン2dや回路素子等の発熱源2eに対応して背部パッド1cに設けられた複数の通気穴1iにそれぞれ連通し、通気穴1iにはそれぞれ、通気穴1iの形状維持のために金属製または樹脂製の網1jが設けられている。一方、通気経路1hの前端部の排気口1kは、図3に示すように、外装1の胴体部Bの背部の外表面に設けた網1lを介して外気中に開放されている。   Further, in the exterior 1 of this embodiment, as shown in FIGS. 1 to 3, along the back part of the body part B of the exterior 1, a meat part 1 a is cut out to form a ventilation path 1 h for waste heat. The ventilation path 1h branches into a plurality of parts, and a plurality of parts provided on the back pad 1c corresponding to the heat source 2e such as the fuselage exhaust fan 2d and circuit elements provided on the upper part 2a of the internal structure 2. Each of the vent holes 1i communicates with the vent hole 1i, and each of the vent holes 1i is provided with a metal or resin net 1j for maintaining the shape of the vent hole 1i. On the other hand, the exhaust port 1k at the front end of the ventilation path 1h is opened to the outside air through a net 11 provided on the outer surface of the back part of the body part B of the exterior 1, as shown in FIG.

従って、この実施例の内骨格型ロボット用外装1によれば、当該外装1の外部形状を形成する肉部1aの発泡ウレタンフォームより反発弾性率が低い低反発弾性フォーム製の背部パッド1c、脚部パッド1dおよび腹部パッド1eが、外装1の胴体部Bの各部を内部構造物2の各部に対して位置決めして、外装1の胴体部Bの各部の、内部構造物2の各部に対する位置ずれを防止することができ、背部パッド1cはさらに、外装1の胴体部Bの自重を背部パッド1c全体で受けて良好に分散させることができる。   Therefore, according to the endoskeleton robot armor 1 of this embodiment, the back pad 1c made of a low resilience elastic foam having a lower resilience elastic modulus than the foamed urethane foam of the meat part 1a forming the external shape of the armor 1, the leg The part pad 1d and the abdominal part pad 1e position each part of the body part B of the exterior 1 with respect to each part of the internal structure 2 so that each part of the body part B of the exterior 1 is displaced relative to each part of the internal structure 2 Further, the back pad 1c can receive the weight of the body part B of the exterior 1 by the entire back pad 1c and can be dispersed well.

しかもこの実施例の内骨格型ロボット用外装1によれば、図4(a),(b)にそれぞれ異なる凹凸形状の変更の場合を示すように、図2に示す内部構造物2に対してその凹凸形状に変更があった場合でも、当該外装1をそのまま適用するだけで、その変更があった内部構造物2の凹凸形状に嵌まり合うように変形して、上述した外装位置の保持効果と外装自重の分散効果とをもたらすことができるので、内部構造物2の設計変更に容易に対応することができる。   Moreover, according to the endoskeleton robot exterior 1 of this embodiment, as shown in FIGS. 4 (a) and 4 (b), in which different uneven shapes are changed, the internal structure 2 shown in FIG. Even when the uneven shape is changed, the exterior 1 is simply applied as it is, and is deformed so as to fit the uneven shape of the internal structure 2 that has been changed. And the effect of dispersing the weight of the exterior can be brought about, so that it is possible to easily cope with a design change of the internal structure 2.

さらにこの実施例の内骨格型ロボット用外装1によれば、当該外装1の外部形状を形成する肉部1aの素材のウレタンフォームを発泡ウレタンフォームとし、背部パッド1c、脚部パッド1dおよび腹部パッド1eの素材のウレタンフォームを上記外部形状を形成するウレタンフォームより反発弾性率が低い低反発弾性フォームとしていることから、それら背部パッド1c、脚部パッド1dおよび腹部パッド1eが、粘性と弾性を併せ持つとともに、特に弾性を抑えて粘性を高めてあるため、押し付けられた凹凸形状への追従性が高く、内部構造物2の凹凸形状に良好に嵌まり合うことができる。   Furthermore, according to the endoskeleton robot exterior 1 of this embodiment, the urethane foam of the material of the meat part 1a forming the external shape of the exterior 1 is a foamed urethane foam, and the back pad 1c, leg pad 1d, and abdominal pad Since the urethane foam of the material 1e is a low rebound elastic foam having a lower rebound resilience than the urethane foam forming the external shape, the back pad 1c, leg pad 1d and abdominal pad 1e have both viscosity and elasticity. In addition, since the elasticity is particularly suppressed and the viscosity is increased, the followability to the pressed uneven shape is high, and the uneven shape of the internal structure 2 can be fitted well.

さらにこの実施例の内骨格型ロボット用外装1によれば、内部構造物2の後脚部2bと摺接する部分を、テフロンコーティングしたアクリル変性塩化ビニール製の脚部プレート1fで形成していることから、アクリル変性塩化ビニールで外装内面を平坦に維持しつつ、テフロンコーティングで内部構造物2の後脚部2bとの摺接による摩擦を僅かなものとして、後脚部2bとの干渉で外装1が局部的に摩耗したり引っかかって位置がずれたり引きちぎられたりするのを防止することができる。   Further, according to the endoskeleton type robot exterior 1 of this embodiment, the portion that is in sliding contact with the rear leg portion 2b of the internal structure 2 is formed by the leg plate 1f made of acrylic-modified vinyl chloride coated with Teflon. Thus, while maintaining the inner surface of the exterior flat with acrylic-modified vinyl chloride, the friction caused by sliding contact with the rear leg 2b of the internal structure 2 is made slight with Teflon coating, and the exterior 1 is interfered with the rear leg 2b. Can be prevented from being locally worn out or caught and displaced or torn off.

さらにこの実施例の内骨格型ロボット用外装1によれば、内部構造物2から離間した可動部分である、脚部プレート1fの上下の位置にそれぞれゴムシート1gを張り渡してあるので、外装1の外部形状を形成する肉部1aの発泡ウレタンフォームの弾性をゴムシート1gで補って、当該恐竜型ロボットの後脚部の動作に対し、外装1の後脚部の伸縮性を維持して、外装1の後脚部を良好に追従させ、外装の動きを自然なものにすることができる。   Further, according to the endoskeleton robot exterior 1 of this embodiment, the rubber sheet 1g is stretched over the upper and lower positions of the leg plate 1f, which is a movable part separated from the internal structure 2, so that the exterior 1 The elasticity of the foamed urethane foam of the meat part 1a forming the external shape of the dinosaur is supplemented by a rubber sheet 1g to maintain the stretchability of the rear leg part of the exterior 1 against the action of the rear leg part of the dinosaur type robot, The rear leg of the exterior 1 can be made to follow well and the movement of the exterior can be made natural.

さらにこの実施例の内骨格型ロボット用外装1によればその背部の、外部形状を形成する発泡ウレタンフォーム製の肉部1aの内部に、廃熱用の通気経路1hを形成しており、上記のように外装1が内部構造物2に対して位置ずれしたり自重で局部的に潰れたりすることがないことから、その廃熱用通気経路1hの位置ずれや閉鎖を防止し得て、内部構造物2から発生する熱を効率良く排出することができる。   Furthermore, according to the endoskeleton-type robot armor 1 of this embodiment, a vent heat path 1h for waste heat is formed inside the meat part 1a made of urethane foam that forms the external shape of the back part. As described above, the exterior 1 is not displaced with respect to the internal structure 2 and is not locally crushed by its own weight, so that the displacement and closing of the waste heat ventilation path 1h can be prevented. Heat generated from the structure 2 can be efficiently discharged.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、例えば、内骨格型ロボットは恐竜型に限られず人型あるいは動物型等でも良く、また外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームは、低反発弾性フォーム以外の軟質ウレタンフォームでも良い。   Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described example. For example, the endoskeleton robot is not limited to the dinosaur type, and may be a human type or an animal type, and forms an external shape. The urethane foam having a lower rebound resilience than the urethane foam to be used may be a soft urethane foam other than the low rebound resilience foam.

かくしてこの発明の内骨格型ロボット用外装によれば、ロボットの機能に対応する形状のフレームを持つ内部構造物に当該外装を適用すると、その内部構造物と当接する部分の少なくとも一部を形成する、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで、内部構造物と当接して内部構造物の凹凸形状に嵌まり合うように変形するパッド状に形成されているので、当該外装の自重等によりその内部構造物の凹凸形状に押し付けられて、その内部構造物の凹凸形状に嵌まり合うように変形、当該外装の位置ずれを防止して外装の位置を良好に保持し得るとともに、外装の自重の少なくとも一部をその反発弾性率が低いウレタンフォーム全体で受けて良好に分散させることができる。 Thus, according to the exterior for an endoskeletal robot of the present invention, when the exterior is applied to an internal structure having a frame having a shape corresponding to the function of the robot, at least a part of a portion in contact with the internal structure is formed. Since the urethane foam has a lower rebound resilience than the urethane foam that forms the outer shape of the exterior, it is formed into a pad shape that deforms so as to abut the inner structure and fit into the irregular shape of the inner structure. , is pressed against the uneven shape of the internal structure due to its own weight or the like of the exterior, modified as mate the irregularities of the internal structure, the better exterior position to prevent displacement of the sheath While being able to hold | maintain, at least one part of the dead weight of an exterior can be received and disperse | distributed favorably with the whole urethane foam with the low impact resilience rate.

さらにこの発明の内骨格型ロボット用外装によれば、ロボットの内部構造物の凹凸形状に変更があった場合でも、当該外装をそのまま適用するだけで、その変更があった内部構造物の凹凸形状に嵌まり合うように変形して、上述した外装位置の保持効果と外装自重の分散効果とをもたらすことができるので、内部構造物の設計変更に容易に対応することができる。   Furthermore, according to the outer skeleton type robot exterior of the present invention, even when the irregular shape of the internal structure of the robot is changed, the irregular shape of the internal structure that has been changed can be simply applied by applying the exterior as it is. Therefore, it is possible to easily cope with the design change of the internal structure.

(a)は、この発明の内骨格型ロボット用外装を内骨格型ロボットの一例としての図6(a)および図7に示す恐竜型ロボットに適用した一実施例を図5中のA−A線に沿う断面以降の外装後部についてその断面とともに示す斜視図であり、(b)は、その(a)に示す外装後部の構成を示す分解斜視図である。(A) is an embodiment in which the exterior for an endoskeletal robot of the present invention is applied to the dinosaur type robot shown in FIG. 6 (a) and FIG. 7 as an example of the endoskeletal robot. It is a perspective view shown with the cross section about the exterior rear part after the section which meets a line, and (b) is an exploded perspective view showing the composition of the exterior rear part shown in (a). 上記実施例の外装の、図5中のA−A線に沿う断面図である。It is sectional drawing which follows the AA line in FIG. 5 of the exterior of the said Example. 上記恐竜型ロボットの内部構造物と上記実施例の外装との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the internal structure of the said dinosaur-type robot, and the exterior of the said Example. (a),(b)は、内部構造物の形状が図2に示すものからそれぞれ異なって変更された場合の上記実施例の外装1の内側の状態をそれぞれ示す、図2と同様の位置での断面図である。(A), (b) is the same position as FIG. 2 which respectively shows the state inside the exterior 1 of the said Example when the shape of an internal structure is changed differently from what is shown in FIG. FIG. (a),(b)および(c)は、従来の内骨格型ロボットの一例としての恐竜型ロボットを示す正面図、平面図および側面図である。(A), (b) and (c) are the front view, top view, and side view which show the dinosaur type robot as an example of the conventional endoskeleton type robot. (a),(b)は、上記恐竜型ロボットの外装および内部構造物をそれぞれ示す斜視図である。(A), (b) is a perspective view which respectively shows the exterior and internal structure of the said dinosaur-type robot. 上記恐竜型ロボットの外装を示す分解斜視図である。It is a disassembled perspective view which shows the exterior of the said dinosaur type | mold robot. 上記恐竜型ロボットの外装および内部構造物の、図5(c)のA−A線に沿う横断面図である。It is a cross-sectional view along the AA line of FIG.5 (c) of the exterior and internal structure of the said dinosaur-type robot.

符号の説明Explanation of symbols

1 外装
1a 肉部
1b 外皮
1c 背部パッド
1d 脚部パッド
1e 脇腹部パッド
1f 脚部プレート
1g ゴムシート
1h 通気経路
1i 通気穴
1j,1l 網
1k 排気口
2 内部構造物
2a 上部
2b 後脚部
2c 脇腹部
2d 胴体排気ファン
2e 発熱源
H 頭部
B 胴体部
T 尾部
DESCRIPTION OF SYMBOLS 1 Exterior 1a Meat 1b Skin 1c Back pad 1d Leg pad 1e Side pad 1f Leg plate 1g Rubber sheet 1h Ventilation path 1i Vent hole 1j, 1l Net 1k Exhaust port 2 Internal structure 2a Upper part 2b Rear leg part 2c Part 2d fuselage exhaust fan 2e heat source H head B fuselage part T tail part

Claims (7)

ロボットの機能に対応する形状のフレームを持つ内部構造物を柔らかい素材で覆って当該ロボットの外形を任意の形状にする内骨格型ロボット用外装において、
前記内部構造物と当接する部分の少なくとも一部を、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで、前記内部構造物と当接して前記内部構造物の凹凸形状に嵌まり合うように変形するパッド状に形成することを特徴とする、内骨格型ロボット用外装。
In the exterior for an endoskeleton robot that covers the internal structure with a frame of a shape corresponding to the function of the robot with a soft material and makes the outer shape of the robot an arbitrary shape,
At least a part of the portion that comes into contact with the internal structure is a urethane foam having a lower rebound resilience than the urethane foam that forms the external shape of the exterior, and comes into contact with the internal structure to form an uneven shape of the internal structure. An exterior for an endoskeleton-type robot, characterized by being formed into a pad shape that is deformed so as to fit .
前記内部構造物と摺接する部分の少なくとも一部を、テフロンコーティングしたアクリル変性塩化ビニールで形成することを特徴とする、請求項1記載の内骨格型ロボット用外装。 Wherein at least a part of the internal structure and the sliding contact portion, and forming an acrylic modified vinyl chloride was Teflon-coated, claim 1 Symbol placement endoskeleton robot exterior of. ロボットの機能に対応する形状のフレームを持つ内部構造物を柔らかい素材で覆って当該ロボットの外形を任意の形状にする内骨格型ロボット用外装において、
前記内部構造物と当接する部分の少なくとも一部を、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで形成し、前記内部構造物と摺接する部分の少なくとも一部を、テフロンコーティングしたアクリル変性塩化ビニールで形成することを特徴とする内骨格型ロボット用外装。
In the exterior for an endoskeleton robot that covers the internal structure with a frame of a shape corresponding to the function of the robot with a soft material and makes the outer shape of the robot an arbitrary shape,
Forming at least a part of the part in contact with the internal structure with a urethane foam having a lower rebound resilience than the urethane foam forming the external shape of the exterior, and at least a part of the part in sliding contact with the internal structure, endoskeleton robot exterior it and forming an acrylic modified vinyl chloride was Teflon-coated.
前記内部構造物から離間した可動部分の少なくとも一部に、ゴムシートを張り渡すことを特徴とする、請求項1から3までの何れか記載の内骨格型ロボット用外装。   The exterior for an endoskeleton-type robot according to any one of claims 1 to 3, wherein a rubber sheet is stretched over at least a part of the movable part spaced apart from the internal structure. ロボットの機能に対応する形状のフレームを持つ内部構造物を柔らかい素材で覆って当該ロボットの外形を任意の形状にする内骨格型ロボット用外装において、In the exterior for an endoskeleton robot that covers the internal structure with a frame of a shape corresponding to the function of the robot with a soft material and makes the outer shape of the robot an arbitrary shape,
前記内部構造物と当接する部分の少なくとも一部を、当該外装の外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームで形成し、前記内部構造物から離間した可動部分の少なくとも一部に、ゴムシートを張り渡すことを特徴とする内骨格型ロボット用外装。At least a part of the portion that contacts the internal structure is formed of a urethane foam having a lower rebound resilience than the urethane foam that forms the external shape of the exterior, and at least a part of the movable part that is spaced apart from the internal structure. An exterior for an endoskeleton robot characterized by stretching rubber sheets.
前記外装の外部形状を形成するウレタンフォームを発泡ウレタンフォームとし、
前記外部形状を形成するウレタンフォームより反発弾性率が低いウレタンフォームを軟質ウレタンフォームとすることを特徴とする、請求項1から5のいずれか一項記載の内骨格型ロボット用外装。
The urethane foam that forms the external shape of the exterior is a foamed urethane foam,
The exterior for an endoskeletal robot according to any one of claims 1 to 5, wherein a urethane foam having a lower rebound resilience than the urethane foam forming the external shape is a flexible urethane foam.
前記外部形状を形成するウレタンフォームの内部に、廃熱用の通気経路を形成することを特徴とする、請求項1からまでの何れか記載の内骨格型ロボット用外装。 The exterior for an endoskeletal robot according to any one of claims 1 to 6 , wherein a ventilation path for waste heat is formed inside the urethane foam forming the external shape.
JP2006029663A 2006-02-07 2006-02-07 Endoskeleton robot exterior Expired - Fee Related JP4624273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006029663A JP4624273B2 (en) 2006-02-07 2006-02-07 Endoskeleton robot exterior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006029663A JP4624273B2 (en) 2006-02-07 2006-02-07 Endoskeleton robot exterior

Publications (2)

Publication Number Publication Date
JP2007209391A JP2007209391A (en) 2007-08-23
JP4624273B2 true JP4624273B2 (en) 2011-02-02

Family

ID=38488314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006029663A Expired - Fee Related JP4624273B2 (en) 2006-02-07 2006-02-07 Endoskeleton robot exterior

Country Status (1)

Country Link
JP (1) JP4624273B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965514A (en) * 2016-05-09 2016-09-28 上海理工大学 Bionic hydraulic four-foot machine dinosaur structure
CN107952254A (en) * 2017-05-16 2018-04-24 东莞市弘羲五金制品有限公司 A kind of metal intelligence development assembly dinosaur

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7971497B2 (en) * 2007-11-26 2011-07-05 Air Products And Chemicals, Inc. Devices and methods for performing inspections, repairs, and/or other operations within vessels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289743A (en) * 1994-04-20 1995-11-07 Takara Co Ltd Walking animal toy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289743A (en) * 1994-04-20 1995-11-07 Takara Co Ltd Walking animal toy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965514A (en) * 2016-05-09 2016-09-28 上海理工大学 Bionic hydraulic four-foot machine dinosaur structure
CN107952254A (en) * 2017-05-16 2018-04-24 东莞市弘羲五金制品有限公司 A kind of metal intelligence development assembly dinosaur

Also Published As

Publication number Publication date
JP2007209391A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
US11918529B2 (en) Fluid-driven actuator and its applications
US20170266075A1 (en) Aid device for the movement and/or rehabilitation of one or more fingers of a hand
US20190083350A1 (en) Exoskeleton for a Human Being
JP4624273B2 (en) Endoskeleton robot exterior
JP5185473B1 (en) Legged robot
JP4115941B2 (en) Massage device
US20190258239A1 (en) Jacket for embodied interaction with virtual or distal robotic device
GB2516285A (en) Swimming gloves
JP2020509834A (en) Cable operated motion enhancement system and method
JP6678897B2 (en) robot
JP7184047B2 (en) robot equipment
WO2019131696A1 (en) Robot housing movement mechanism
JPWO2019221161A1 (en) Robot with flexible outer skin
Gopura et al. Development of a 6DOF exoskeleton robot for human upper-limb motion assist
WO2013121469A1 (en) Legged robot
JP3178066U (en) Finger function recovery aid
CN110665192A (en) Recovered type ectoskeleton gloves robot
CN207087863U (en) A kind of power-assisted pedipulator sat
US20230321814A1 (en) Hand exoskeleton for rehabilitation and assistance of hand motor functions
KR101617820B1 (en) Wearable 2-DOF Wrist Rehabilitation Robot
CN113398540A (en) Hand rehabilitation training device
WO2024043425A1 (en) Soft covering structure for robot with metastructure applied
JP3128372U (en) Joint supporter
CN104720161A (en) Shockproof and cold proof gloves
Fani et al. Integrating wearable haptics and teleimpedance methods for augmented human-robot interaction with synergy-inspired robotic systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees